Engineering-Personnel Needs for

Highway Departments

M. EARL CAMPBELL, Highway Research Board, and
L. R. SCHUREMAN, Bureau of Public Roads

THE shortage of technical personnel in this country has been a continuing problem in the administration of highway programs for the past several years. Even with the salary increases and other improvements in employment conditions which have been made, the state highway departments generally have not been able to improve appreciably their competitive positions in the technical-personnel market. This situation, while serious now, will be one of the major problems in instituting and carrying forward a highway construction program of the magnitude proposed by President Eisenhower's Advisory Committee on a National Highway Program.

Followng discussions with the headquarters office of the American Association of State Highway Officials and other national agencies in the highway field, the Highway Research Board undertook (in the latter part of 1954) a canvass to determine the present shortage of highway engineers in the state highway departments and to obtain estimates of the number of highway engineers needed for an expanded program.

This paper is a report on the canvass and the use of the data obtained in estimating probable future engineer-personnel needs.

A questionnaire was prepared to collect the data desired. This form, shown in Figure 1, provides for reporting information for both the present program and expanded programs, broken down into several areas of activity. A statement of the purpose of the canvassand of the information desired, Figure 2, was distributed with the questionnaire. The forms were sent to the highway department of each state, the District of Columbia, Hawaii, and Puerto Rico.

Subsequently, to aid in arriving at complete estimates of the total number of engineers presently engaged in highway work in organzations with, or participating in, construction programs and possible future needs, the canvass was extended to
cover cities with a population of 50,000 or more, toll-road authorities, and consulting firms.

ENGINEER-PERSONNEL SITUATION IN THE STATES

Data reported by the states, the District of Columbia, Hawair, and Puerto Rico for their 1954 programs are shown in Tables 1,2 , and 3. The total number of engineers employed in these highway departments as shown in Table 1 is 18,034 . The average distribution among areas of activity is about 6 percent in planning and traffic; 5 percent in location; 23 percent in road design; 8 percent in bridge design; 40 percent in construction; 7 percent in materials and testing; 6 percent in maintenance; and 5 percent in "other," which includes administration, contracts, estimates, right-of-way and, in some cases, trainees.

Table 2 shows that about two thirds of the highway departments are using consultants to some extent and that it would be necessary to employ 4,192 additional engineers in these highway departments if consultants were not used. It is interesting to note that this number is about 20 percent of the number of engineers on the rolls of the highway departments. The distribution of the 4,192 engineers among the several areas of activity is 3 percent in planning and traffic, 3 percent in location, 68 percent in road design, 18 percent in bridge design, 5 percent in construction, and 3 percent divided between materials and testing and "other."

Table 3 shows the numbers of engineers the highway departments desire in addition to those shown in Tables 1 and 2 in order to work at maximum effectiveness. The total, termed in this report the "present shortage," is 3,990 . Its percentage distribution among the several areas of activity is quite close to the percentage distribution of engineers on the rolls as given above. Five states (Colorado, New Hampshire, Rhode Island, Utah

STA ITAMENTM OF PURPOSE

The HIghway Research Board is canvassing each state for a determination of the present shortage of professional engineers. It is also desirable to anticipate the requirements in engineering personnel if the proposed additional fifty billion dollar-10 year program of the Federal Govermment is realized. The information obtained vill be published by the Board. If there should be restrictions on publication of the information in whole or in part, or by name of state, please indicate.

INFORMATION REQUESTED

Item 1

Explanation of Items

This question relates to engineers of professional grade, that is, registered professional engineers, or those qualified to register.

Item 2
The intent is to dete:mine the number of engineering positions it would be necessaiy to create in order to handle the work now being handled by firms of consulting engineers.

Item 3
It may be deemed desirable to supplement the number of professional engineers now engaged (listed in Items 1 and 2) in order to do work at the highest level of effectiveness. Tais question seeks to determine the additional number.

Item 4
If the proposed 50 billion aliar-ten year program becomes a reality it appears that the capital umr rovement piogram may be about doubled. It is believed that the erpenintures rill probebly be devoted to capital improvements (construction, reconetmection, adaitions and betterments), but the addition of these capital improvements will no doubt result in increases in expenditures by all the Bureaus.

