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Predicting Roughness Progression iri Flexible 
Pavements Using Artificial Neural Networks 

Nii 0. Attoh-Okine, Florida International University 

To develop a balanced expenditure program for a highway net­
work, the rate of deterioration of the pavement and the na­
ture of changes in the condition need to be predicted so that 
timing, type, and cost of maintenance can be estimated. A 
pavement deterioration model, or pavement performance, is 
therefore a key component of the analysis supporting pave­
ment management decision making. Models for predicting 
roughness progression have been developed on the basis of traf­
fic and time-related models, interactive time, traffic, or distress 
models. These models differ in form, in level of initial rough­
ness, and in the influence of roughness on the subsequent 
progression rate. A characteristic feature of the models is 
that they are formulated and estimated statistically from field 
data. To date, modeling pavement performance has been ex­
tremely complicated; no pavement management system 
(PMS) can consider more than a few of the parameters in­
volved, and then only in highly simplified manner. The capa­
bilities of artificial neural networks (ANNs) are evaluated in 
predicting roughness progression in flexible pavement from 
structural deformation, which is the function of modified 
structural number, incremental traffic loadings, extent of 
cracking and thickness of cracked layer, incremental varia­
tion of rut depth; surface defects, which are the function of 
changes in cracking, patching and potholing; and environ­
mental and non-traffic-related mechanisms, which are the 
function of pavement environment, time, and roughness. 
ANNs have attracted considerable interest in recent years 
because of growing recognition of the potential of these net­
works to perform cognitive tasks. The tasks include predic-

tion, knowledge processing, and pattern recognition. ANNs 
offer a number of advantages over more traditional statisti­
cal prediction methods: they are capable of generalization, 
and because of their massive parallelism and strong inter­
connectivity, they are capable of offering real-time solutions 
to complex problems. The back-propagation algorithm, 
which uses supervised learning, is used to train the networks. 

Road roughness i defin ed as the deviation from a 
true planar sui·face with a characteristic dimension 
that affect vehicle dynamics, ride quality, dy­

namic loads, and drainage. Roughness, which is the irreg­
ularity of the road surface familiar to all road users, and 
the perceptions of the riding quality of a road have long 
been considered criteria for the acceptability of the service 
provided by the road. Roughness affects the dynamics of 
moving vehicles, increasing the wear on vehicle parts. It also 
increases the dynamic loadings imposed by vehicles on the 
surface, accelerating the deterioration of pavement struc­
ture as discussed by Paterson (1 ). 

Predicting the progression of roughness during pave­
ment design life is very important for pavement manage­
ment decision making, pavement design and evaluation, and 
road pricing. Many different models for characterizing 
roughness progression in flexible pavements systems are 
shown in Table 1. The merits and drawbacks of traffic, 
time-related, and interactive time-traffic models have 
been discussed by Paterson (2). New transferable causal 

55 



·. 
. · 

56 THIRD INTERNATIONAL CONFERENCE ON MANAGING PAVEMENTS 

TABLE 1 Selected Previous Model Forms for Characterizing Roughness Progression 

MODEL FORMS SOURCE AND COMMENT 
*Traffic Models 

*Time Related Models 

20 -30% per year 

*Interactive time, traffic or distress 

7. R,=a+bt+cf ( S, log N,) 
8. 6R,/R,=max(aCXb 1 c)6t 

9. t=f[p" RD,RD' · ', (C+P) 0
· '] 

Generalized Models 

10. RI,=e•' [RI 0 +a (l+SNC-F HS CRX) "5NE,] 
+cRDS,+dCRX,+ePAT, 

11 . RI,=e•'+ [RI 0 +a ( l+SNC) "5NE,] 
+d CRX,+ePAT, 

12. Rinoc=e•' [RI 0 +a ( l+SNC) "5NE,] 

13. RI,=e•' [RI 0 +a (l+SNC-F,HS CRX) ·'NE,] 

14. RI,=e•t [RI 0 +a ( l+SNC) "5NE,] 

15. RI,=e"' [RI 0+a ( l+SNC-F HS CRX) 9 NE,] 

16. RI,=e"' [RI 0 +a ( l+SNC) 9 NE,] 

1 7. RI,=e•' [RI,+a ( l+SNC) 9NE\J 

* Adapted from (2) 

AASHTO from 1959-60 Road 
Test,Illinois 
RTIM2 Model from 1971-75 
Kenya-TRRL Road Cost Study 
USA (Lytton et al. 1982); 
S-shaped curve of slope p 
and curvature (3 

Arizona, USA (Way and 
Eisenberg 1980) . 
Australia (Potter 1982). 

