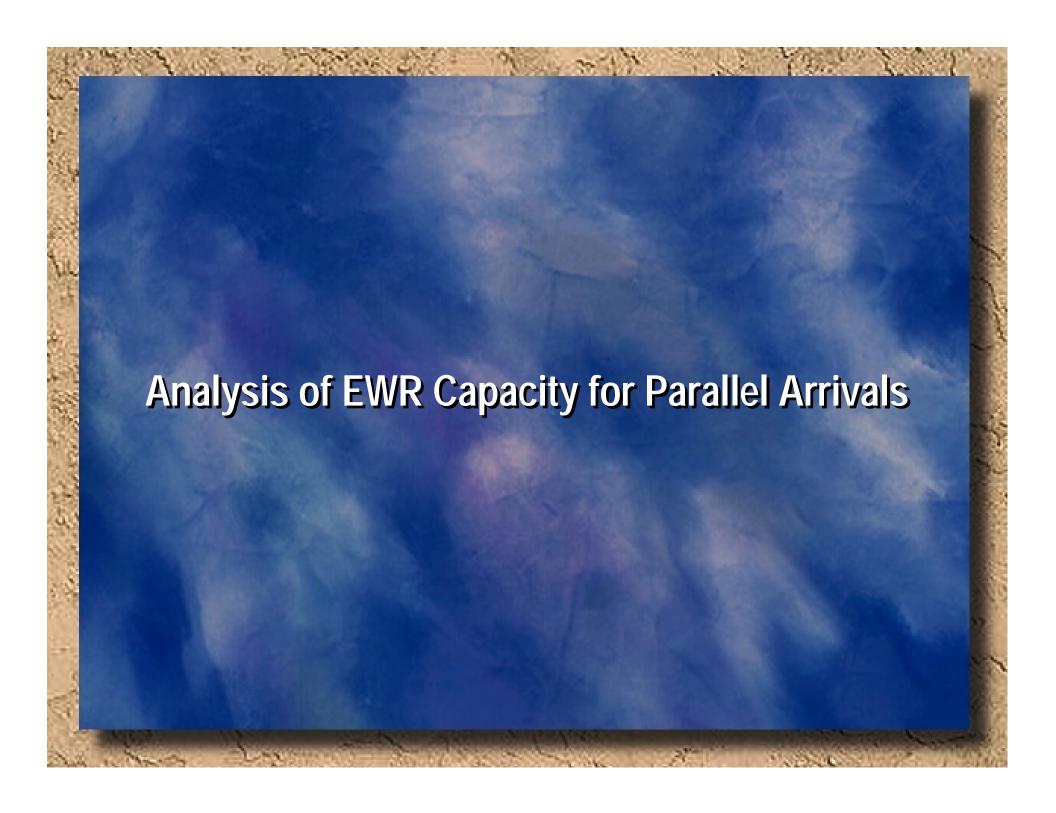
Using TAAM in Airline Operations and TAAM Analysis of EWR Capacity for Parallel Arrivals

Presentation to the Transportation Research Board

Patricia Massimini MITRE Corporation

Tim Stull Continental Airlines

9 January 1999

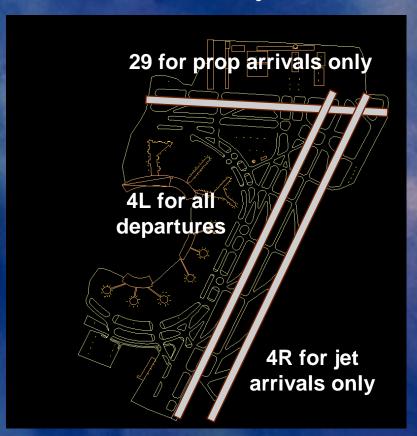

Airline Applications For TAAM

- Facilities Design
 - Allows you to validate design concepts before they are built
 - Support studies for regulatory projects
- CDM / CR
 - As a test-bed for potential solutions
- Scheduling
 - Schedule integrity studies
 - Schedule impact studies
 - Bank design concept studies
- Operations and AOC
 - Ops scenario analysis

Why Work Together?

The most successful simulation efforts are cooperative in nature

- Cooperation can save time (lots of it)
- Cooperation can enhance accuracy
- Cooperation can smooth implementation effort
- Cooperation can create opportunities


Overview

- The problem, questions, and objectives of the study
- Study approach, assumptions, and metrics
- Cooperation among study participants
- Results
- Observations on the use of TAAM

Adding a Second Arrival Stream

Baseline

Single arrival stream for jets

Alternative

Dual arrival streams (visual or SOIA/PRM)

Dual Arrivals

- ◆ The alternative scenario would eliminate arrivals from 29, shifting them to 4L or 4R.
- Departures would be shifted to 29, whenever possible.
- Under this scenario, it is assumed that visual approaches or SOIA/PRM procedures to runways 4L and 4R are available.