Item 5

If engineers were in sufilicient supply, how many would be employed to handle the program?
Item 6
Even though engineers were available it might still be expedient to empioy consultants on certain special jobs, such as expressway desien. An estimate of the number is desired.

Item 7

In many state highway departments retirements during the next ten years will be specially high due to the large persentage of engineers who have served for 25 years or more with the department. Some of these may go to work for consultants but it is likely that the larger number will not continue in highway engineering work.

Figure 1.

and Washington) reported no shortage. At the other extreme, three states are operating with less than 50 percent of the number of engineers desired. The totals for each area of activity show that the
shortage in planning and traffic is 27 percent of the number on the rolls; in location, 11 percent; road design, 26 percent; bridge design, 27 percent; construction, 22 percent; materials and testing,

Highway Research Board 2101. Constitution Avenue, N.W Washington 25, D. C.

9-17-54

Fipure 2.

21 percent; maintenance, 15 percent; and "other," 17 percent. The overall shortage is 22 percent of the number on the rolls.

The sum of the 18,034 engineers on the rolls, the 4,192 equivalent to work handled
by consultants, and the 3,990 additional engineers desired is 26, 216. This is the total number desired for the 1954 programs of the highway departments involving in total a capital outlay of about $\$ 2 \frac{1}{2}$ billion.

TABLE 1
NUMBER OF PROFESSIONAL ENGINEERS EMPLOYED IN 1954

State	$\begin{aligned} & \text { Plan } 2 \\ & -T r a f i \end{aligned}$	Loc	Road Design	Bridge Design	Const	$\begin{aligned} & \text { Mat }{ }^{2} \\ & \text { Test'g } \\ & \hline \end{aligned}$	Maint	Other	Total
Alabama	9	11	37	23	181	67	60	15	403
Arizona	2	5	7	9	23	5	0	8	59
Arkansas	2	4	5	16	22	5	11	4	69
Caluforna	287	315	968	207	1154	217	109	131	3388
Colorado	10	2	20	10	70	20	8	7	147
Connecticut	11	20	28	19	31	3	24	27	163
Delaware	6	-	8	5	25	5	8	10	67
Florida	7	-	13		75	3	31	3	137
Georga	14	19	22	16	200	24	16	18	329
Idaho	4	7	4	S	24	6	2	11	63
Hlinoss	123	*	338	58	391	109	96	16	1131
Indiana	16	8	43	46	154	19	19	11	316
lowa	13	13	19	30	183	48	30	24	360
Kansas	22	5	40	18	168	48	5	32	338
Kentucky	17	*	62	24	105	10	26	,	252
Loulsiana	12	**	27	19	174	15	**	29	278
Maine	1	2	12	8	40	2	1	2	68
Maryland	6	10	25	17	47	10	5	45	165
Massachusetts	97	125	155	41	208	15	69	32	742
Michigan	40	*	175	80	50	40	17	,	407
Minnesota	14	3	49	13	105	18	20	25	247
Mississipp ${ }^{\text {a }}$	9	***	4	7	69	8	11	3	111
Missouri	10	30	129	27	183	52	28	13	470
Montana	1	5	7	8	38	,	10	9	85
Nebraska	19	3	43	20	114	18	20	-	245
Nevada	4	6	20	6	14	8	θ	9	78
New Hampahire	6	1	31		47	4	46	59	200
New Jersey	40	*	269	32	135		3		479
New Mexico	2	4	5	3	43	3	6	7	73
New York	37	*	494	139	968	85	65	51	1839
North Carolina	5	33	42	33	150	21	-	-	284
North Dakota	4	2	6	6	23	4	7	9	61
Ohlo	31	*	210	49	264	62	28	10	654
Oklahoma	1	8	21	11	36	8	22	-	115
Oregon	28	40	28	21	233	20	26	58	452
Pennsylvana	15	15	100	20	60	15	15	60	300
Rhode Island	3	3	7	4	19	3	2	2	43
South Carolina	13	8	22	14	113	9	51	-	230
South Dakota	2	1	13	12	31	8	4	8	79
Tennessee	40	100	45	17	240	47	31	40	560
Texas	42	103	195	157	310	42	26	-	875
Utah	4	6	17	6	35	4	6	-	78
Vermont	8	10	12	15	62	4	25	17	153
Virginia	24	47	33	17	110	21	56	68	376
Washington	17	19	17	24	82	13	12	22	208
West Varginda	4	2	8	7	26	2	24	3	76
Wisconsin	23	30	145	17	145	θ	34	19	422
Wyoming	1	***	5	4	53	4	7	-	74
Dist. of Columbsa	12	-		8	17	3		-	48
Hawan	2		12	5	36	3	-	1	59
Puerto Rico	22	-	62	14	60	3	20	3	184
Totals	1142	1025	4063	1378	7147	1178	1151	9501	18034
	* Location and Road Design combined ** Location, Construction and Maintenance combined ${ }^{* * *}$ Location and Construction combined								

