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Discretization methods are widely used in the analysis and 
design of suspension bridges. However, the large number 
of variables involved do not normally allow examination 
of the influence of different parameters on the behavior of 
suspension bridges. This paper presents a numerical 
method of analysis of suspended cables under vertical 
loads. Both explicit equilibrium and tangent stiffness ma
trices are derived by the finite element method. The ex
pressions are also presented in dimensionless form, so that 
parametric studies can be performed. The obtained ma
trices can be assembled easily in a general structural anal
ysis computer program. The proposed method is applied 
to the simplified analysis of suspension bridges. Some di
mensionless charts are given for a single span suspension 
bridge. These include displacement and bending moments 
under the position of a concentrated load, pseudoinfluence 
line of displacement and bending moments at the quarter 
of span, and maximum displacements and bending mo
ments for an arbitrarily located distributed load. It is be
lieved that these charts can be useful in the first phase of 
design of suspension bridges and can contribute to the un
derstanding of suspension bridge behavior. 

S uspension bridges are flexible structures where 
geometric nonlinear analysis must be performed 
in order to include the stiffening effect of the ten

sion in the cable. 

Various methods of analysis have been applied to the 
study of the behavior of suspension bridges. A historical 
review of the approximate methods that lead to the 
deflection theory can be found elsewhere (1,2). The 
well-estabhshed deflection theory ( 2 - 4 ) tries to solve 
the differential equilibrium equation and allows the use 
of analytical expressions for the solutions. However, ex
plicit analytical solutions are not always possible, and 
numerical techniques must be used (2,5). 

O n the other hand, discretization methods have been 
widely used in the modern design and analysis of sus
pension bridges, both in the static and the dynamic 
fields (e.g., 6 - 9 ) . Normally this leads to problems 
where the number of unknowns is very large (9). It is 
difficult, then, to examine the influence of different pa
rameters on the behavior of the suspension bridge. 

This paper presents a numerical method of analysis 
of suspended cables under vertical loads. The finite ele
ment method is used to obtain an explicit stiffness ma
trix, where the different nonlinear terms are readily 
identified. The equations are also presented in their 
nondimensional form (5). Parametric studies can then 
be performed. This stiffness matrix can be assembled in 
a general computer program. 

The proposed method is applied to the analysis of 
suspension bridges. Two parameters govern the behav
ior of the single-span suspension bridge. Some dimen
sionless charts are developed as a function of these two 
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parameters for a single-span suspended bridge. These 
charts include displacement and bending moment under 
the position of a concentrated load, pseudoinfluence 
lines for displacement and bending moments at the 
quarter of span, and maximum displacement and bend
ing moments for an arbitrarily located distributed load. 

GOVERNING EQUATIONS 

According to Figure 1, qo is the load per unit of hori
zontal length in the reference configuration, and H is 
the horizontal force in the cable. The vertical equilib
rium equation reads (5) 

H -^0 z{0) = 0 z{l) - 0 (1) 

Under the action of additional load q{x) and rise 
of temperature t, the cable deforms from the reference 
configuration. The differential equations of equilibrium 
are (5) 

dx' 
+ + — \ = -q 

dx' 

\dx , \dx 

VB - ( H + h) 
dtv 

1^ 
+ h 

dz 
dx 

dh 

dx 
FA = -h^ 

(2) 

(3) 

VA, VB, FA, FB are the increment in reaction forces at 
ends A and B with the signs of Figure 2. Equations 2 
and 3 assume that du/dx « 1 where u(x) is the hori
zontal movement. 

The increment in horizontal force h can be obtained 
from the compatibility equation. This equation, up to 
the second order, is given by 

UA + 
dz\ 

H 2 J , \dx) 

dz 
dx 

dx 

WA 

EAatL, 
(4) 

where £ is the elastic modulus, A is the cross-sectional 
area of the cable, a is the thermal expansion coefficient, 
and and L , are defined as 

f'̂  I d s X . ^ f l d s X 
- r dx L , = — 

jA\dxJ jAXdxj 
dx (5) 

For the particular case of supports and at the same 
level, it is commonly accepted that 

1 + (6) 

f being the sag in the cable (Figure 1). Equations 1 
through 6 are valid as long as only vertical loads are 
applied. These include cases such as Figure 1, but also 
cases such as Figure 2, where reactions at intermediate 
points are treated as external vertical forces. 