Questions

- How much improvement would the new procedure provide with respect to arrival delay?
- To what extent would additional arrivals impact EWR departures?
- Would there be sufficient gate, taxiway, and parking capacity at EWR to handle additional arrivals?
- Would an increase in traffic change these results?

Objectives of the Study

 Determine the effect the new procedure on EWR delays and capacity.

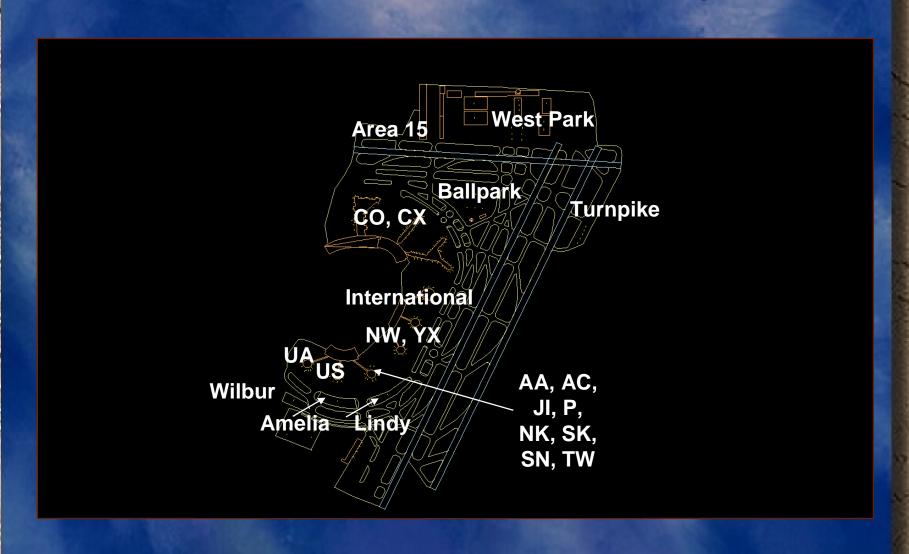
 Provide input to FAA's report to Congress regarding feasibility of the new procedure.

Approach

- Use TAAM to model runways, taxiways, and gates.
- Use 2003 airport configuration--additional terminal building and changes to taxiways and parking areas.
- ◆ Simulate runway operations for both scenarios without gate and taxiway operations as constraints.
- Add taxiway and gate usage to identify their impact separately from the runway constraints.

Scenarios

	Traffic	Alternative Runway Configuration (Dual Arrival)?	Gates and Taxiways?	
1	2003	No	No	
2	2003	Yes	No	
3	2003	No	Yes	
4	2003	Yes	Yes	
5	2003+10%	No	Yes	
6	2003+10%	Yes	Yes	
7	2003+10%	Yes	No	


Assumptions

- ◆ NW winds / NE flow, operation on 4L, 4R, and 29.
- **◆ Airport configuration for 2003**
- ◆ No airspace constraints on arrivals or departures
- No interactions with any other airport
- ◆ No traffic flow intervention to balance flow to airport
- No noise restrictions
- Visual separation

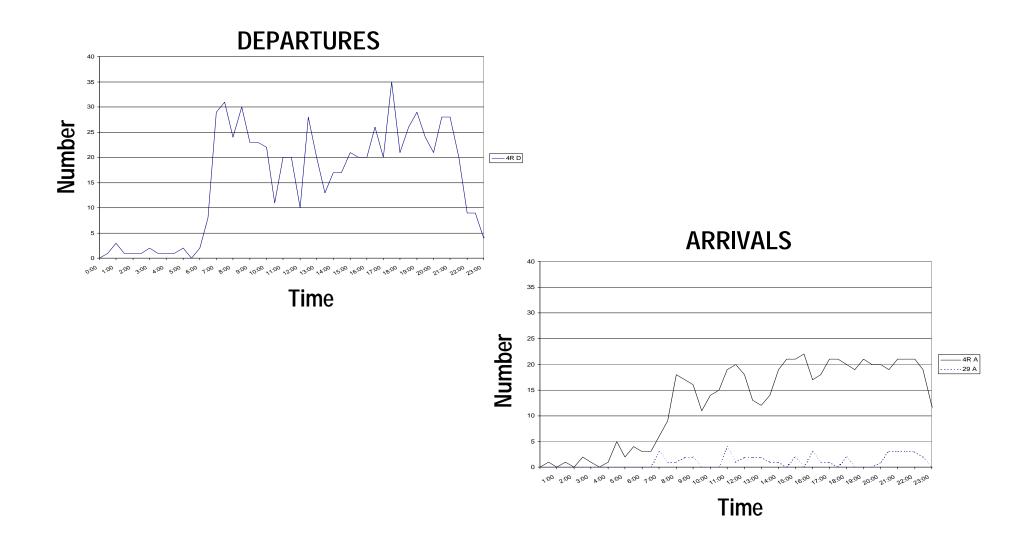
Team Effort

- Continental Airlines
 - 2003 airport layout
 - COA schedules for 1999 and 2003
 - Gate service times for COA flights
 - Restriction on use of runway 29 (AC type, range, fix)
- FAA
 - Current ARTS data; historical, current and future traffic counts
 - Validation of runway, taxiway, gate and parking area usage
- ◆ MITRE
 - Data coordination and synthesis
 - Analysis and interpretation of results