number of engineering positions affected by consultants

State	Plan \& Traff	Loc	Road Design	Bridge Design	Const	Mat \& Test'g	Mant	Other	r Total
Alabama	-	-	-	-	-	-	-		
Aгızona	0	0	0	0	0	0	0	0	0
Arkansas	0	0	0	0	0	0	0	0	0
Caluforna	0	0	0	0	0	0	0	0	0
Colorado	-	-	-	-	-	-	-	-	-
Connecticut	-	25	75	40	15	-	-	50	205
Delaware	3	-	4	10	-	-	-	-	17
Florida	0	-	0	0	0	0	0	0	0
Georgra	0	0	0	0	0	0	0	0	0
Idaho	1	2	3	4	-	-	-	-	10
nlinois	10	*	25	25	-	-	-	-	60
Indiana	-	-	70	48	-	-	-	-	118
Iowa	0	0	2	10	0	0	0	1	13
Kansas	0	0	15	18	0	6	0	24	63
Kentucky	1	*	18	8	-	-	-	2	27
Loursiana	0	**	15	39	7	1	**	16	
Maine	-	-	2	2	3	1	-		8
Maryland	0	10	25	30	16	0	0	4	85
Massachusetts	-	46	320	***	-	-	-	-	366
Michigan	0	*	15	50	0	1	0	0	86
Minnesota	0	0	0	2	0	0	0	0	2
Mississippi	1	1	0	0	1	0	0	0	3
Missourı	0	14	15	15	0	9	0	0	53
Montana	-		-		1			3	4
Nebraska	-	-	22	5	4	2	-	-	33
Nevada	0	0	0	0	0	0	0	0	0
New Hampshire	-	-	-	-	-	-	-		-
New Jersey	-	*	25	25	-	-	-	-	50
New Mexico	0	0	2	0	0	0	0	0	2
New York	50	*	2000	300	150	-	-	0	2500
North Carolina	0	0	0	0	0	0	0	0	
North Dakota	0	1	2	0	2	0	0	0	5
Ohio	-	*	100	20	25	-		-	145
Oklahoma	0	1	1	1	1	0	0		4
Oregon	0	0	0	0	0	0	0	0	0
Pennsylvana	5	5	40	40	-	-	-	-	90
Rhode Island	5	3	8	8	4	2	0	4	34
South Carolina	0	0	0	8	0	0	0	0	8
South Dakota	0	3	,	0	0	0	0	0	6
Tennessee	-	-	-	5	-	-	-	-	5
Texas	0	0	0	0	0	0	0	0	0
Utah	0	0	0	0	0	0	0	0	0
Vermont	1	1	20	2	-	-	-	-	24
Virgina	6	0	12	6	0	5	0	0	29
Washington	0	0	0	0	0	0	0	0	0
West Virgnia	2	-	-	10	-	-	-	-	12
Wisconsin	\square	O	10	-	-	-	-	-	10
Wyoming	0	0	0	0	0	0	0	-	0
Dist of Columbla	25	-	6	16	-	-	-		47
Hawan	0	0	0	0	0	0	0	$\overline{0}$	0
Puerto Rico	,	-	5	5	-	-	0	-	10
Totals	110	112	2860	752	229	27	0	1024	4192

table 3
nUMBER OF PROFESSIONAL ENGINEERS DESIRED IN ADDITION TO (1) AND (2)

