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In winter road maintenance, it is important for highway en­
gineers and authorities to know where and when road sur­
face temperature is to fall below freezing and whether road 
surfaces wil l remain dry or icy. To provide this information, 
several numerical models have been developed in the last 
decade. However, the accuracy of model prediction in real­
time application largely depends on the accuracy of fore­
cast inputs (such as air temperature, dew point, wind speed, 
cloud type, and cloud amount), which are typically sup­
plied by meteorologists. The experience and skills of the 
meteorologists are critical in some circumstances for the 
models to provide useful and reliable output. There is little 
doubt that such experience and skills vary individually 
within a group of meteorologists. To remedy model predic­
tion errors resulting from input errors, a self-learning 
process is developed. The magnitude of error in real-time 
model input is investigated by comparing forecast input to 
actual measurements and observations, and the effect of in­
put error on model prediction is demonstrated. A variety of 
methods, including self-adjustment and self-quality-control 
mechanisms, are introduced in this paper to show im­
provements of a numerical model in 24-hr forecasts and 
3-to-6-hr nowcasts of road surface temperature. 

S ince the early 1980s, numerical prediction of road 
surface temperature for winter road maintenance 
has become more and more popular and has been 

accepted as a useful tool to determine where and when 
ice or frost is likely to occur (J-5). Such information en­
ables highway engineers or authorities to salt or grit po­
tentially freezing roads at the right time to minimize the 

cost of salting/gritting operations and possible damage 
to the environment. To achieve maximum benefits, the 
accuracy and reliability of temperature prediction is 
vitally important. 

I t has been known that nearly all input for a site-
specific road ice prediction, produced by either human 
forecasters or mesoscale models, unavoidably has large 
or small departures f rom real conditions. As a conse­
quence, the error in the input causes systematic or non-
systematic distortion in road ice predication. Even in the 
case of automatic nowcasting (5), self-generated input 
by the model contains a degree of error. Although many 
statistical and dynamic ways (e.g., Kalman filter) exist to 
diagnose and adjust the error of numerical predictions, 
the principle of "simplicity is beauty" should be adopted 
in road ice prediction. This view is supported by three 
considerations. First, computing time and space are of­
ten limited for a local user of a model. Second, fast 
updating of prediction is desired in certain circum­
stances (e.g., when weather conditions are charging 
significantly). Third, only a few fundamental meteorolo­
gical variables are measured at an automatic roadside 
weather station. These limitations or requirements mean 
that using some sophisticated error-correction schemes 
(e.g., Kalman filter) for this particular problem may not 
be practicable. A desirable method of road ice prediction 
is one that requires less computing time, computer stor­
age space, and human intervention; one that is better un­
derstood by users; and one that is effective in removing 
errors in real time. 

In the past, a method of simple template has been 
proved to be useful to remove systematic errors (6,7). 
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However, the effectiveness of the method is restricted in 
some circumstances (e.g., w^hen the error is systematic or 
weather conditions do not change rapidly). To overcome 
this drawback, a new attempt is made in this paper to 
search for simple and effective methods to reduce model 
prediction errors in real time. 

DATA COLLECTION 

24-hr Forecast 

Real-time input (in 24 hr) is usually provided on-line by 
local meteorologists and stored in archives. Therefore, a 
number of stations and days of real-time or realistic in­
puts (together with measurements of road surface tem­
perature) have been successfully collected and extracted. 
The largest data set was obtained at Chapman's H i l l (site 
code: WNOOl) on the M 5 near Birmingham, England, 
f rom December 1, 1988, to March 12, 1989, and was 
derived f rom hard copy (printout). This site has been 
used as a model and sensor testing site since 1988. It is 
also a typical motorway forecast site. The data cover 65 
days wi th forecasts of air temperature, dew point, wind 
speed, cloud amount, cloud type, and precipitation in 
3-hr intervals, and sensor measurements of surface 
temperature in 1-hr intervals. 