The virtual work principle for the cable can be ob
tained from Equations 2 and 3. Considering a cable be-

i I M M M i 

w,z 

I i 

H+h 

w+dw 

WW 

u+du 

1 ds-dsp _ du dx ^ dz dw , 1 /dw'^ 
2 dsp '^dsp dSR dsR dSR 2 \dSR 

EA£-EAat=h- dx 

F I G U R E 1 Reference and deformed configuration under vertical load. 
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F I G U R E 2 Definition of forces at ends of cable. 

tween points A and B, let F^, FB, VA, VB be the incre
ments in forces at the ends of the cable (see Figure 2). 
Let Equation 2 be multiplied by an arbitrary function 
hw{x) and let Equation 3 be multiplied by an arbitrary 
function bu(x). Using Equation 1, integrating the equa
tions and adding them yields (JO) 

H 
JA dx dx 

dw dhw , , f dw dhw , , 
dx + h — ;— dx + h 

J A dx dx 

r 
qo 

[HJA 
X I 1 bwdx + 8«B — + I ^ I 8tf B 

dz 

= FASMA + FB8MB -I- VA^WA 

+ VB^WB + I qhwdx 

.B 

J A 
(7) 

This is the virtual work principle for the cable. The last 
term of the right-hand side should include the term 
tq,hWi when concentrated vertical loads ^, are applied. 

FINITE ELEMENT MODEL 

A simple finite element model can be obtained from 
Equations 4 and 7. Let the cable between points A and 
B be discretized into « parts, each of horizontal length 
/, (Figure 3). 

Linear displacements are assumed between nodes i 
and -I- 1. This leads to dwidx being discontinuous be
tween nodes,which actually occurs when a concentrated 
load acts at a particular node. Defining, 

d'= (MI, Wi, W2, «„+l) (8) 

8d' = (8MI, hwi, hw2, . . . , hw„, 8M/„+I, 8M„+I) (9) 

it is possible to express 

B 

J A 

dw dhw 

1^ ~d^ 
dx = W • C • A 

dz 

(10) 

H IA 
wdx = a' • d (11) 

where a is a vector whose dimension is (« + 3) and C 
is a symmetric matrix whose dimension is (n -I- 3)x(n 
+ 3). The explicit expressions for a and C can be found 
in Tables 1 and 2, respectively. 

Introducing Equations 10 and 11 in Equation 4, 
Equation 12 is written 

FA / 1 \ T 
h = — a' d + ^ d ' - C d - EAat =^ (12) 

Introducing Equations 10 and 11 in Equation 7, after 
manipulations, the virtual work principle is being given 
by 

8d' • [ H C • d + ^(a + C • d)] 

= 8d' • (F + Sq,) (13) 

As Equation 13 holds for every virtual displacement 
8d, it is possible to write the equation of equilibrium as 

H C • d + ^ (a + C • d) - Sq , (14) 

F I G U R E 3 Finite element discretization. 
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T A B L E 1 Expression for Vector a 

u, w . w, w „ W „ , | 

i 1 2 3 i+1 n+1 n+2 n+3 

a, -1 
q„l,/2H 

q„(l,+l,)/2H qo(l,+l,-,V2H qn(i„+i„-,)/2H 
qoi„/2H 

1 

Equation 13 is a typical finite element equilibrium 
equation (11). F is the internal force vector at the ends 
of the element and Xq, is the external force vector, al
though Sq , could be interpreted as internal forces if the 
cable is a part of a general structure. Introducing Equa
tion 12 in Equation 14, an equilibrium stiffness matrix 
(12) can be readily identified: 

The first term of the expression 18 can be regarded 
as the linear contribution, the second term is the initial 
stress matrix, and the third term is the initial displace
ment matrix (22). This tangent stiffness matrix can be 
used to perform an analysis with a Newton-Raphson 
scheme (12). The residual vector can be evaluated with 
either Equation 14 or 15. 