Canada(Cheetham and 
Christison 1981). 
Spain, Belgium (Lucas and 
Viano 1979) 

Brazil(Queiroz 1981). 
Great Britain (Jordan et 
al. 1987). • 

(Uzan and Lytton 1982). 

(Paterson and Attoh-Okine 
1993 (3)). 

(Paterson and Attoh-Okine 
1993 (3)). 

(Paterson and Attoh-Okine 
1993(3)). 

(Paterson and Attoh-Okine 
1993 (3)). 

(Paterson and Attoh-Okine 
1993 (3)) . 

(Paterson and Attoh-Okine 
1993 (3)). 

(Paterson and Attoh-Okine 
1993(3)). 

(Paterson and Attoh-Okine 
1993 (3)). 

Note: g = damage function; p = serviceability index; N, = cumulative number of ESAL's; R = roughness; 
S = pavement strength parameter; t = age of pavement since rehabilitation; CRX = area of cracking; RD = 
rut depth; C + P = area of cracking plus patching; !), p, are functions, and a, b, and h are constants estimated 
empirically through research; RI, = roughness at pavement age t; m = environmental coefficients; NE, = cu­
mulative equivalent standard axle loads; SNCK = (1 + SNC - F HS CRX,); SNC = structural number modi­
fied for subgrade strength; F - coefficient; HS = thickness of bound layers; CRX, = area of indexed cracking 
at time t; RDS,= standard deviation of rut depth; PHV, =volume of potholing; PAT,= area of patching. 

models (2) and generalized models described by Paterson 
and Attoh-Okine (3) have been developed (Table 1). To 
date, the models developed for predicting roughness have 
concentrated primarily on the expected or average future 
performance of the pavement. The outcome is based on sta­
tistical prediction methods. 

Artificial neural networks (ANNs) have been shown to 
offer a number of advantages over traditional statistical 
methods. They are capable of making generalizations and 
of offering real-time solutions to complex prediction 
problems because of their massive parallelism and strong 
interconnection. Because ANNs learn from pavement his-
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torical data, no human expert, specific knowledge, or de­
veloped models are needed. 

The aim of this paper is to evaluate the capabilities of 
ANNs in predicting roughness progression in flexible 
pavement from structural deformation (modified struc­
tural number, incremental traffic loadings, extent of 
cracking and thickness of cracked layer, and incremental 
variation of rut depth), surface defects (changes in crack­
ing, patching, and potholing), and environmental and 
non-traffic-related mechanisms (pavement environment 
and time). ANNs are particularly suited to such a task be­
cause they are "taught," that is, exposed to data, allowed 
to "learn," and "told" what are the appropriate responses 
to different inputs. 

ARTIFICIAL NEURAL NETWORK APPROACH 

ANNs, or simply neural networks, are computing systems 
made up of a number of simple and highly interconnected 
elements that process information by its dynamic-state re­
sponse to external inputs, as described by Kamarthi et al. 
(4). ANNs have been studied for many years, but there 
has been a recent resurgence of interest in this rapidly 
growing area in artificial intelligence (AI). ANNs are a 
form of AI designed from a blueprint of the brain that 
simulates the brain's capability to think and learn through 
perception, reasoning, and interpretation. Important 
characteristics of a neural network are its ability to 
"learn" and "adapt" and its flexibility and parallelism. 