It is understandable that forecast input at one site may 
contain human errors by the group of forecast providers 
responsible for the site. Such errors in real-time input are 
likely to differ f rom one group (or site) to another in both 
magnitude and style. Therefore, an error-correcting 
method that is valid for one site may not work at another 
site. For this reason, efforts have been made to recover 
data from sites other than Chapman's H i l l . In the Nether­
lands, 2 to 9 days' data were reestablished at four sites 
(GM004, GNOOl, HB008, and NW021). Another 2 to 3 
days' data were recovered at three sites (RL002, RL004, 
and RL006) in Norway. These sites are located in differ­
ent geographical and climatic regions with different 
topography and road construction, meteorologists' skills 
and experience also differ f rom site to site. The sites are 
considered to provide a reasonable database for the vali­
dation of methods developed in this paper. 

Nowcasts 

It has been shovra elsewhere (5) that the accuracy of a self-
integrated and automatic road ice nowcasting model dete­
riorates when weather conditions change dramatically. It 
is expected that the model should be able to monitor the 
change and make necessary adjustment to subsequent 
nowcasts without human intervention. For testing of the 
nowcasting model, a series of data was collected at an Aus­
trian site (NOOOl) on the A l l near Vienna for the period 

from January 10,1996, to April 20, 1996 (72 days). As a 
by-validation, another site (SMOOl) on a flat plain in 
northern Italy between Bologna and Ferrara was also used 
for the study. Its data cover 53 days, f rom January 18, 
1994, to March 17,1994. 

MTONIGHT ADJUSTMENT 

In the so-called template method (6,7), hourly model 
predictions in a specific day are corrected by the mean 
hourly error of predictions in previous days. Because 
weather conditions and a human forecasters' errors are 
unlikely to be the same or even similar for more than 
1 day, this method is only useful to remove systematic or 
regular errors when weather conditions remain un­
changed and input is provided by the same forecaster. In 
reality, forecaster error and weather condition change 
can become significant within a 12-hr period, usually 
starting at noon. In these cases, the template method 
contains too much old and useless information f rom 
some days ago; new and fresher information about 
model prediction error becomes increasingly important. 
On the other hand, accurate prediction of minimum 
temperature, which usually occurs at or shortly before 
dawn, is one of the most important parameters for win­
ter road maintenance. For these reasons, a method called 
midnight adjustment is developed. 

In this method, the model is fed original real-time in­
put and run for 24 hr until noon of the next day. After 
12 hr model performance is checked at midnight and the 
original forecasts are adjusted f rom 0100 to 1200. The 
algorithm of the method can be simply described by two 
equations: 

and 

P^=F,-E^, j = 1,2, . . . , 12 (hour) 

(1) 

(2) 

where 

E„ = averaged model error in the previous n 
hours before 0100, 

F, and A, = respectively forecast and actual road sur­
face temperatures at hour i, 

Fj = original model forecast for the period 
f rom 0100 to 1200, and 

Fj = the forecast after midnight adjustment. 

To get r id of "memory" that may be too old and may 
have a negative influence on the effectiveness of the ad­
justment, n is determined to be 3, that is, the error is 
averaged f rom 2200 to 0000. 
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TABLE 1 Comparison of Adjusted and Nonadjusted Forecasts of Al l 
Nights (Chapman's Hi l l , 1988-1989, 65 days) 

Noon to noon (24 hours) After mid-night (12 hours) 
Overall Minimum Overall Minimum 

Bias RMS Bias RMS Bias RMS Bias RMS 
Adjusted 0.12 1.39 -0.08 1.34 -0.01 1.39 -0.10 1.32 

Not adjusted 0.05 1.47 -0.16 1.50 -0.14 1.54 -0.16 1.49 
Improvement -0.07 0.08 0.08 0.16 0.13 0.15 0.06 0.17 