State $\quad \stackrel{\mathrm{P}}{ }$	Plan. ${ }^{8}$ Traff	Loc	Road Design	Bridge Design	Const.	Mat \& Test'g.	Maint.	Other	Total
Alabama	6	5	15	10	36	15	5	5	97
Arizona	1	0	1	2	0	1	0	0	5
Arkansas	3	3	2	5	15	2	-	4	34
Californa	20	0	100	20	60	10	0	0	210
Colorado	-	-	-	-	-	-	-	-	-
Connectrut	3	3	10	10	170	0	2	2	200
Delaware	-	7	4	5	6	2	-	2	26
Florida	3	-	35	5	25	3	10	6	87
Georgia	7	11	11	5	19	7	5	2	67
Idaho	3	7	6	4	36	4	7	2	69
Illinows	26	*	95	8	96	23	20	4	272
Indiana	17	14	17	11	89	17	-	-	165
Iowa	3	0	3	0	23	7	1	0	37
Kansas	6	5	5	6	39	10	0	6	77
Kentucky	0	*	6	0	12	0	2	0	20
Louisıana	6	**	10	10	34	2	**	13	75
Maine	2	-	5	2	15	-	-	-	24
Maryland	0	0	10	5	7	0	1	2	25
Massachusetts	30	-	-	-	40	22	25	39	156
Michıgan	12	*	10	15	10	15	2	0	64
Minnesota	6	1	8	15	14	5	0	7	56
Mississipp 1	1	*	1	4	12	1	1	0	20
Missouri	1	6	31	5	40	2	0	0	85
Montana	0	0	0	2	10	2	1	1	16
Nebraska	5	3	5	5	18	10	4	2	50
Nevada	0	2	4	0	4	1	0	2	13
New Hampshire	-	-	-	-	-	-	-	-	-
New Jersey	10	*	50	25	40	-	4	-	129
New Mexico	2	2	5	3	5	0	0	0	17
New York	50	*	400	30	200	-	20	.	700
North Caroluna	2	5	10	8	100	20	-	-	145
North Dakota	2	2	4	2	2	2	3	1	18
Ohio	20	*	50	10	100	20	15	10	225
Oklahoma	5	10	15	10	25	8	0	10	83
Oregon	2	4	2	5	5	2	2	3	25
Pennsylvama	2	3	10	10	10	5	-	-	40
Rhode Island	,	-	-	-	-	-	-	-	-
South Caroluna	3	8	8	8	31	4	14	-	76
South Dakota	3	3	10	10	5	6	2	5	44
Tennessee	0	0	0	5	0	0	0	0	5
Texas	0	0	40	40	45	0	0	0	125
Utah	0	0	0	0	0	0	0	0	0
Vermont	1	2	3	2	7	-	-	3	18
Virgina	3	3	3	3	26	0	4	20	62
Washington	0	0	0	0	0	0	0	0	0
West Virginia	3	2	6	10	20	1	2	2	46
Wisconsin	6	0	9	5	14	1	4	1	40
Wyoming	4	*	5	6	26	2	3	1	46
Dist. of Columbia	11	-	4	2	17	1	2	-	37
Hawan	2	-	3	2	6	0	4	0	17
Puerto Raco	6	-	21	5	25	5	4	2	68
Totals	299	111	1057	359	1590	242	176	156	3990

