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High-strength concrete provides a higher compressive 
strength, a higher modulus of elasticity, a higher tensile 
strength, reduced creep, and greater durabili ty than normal-
strength concrete. For the same cross section and span 
length, a high-strength concrete girder w i l l have less ini t ial 
deflection, a higher permissible tensile stress, less prestress 
loss, less camber change, and longer life than a similar 
girder made w i t h normal-strength concrete. Structurally, 
the benefits of using high-strength concrete are fewer 
girders f o r the same wid th bridge, longer span lengths or 
reduced dead load. The limitations of existing prestressed 
concrete girders relative to the use of high-strength con
crete and several options to more effectively utilize high-
strength concrete are described. Analytical results indicate 
that the use of existing girder cross sections w i t h concrete 
compressive strengths up to 69 MPa (10,000 psi) al low 
longer span lengths and more economical structures. 
However, to effectively utilize concrete w i t h compressive 
strengths greater than 69 MPa (10,000 psi), addit ional 
prestressing force must be applied to the cross section 
through the use of smaller strand spacings, larger strand 
sizes, higher-strength strands or post-tensioning. 

Fl or over 25 years, concretes w i t h compressive 
I strengths i n excess o f 4 1 M P a (6000 psi) have 

been used i n the const ruct ion o f columns o f h igh-
rise buildings (1). In i t i a l ly , the avai labi l i ty o f h igh-
strength concretes was l i m i t e d to a f e w geographic l o 
cations. However, over the years, opportuni t ies have 
developed to uti l ize these concretes at more locations 
across the Uni ted States. As opportuni t ies have devel
oped, mater ia l producers have accepted the challenge to 
produce concretes w i t h higher compressive strengths. 

I n the precast prestressed concrete bridge f i e ld , a 
specified compressive strength o f 4 1 M P a (6,000 psi) 
has been used f o r many years. However, strengths at 
release f requent ly c o n t r o l the concrete m i x design so 
tha t actual strengths at 28 days are of ten i n excess o f 
4 1 M P a (6,000 psi) . I t is on ly in recent years tha t a 
s t rong interest i n the u t i l i za t ion o f concrete w i t h higher 
compressive strengths has emerged. This interest has de
veloped at a f e w geographic locations in a manner s im
i lar to that i n the bu i ld ing industry. Several research 
studies ( 2 - 9 ) have addressed the appl icat ion o f h igh-
strength concrete i n bridge girders. These studies have 
suggested that there may be a l i m i t at w h i c h the higher-
strength concretes can no longer be effectively u t i l i zed . 

This paper examines the use o f high-strength con
crete in precast prestressed solid-section girders. The ob-
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The girder depths were selected o n the basis tha t they 
are suitable f o r similar span lengths. Dimensions o f a l l 
sections are shown in Figure 1. 

Method of Analysis 

The m a j o r i t y o f the cost-effectiveness analyses were per
f o r m e d using computer p r o g r a m B R I D G E . B R I D G E 
was w r i t t e n as par t o f the previous investigation f o r the 
Op t imized Sections f o r Precast, Prestressed Bridge G i r d 
ers (2). The required inpu t o f B R I D G E consists o f girder 
span, spacing, and cross section; concrete and strand 

characteristics; and relative costs o f materials. The p ro 
g ram determines deck thickness and deck reinforce
ment , required number o f prestressing strands, and cost 
index per un i t surface area o f bridge deck. The p r o g r a m 
also provides section properties, moments , stress levels, 
and deflections. Comparisons were made on the basis 
of relative costs. 

For purposes o f m a k i n g the cost comparisons, the 
relative un i t cost f o r in-place materials was assumed to 
be the same as that used i n the previous repor t (2). 

• Concrete (girders and deck): 1 un i t /un i t we igh t o f 
concrete; 
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FIGURE 1 Cross sections of girders analyzed (dimensions in millimeters). 
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• Strands: 8 uni ts /uni t weight o f strands; 
• Re inforc ing steel: 9 uni ts /uni t we igh t o f re inforc

ing ; and 
• Epoxy-coated re in forc ing steel: 12 uni ts /uni t 

we igh t o f epoxy-coated re in forc ing . 

