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An artificial intelligence method was developed to predict 
the slipperiness of a road surface in winter by emulating the 
prediction process of experienced drivers. To realize this 
method, a neural network model was integrated into the 
Kalman filter. First, the state equation that defines how the 
slipperiness varies with time and the observation equation 
that relates the slipperiness to the road surface temperature 
were described by using a multilayered neural model. Then, 
a prediction procedure similar to the conventional Kalman 
filter was developed. The introduction of the neural net­
work model made it possible to formulate complicated phe­
nomena mathematically, and the Kalman filter made it 
possible to predict slipperiness indirectly through the road 
surface temperature. Precision of the new method was 
examined through a comparison with actual measurement 
data. The kind of weather data needed to predict road 
surface slipperiness was also investigated. 

R oad surface conditions in winter undergo com­
plex changes. They are strongly affected by 
many factors, such as weather, traffic, and other 

peripheral factors. They also vary greatly with time and 
space. Therefore, mathematical formulation and precise 
prediction of changes in road surface conditions are dif­
ficult. Several attempts have been made to predict ice 
formation and temperature on the road surface. Some 
approaches are analytical, based on energy balance the­
ory (1,2), and others are statistical, based on regression 
analysis (2-6). However, none of these methods deals 
wi th slipperiness of the road surface. 

Although several indexes represent road surface slip­
periness, a friction coefficient is considered to be the 
best index because it directly indicates the degree of 

slipperiness. Precise predictions of the degree of road 
surface slipperiness would provide useful information 
not only to road maintenance officers but also to dri­
vers. However, although the coefficient is not difficult to 
measure, special equipment, such as a skid-resistance 
tester, is required. Also, many testers or much time is 
necessary to measure the degree of slipperiness over a 
given road section because a friction coefficient greatly 
varies wi th time and space. 

Drivers who live in a snowy region and have experi­
ence driving on snow- or ice-covered roads are very sen­
sitive to changes in road conditions. Such drivers can 
often predict the slipperiness precisely by combining their 
past experience with the weather forecast information 
data, although they have no information concerning the 
friction coefficient. To emulate this forecasting process of 
experienced drivers, a new prediction method was devel­
oped by integrating a neural network model into the 
Kalman filter. First, indirect estimation of the degree of 
slipperiness through the use of a weather condition vari­
able was considered. Air temperature is easy to measure 
but is not always correlated to the degree of slipperiness. 
Road surface temperature is more difficult to measure 
but is more closely related to the degree of slipperiness 
than is air temperature. Therefore, road surface temper­
ature was used as the indirect variable. The Kalman filter 
is a mathematical technique for estimating unmeasur-
able state variables indirectly through some measurable 
observation variables. However, to apply the Kalman fil­
ter, both the state equation that describes how the state 
variables vary with time and the observation equation 
that relates the state variables to the observation vari­
ables must be defined analytically. Unfortunately, varia­
tions of road surface are too complex to be used to define 
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these equations mathematically. To deal wi th this d i f f i ­
culty, a multilayer neural network model was introduced. 
To establish the relationship between the state and the 
observation variables, another neural network model 
was used. Both neural network models were integrated 
into the Kalman filter to establish a new prediction 
method, the neural-Kalman filter. The effectiveness of the 
neural network model in predicting the slipperiness on a 
road surface is discussed in this report. 

N E U R A L - K A L M A N FILTER 

Kalman Filter 

The Kalman filter is a technique for indirectly estimating 
some state variables (7,8) that cannot be directly mea­
sured through the measurement of the other variables. 
I t consists of two equations: the state equation and the 
observation equation. The former defines how state 
variables vary with time: 

(1) 

where x,̂  denotes the state variable vector at time k, and 
denotes the white noise vector. The observation equation 
describes how state variables are related to observation 
variables: 

(2) 

where ŷ . is the observation variable vector at time k and 
•W); is also the white noise vector. When the new values of 
the vector yj, at time k are obtained, the state vector at 
time k can be estimated according to the theory of the 
Kalman filter: 

(3) 

xt and y^ are the one-step predictors of X;̂  and y^, re­
spectively, and xj. is the estimator of at time k: 

- A ( , _ i X j _ i 

Yk = CkHk (4) 

where Kk is termed the Kalman gain, which is a function 
of both coefficient matrices Aj, and Q and also the co-
variance matrices of noise vectors v^ and Wj,. Equation 3 
corrects the estimate x*, which was predicted without 
the observed data y* at time k, in proportion to the error 
between the actual vector y^ and the predicted vector y^. 