Unlike expert systems, ANNs are capable of learning the 
interrelationship between the parameters of a problem by 
looking at some typical examples. ANNs are very flexible 
and can be thought of as black boxes that could be 
adapted for any problem. With today's advances in com­
puter technology, the parallel structure of ANNs helps in 
the implementation and real-time applications. ANNs can 
operate simultaneously on both quantitative and qualita­
tive data, and they naturally process many inputs and 
have many outputs that make them readily applicable to 
multivariate systems. 

The basic unit of an ANN is a processing element (PE). 
It combines (typically sums) the inputs and produces an out­
put in accordance with a transfer function (typically a 
threshold function). The output of one processing element 
is connected to the input paths of other processing ele­
ments through connecting weights. The PEs by themselves 
are not powerful in terms of computation or representa­
tion, but their interconnection allows analysts to encode 
relations between variables, giving different powerful 
processing capabilities. Figure 1 displays the anatomy of 
a single PE. The inputs' signals come from either the en­
vironment or outputs of other PEs and form an input vec­
tor A = (ai, ... a; ... an), where a; is the activity level of 
the ith PE or input. Associated with each connected pair 

of PEs is an adjustable value called weight (also referred 
to as a connection strength). The collection of weight 
forms a vector W; = (w1;, ••• W;; •.. Wn;), where the 
weight W;; represents the connection strength from PE a; 

to the PE b;. And finally the bias 0; is used to compute the 
output value b: 

b; ={(AW; - W0 ;0;) (1) 

b; = t( f a;W; - Wa;e;) 
i=1 

(1a) 

DEVELOPMENT OF ANN MODEL 

Data Generation 

Roughness data were generated using the RODEMAN, a 
menu-driven PC version of the Road Deterioration and 
Maintenance Submodel of HDM-111. The approach uti­
lizes a full empirical simulation model to generate rough­
ness data. Table 2 is the example subset of data generated, 
and Table 3 shows the combination. There were 1,274 
discrete data items. 

Data Preparation 

The phases of data preparation for the modeling were 
broadly classified into three distinct areas: data specifica­
tion, data inspection, and data preprocessing. The data 
specification was determined during the generation of 
variables from the simulation. After the data were identi­
fied, box-and-whiskers plots were used to determine if 
there were outliers. An outlier is an extreme data point 
that may have undue influence on a model. Outliers are of­
ten (but not always) caused by erroneous data cases. 

Box-and-whiskers plots are based on a "five-number 
summary," which consists of the median, the two quar-

FIGURE 1 Artificial neural system. 



TABLE2 Example Subset of Data Generated by HDM-ill Model 

SNC AADT ESALY AGE CRA CRW CRX RAV PHA- RDM RDS RI PAT 
veh/d Million yr % % % % % mm mm IRI= % 

3 1000 0.10 0 0 0 0 0 0 0 0 2.0 0.00 
1 0 0 0 0 0 3.0 1.3 2.21 0.00 
2 0 0 0 0 0 3.4 1.4 2.28 0.00 
3 0 0 0 0 0 3.8 1.5 2.36 0.00 
4 0 0 0 0 0 4.1 1.5 2.43 0.00 
5 0 0 0 0 0 4.3 1.6 2.51 0.00 
6 2 0 1 0 0 4.5 1.6 2.59 0.00 
7 6 0 4 0 0 4.7 1.7 2.69 0.00 
8 12 3 8 0 0 4.9 1.7 2.80 0.00 
9 20 9 16 0 0 5.1 1.7 2.94 0.00 
10 31 19 26 0 0 5.2 1.7 3.09 0.00 
11 44 31 39 0 0 5.4 1.8 3.27 0.00 
12 59 45 54 0 0.03 5.6 1.8 3.47 0.03 
13 72 61 68 0 0.04 5.8 1.9 3.68 O.Q7 
14 82 74 80 0 0.06 6.0 1.9 3.87 0.13 
15 90 85 89 0 0.07 ·6.2 2.0 4.06 0.20 
16 95 93 95 0 0.08 6.4 2.0 4.23 0.28 

1. Potholing area dara shown is prior to patching, and is reduced to zero annually by the patching. 
2. 1 m/km IRI = 63.36 inch/mi IRI. 