The relative costs o f materials were taken as the p roduc t 
o f mater ia l we igh t and the relative un i t cost. The sum
m a t i o n o f relative cost o f materials was then d iv ided by 
deck area to give cost index per un i t area. 

I t is recognized tha t sh ipping lengths, girder weights, 
lateral s tabi l i ty o f girders, and prestressing bed capaci
ties that exist today cou ld l i m i t the type o f girders tha t 
can be produced. I n add i t ion , design i n f o r m a t i o n f o r 
use w i t h very high-strength concretes may not be avai l 
able. However , these l imi ta t ions were no t used as a 
means to restrict potent ia l applications. The intent o f 
the projec t was to l o o k beyond current design and p ro 
duc t ion capabilities. 

Cost-Effectiveness 

Computer p rog ram B R I D G E was used to p e r f o r m cost-
efficiency analyses o f the various cross sections. Fu l l 
details o f the analyses were given previously {13). As 
shown i n Figure 2 , the cost index per un i t surface area 
o f bridge deck can be p lo t t ed versus span length f o r 
a given cross section. A t various girder spacings, d i f fer 
ent cost curves result, as shown by the sol id lines i n 
Figure 2. 

A n " o p t i m u m cost cu rve" is obtained i f the end 
points o f each ind iv idua l cost curve are jo ined , as 
shown by the dashed line i n Figure 2 . This " o p t i m u m 
cost cu rve" indicates the least cost index f o r a par t icular 
span and varies as a f u n c t i o n o f girder spacing. As 
shown i n Figure 2 and discussed by Rabbat and Russell 
(2), f o r a given span, cost index per un i t area o f bridge 
deck decreases as girder spacing increases. 

O p t i m u m cost curves are generated f o r a constant 
girder concrete strength. The cost chart i n Figure 2 is 
f o r a 28-day girder concrete strength o f 4 1 M P a (6,000 
psi) . A d d i t i o n a l o p t i m u m cost curves can be generated 
at other girder concrete strengths f o r the same girder 
cross section. Figure 3 is a p l o t o f the o p t i m u m cost 
curves f o r a BT-72 at 4 1 , 55 , 69 , and 83 M P a (6,000, 
8,000, 10,000, and 12,000 psi). The compressive 
strength o f the concrete i n the deck was assumed to be 
28 M P a (4,000 psi) f o r a l l girder concrete strengths. 

Figure 3 illustrates the benefits and l imi ta t ions o f 
higher-strength concrete f o r existing cross sections o f 
precast, prestressed bridge girders. A l t h o u g h Figure 3 
represents one par t icular cross section (BT-72), the re
sults and relationships are consistent w i t h those o f other 
sections analyzed w i t h i n this investigation {13) and w i l l 

be used as a basis f o r discussion. To examine the ben
efits and l imi ta t ions , the curves must be studied at three 
separate locations. 

The f i rs t loca t ion is f o r spans less than 27.4 m (90 
f t ) . For these spans, the con t ro l l i ng cond i t i on is i n i t i a l 
prestress at transfer. For a given span, there is a p o i n t 
at w h i c h addi t iona l prestressing w i l l cause tension i n the 
top fibers regardless o f the concrete strength. A l t h o u g h 
this tension w o u l d be offset i n the service load condi 
t i o n , the dead load at prestress transfer is constant f o r 
a given span and cross section and independent o f the 
f i n a l in-place girder spacing. As a result, there is no ben
efi t realized f o r higher-strength concrete at these span 
lengths. 