Extended Kalman Filter 

The preceding filtering technique is applicable only 
to linear systems. In many dynamic problems, the 

state and the observation equations are often described 
nonlinearly: 

x ( ^ + l ) = / [ x ( ^ ) ] + <p(^) 

y{k) = g[x{k)] + i{k) 

(5) 

(6) 

where (p(k) and l,{k) are noise vectors. Expanding the 
right sides of Equations 5 and 6 in the vicinity of x(fe) 
and neglecting the higher-order terms yields 

iL{k + l) = A{k).x{k) + h{k) + ip{k) 

y{k) = C{k).x{k) + d{k) + t,{k) 

where 

h{k) = f[li{k)]-A{k).±{k) 

d{k) = g[Si{k)]-C{k).ii{k) 

(7) 

(8) 

(9) 

(10) 

(11) 

N o w we can estimate the state variable x(^) in the same 
manner as linear systems. 

Neural Network Model 

Figure 1 shows the multilayer neural network model 
used in the present analysis (9,20). It consists of five lay­
ers: an input layer, three intermediate layers, and an out­
put layer. Neurons in each layer are mutually connected 
to neurons in adjacent layers, except for those in the in­
put layer. The strength of the connections is called 
synaptic weight. The synaptic weights for both interme­
diate and output layers are adjusted. The input layer 
serves only as a normalizes First, the synaptic weights 
are initialized randomly. The raw variables x^are input 
into the input layer and normalized. I f the normalized 
signals are transmitted in sequence f rom the input layer 
to the output layer, the output signals may be obtained 
during the neural operations: 

.,E — (12) 

where h is an activation function that represents the 
input-output relationship for each neuron. The sigmoid 
function is used as the activation function. The ability of 
neural network models to describe nonlinear behavior 
comes f rom this nonlinear function. This represents the 
foreword signal process in Figure 1. Next, the synaptic 
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FIGURE 1 Mutilayer neural network 
model for describing state and observation 
equations. 

weights are adjusted so that the error between the out­
put signals and the target signals is minimized. The 
back-propagation method is used to adjust the synaptic 
weights. The errors are corrected and the weights are 
modified backward f rom the output layer to the input 
layer. Iterative adjustment of synaptic weights by using 
many training patterns produces a stable input-output 
relationship between input and output signals, even for 
a nonlinear system. In other words, the neural network 
model is very effective in accurately describing nonlinear 
phenomena. 

Neural-Kalman Filter 

Because of the difficulty of measuring slipperiness of 
road surfaces in winter, an attempt was made to esti­
mate shpperiness indirectly through other variables that 
are closely related to slipperiness but are easily measur­
able, such as road surface temperature. Air temperature 
was another promising variable because it is very easy 
to measure, but it was not used because it is not as 
closely correlated to slipperiness as is road surface tem­
perature. Apphcation of the Kalman filter theory is pos­
sible wi th prior knowledge of how slipperiness varies 
wi th time and how closely it is correlated wi th road sur­
face temperature. As shown in Figure 2, slipperiness 
varies according to weather and traffic conditions. This 
transition process is too complex to formulate analyti­
cally, that is, i t is too difficult to physically or mathe­
matically define the state equation. Therefore, the 
process is described as using a multilayer neural net­
work model, which inputs the slipperiness as well as 
data on weather and traffic conditions at time k, and 
outputs the slipperiness at time ^ + 1. The relationship 
between slipperiness and road surface temperature is 
also very complex, and is almost impossible to describe 
analytically. Thus, another multilayered neural network 
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FIGURE 2 Basic concept of neural-Kalman filter for 
estimating slipperiness on a winter road surface. 

model is introduced for establishing a steady nonlinear 
relationship between them. The input signals are the 
same as those of the state equation, and the output sig­
nal is the road surface temperature. Thus, an estimation 
method was developed by incorporating the neural net­
work model into the Kalman filter. This artificial intelli­
gence method was named the neural-Kalman filter. 
Figure 2 shows a conceptual representation of this 
method. 

