

Staff and Lane Modeling Methodology for TSA Checkpoint Passenger Screening

© CMM and Capability Maturity Model are registered in the U.S. Patent and Trademark Office M. P. Timothy Bradley

Lockheed Martin

Jay Goyal

Transportation Security Administration

01/12/2003

Objective

Provide World-Class Checkpoint Security

- Determine the appropriate number of checkpoint lanes required to handle airport passenger volume efficiently.
- Identify checkpoints that have immediate demand for new lanes and allocate funds on a priority basis.

Provide World-Class Customer Service

 Identify staffing requirements to operate checkpoint lanes that meet TSA passenger wait time standard (no Pax waits more than 10 min prior to walking through WTMD)

Airport Data Collection

- Number of lanes per checkpoint(s) for each sterile area within every airport:
 - Original baseline for all commercial airports from FAA/TSA database.
 - Crosscheck and validation performed by Lockheed Martin on-site teams in July and August 2002.
 - Takes into account multiple checkpoints serving same gates.
- Airline Data: Number of passengers boarding.
- Passenger throughput:
 - Determined prior to TSA process improvements.
- For each checkpoint:
 - Identification of the peak period of passenger flow;
 - Determination of maximum wait time over peak 2 h; and
 - Determination of throughput per lane.

Analysis of Data

- Vast majority of checkpoints were meeting delay time criteria even at peak periods.
- Airline data of passengers loading can be misleading owing to transfers:
 - Hub airports board more passengers due to flight to flight transfers than entry through checkpoints.
- Some very large differences in throughput per lane were apparent.
 - Operation of X-ray.
 - Amount of carry-through the WTMD (e.g., coats).

Screening Process

Screening tradeoffs with TSA process

- "Continuous" belt movement versus "jogging"
- Amount of forced secondary screening

Provision of Checkpoint Lanes

- Throughput capacity normalized based upon equipment used per the TSA approved process.
- No lanes removed from airports even if under utilized.
- Airport desires for expansion considered.
- Accommodation for unusual circumstances made.
 - High carry-on baggage per passenger,
 - Large number of small children, and
 - Space available.
- Proper screening paramount.
- Net result: Approximately 10% increase in number of lanes approved.

Airport Staffing Model Criteria

- Once number of lanes established, must determine screener staffing throughout the day and week.
- Opening and closing of lanes necessary to account for fluctuating pax flow throughout the day.
- Optimize ratio of staff working to staff needed.
- Model must accommodate full gambit of issues.
 - Employees need predictable shift times.
 - Airline schedules change frequently.
 - Passenger loads fluctuate:
 - Time of year, special events, discount tickets, etc.
 - Passenger arrivals to airport prior to flight vary according to the type of person.
 - Changes in equipment and processes change staffing needs.

Staffing Profile Model

- Model developed in Excel by GRA, Inc. under contract to TSA.
- Model inputs:
 - Airport configuration of lanes and checkpoints;
 - Airlines being served by each checkpoint;
 - Airline flight schedule from the Official Airline Guide (OAG);
 - Originating passenger load factors by airline plus additional crew and employees that pass through checkpoint;
 - Lane equipment staffing requirements;
 - Lane throughput in passengers per hour; and
 - Passenger arrival profiles based on airport type.

Passenger Arrival Profile

Arrival Distribution

Minutes before departure

Model Output

- Model provides output profile for number of lanes required to be staffed hourly to meet wait level standard for expected passenger load.
- Model also provides staffing profiles for multiple shift patterns (e.g., 10 h, 8 h, split shift).
 - Optimizes ratio of actual staff working to staff needed.
 Eliminates excess capacity.
 - Must be reasonable for airports to implement mixture of different shift options and variable start times.
 - Adds additional staff to account for training, vacation, and sick leave.

Lane Usage Profile

Optimal Staffing Profile

Weekend Profile