TABLE 2 Comparison of Adjusted and Nonadjusted Forecasts of Marginal 
Nights (Chapman's Hi l l , 1988-1989,15 days) 

Noon to noon (24 hours) After mid-night (12 hours) 
Overall Minimum Overall Minimum 

Bias RMS Bias RMS Bias RMS Bias RMS 
Adjusted 0.09 1.45 0.05 0.90 0.20 1.48 0.05 0.90 

Not adjusted -0.08 1.45 -0.21 1.11 -0.13 1.48 -0.18 1.15 
Improvement -0.01 0.0 0.16 0,21 -0.07 0.0 0.13 0.25 

In Table 1, the results of the application of the 
method to all nights at Chapman's H i l l are compared 
wi th the results of unadjusted forecasts. The comparison 
was made on every hour available in all days and mini­
mum temperature forecasts in two periods: noon to 
noon and midnight to noon. In the table, a positive sign 
shows the reduction of error by the adjustment and a 
negative sign shows its increase of error. The table shows 
that for a 24-hr comparison, the adjustment's slight re­
duction of overall root mean square (RMS) error is ac­
companied by a small increase in its bias. Apart f rom 
this, an improvement of around 0.1°C is generally seen 
in the comparison. Results of similar comparisons of 

marginal nights when minimum surface temperature 
was in the range of - 1 ° C to +1°C are shown in Table 2. 
As the table indicates, the error of minimum tempera­
ture forecast wi th midnight error adjustment was signif­
icantly reduced by 0.13°C to 0.25°C for the marginal 
nights. 

The improvements in accuracy of overall and mini­
mum temperature predictions are also seen at sites in 
Holland (GM004, GNOOl, HB008, and NW021) and 
Norway (RL002, RL004, and RL006). Tables 3 and 4 
show the improvement of minimum temperature predic­
tion at these sites. The reduction of RMS error in mini­
mum temperature forecast by the method is generally 

TABLE 3 Comparison of Adjusted and Nonadjusted Minimum 
Temperature Predictions (Holland) 

GM004 GNOOl HB008 NW021 
Bias RMS Bias RMS Bias RMS Bias RMS 

Adjusted 0.28 1.43 0.04 1.39 -0.25 1.59 0.35 0.49 
Not adjusted 0.13 1.81 -0.47 1.86 -0.57 2.13 0.45 0.64 
Improvement -0.15 0.38 0.43 0.47 0.32 0.54 0.10 0.15 

TABLE 4 Comparison of Adjusted and Nonadjusted Minimum 
Temperature Predictions (Norway) 

RL002 RL004 RL006 
Bias RMS Bias RMS Bias RMS 

Adjusted 0.85 0.85 0.95 1.10 0.63 0.69 
Not adjusted 0.95 0.96 1.40 1.40 0.57 0.65 
Improvement 0.10 0.09 0.05 0.30 -0.06 -0.04 
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seen at these sites. The largest reduction is 0.54°C at 
HB008. Ahhough the number of samples (or days) at 
each site is limited, the results are encouraging, and the 
average improvement at these sites is 0.2°C in bias and 
0.36°C in RMS error. 

Although the results are positive, the application of 
midnight adjustment does not mean that improvement 
can be made on every night and under all conditions. 
Figure 1 displays the daily variation of improvement by 
the technique for all hours over during 65 days at Chap­
man's H i l l . The same variation for marginal nights is 
demonstrated in Figure 2. In these figures, positive 
(above zero bar) means improvement of forecast accu­
racy, while whereas negative means deterioration. I t is 
seen f rom the figures that although positive improve­
ment dominates, a much worse forecast can be made 
with the adjustment in some circumstances. One exam­
ple is day 48 or December 12,1989, in Figure 1, and day 
11 or December 12, 1989, in Figure 2. Analysis of the 
first example reveals that in the input data, both air tem­
perature (1.5°C) and cloud amount (0 octa) forecasts 
were significantly underestimated at 2100, compared 
with actual (4.0°C and 4 octas). In contrast, both air 
temperature and cloud amount were then overestimated 
after midnight. The consequence of this mistake in the 
input is a large negative error (and thus positive adjust­
ment) of road surface temperature prediction. This er­
ror, caused by underestimation of air temperature and 
cloud amount in the period of 2200 to 0000, was passed 
on and added to the erroneous predictions resulting 