Since the proposed method is essentially a Kalman 
filtering technique, it consists of two equations: the 
state equation that defines how the slipperiness varies 
wi th time, and the observation equation that describes 
how the slipperiness is related to the road surface tem­
perature. First, each equation is identified by using a 
multilayer neural network model. This simply requires 
the preparation of a large volume of measurement data 
on slipperiness, weather, and traffic conditions. The 
synaptic weights are then adjusted. This is the training 
phase in establishing the neural networks. The com­
pletion of the training makes it possible to estimate 
or predict the degree of slipperiness for unknown 
weather and traffic situations. The fundamental algo­
r i thm is identical to that of the conventional Kalman 
filter. First, on the basis of the estimate at the previous 
time k, the slipperiness x(^ + 1) at time ^ + 1 is pre­
dicted by using the neural function F. Then the road 
surface temperature y(^ + 1) is estimated by using 
the neural function G, before the actual temperature 
y(k + 1) at time ^ + 1 is measured. At the same time, 
the derivative matrices A(k) and C(^) given by Equa­
tion 12 are calculated and the Kalman gain is evalu­
ated. Finally, the slipperiness x{k) may be estimated 
f r o m Equation 3 after the actual temperature y(^) 
is measured. By repeating these procedures, the de­
gree of slipperiness in real time may be estimated and 
predicted successively. 
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FIELD MEASUREMENTS 

To obtain fundamental data on road conditions in win­
ter, field measurements were carried out at an inter­
section in a suburb of Sapporo over several days in 
December 1994, 1995, and 1996. Weather conditions 
such as air temperature, total solar radiation, and net ra­
diation also were measured as were traffic conditions, 
such as traffic volume. Table 1 shows the items mea­
sured. The measurements were carried out f rom early 
in the morning to late in the evening because road con­
ditions changed greatly during the daytime. To evaluate 
the degree of slipperiness on the road surface, the fric­
tion coefficient (skid number) was measured by using a 
bus-type skid tester wi th a test wheel mounted in the 
center. The effect of sunshine was evaluated through 
both total solar radiation and net radiation, cumulated 
every 30 min. Road surface temperature was measured 
on the surface of two tire ruts in the road that were cov­
ered wi th snow or ice by using a portable thermistor. 
Humidity data were not used here because they had li t­
tle influence on prediction precision. Traffic volume was 
measured by counting the number of vehicles passing by 
the intersection every 30 min. 

NUMERICAL EXPERIMENTS 

Structure of Neural Network Model 

By using the measurement data, the neural network 
models for both state and observation equations were 
determined. Table 2 presents the input and the output 
signals for neural networks F and G in Figure 2. For the 
neural State Equation F, the skid number at time k was 
input together wi th weather conditions and traffic vol­
ume at time k, and the skid number at time ^ + 1 was 
output. Similarly, for the neural Observation Equation 
G, the same data as those used in the state equation were 
input, and the road surface temperature at time k was 
output. 

To clarify the weather data necessary for precise esti­
mation of the degree of slipperiness, the weather data 
were classified into two groups: ordinary data that can 
be measured without any special equipment, and special 
data that require special equipment (Table 3). Ordinary 
weather data were obtained through the SNET system, 
which is a weather information system in Sapporo. 
However, some items of weather data required special 
equipment for measuring, because the SNET system 
does not measure total solar radiation or net radiation. 
Two cases were simulated, one using only ordinary 
weather data and the other including the special weather 
data. The number of neurons in the input layer was eight 
for Case 1, in which solar radiation data were used, and 
six for Case 2, in which these data were not used. The 
number of neurons in the intermediate layers was em­
pirically determined—the same number of neurons for 
the first intermediate layer, and half that number of neu­
rons for the second intermediate layer. Naturally, the 
number of neurons in the output layer was one for both 
equations in this analysis. 