[^0]table 4
MINIMUM NUMBER OF PROFESSIONAL ENGINEERS REQUIRED FOR PROGRAM EXPANDED BY 50%

State	$\begin{gathered} \text { Plan \& } \\ \text { Traff } \\ \hline \end{gathered}$	Loc	$\begin{gathered} \text { Road } \\ \text { Design } \end{gathered}$	Bridge Design	Const	Mat \& Test'g	Maint	Other	Total
Alabama	22	23	77	50	220	85	80	20	577
Arizona	2	7	10	12	30	7	0	10	78
Arkansas	4	7	8	20	35	6	14	9	103
Californa	316	347	1162	246	1329	249	110	136	3895
Colorado	12	2	25	12	80	30	8	7	176
Connectacut	20	65	50	45	310	5	25	30	550
Delaware	15	11	12	15	37	9	-	13	112
Florida	15	-	40	15	125	6	59	12	272
Georgia	17	24	33	30	300	40	18	27	489
Idaho	6	10	6	20	32	7	2	13	96
Illinoss	150	*	450	90	525	145	120	20	1500
Indıana	62	44	148	143	418	66	21	13	915
Iowa	20	18	34	56	258	69	31	33	519
Kansas	31	12	90	63	260	60	5	40	561
Kentucky	13	*	102	45	150	10	30	9	359
Lounsiana	6	**	60	45	287	25	*	49	452
Maine	3	2	25	15	75	3	1	2	126
Maryland	8	24	75	65	110	12	6	60	360
Massachusetts	150	250	480	130	360	50	100	80	1600
Michigan	50	*	235	120	75	60	20	5	585
Minnesota	21	6	73	40	159	31	21	36	387
Misesssappi	13	**	6	15	95	11	12	3	155
Missour	13	60	195	62	300	65	30	13	738
Montana	1	8	10	13	70	8	12	12	134
Nebraska	36	9	100	45	201	45	28	15	479
Nevada	5	9	30	9	21	12	11	12	109
New Hampshire	6	1	31	6	47	4	46	59	200
New Jersey	75	*	300	75	150	10	7	-	617
New Mexico	3	6	8	6	50	4	6	7	90
New York	80	*	850	240	1310	80	55	55	2670
North Carolina	5	43	55	50	225	30			408
North Dakota	9	6	10	10	34	7	15	12	103
Ohio	64	*	460	110	580	110	50	25	1399
Oklahoma	1	12	28	15	52	10	24	8	150
Oregon	31	53	34	37	290	25	30	70	570
Pennsylvania	25	25	165	80	80	35	15	60	485
Rhode Island	10	9	23	18	29		3	8	107
South Carolina	18	24	30	19	154	14	85	-	344
South Dakota	6	10	40	33	42	20	10	15	176
Tennessee	40	100	45	22	240	47	31	40	565
Texas	52	129	244	196	388	52	32	-	1093
Utah	4	7	22	8	45	5	6	-	97
Vermont	13	18	39	23	102	7	0	27	229
Virgina	42	61	64	30	156	30	60	88	531
Washington	19	21	19	27	90	14	13	24	227
West Virgina	7	3	12	12	34	3	26	5	102
Wisconsin	27	30	185	20	185	10	34	19	510
Wyoming	5	***	15	15	120	6	10	5	176
Dist of Columbia	40	-	30	45	25	4	2	-	146
Hawau	4	-	20	8	60	6	4	1	103
Puerto Ruco	35	-	105	30	103	6	31	6	316
Totals	1632	1496	6370	2556	10433	1662	1359	1213	26721

[^1]*** Location and Construction combined

TABLE 5
MINIMUM NUMBER OF PROFESSIONAL ENGINEERS REQUIRED FOR PROGRAM EXPANDED BY 100%

State	Plan. ${ }^{\text {\& }}$ Traff.	Loc.	Road Design	Bridge Design	Const.	Mat \& Test'g.	Maint.	Other	Total
Alabama	30	31	104	66	300	100	90	25	746
Axizona	3	9	12	15	38	9	0	13	99
Arkansas	8	7	12	30	50	8	16	${ }^{9}$	140
Caluforna	345	380	1355	285	1505	280	110	140	4400
Colorado	14	4	30	15	90	40	8	10	211
Connectrucut	25	75	55	50	350	7	30	35	627
Delaware	20	14	16	20	50	14		15	149
Florida	20	-	60	25	175	8	66	18	372
Georgla	19	33	54	40	393	58	24	34	655
Idaho	9	13	7	25	36	8	2	15	115
Illinois	170	*	510	110	600	160	140	25	1715
Indiana	76	54	192	187	526	82	24	14	1155
Iowa	24	22	44	72	309	82	31	40	624
Kansas	31	14	120	84	340	70	5	52	716
Kentucky	14	*	121	60	175	10	32	10	422
Loursiana	9	**	75	60	319	31	**	58	552
Mane	4	3	35	20	90	5	1	4	162
Maryland	10	32	95	85	145	15	6	75	463
Massachusetts	170	430	640	170	480	60	120	100	2170
Michigan	60	*	290	160	100	70	22	5	707
Minnesota	24	7	89	50	200	39	21	43	473
Mississippı	15	***	8	18	105	12	12	3	173
Missourı	13	80	295	78	390	70	32	13	971
Montana	2	10	12	15	100	9	12	14	174
Nebraska	40	12	140	60	268	60	28	20	628
Nevada	8	12	40	12	28	16	14	16	144
New Hampshire	6	1	31	6	47	4	46	59	200
New Jersey	100	*	350	120	200	20	10	-	800
New Mexico	4	8	10	8	60	6	8	8	112
New York	85	*	900	255	1390	85	55	55	2825
North Carolina	7	53	65	60	300	35	-	-	520
North Dakota	12	8	12	15	40	10	20	14	131
Ohio	75	*	600	150	750	140	55	30	1800
Oklahoma	1	15	36	19	68	12	32	10	193
Oregon	33	65	40	40	315	30	34	73	630
Pennsylvania	30	30	185	100	90	40	15	60	550
fhode Island	12	12	30	24	35	9	4	10	136
South Carolina	25	32	40	25	208	20	110	0	460
South Dakota	8	13	50	42	50	26	13	18	220
Tennessee	40	100	56	30	240	47	31	40	584
Texas	57	139	263	212	418	57	35	-	1181
Utah	5	9	30	10	60	7	6	-	127
Vermont	16	23	43	27	135	10	0	32	286
Virginia	52	70	76	34	198	36	60	88	612
Washungton	25	28	25	36	123	19	18	33	307
West Virginia	10	4	16	14	40	3	26	6	119
Wisconsin	27	30	215	20	215	11	34	19	571
Wyoming	8	***	20	20	160	8	15	8	239
Dist, of Columbia	50		45	65	35	5	3	-	203
Hawan	6	-	30	12	90	10	8	3	159
Puerto Rico	40	-	118	34	116	8	35	7	358
Totals 1	1895	1882	7697	3190	12543	1981	1519	1379	32086