EAat Y a 2q, = F (15) 
DiMENSIONLESS EQUATIONS 

£ ^ , / „ 1 , , 1,2 — a • a' + H + - h' + - h^ EAat y ) C 

EA 

U 

1 

- (a • d' • C + C • d • a') 

+ - C d d ' (16) 

where the increment in horizontal force h is obtained 
as the sum of the first-order contribution and the 
second-order contribution h^, which are given by 

h = 

1 EA 

2 U 
d' • C • d 

EAat 

(17) 

Equation 15 gives an explicit equihbrium stiffness 
matrix for the whole cable under vertical loads. It is of 
interest to note that the structure of Equation 15 is the 
same as in a total Lagrangian geometrically nonlinear 
analysis (22). Thus , differentiating Equation 14, the 
tangent stiffness matrix for the whole cable is obtained 
straighforwardly and given by 

K, = ^ a • a' + I H EAat ^] C 
EJ 

\ 11 the equations presented can be put in dimensionless 
terms, as shown by Irvine (5). Defining the nondimen-
sional variables. 

X = - h = — a = — ^ d 
/ 

1 a 
= ^' ' - H i 

EA EA 

(19) 

where / is a characteristic length of the cable (see, for 
example. Figure 1 or Figure 3), it is possible to derive 

K; • d' - Ga' - 2 q ' = f 

= \ ' a ' • a" + (1 + I h" - 6) £ 

(a' • d" • C + C • d' • a") 

+ - £ • d' • d" • £ 

X ; = • a" + (\ + h" + h^' - 6) £ 

+ \ M a ' • d" • £ + £ • d' • a" 

+ C d - d" • C ) 

(20) 

(21) 

(22) 

FA 

+ — (a • d' • C + C • d • a' 

+ C • d • d' • C) 

(18) 

h" = a" • d' h" = ^ \^ d" • £ • d' 

h' = h" + h" - Q (23) 
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T A B L E 2 Expression for Matrix C 

c " i W „ . | 

1 2 3 4 n n+l n+2 n+3 

u, 1 0 0 0 0 0 0 0 0 0 

2 0 1/1, -1/1, 0 0 0 0 ' 0 0 

W2 3 0 -1/1, l / l ,+ l / l 2 -1/1, 0 0 0 0 0 

4 0 0 -1/1, 1/1,+1/1, 0 0 0 0 

0 0 0 0 0 0 

W„-, n 0 0 0 0 
+ 1/1„., 

- l / l n - , 0 0 

w„ n+l 0 0 0 0 0 -I/1„-, l / l n - l 0 

w„,, n+2 0 0 0 0 0 0 0 

n+3 0 0 0 0 0 0 0 0 0 

C = / C (24) 

The expressions for a' and are extremely simple 
when the cable is discretized in n equal parts and can 
be obtained easily from the values of Tables 1 and 2. 

Equations 19 through 23 can be very useful when 
performing a parametric investigation. The behavior of 
the cable is uniquely described by and the values of 
the nondimensional loads q'. Parameter X.̂  has been in
terpreted by Irvine (5). It accounts for the relation be
tween geometric and elastic stiffness. It is small for taut 
flexible cables and it approaches infinity for an inexten-
sible suspended cable. Typical values for in suspen
sion bridge cables lie in the range 100 to 400 (5). E f 
fectively, for the usual ratio f / l = 0.1 in a steel 
suspension bridge cable and for a service stress CT about 
500 M P a , the value of is on the order of 250. O n 
the other hand, typical values for nondimensional con
centrated loads are on the order of 0.01 in suspension 
bridges because of the large dead load. As an example. 

for the George Washington Bridge, neglecting the side 
spans, X.̂  = 255, and for a concentrated load of 1000 
k N , the value of q' is as low as 0.0016 [data are taken 
from Buonopane and Billington (1) for the George 
Washington Bridge as originally built]. 

The nondimensional approach can be used to ex
amine the accuracy of the proposed method of analysis. 
Table 3 shows the vertical displacements in the center 
of the span of a suspended cable with supports at the 
same level under a central concentrated load q' = 1.0 
Whereas the values chosen for X.̂  are typical of suspen
sion bridge cables, the value chosen for q' is extremely 
high. It is seen in Table 3 that even for a small number 
of discretization points the accuracy obtained is high. 