Training of Neural Networks 

To determine the neural networks precisely for both 
equations, measurement data for extensive road and 
weather conditions are needed. Also, to examine the va­
lidity of the models, checking data for which the neural 
models are not yet trained are needed. Unfortunately, 
the number of measurement data sets here is restricted. 
Excluding the incomplete data caused by the failure in 
the measurement, the measurement data for 8 days were 
used as the training data. The training procedure was 
simple. First, the initial synaptic weights were set. Then 
the input signals into the input layer were set, and the 
output signals were calculated. These signals were then 
compared with the actual measured signals (target 
signals), and the synaptic weights were adjusted to min­
imize the difference between the output signals and tar­
get signals. This procedure was repeated until the error 

TABLE 1 Field Measurements of Winter Road Conditions 

Date 
December 1994 
December 1995 

December 1996 

19(Mon), 20(Tue), 21(Wed), 22(Thu), 23(Fri) 
14{Thu), 18(Mon), 20(Tue), 27(Wed) 
15(Fri), 19(Tue),21(Thu),28(Thu) 
18(Wed), 19(Thu), 20(Fri), 21(Sat), 22(Sun) 

7:00 to 20:00 
15:00 to 20:00 
6:00 to 20:00 
6:00 to 20:00 

Items 

Weather Conditions 

Road Conditions 

Traffic Conditions 

Air Temperature, Snowfall Intensity, 
Snowfall Depth, Total Solar Radiation, 
Net Radiation, Humidity 
Skid Number, Road Surface Temperature 
Pavement Surface Temperature 
Traffic Volume, Heavy Traffic \tolume 

every 30 minutes 

every 30 minutes 

every 30 minutes 
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TABLE 2 Input and Output Signals of Neural Network Models for State and 
Observation Equations 

State Equation Observation Equation 

Input Signals 
Skid number at time k 
Weather condition data 
T r a f f i c volume 
Pavement surface temperature 

Skid number at time k 
Weather condition data 
Traf f i c volume 
Pavement surface temperature 

Output Signals Skid number at time k+1 Road surface temperature 

became sufficiently small for all the training patterns. In 
general, the estimation ability of a neural network model 
can be evaluated by the estimation precision for check­
ing data that are not trained yet. The measurement data 
for 3 days were used as the checking data. After the com­
pletion of training, the input signals of the checking data 
were set, and the corresponding output signals were cal­
culated by using Equation 12. These signals were then 
compared wi th the actual measured signals. 

Figure 3 shows the root mean square (RMS) errors 
for both the training and the checking data sets for each 
case. The errors for Case 1 in Figure 3{a), for which the 
solar radiation data as well as the ordinary weather 
data were used, were around 5 percent for both state 
and observation equations except for a few data sets. 
The errors for the checking data were larger than those 
for the training data. In particular, the errors of the state 
equation for the data sets on December 22, 1994, and 
December 19, 1995, exceeded 15 percent. This means 
that the number of training data sets is not sufficient 
yet. That is, the neural model did not experience 
weather and road conditions similar to those of the 
checking data in the training process. The errors for the 
data set on December 2 1 , 1996, were less than 10 per­
cent for both equations. 

The errors for Case 2 shown in Figure 3(fe), for which 
the solar radiation data were not used, were larger than 
those for Case 1 for both state and observation equa­
tions. The errors of the state equation were more than 
10 percent for half of the training data sets. This means 
that there is no definite relationship between the input 
and output signals. In other words, any other weather 
condition data, such as solar radiation data in Case 1, 
may be needed to accurately describe the degree of slip­
periness on roads in winter. The errors of the checking 
data for Case 2 were better than those for Case 1. How­
ever, the errors of the state equation were more than 
10 percent for all checking data sets. 