** Location and Road Design combined. ** Location and Construction combined.

TABLE 6
OPTIMUM NUMBER OF PROFESSIONAL ENGINEERS DESIRED FOR PROGRAM

State	$\begin{aligned} & \text { plan. } \\ & \text { Traff, } \end{aligned}$	${ }^{\text {\& }}$ Loc.	EXPA Road Desig	ANDED d Bridge gn Desgr	BY 50%	Mat \& Test'g	Maint.	Other Total	
Alabama ${ }^{1}$	22	23	77	50	220	85	80	20	577
Arizona ${ }^{2}$	2	7	12	14	33	7	0	10	85
Arkansas	6	8	10	28	45	10	14	10	131
Californa	336	347	1281	271	1384	261	110	136	4136
Colorado	15	3	30	15	90	40	10	8	211
Connecticut	25	70	65	60	340	5	30	30	625
Delaware	15	15	16	20	45	10		15	136
Florida	18	0	50	15	150	8	65	15	321
Georgra	27	29	52	35	350	61	24	30	608
Idaho	5	12	7	22	36	,	2	13	105
Illinoss	200	*	610	120	650	175	155	25	1935
Indiana	67	47	163	158	454	71	23	14	997
Iowa	22	19	36	60	285	76	31	35	564
Kansas	33	12	95	70	290	65	5	45	615
Kentucky	17	*	108	48	180	10	32	11	388
Louisiana	8	**	60	50	277	28	**	50	473
Maine	4	3	35	20	85		2	4	157
Maryland	9	30	80	75	125	15	6	60	400
Massachusetts	165	275	528	143	396	55	110	88	1760
Michigan	65	*	250	130	110	70	23		653
Minnesota	26	6	84	50	171	39	21	42	439
Mississuppl	16	***	10	16	100	13	16	3	174
Missouri	14	75	260	70	370	70	34	13	906
Montana	2	10	12	14	80	10	13	14	155
Nebraska	40	10	110	55	211	50	30	10	516
Nevada ${ }^{\text {a }}$	5	9	30	9	21	12	11	12	109
New Hampshire	6	1	31	6	47	4	46	59	200
New Jersey	100	*	350	125	200	15	8		788
New Mexico	3	6	8		50	4	6	7	90
New York	90	*	1055	270	1525	90	55	55	3140
North Carolina North Dakota	10	53	55	5	225	40	0	0	388
North Dakota	9	8	15	12	38	9	18	12	121
Ohio	70	*	525	120	620	120	55	30	1540
Oklahoma	2	14	40	17	60	14	31	12	190
Oregon	32	56	38	40	300	28	33	73	600
Pennsylvarıa	25	25	170	85	85	40	15	60	505
Rhode Island ${ }^{\text {a }}$	10	\%	23	18	29	7	3	8	107
South Carolina	20	30	40	25	176	18	100	0	409
South Dakota	8	13	50	42	50	26	13	18	220
Tennessee	40	100	45	17	240	47	31	40	560
Texas	52	129	294	246	444	52	32	0	1249
Utah	5	9	30	10	50	8	6	0	116
Vermont	14	20	40	24	117	8	0	29	252
Virgina	45	65	68	33	166	30	60	88	555
Washington	21	23	21	30	99	15	14	26	249
West Virgina	10	4	18	14	40	4	26	6	120
Wisconsim ${ }^{1}$	27	30	185	20	185	10	34	19	510
Wyoming ${ }^{\text {a }}$	5	***	15	15	120		10	5	176
Dist, of Columbia	145	0	35	50	30	5	2	0	187
Hawan	6	-	30	10	70	8	6	3	133
Puerto Rico	40	-	120	35	120	9	36	8	368
Totals $\begin{array}{ll}18 \\ & \\ \\ & \\ \\ & * \\ & * \\ & *\end{array}$		1605 eported. total rep cation and cation, cation and	7370 Figure orted. nd Road Construc ad Cons	2893 e shown Bredkdo Design c ction and laction	11574 same as own estin combined d Mainten combined	1873 in Table 4 mated. . nance comb d.	1487 bined.	1276	29937