~: SNC =Modified Sb'Uctural Number 

TABLE3 Combinations and Ranges of Primary Parameter Used to Generate Condition Data 

Traffic Loading (million ESAL/Lanc-yr) 

Surface Surface 
Environment T~ SNC Thickness O.Dl 0.03 0.10 0.30 1.0 3.0 

AC 2 30 x x 
3 50 x x x 
5 80 x x x 
8 100 x x x 

DNF 
(0.005) ST 2 12 x x 

3 12 x x x 
4 15 x x x 
6 18 x x x 

WNP 
(0.023) AS FOR DNF ABOVE 

WF 
(0.100) AS FOR DNF ABOVE 

Note: DNF = Dry, non-freeze; WNF = wet, non-freeze; WF = wet, freeze; ESAL = equivalent standard axle 
loadings (8,200 kg). 
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tiles, called "hinges," and the range (whiskers). Figure 2 
is a box-and-whiskers plot of SNC (structural number 
modified for subgrade strength) without outliers, and 
Figure 3 is a box-and-whiskers plot of rut depth with an 
outlier. Although not all the outliers were erroneous, all were 
removed from the data before analysis because the data were 
only simulated, not from actual pavement conditions. 

The Explorer software is a commercial ANN used in 
the modeling process. To use the software, the data in­
puts must be between 1 and 0. All the variables are di­
vided by the maximum value in the generated data of the 
variable. Table 4 is a subset of data for a roughness pre­
diction neural network. About 30 percent of generated 
data was used as an input, and about 10 percent was 
reserved for the set when networks were fully trained or 
had converged. 

Training 

The proposed scheme for roughness prediction involves 
the development of an ANN that could be trained to pre­
dict roughness of pavement, given pavement condition 
data. Initially three different architectures of the network 
were examined. The three had either one (48 PEs), two 
(24 PEs), or three layers (16 PEs), elements in keeping 
with a rule of thumb that requires a ratio of four hidden 
units for each input unit. The ANN training process 
depends mainly on the problem scale and the prediction 
accuracy required. 

The back-propagation learning algorithm, also known 
as the generalized delta rule, was used in the learning 
process. In the back-propagation, each presentation of the 
data set and the input value (roughness) of the ANNs 
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FIGURE 2 Box-and-whiskers plot of structural number modified for subgrade strength without outliers. 
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FIGURE 3 Box-and-whiskers plot of rut depth with an outlier. 

are compared with desired output values and adaptive 
weights within the network and incrementally adjusted to 
minimize the output error. The sigmoid activation func­
tion was used. The inputs was compressed by the activa­
tion function into output values between 0 and 1. The 
back-propagation algorithm has demonstrated several 
advantages in addition to having the potential for deter­
mining networks with arbitrary mapping properties (5). 
Although the back-propagation learning method works, 
the learning process is very slow, even for fast com­
puters (6). 

The error function is expressed as 

(2) 

where 

c = input sample case, 
j = output node index, 
y = actual output, and 
d = desired output. 

The overall objective is to minimize the error function by 
adjusting the interconnection weights. The training algo­
rithm using back-propagation is well presented elsewhere. 
The initial weights and biases are chosen randomly. The 
adjusted weights and biases are as follows: 

new _ curcent 8tEt + ( current previous) 
W;; - W,j - YJ 8w·· a W;; - W;; 

I/ 
(3) 

8new = 
8

curcent _ 8 t Et + ( 8current _ Sprevious) 
I I 1] 88· Q'. I I 

I 

(4) 
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TABLE 4 Example of Subset Data Used as Input for ANN Modeling 