The second loca t ion is f o r spans between 27.4 and 
30.5 m (90 and 100 f t ) w h e n concrete strengths are 
between 4 1 and 55 M P a (6,000 and 8,000 psi) and 
spans between 27.4 and 33.5 m (90 and 110 f t ) f o r 
strengths o f 55 M P a (8,000 psi) and greater. As previ
ously discussed, Rabbat and Russell (2) f o u n d that f o r 
a given span, cost index per un i t area o f bridge deck 
decreases as girder spacing increases. W i t h the use o f 
higher-strength concrete, add i t iona l prestressing w i l l a l 
l o w larger girder spacings f o r a given cross section and 
span length. However , there is a p o i n t at w h i c h the i n 
crease i n the un i t deck costs begins to offset the savings 
i n un i t girder costs associated w i t h larger spacings. This 
effect is discussed i n more detai l elsewhere {13). 

The t h i r d loca t ion to examine i n Figure 3 is f o r spans 
exceeding 30.5 m (100 f t ) when concrete strengths are 
between 4 1 and 55 M P a (6,000 and 8,000 psi) and 
spans exceeding 33.5 m (110 f t ) when concrete 
strengths exceed 55 M P a (8,000 psi). These areas rep
resent the op t imiza t ion o f benefits o f high-strength con
crete f o r the cross sections analyzed. The higher-
strength concrete a l lows larger prestressing forces and, 
as a result, greater girder spacings f o r a given span 
length, thus reducing un i t cost. For these span lengths, 
the or ig ina l conclusion o f Rabbat and Russell (2) is con
firmed: f o r a given span length, cost index per un i t area 
o f bridge deck decreases as girder spacing increases. 

A t these longer span lengths, the o p t i m u m girder 
spacings tha t result i n lowest possible cost f o r a given 
cross section are no t reached. I n other words , the cost 
index as a f u n c t i o n o f girder spacing is s t i l l decreasing 
when the girder capacity is reached. For example, at a 
span length o f 42 .7 m (140 f t ) w i t h a 41 -MPa (6,000-
psi) girder, the m a x i m u m spacing is 1.8 m (5.9 f t ) , 
whereas a 55 M P a (8,000 psi) girder can be spaced at 
2.5 m (8.3 f t ) . A l t h o u g h the deck costs w i l l be greater 
f o r the 55 -MPa (8,000-psi) girder, the savings i n girder 
costs far ou twe igh increased deck costs and result i n a 
more cost-effective superstructure. 

Figure 3 also indicates tha t cost benefits vary as a 
f u n c t i o n o f span length and girder concrete strength. 
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HGURE 2 Cost chart for a BT-72, 41 MPa (6,000 psi). 

For example, a 55 -MPa (8,000-psi) girder has a 3 per
cent lower cost index than a corresponding 4 1 - M P a 
(6,000-psi) girder at a span length of 33.5 m (110 f t ) , 
bu t a 10 percent lower un i t cost at a span length o f 
42 .7 m (140 f t ) . These cost benefits continue to increase 
as the span length increases, reaching a m a x i m u m o f 18 
percent at a span length o f 44.8 m (147 f t ) . A t this 
po in t , the lower-strength girder has reached its m a x i 
m u m span length, whereas the higher-strength girder 
s t i l l has add i t iona l capacity. I n other w o r d s , another 
benefit o f high-strength concrete is the ab i l i ty to achieve 
greater span lengths. 

Figure 3 also indicates another impor t an t po in t : the 
d imin i sh ing returns realized w i t h the use o f h igh-
strength concrete f o r existing cross sections. The sh i f t 
i n the o p t i m u m cost curve decreases fo r each succeeding 
13-MPa (2,000-psi) increase i n girder compressive 
strength. For example, at a girder spacing o f 1.5 m (5 
f t ) , the m a x i m u m span length increases by 4.6 m (15 

f t ) w h e n girder compressive strength is increased f r o m 
4 1 to 55 M P a (6,000 to 8,000 psi); however, the max
i m u m span length increases by on ly 2.7 m (9 f t ) w h e n 
girder compressive strength is increased f r o m 55 to 69 
M P a (8,000 to 10,000 psi). Fur thermore , the span 
length increases f a l l o f f dramat ica l ly at girder compres
sive strengths exceeding 69 M P a (10,000 psi). 