The previously derived formulation can be used di
rectly to obtain the solution for the inextensible cable. 
From Equation 14, the displacements d' in dimension-
less form are given by 

d' = 
1 + h' ^ 

• (Sq; - h'a') (25) 

T A B L E 3 Accuracy of Proposed Method of Analysis 

w ' 
>t'=100 

h ' 
X.'=100 

w ' 
;̂ '=200 

h ' 
X^=200 

w ' 
X,̂ =400 

h ' 
X'=400 

n+l= l l 0.0371 1.314 0.0280 1.450 0.0226 1.541 

n+l=21 0.0374 1.310 0.0284 1.445 0.0230 1.534 

n+l=40 0.0374 1.308 0.0285 1.443 0.0231 1.532 

Irvine [9] 0.0375 1.308 0.0285 1.443 0.0231 1.532 



i - 1 
o— 

M, M, 
i + 1 

—o 

F I G U R E 4 Discretization of suspension bridge. 

n n + 1 

T A B L E 4 Expression for Matrix Kg for Single-Span Bridge 

K ^ / n ' w. W4 w. w„ 

1 2 3 4 5 n-2 n-l n n+1 

w, 1 a" -2a' a ' 0 0 0 0 0 0 0 

2 -2a- 5a' -4a' a' 0 0 0 0 0 0 

3 a' -4a' 6a ' -4a' a' 0 0 0 0 0 

W4 4 0 a' -4a' 6a' -4a' 0 0 0 0 

0 0 0 0 0 

n-2 0 0 0 0 0 6a ' -4a' a ' 0 

W„.| n-1 0 0 0 0 0 -4a' 6a' -4a' a' 

w„ n 0 0 0 0 0 0 a ' -4a' 5a' -2a' 

n+1. 0 0 0 0 0 0 0 a ' -2a' a ' 

W/MM 

V - -4 ^ 4—^-4 
F I G U R E 5 Example of single suspended bridge analyzed. 
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where forces at the ends of the cable have been ignored 
by assuming that the end displacements are null (matrix 
C should be modified accordingly). If in Equation 12 
only first-order terms are retained and cable flexibility 
is neglected. 

d' = 0 h' (26) 

Temperature has not been taken into account in 
Equation 26. Equations 25 and 26 are the solutions for 
the inextensible cable. For example, if a load q is uni
formly distributed over the whole span, using Equation 

26 and Table 1, it is easily derived that h' - q/qo and 
d' - 0, which are the expected results. 

SIMPLIFIED ANALYSIS OF SUSPENSION BRIDGES 

The stiffness matrices given in Equations 16 and 18 can 
be directly assembled to solve any kind of structure with 
a parabolic cable. The external constraints or boundary 
conditions are introduced in the usual way. The analysis 
will be correct provided that the forces applied to the 
cable are vertical. This is the only limitation of the 
equations. 

* — t — • — * J L'—lOO 
L'—200 7 -t- - 1 - ^ - + ? 

• €> ? 

L'—lOO 
L'—200 \ / a' =0,001 q'=0.01 \ a' =0,001 q'=0.01 

/ \ 
(a) 

X.'=200 q =0.01 

I 

6 

s 

(c) 

— — 

' • ' ' X 
A 

m » m • X 
•-100 
*»200 300 

500 • -<) X 
. - » - » — X 

•-100 
*»200 300 

500 

=0.001 q'=0.01 =0.001 q'=0.01 
1 

H 

0-3 0.4 O.J D.6 OT O.t 0.9 1. 

X / L 

M', 

(d) 

/ 
/ 
V 
; / 

\ 

J/ 
1 
(• 

. . • • • . I J H I 
• . . . a*m»jamoi 
1 • • • o'-*JM\ 
1 • • — B n ' Q.BIK 
. • • • .>*—aJii 

x'-zoo qUi.01 1 
f . . . . 

. . • • • . I J H I 
• . . . a*m»jamoi 
1 • • • o'-*JM\ 
1 • • — B n ' Q.BIK 
. • • • .>*—aJii 

x'-zoo qUi.01 \ 
——V- -

r 
• — ' — 

0.S 

F I G U R E 6 Dimensionless displacement under position of concentrated load as a function of (a) k^, (b) a^; 
dimensionless bending moment under position of concentrated load as a function of (c) and (d) a^. 
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In the case of a suspension bridge with vertical hang
ers, the problem can be simplified by making the fol
lowing assumptions: 

1. Vertical movements of the cable are the same as 
those of the beam girder. 

2. The hangers remain vertical, so only vertical 
forces are induced in the cable. 

3. The distance between the hangers is assumed to 
be as small as desired so that vertical interaction forces 
induced in the cable can be assumed to act at any point 
of the cable. 