Prediction Precision 

Training Process 

To determine how precisely the neural network model 
represented the state and the observation equations, the 
skid numbers predicted by the neural-Kalman filter were 
compared with the actual measured skid numbers. For 
this purpose, the skid numbers were calculated by fo l ­
lowing the procedure of the neural-Kalman filter already 
explained. Figure 4 shows variations in skid number 
with time for the training data on December 19, 1996. 
The skid number was predicted 30 min in advance at 
30-min intervals. It can be seen that the values predicted 
wi th solar radiation data trace the measured values bet­
ter than do the values predicted without solar radiation 
data. This reflects the results of the training process for 
both cases shown in Figure 3. Similar results were ob­
tained for the other training data. 

Checking Process 

The results in Figure 4 can be expected because the 
synaptic weights had been adjusted so that the estimated 
variables agreed wi th the measured variables. As men­
tioned, the true estimation ability of the new method can 
be evaluated by the estimation precision for checking 
data. Figure 5 shows a comparison of the skid number 
predicted for the checking data on December 2 1 , 1996, 
with the measured skid numbers. As shown in Figure 
5(a), the level of prediction precision obtained by using 
the neural-Kalman filtering method was not bad 
for Case 1, except for the initial period f rom 7:00 to 
9:00 a.m. This outcome reflects the effect of solar radia­
tion data in both state and observation equations. I f 
the initial skid number were estimated more precisely 
at the beginning of the prediction, the errors could be 
decreased for the initial period. On the other hand, the 

TABLE 3 Weather Condition Data 

CASE Ordinary Weather Data Special Weather Data 
1 Air temperature, Moisture, Snowfall depth Total solar radiation, Net radiation 
2 Same as Case 1 None 



90 S N O W R E M O V A L A N D I C E C O N T R O L T E C H N O L O G Y 

Case 1( with Solar Radiation Data) 
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FIGURE 3 RMS errors for training and checking data. 

prediction in Case 2, in which solar radiation data were 
not used, gave very poor results. This is partly because 
of insufficient training of the neural networks as well as 
the lack of solar radiation data. Because a neural net­
work model has the promising characteristic of being 
able to flexibly adjust synaptic weights regardless of the 
number of training data sets, the neural-Kalman filter 
could predict more precisely by training the neural net­
works wi th more measurement data sets. 

CONCLUSIONS 

Information on the degree of slipperiness on road sur­
faces is very important for efficient snow and ice control. 
It is also useful for drivers using unfamiliar roads in win­
ter. However, the transition of slipperiness is too complex 
to formulate mathematically. Slipperiness is difficult to 
measure because it varies greatly with time and space. To 
emulate the prediction process of experienced drivers, an 
artificial intelligence method for predicting the degree of 
slipperiness was developed. The major findings were as 
follows. 
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FIGURE 4 Skid numbers predicted by neural-Kalman filter 
in comparison with measured numbers for training data. 

1. A multilayer neural network model was proposed 
to describe the nonlinear behavior of how slipperiness 
varied with time and how it was related to road surface 
temperature and weather conditions. 

2. A method that could indirectly predict the skid 
number through road surface temperature was devel­
oped by integrating a neural network model into the 
Kalman filter. 

3. The weather data that represent solar radiation ac­
tivities were effective in constructing the neural network 
system and predicting the skid number. 

4. The road surface temperature may not be suffi­
cient to accurately represent the observation equation. 
Other weather condition variables may be needed. 

This study is only the first step to predicting the 
slipperiness of road surfaces in winter. Many problems 
remain to be resolved. First, training precision of 
the neural network models must be improved. The 
estimation precision for checking data is not yet satis­
factory. Also, what input signals are influential in the 
transition of road conditions in winter must be assessed 
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FIGURE 5 Skid numbers predicted by neural-Kalman filter 
in comparison with measured numbers for checking data. 

quantitatively. Fortunately, because it is easy to differ­
entiate the output signal of Equation 12 wi th respect 
to any input signal ;cf, the effect of each input signal is 

easily evaluated. Although comparison wi th other sta­
tistical approaches is another problem, it is too early to 
evaluate the new method because much has yet to be 
improved. 
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