The p r i m a r y cause o f these d imin i sh ing returns is the 
decreasing strand eccentricity. Once strands are placed 
w i t h i n the web , the efficiency o f a par t icular section 
begins to decrease rapidly. The incremental benefit o f 
each succeeding strand decreases w h e n suff ic ient r o o m 
w i t h i n the flange does no t exist. Once add i t iona l pre-
stressing force cannot be induced i n the girder, the bene
ficial effects are l imi t ed to the increase i n concrete ten
sile strength, w h i c h on ly increases as the square r o o t o f 
compressive strength ( I ) . 

I n general, increases i n the girder concrete strength 
result i n the f o l l o w i n g : 
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1. A sh i f t i n the o p t i m u m cost curve to the r igh t f o r 
each succeeding increase i n girder concrete strength. 
Th i s is beneficial because longer span lengths can be 
achieved w i t h o u t an increase i n the un i t cost. 

2 . Decreasing incremental benefits f o r each incre
menta l increase i n concrete strength. 

3. M i n i m a l benefits beyond a girder concrete 
strength o f about 69 M P a (10,000 psi). 

4 . N o benefit f r o m higher concrete strength f o r the 
hor i zon ta l p o r t i o n (shorter span lengths) o f the o p t i 
m u m cost curve. 

Cost comparisons f o r the other analyzed sections o f 
s imilar depths are shown i n Figure 4 f o r concrete 
strengths o f 4 1 and 83 M P a (6,000 and 12,000 psi). 
O p t i m u m cost curves f o r the BT-72, W A 14/6 and C O 
G68/6 are shown i n Figure 4a. Impor t an t observations 
f r o m this f igure consist o f the f o l l o w i n g : 

1 . The curves are essentially identical f o r the shorter 
span lengths. 

2 . The curves vary at the longer span lengths. H o w 
ever, this var ia t ion is greatest f o r the C O G68/6 and is 
a t t r ibutable to the shallower depth and thinner top 
flange. The BT-72 and W A 14/6 are similar w i t h i n the 
vert ical por t ions . 

3. Incremental shifts i n the o p t i m u m cost curve f o r 
increasing girder strength vary f o r each section. The BT-
72 undergoes the largest shif ts , whereas the W A 14/6 
undergoes the smallest. This fact is due p r i m a r i l y to the 
number o f prestressing strands that can be placed 
w i t h i n the flange. The BT-72, W A 14/6 and C O G68/6 
can accommodate 39 , 30 , and 35 strands, respectively, 
w i t h i n the b o t t o m flange. Strand placement w i t h i n the 
flange is more eff ic ient than tha t i n the web and al lows 
the C O G68/6 to gradual ly gain on the W A 14/6 as 
girder strength is incremental ly increased. 

O p t i m u m cost curves f o r the N U 1800 and F L BT-72 
are shown i n Figure 4b. N o cost advantage existed f o r 
one section over the other as the curves are almost 
identical . 
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Figure 4c contains plots o f the o p t i m u m cost curves 
f o r the BT-72 , F L BT-72, and Type V I at concrete 
strengths o f 4 1 and 83 M P a (6,000 and 12,000 psi) , 
respectively. I m p o r t a n t observations f r o m this figure 
consist o f the f o l l o w i n g : 

1. A t a girder strength o f 4 1 M P a (6,000 psi) , the 
BT-72 is the most cost-effective cross section, w i t h sav
ings o f 1 to 6 percent over the F L BT-72 and 5 to 13 
percent over the Type V I . 

2 . A t a l l girder strengths, the BT-72 is the most cost-
effective cross section f o r span lengths up to about 45 .7 
m (150 f t ) , w i t h savings o f 3 to 6 percent over the FL 
BT-72 and 8 to 13 percent over the Type V I . 