These three assumptions are usual in the deflection the
ory but have also been used in finite element analysis 
of suspension bridges (6). Referring to Figure 4, a very 
simple analysis can be made by adding the stiffness ma
trix of the cable to the stiffness matrix of the beam 
girder. 

Any formulation can be used for the determination 
of the stiffness matrix of the beam. In order to reduce 
the number of unknowns, in this work the stiffness ma
trix of the beam has been determined by finite differ
ences. In this way, only vertical movements are taken 
into account. With reference to Figure 4, flexural mo-

1 1 1 
••-•»-••-+ 

X>—lOO 

300 

; ; ; ; 
X>—lOO 

300 

1 \ 
a ' =0.001 q'=0.01 \ a ' =0.001 q'=0.01 

\ / \ f \ \ J / 
0. 0.1 0.2 0.3 0.4 0.3 0.6 0.7 0.1 0.9 1. 

(a) x/L 

I 

i 
1 
d 

1 
d 

1 
i 
d 

I 

I 

I 
(b) 

X'=2M q*=OJii 

0. 0 1 fl : 0 3 0 4 0 
X 

5 a 
L 

6 0 T 0 1 0 » 1. 

M' 

' ' ' ' x*-ioo 
• • • • X^-300 

• • • o *00 

=0.001 q'=0.01 

' ' ' ' x*-ioo 
• • • • X^-300 

• • • o *00 

=0.001 q'=0.01 

' ' ' ' x*-ioo 
• • • • X^-300 

• • • o *00 

=0.001 q'=0.01 

' ' ' ' x*-ioo 
• • • • X^-300 

• • • o *00 

=0.001 q'=0.01 

J. 
0. 0.1 O.J 0.3 0.4 0.5 0.6 0.7 0.1 0.) 1. 
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1 
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• • • a -Mi .Mn 
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-D
 1 

* , 
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FIGURE 7 Pseudoinfluence line of dimensionless displacement at quarter of span as a function of (a) and (ft) â ; 
pseudoinfluence line of dimensionless bending moment at quarter of span as a function of (c) X.̂  and (d) o^. 
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q=0.25 

-» a'-O.OOOl 
' + a'-0.0005 

a.''M.oas 
a'^.01 

150. 200. 250. 300. 350. 400. 450. 

(a) 

M'3 

— — 
- — 

* - • -*•- •* t 
•»—••— -1— + c 

x^.0001 
i'-0.0005 
x'-O.OOS 
x'-O.Ol 

x^.0001 
i'-0.0005 
x'-O.OOS 
x'-O.Ol 

q'=0.25 q'=0.25 q'=0.25 

100. ISO. 200. 250. 300. 330 . 400 . 450. SOO. 

(b) 

F I G U R E 8 {a) Maximum dimensionless displacement and 
(b) maximum dimensionless bending moment for arbitrarily 
located distributed load q = 0.25^o-

ments are given by the following approximation: 

EJ,{w,-i - Iw, 
M, = 

a 

Kj = L — ~ ~ 
a a a 

R 

(27) 

where M, stands for bending moment at node i, «/, for 
vertical displacement at node i, EJg for the stiffness of 
the beam, and a for the spacing between points. R is 
the external force vector acting on the beam. The linear 
stiffness matrix Kg for the beam can be easily formu
lated. Assuming that the sum of external forces in the 
cable plus the external forces in the beam is a vector P 
of external forces in the suspension bridge, the assembly 
of the global stiffness matrix is obtained straightfor
wardly by adding the flexural contribution of the beam 
and the contribution of the suspended cables: 

[K, + KM)] • d = S P [K, + K,(d)] ' Ad = SAP (28) 

Again, the expressions are simplified when dimen
sionless variables are used. The new nondimensional 
variables introduced are 

M ' = 
M 

qol' " " HP 
(29) 

The resultant stiffness matrix Kg for the beam in di
mensionless form is given in Table 4. Only vertical dis
placements are taken into account. 