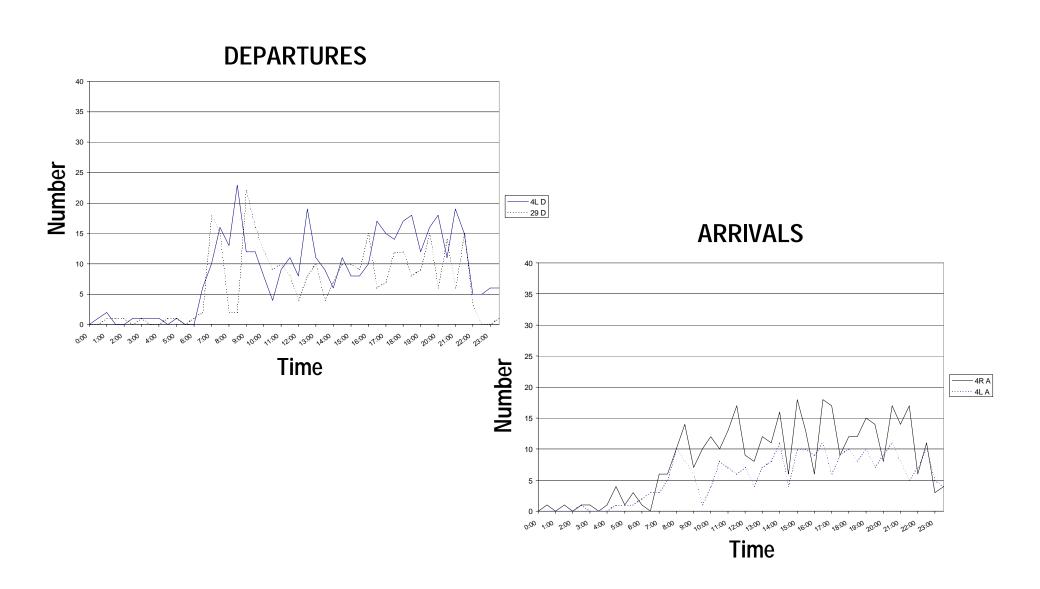
Example Input Data: Airport Layout

Example Input Data: Runway Dependencies

- ◆ Departures on 29 must be through the intersection with 4L/R before arrivals on 4L/R cross the threshold.
- ◆ Departures on 29 must wait until departures on 4L have passed 29 (and vice versa).
- Departures on 29 must wait until arrivals on 4L/R are at taxi speed.
- Stagger parallel arrivals.


Metrics

- Arrival and departure rates by runway
- Arrival and departure delays
 - Average per aircraft
 - Cumulative over the 24-hour period


BASELINE RUNWAY CONFIGURATION

- 04R at full arrival capacity for most of the day
- ◆ 29 underutilized for arrivals (props only)

DUAL ARRIVAL RUNWAY CONFIGURATION

- Balanced runway operation
- Lower peaks for both departures and arrivals

Summary of Results

	Traffic	Alternative Runway Configuration (Dual Arrival?)	Gates and Taxiways?	Average Delay per Aircraft (min)	Cumulative Delay Over 24 Hours (min)
1	2003	No	No	10.9	11,700
2	2003	Yes	No	7.6	8,100
3	2003	No	Yes	11.8	13,100
4	2003	Yes	Yes	9.0	9,600
5	2003+10%	No	Yes	16.2	21,600
6	2003+10%	Yes	Yes	13.8	17,500
7	2003+10%	Yes	No	8.3	10,100

Observations for 2003 Traffic Level

- ◆ The alternative scenario reduces delays significantly as compared with baseline operations (24%-31% reduction).
- Adding gates and taxi operations to the runway model adds delay, but not an unusually large amount (8-18% increase).

Observations for 2003 Traffic + 10%

- ◆ Delays increase significantly from 2003 traffic levels (37-53% increase).
- ◆ The alternative scenario still reduces delays as compared with baseline operations, but not as much (15-19% reduction).
- ◆ Ground operations contribute significantly to delay at this traffic level (40-42% increase).

Observations on Use of TAAM

- Capable tool for modeling runway capacity and ground operations
 - Arrival and departure separations
 - Runway dependencies
 - Runway restrictions by type of aircraft, departure fix, range
 - Taxi paths (normal and off-normal), restrictions
 - Gate assignments, turn times
 - Parking was less satisfactory, but acceptable

Observations on Use of TAAM (continued)

- Good tool for interacting with controllers and study team.
 - Tower and ramp controllers were able to identify problems with the modeling assumptions during validation.
 - Visualization of simulation gave study team members (including controllers) confidence that the model was correct.