3. Incremental shifts i n the o p t i m u m cost curve f o r 
increasing girder strength vary f o r each section. The F L 
BT-72 undergoes the largest sh i f t , whereas the BT-72 
undergoes the smallest. This fac t is p r imar i l y because o f 

the number o f prestressing strands tha t can be placed 
w i t h i n the b o t t o m flange. However , i t is also a f u n c t i o n 
o f the efficiency i n w h i c h the strands are placed i n the 
b o t t o m flange. For instance, the F L BT-72 and BT-72 
have wide rectangular b o t t o m flanges, whereas the Type 
V I has a more squarish b o t t o m flange. A l t h o u g h the 
Type V I can accommodate s ignif icant ly more strands 
than the F L BT-72 (81 versus 59) , their placement is 
no t as eff icient (less eccentricity) and, as a result, shifts 
i n the F L BT-72 curve are greater than those f o r the 
Type V I . 

4 . As a result o f the incremental shifts i n the o p t i 
m u m cost curve as discussed i n I t e m 3, the F L BT-72 
becomes the most cost-effective cross section f o r span 
lengths exceeding about 45 .7 m (150 f t ) and girder 
strengths o f 55 M P a (8,000 psi) and greater. 

5. A l t h o u g h the F L BT-72 and Type V I enjoy greater 
hor izon ta l shifts i n their o p t i m u m cost curve than the 
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BT-72 as a result o f larger b o t t o m flanges, they pay a 
price at smaller span lengths. For these spans, the BT-
72 is the more cost-effective cross section at a l l girder 
concrete strengths. 

Comparisons were also made to determine the effect 
o f the p r e m i u m cost f o r higher-strength concretes on the 
cost index per un i t area. The f o l l o w i n g ratios were as
sumed f o r the p r e m i u m costs o f higher-strength con
crete (1 M P a = 145 psi): 

Minimum Intermediate Maximum 
Strength (MPa) Ratio Ratio Ratio 

4 1 1.00 1.00 1.00 
55 1.00 1.05 1.10 
69 1.00 1.13 1.25 
83 1.00 1.25 1.50 

The comparisons o f o p t i m u m cost curves were made f o r 
the BT-72 f o r compressive strengths f r o m 4 1 to 83 M P a 
(6,000 to 12,000 psi). Da ta f r o m the three sets o f cost 
index curves are shown i n Figure 5. The effect o f the 
p r e m i u m costs is to displace the relative positions o f the 
curves f o r the various concrete strengths. These data 
indicate tha t as the p r e m i u m f o r the higher-strength 
concretes increases, i t becomes more economical to u t i l 
ize a lower-strength concrete f o r longer span lengths. 
For example, w i t h no p r e m i u m concrete costs, the 55-
M P a (8,000-psi) compressive strength concrete is the 
most economical up to a span length o f approx imate ly 
36 m (120 f t ) . However , w i t h the m a x i m u m p r e m i u m 
costs, i t is more economical to use 4 1 M P a (6,000 psi) 
up to a span length o f approx imate ly 36 m (120 f t ) and 
then to uti l ize 55 M P a (8,000 psi) up to a span length 
o f 46 m (150 f t ) . However , o n a relative basis, w h e n 
compar ing d i f fe ren t cross sections, the effect o f the pre
m i u m concrete costs is to displace cost index curves by 
a similar amount . Consequently, a l though the p r e m i u m 
costs are i m p o r t a n t when compar ing concrete strengths 
f o r the same girder cross section, they are less significant 
w h e n compar ing d i f fe ren t cross sections w i t h the same 
concrete strength. 

L i m i t e d analyses were made to investigate the sensi
t i v i t y o f the cost index per un i t area to the assumed 
relative un i t costs o f the d i f fe ren t materials. O n the ba
sis o f an indust ry survey, a range o f relative un i t costs 
was obtained. Comparisons o f o p t i m u m cost curves f o r 
BT-72 were made f o r this range. I t was concluded (13) 
that the cost index per u n i t area o n a comparat ive basis 
is relatively insensitive to the assumed relative costs o f 
the in-place materials. 

ANALYSES OF MODIFIED CROSS SECTIONS 

The analysis o f exist ing sections indicated that the u t i l 
iza t ion o f high-strength concrete was l imi t ed by the 

amount o f prestressing force that can be apphed to a 
girder cross section and the eccentricity o f the force. 
Consequently several alternatives were investigated to 
increase the amount o f prestressing force that can be 
applied at m a x i m u m distance f r o m the neutral axis. The 
alternatives included decreasing strand spacing, increas
i n g s t rand size, increasing s trand strength, and increas
ing b o t t o m flange size. 