Examining Equations 19 through 24 and 28 and 29 
and Tables 1, 2, and 4, it is seen that the behavior of a 
given suspension bridge is characterized by only two 
parameters (X.̂ , a^). The variable \^ has already been 
explained. Parameter is Steinman's stiffness factor 
(S^) (4). It measures the ratio between the elastic stiff
ness of the beam and the gravity stiffness of the cable 
(2). In long-span suspension bridges « 1 (5). For 
example, for the main span of the George Washington 
Bridge, as originally built (1), a ' = 8.97 * 1 0 " . 

Solutions based on the cable inextensibility could be 
obtained by adding the flexural stiffness matrix to ma
trix C in Equations 25 and 26. 

Simplified static and dynamic analysis of suspension 
bridges can be made at a low computational cost with 
the given expressions. As an example, some dimension
less charts that can be useful in the first phase of design 
are given below. 

DIMENSIONLESS CHARTS 

As an example application of the proposed formulation, 
a single span suspended bridge has been analyzed under 
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different loading conditions. Two parameters (A.̂  a^) 
govern the behavior of the bridge. These parameters can 
be calculated using only the data of Figure 5. The struc
tural model is also shown in Figure 5. To include the 
contribution of the backstays in the determination of 
Le, Equation 30 should be used: 

1 + + 
cos p , ) ' (cos p^)' 

(30) 

Results for the dimensionless displacement and bend
ing moment under the position of a concentrated load 
(q' - 0.01) are shown in Figure 6. The analyses have 
been performed for a given = 0 .001 as a function of 

[see Figure 6(a) for displacement and Figure 6(c) for 
bending moment], and for a given X^ = 200 as a func
tion of [see Figure 6(b) for displacement and Figure 
6(d) for bending moment]. These charts are similar to 
those developed by Jennings (13). 

The pseudoinfluence line for the displacement and 
the bending moment at the quarter of span for a con
centrated load q' = 0 .01 are given in Figure 7. 

Finally, the maximum displacement and the maxi
mum bending moment obtained for an arbitrarily lo
cated distributed load (0.25^o) are shown in Figure 8. 
The length of the loaded zone and the point of maxi
mum displacement and maximum bending moment 
have been obtained for every pair X^, a^, performing 
similar analyses to those shown in Figures 6 and 7. 

Some trends of suspension bridge behavior are read
ily explained in these charts. In particular, it is clearly 
seen that, in modern suspension bridges, where typically 

« 1, the stiffness of the beam girder does not con
tribute to the reduction of the displacements. In the 
past, this observation led to more flexible beam girders 
and eventually was one of the causes for the Tacoma 
Narrows Bridge disaster (1). 

It is also observed that approximate solutions based 
in the cable inextensibihty (X^ oo) will underestimate 
the displacements in practical cases. However, as shown 
in Figures 6(c), 7(c) and 8(b), bending moments are not 
dependent on X^, so solutions based on the cable inex-
tensibility wil l give very accurate results. Interpreting a 
solution due to Jennings (13), the bending moment un
der the position of a concentrated load q' could be ob
tained as follows: 

M ' 3 a ) (31) 

which is approximately correct for every position of the 
load. As it can be seen. Equation 3 1 is in close agree
ment with Figure 6(c) and (d). 

CONCLUSION AND FUTURE WORK 

The objective of this paper has been to introduce a sim
ple numerical method for the analysis of suspended ca
bles under vertical loads, which can be easily applied to 
the study of suspension bridges. 

Both explicit equilibrium and tangent stiffness ma
trices for the cable have been derived. The implemen
tation of these stiffness matrices in a general computer 
program for the analysis of structures is straightfor
ward. Any planar structure with a parabolic cable can 
be solved in this manner, provided that the cable is only 
subjected to vertical loads. 

The application of the proposed method to the anal
ysis of suspension bridges is direct and can be simphfied 
using some of the hypotheses of deflection theory ( 2 -
4) . Although any formulation can be used, the flexural 
stiffness matrix for the beam in this work has been de
termined by finite differences. This has been done in 
order to reduce the number of variables, but will also 
help for the dynamic analyses. 

By using dimensionless variables, parametric studies 
can be executed easily. The influence of every parameter 
in the equations is observed directly. 

Some charts have been given for a single span sus
pension bridge, and trends of suspension bridge behav
ior have been discussed. It is hoped that these charts 
can be useful in the first phase of design as well as in 
the understanding of suspension bridge behavior. 
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