f rom overestimation in the period after midnight. There­
fore, the prediction after midnight deteriorated substan­
tially. This example shows the principal limitation of the 
midnight adjustment technique. 

SELF-LEARNING I N NOWCASTING 

One of the most important features of automated and 
accurate nowcasting is the generation of short-term 
forecasts without human intervention. In such now-
casting, the input of air temperature, dew point, wind 
speed, cloud type and amount, and precipitation are all 
generated within the model itself. This feature can save 
costs by minimizing provision of human forecasts and 
has the potential to provide "cheap, cheerful and accu­
rate" (8) forecasts in meteorological applications. To 
check and improve the quality of road ice nowcasting 
and to retain this important feature of automation, a 
scheme of self-quality-control is introduced into the 
icebreak model. 

Air temperature is one of the most dominant factors 
controlling the variation in (and prediction of) road sur­
face temperature. Therefore, model-generated forecasts 
of air temperature become a natural target for improve­
ment. In the scheme, the model learns f rom historical 
data consisting of sensor measurements and nowcasts. 
Combined with its knowledge of current time, sunshine, 
and humidity, the model decides if an error correction is 
necessary. The fundamental decision rules are presented 
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FIGURE 1 Comparison of real-time forecasts with and without midnight adjustment (Chapman's Hil l , January 12, 1988, 
to December 3, 1989). 
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FIGURE 2 Comparison of real-time forecasts with and without midnight adjustment (Chapman's Hil l , marginal nights). 

in Table 5. The scale of correction depends on the mag­
nitude of the latest actual tendency of air temperature, 
the calculated intensity of solar radiation, and the value 
of the forecast itself. 

The results of nowcasts of air temperature with and 
without this self-learning scheme are listed in Table 6. 
Generally, there is a small reduction in RMS error, ac­
companied by a small increase in bias, for 2-, 4-, and 
6-hr nowcasts by the scheme. The results of site SMOOl 
appear more positive than those of site NOOOl, espe­
cially for overall temperature nowcasts. I t is noticed in 
the study that in some circumstances the method can be 
very helpful. Figure 3 shows an example of 4-hr now­
casts of air temperature at site SMOOl wi th and without 
self-learning and correction. The figure indicates that the 

method enables the model nowcasts to closely track 
variation in actual temperature, especially after sunset 
and sunrise. 

DISCUSSION 

In this study, two simple methods are explored to im­
prove 24-hr forecasts and 2- to 6-hr nowcasts of road 
surface temperature in real-time application through 
deduction of midnight error of model prediction f rom 
the after-midnight predictions and through trend correc­
tion of air temperature, respectively. A comparison of 
24-hr forecasts with and without midnight adjustment 
shows that the method is effective in most cases, wi th a 

TABLE 5 Rules for Correction of Air Temperature Forecasts 
in Nowcasting 

Rule 1: IF(forecast trend is not consistent with the latest actual trend), and 
IF(it is day time), and 
IF(relative humidity < 90%), and 
IF(forecast declines) > Positive correction. 

Rule 2: IF(forecast trend is not consistent with the latest actual trend), and 
IF(it is night time), and 
IF(relative humidity < 90%), and 
IF(forecast climbs) > Negative correction. 