Strand Spacing and Size 

Previous analyses i n this investigation were based o n a 
strand diameter o f 12.7 m m (0.5 in.) at a spacing o f 5 1 
m m (2 i n . ) . The effect o f decreasing the s trand spacing 
to 38 m m (1.5 in.) and p r o v i d i n g strands 15.2 m m (0.6 
in.) i n diameter spaced at 51 m m (2 in . ) and 64 m m 
(2.5 in.) was investigated. The results are shown i n Fig
ure 6 f o r a BT-72. The most cost-efficient so lu t ion oc
curs w i t h the largest amount o f prestressing force that 
can be accommodated w i t h i n the section. The benefits 
are more pronounced at the longer span lengths and 
i l lustrate one w a y to increase the effectiveness o f h igh-
strength concrete. 

Strand Strength 

The possibi l i ty o f using a higher grade prestressing 
strand was also investigated. A l imi t ed benefit was ob
tained by using a 2 ,070-MPa (300-ksi) s trand compared 
w i t h a 1,860-MPa (270-ksi) s trand. 

Section Geometry 

T w o modif ica t ions o f the b o t t o m flange were studied. 
M o d i f i c a t i o n 1 consisted o f increasing the b o t t o m 
flange edge thickness f r o m 152 m m (6 in . ) to 203 m m 
(8 in . ) w h i l e ma in t a in ing the overal l 1 8 3 0 - m m (72-in.) 
section depth. M o d i f i c a t i o n 2 consisted o f increasing 
the b o t t o m flange thickness f r o m 152 m m (6 in.) to 203 
m m (8 in . ) by increasing the section's overal l depth 
f r o m 1830 to 1880 m m (72 to 74 i n . ) . 

Figure 7 compares o p t i m u m cost curves at concrete 
strengths o f 4 1 and 83 M P a (6,000 and 12,000 psi) , 
respectively. As can be seen f r o m this f igure , the m o d i 
fications have a larger impact on the 83 M P a (12,000 
psi) girders than o n the 4 1 M P a (6,000 psi) girders. 

The behavior o f the o p t i m u m cost curve f o r the m o d 
ifications is consistent w i t h the previous conclusion tha t 
the b o t t o m flange l i m i t e d the effectiveness o f higher 
concrete strengths; however, the behavior is s l ight ly d i f 
ferent f r o m tha t w h i c h was experienced w i t h m o d i f i 
cations to strand size, spacing, and strength. A penalty 



RUSSELL ET AL. 177 

5200 

• 3600 

Z 2800 1 

- 41 MPa 

55 MPa 

69 MPa 

- 63 MPa 

25 30 35 40 45 

Span, m 

60 60 

INTERMEDIATE PREMIUM COSTS 

5200 T 
E 

5-4400 I 

X 3600 
TO 

I 2800 ! 
o i 

2000 -
20 

— 41 MPa 

55 MPa 

69 MPa 

- 83 MPa 

25 30 35 40 45 
Span, m 

MAXIMUM PREMIUM COSTS 

5200 
E 
S 4400 i 

S 3600 t 

5 2800 I 
O 

2000 • 

41 MPa 

55 MPa 

69 MPa 

- 83 MPa 

20 35 40 45 
Span, m 

60 

FIGURE 5 Effect of premium concrete costs for a BT-72. 

is pa id i n the f o r m of increased volume o f concrete and 
corresponding weigh t when the b o t t o m flange size is 
increased to incorporate more prestressing, as opposed 
to reducing strand spacing to obta in the same result. 
This penalty offsets some of the potent ia l benefits o f 
more prestressing w i t h the b o t t o m flange, and, conse
quently, cost benefits are no t realized u n t i l concrete 
strengths exceed 55 M P a (8,000 psi). I n add i t i on , this 
penalty results i n the o r ig ina l BT-72 being more cost-
effective at a l l concrete strengths for span lengths o f 
42 .7 m (140 f t ) and less. 