SNC AADT ESAL AGE CRA CRW CRX 

0.25 0.003 0.003 0 0 0 0 

0:25 0.003 0.003 0.45 0.14 0.09 0.16 

0.375 0.003 0.003 0.1 0 0 0 

0.375 0.03 0.03 0 0 0 0 

0.375 0.03 0.03 0.25 0 0 0 

1 0.01 O.Ql 0 0 0 0 

0.375 0.03 0.33 0.1 0.03 0 0.02 

0.375 0.33 0.33 0.6 0.94 0.94 0.95 

0.75 0.01 0.01 0.25 0 0 0 

0.75 O.Ql 0.01 0.8 0.17 0.05 0.13 

0.75 0.1 0.1 0.25 0 0 0 

0.25 0.003 0.003 0 0 0 0 

0.375 0.03 0.03 0.55 O.Ql 0 0.9 

0.5 0.1 1 0.35 0.77 0.77 0.78 

0.5 0.1 0.1 0.8 0.8 0.86 0.87 

0.5 0.10 0.1 0.6 0.17 0.1 0.15 

0.5 0.01 0.001 0.75 0.1 0.02 0.07 

0.375 0.33 0.33 0.55 0.93 0.93 0.94 

where a and 11 are learning rates. Back-propagation is 
accomplished in four steps: 

Step 1: Normalized condition data generated by simu­
lation are presented to the input layer. 

Step 2: One pair of corresponding inputs (condition 
data) and the output (roughness) are presented. 

Step 3: Using the actual roughness (output), the error 
with respect to given roughness is determined. 

Step 4: Error is used to adjust the connecting weight. 
Step 5: Using the next data pair, the process is repeated 

until "correct" roughness is obtained for all inputs used 
for training. 

Result 

During training the network result is compared with the 
correct result, and the mean-square error (MSE) is com­
puted as follows: 

Network Size 

12-48-1 
12-24-24-1 
12-16-16-16-1 

Training Data 

0.2 
0.001 
0.002 

Training Cycles 

30,000 
30,000 
30,000 

RAV PHA RDM RDS PAT RI 

0 0 0 0 0 0.14 

0.09 0 0.14 0.46 0 0.18 

0 0 0.15 0.23 0 0.15 

0 0 0 0 0 0.14 

0 0 0.26 0.31 0 0.16 

0 0 0 0 0 0.14 

0 0 0.29 0.31 0 0.18 

0.02 0 0.79 0.83 0.19 0.5 

0 0 0.17 0.23 0 0.20 

0.88 0 0.15 0.17 0 0.69 

0 0 0.14 0.17 0 0.24 

0 0 0 0 0 0.14 

0.14 0 0.33 0.35 0 0.18 

0.17 0 0.50 0.63 0.06 0.15 

0.13 0 0.42 0.46 0.02 0.24 

0.83 0 0.28 0.29 0 0.18 

0.9 0 0.22 0.25 0 0.16 

0.03 0 0.77 0.79 0.15 0.39 

The MSE improves significantly as the number of hidden 
layers increases. It is difficult to evaluate the reliability of 
a newly trained network; inputs could be removed, 
added, or altered and the network retrained until the reli­
ability of the network is established, according to Pratt 
et al. ( 6). 

Figure 4 shows the relationship between actual rough­
ness (from simulated data) progression and roughness 
predicted by ANNs. Between 2 and 7 IRI there is a fairly 
good correlation between the desired roughness and the 
roughness output from the ANNs. Above 7 IRI the ANNs 
model overestimates the roughness predictions. The R2 

obtained was 39.54 percent and the standard error of 
1.88 IRI; 56 data points were used for the testing. 

CONCLUDING REMARKS 

The application of ANNs in pavement deterioration mod­
eling is feasible when a large data base on pavement 
condition is available. This could form the basis for de­
veloping a generic intelligent pavement deterioration 
process. In the present studies, it seems that the back­
propagation method was not too successful in training the 
fully connected ANNs with sigmoid activation functions. 
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FIGURE 4 Plot of desired versus ANN roughness. 

This might be because of the preprocessing of the input 
data. Furthermore, the commercial software used the 
applications has numerous in-build functions. Unfortu­
nately, no rigorous method has been reported in the liter­
ature for selecting some of the in-build functions such as 
the learning rates. It will be important to explore whether 
different preprocessing of input data, learning rules, and 
transfer functions can perform more successfully. Testing 
was done using simulated data; it was recognized that this 
particular approach may not be general enough to per­
form well on other data sets, especially on in-service pave­
ments. Furthermore, additional work is needed to identify 
which pavement condition variables can be used to accu­
rately characterize roughness. 
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