Default: Zero correction. 
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TABLE 6 Comparison of Nowcasts With and Without 
Self-Error-Correction 

NOOOl SMOOl 
Overall Minimum Overall Minimum 

Bias RMS Bias RMS Bias RMS Bias RMS 
2 hour: 
Corrected 0.08 0.96 -0.06 0.31 0.17 1.02 0.04 0.33 
Not corrected 0.04 0.99 -0.04 0.32 0.09 1.12 0.01 0.36 
Improvement -0.04 0.03 -0.02 0.01 -0.08 0.10 -0,03 0.03 
4 hour: 
Corrected 0.14 1.31 -0.14 0.64 0.28 1.54 0.18 0.74 
Not corrected 0.12 1.31 -0.07 0.64 0.26 1.68 0.33 0.78 
Improvement -0.02 0.0 -0.07 0.0 -0.02 0.14 0.15 0,04 
6 hour: 
Corrected 0.07 1.86 -0.19 0.82 0.49 2.03 -0.10 0,95 
Not corrected 0.06 1.94 -0.06 0.82 0.31 2.20 0.16 0.96 
Improvement -0.01 0.08 -0.13 0.0 -0.18 0.17 0.06 0.10 

general reduction of bias and RMS error of about 0.1 °C 
to 0.2°C. The method is an especially useful tool for im­
proving minimum temperature forecasts. The trend cor­
rection method, however, does not significantly and 
consistently improve nowcasts, although it has demon­
strated its effectiveness in some cases. It could be useful 
at some sites but may be useless at others. Generally, 
both methods show positive results in this study. 

The main drawback of the methods, as shown in the 
paper, is that there is no general rule to predict when 
they w i l l succeed or fai l . This is particularly true when 
weather conditions on one day are largely different 
f rom those of the previous day. To overcome this draw­
back, detailed historical information about tendency 

and variation of the error in forecast input is required. 
More sophisticated methods (e.g., neural network 
analysis) are needed to analyze and recognize error pat­
terns. This w i l l improve the accuracy of road ice pre­
diction but w i l l also inevitably require a large quantity 
of computing power and space. To achieve a more fun­
damental and consistent improvement, further study is 
needed. 
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FIGURE 3 Comparison of 3-hour nowcasts with and without correction of air temperature forecast (SMOOl, January 26,1994). 



SHAO AND L I S T E R 137 

REFERENCES 

1. Nysten, E. Determination and Forecasting of Road Surface 
Temperature in the COST 30 Automatic Road Station 
(CARS). Technical Report No. 23. Finnish Meteorological 
Institute, Helsinki, 1980. 

2. Thornes, J. E. The Prediction of Ice on Motorways. Ph.D. 
dissertation. University College, London, 1984. 

3. Rayer, P.J. The Meteorological Office Forecast Road 
Surface Temperature Model. The Meteorology Magazine, 
Vol. 116, 1989, pp. 80-190. 

4. Shao, J. A Winter Road Surface Temperature Prediction 
Model with Comparison to Others. Ph.D. dissertation. 
University of Birmingham, 1990, 245 pp. 

5. Shao, J., and P.J. Lister. An Automated Nowcasting 
Model of Road Surface Temperature and State for Winter 

Road Maintenance. Journal of Applied Meteorology, 
Vol. 38,1996, pp. 1352-1361. 

6. Thornes, J. £., and J. Shao. Objective Methods for Im­
proving the Operational Performance of a Road Ice Predic­
tion Model Using Interpolated Mesoscaie Output and a 
Templet for Correcting Systematic Error. The Meteorology 
Magazine, Vol. 121,1992, pp. 197-204. 

7. Astbury, A. Removal of nonmeteoroiogical errors from ice 
prediction models by use of a statistical templet. Vol. 2, 
Preprints of Third International Symposium on Snow Re­
moval and Ice Control Technology, Sept. 14-18, 1992, 
Minneapolis, 1992. 

8. Thornes, J. E. The Quality and Accuracy of a Sample 
of Public and Commercial Weather Forecasts in the 
UK. Meteorological Applications, Vol. 3, 1996, pp. 
63-74. 