M o d i f i c a t i o n 2 is a s l ight ly more cost-effective alter
native then M o d i f i c a t i o n 1 . However , i t is interesting to 
note that the sh i f t i n the o p t i m u m cost curve between 
M o d i f i c a t i o n 1 and M o d i f i c a t i o n 2 is v i r tua l ly ident ical 
at bo th concrete strengths. This fac t occurs because the 
benefit o f M o d i f i c a t i o n 2 over M o d i f i c a t i o n 1 is on ly a 
s l ight ly deeper section. Bo th revised sections accom
modate the same m a x i m u m number o f prestressing 
strands w i t h i n their larger b o t t o m flange. 

CONCLUSIONS 

O n the basis o f the cost analyses described i n this paper, 
the f o l l o w i n g conclusions are made: 

1. For exist ing cross sections designed using Grade 
270 strand 12.7 m m (0.5 in.) i n diameter at 5 1 - m m (2-
in.) centers w i t h 5 1 m m (2 in . ) o f cover, the BT-72 was 
the most cost-effective cross section f o r span lengths up 
to 45.7 m (150 f t ) at a l l concrete compressive strengths. 
However , the W A 14/6 and C O G68/6 were equally 
cost-effective f o r span lengths up to about 36.6 m (120 
f t ) . For span lengths greater than 45 .7 m (150 f t ) and 
al l concrete compressive strengths, the FL BT-72 and 
N U 1800 were the most cost-effective. 

2. For a l l exist ing sections designed using Grade 270 
strand 12.7 m m (0.5 in.) i n diameter at 5 1 - m m (2-in.) 
centers w i t h 5 1 m m (2 in . ) o f cover, the m a x i m u m use
f u l concrete compressive strength was in the range o f 
62 to 69 M P a (9,000 to 10,000 psi). Above this 



178 FOURTH INTERNATIONAL BRIDGE ENGINEERING CONFERENCE 

5200 

4800 

E 4400 

^ 4000 
S. 
X 3600 
<D 
S 3200 
05 
Q 2800 

2400 

2000 

• 12.7-mnn dia. 8 S51-
mm spacing 

• 12.7-mm dia. C 5 38-
mm spacing 

• 15.2-mm dia. C 8 64-
mm spacing 

0 15.2-mm dia. C S51-
mm spacing 

20 25 30 35 40 45 

Span, m 
50 55 60 

5200 T 

4800 -

E 4400 -
& 
(n 4000 
a 
a. 
X 3600 
0) 
T3 
C 3200 -
u> o 
O 2800 

2400 

2000 -

• 12.7-mm dia. 6 851-
mm spacing 

• 12.7-mm dia. (i s 38-
mm spacing 

• 15.2-mm dia. C i 64 -
mm spacing 

« 15.2-mmdia. < 8 51-
mm spacing 

20 25 30 35 40 45 

Span, m 
50 55 60 

H G U R E 6 Effect of strand spacing and size for a BT-72: {a) BT-72 w i th 41 
MPa of specified girder concrete strength; {b) BT-72 w i th 83 MPa of specified 
girder concrete strength. 

Strength level, suff icient prestressing force cannot be i n 
t roduced in to the cross section to take advantage o f any 
higher concrete compressive strengths. 

3. For a l l the cross sections analyzed, the use o f a 
higher-strength concrete enabled a given section to be 
designed f o r a longer span length. The increase i n span 
length w i t h compressive strength is greater w h e n addi 
t iona l prestress force can be appl ied to the cross section. 
However , i f add i t iona l prestressing force cannot be i n 
cluded, the beneficial effects are l imi t ed to the increase 
i n a l lowable tensile stress at midspan. Because this i n 
crease is l i m i t e d t o the increase i n the square r o o t o f the 
compressive strength, the incremental benefits decrease 
w i t h each incremental increase i n compressive strength. 

4 . A shallower section w i t h a higher-strength con
crete can be more cost-effective than u t i l i z ing a deeper 
section w i t h a lower-strength concrete. Depending o n 

the p r e m i u m f o r the higher-strength concrete, the u n i t 
cost o f the superstructure may be lower w i t h the shal
lower section than w i t h the deeper section. I n add i t i on , 
there w i l l be other savings f r o m the reduced substruc
ture height. This concept is w o r t h y o f fu r the r study w i t h 
regard to replacement o f exist ing bridges. 

5. As the p r e m i u m f o r high-strength concrete i n 
creases, i t becomes more economical to use lower-
strength concretes f o r longer span lengths. The u n i t cost 
o f the superstructure is relatively insensitive to changes 
i n the p r e m i u m costs as the cost o f the girder concrete 
is on ly one component o f the t o t a l cost. 

6. The use o f smaller-strand spacing, larger-diameter 
strand, or higher-strength strand i n the BT-72 was ben
eficial at the higher concrete strength levels where ad
d i t i ona l prestressing force was needed to take advantage 
o f the higher compressive strength o f the concrete. A d -
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FIGURE 7 Effect of section geometry for a BT-72: {a) BT-72 modifications 
wi th 41 MPa of specified girder concrete strength; (b) BT-72 modifications 
wi th 83 MPa of specified girder concrete strength. 

d i t i ona l research is needed on transfer and development 
lengths i n high-strength concrete before the beneficial 
effects can be implemented. 

7. The effect o f increasing the b o t t o m flange th ick
ness o f the BT-72 so that an add i t iona l r o w o f pres
tressing strands can be added had l i t t le benefit w h e n the 
girder concrete compressive strength was 4 1 M P a 
(6 ,000 psi) and a benefit o f less t h a n 5 percent w h e n 
the concrete strength was 83 M P a (12,000 psi). 

RECOMMENDATIONS 

1. I n the near fu tu re , the indust ry should concentrate 
o n the usage o f concrete w i t h specified compressive 
strengths up to 69 M P a (10,000 psi). For existing girder 
cross sections designed w i t h Grade 270 strands 12.7 

m m (0.5 in.) i n diameter at 5 1 - m m (2-in.) centers and 
5 1 m m (2 in.) o f cover, the use o f concrete w i t h com
pressive strengths up to 69 M P a (10,000 psi) w i l l a l l o w 
longer span girders and, depending o n the p r e m i u m cost 
f o r the higher-strength concrete, more economical struc
tures. As a m i n i m u m , a l l h ighway departments should 
adopt 53 -MPa (8,000 psi) compressive strength con
crete as the n o r m a l design strength f o r longer span g i rd 
ers. I t should be recognized tha t many precasters are 
already p roduc ing girders at this strength level. 

2 . To effectively uti l ize concretes w i t h compressive 
strengths i n excess o f 69 M P a (10,000 psi) , the indus t ry 
must develop methods to apply add i t iona l prestressing 
force t o the cross section. Th i s can be achieved either 
by the u t i l i za t ion o f strands 12.7 m m (0.5 in.) i n d i 
ameter at 3 8 - m m (1.5-in.) centers or strands 15.2 m m 
(0.6 in . ) i n diameter at 5 1 - m m (2.0 in . ) centers. The use 
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o f the closer spacing f o r the strand 12.7 m m (0.5 in . ) 
i n diameter may be feasible w i t h the higher-strength 
concretes. 

3. The PCI Bulb-Tee (BT-72) should continue to be 
considered as a na t iona l standard f o r span lengths f r o m 
24.4 to 61.0 m (80 to 200 f t ) . However , the W A 14/6 
and C O G68/6 are equivalent at span lengths up to 36.6 
m (120 f t ) . For span lengths greater than 45.7 m (150 
f t ) , the F L BT-72 and N U 1800 are sl ightly more 
economical . 

4 . Before concrete w i t h compressive strengths i n ex
cess o f 69 M P a (10,000 psi) can be successfully used, 
add i t iona l research is needed on transfer and develop
ment lengths; deflect ion, lateral stabil i ty, and dynamic 
characteristics o f girders; prestress losses; shear strength 
o f girders; design age strength; and alternative deck 
systems. 
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