Table 7
OPTIMUM NUMBER OF PROFESSIONAL ENGINEERS DESIRED FOR

State	$\begin{gathered} \text { Plan \& } \\ \text { Traff } \\ \hline \end{gathered}$	Loc	$\begin{gathered} \text { Road } \\ \text { Design } \\ \hline \end{gathered}$	Bridge Design	Const	$\begin{aligned} & \text { Mat \& } \\ & \text { Test'g } \\ & \hline \end{aligned}$	Maint	Other	Total
Alabama ${ }^{1}$	30	31	104	66	900	100	90	25	746
Arizona ${ }^{\text {a }}$	3	9	13	16	41	9	0	14	105
Arkansas	10	16	14	40	65	15	16	10	186
California	365	380	1495	315	1575	295	110	140	4675
Colorado	18	6	40	18	100	50	12	12	256
Connecticut	30	80	75	70	385	7	35	35	717
Delaware	20	18	20	25	60	15	-	17	175
Florida	25	-	75	25	200	10	77	20	432
Georgia	27	36	104	45	470	93	30	38	843
Idaho	8	15	8	28	42	9	2	15	127
Illinols	260	*	690	140	730	200	175	30	2225
Indiana	83	58	211	207	575	89	27	16	1266
Iowa	28	24	48	80	365	97	31	44	717
Kansas	33	14	126	93	400	75	5	60	806
Kentucky	18	*	130	64	180	10	36	12	460
Louselana	10	**	75	75	334	35	**	59	588
Mane	5	4	45	25	105	6	2	6	198
Maryland	12	40	100	95	180	20	6	75	508
Massachusetts	187	473	704	187	528	66	132	110	2387
Machugan	90	*	315	180	135	80	25	5	830
Mumesota	29	7	111	60	225	45	21	51	549
Miseresippl	17	***	12	20	110	14	16	3	192
Missour	14	125	350	94	445	78	38	13	1157
Montana	2	14	30	16	120	12	14	16	224
Nebraska	50	14	150	70	278	65	30	10	667
Nevada ${ }^{1}$	6	12	40	12	28	16	14	16	144
New Hampshre	6	1	31	6	47	4	46	59	200
New Jersey	125	*	400	175	250	30	12		992
New Mexico	4	8	10	8	60	6	8	10	114
New York	100	*	1100	290	1690	110	55	55	3400
North Carolina	15	73	65	10	300	45	-	-	508
North Dakota	12	10	20	16	50	12	24	14	158
Ohio	80	*	675	170	840	160	65	35	2025
Oklahoma	2	18	48	23	80	17	38	14	240
Oregon	34	68	42	42	330	31	35	74	656
Pennsylvanıa	35	35	200	120	100	50	15	60	615
Rhode Island ${ }^{\text {a }}$	12	12	30	24	35	9	4	10	136
South Carolina	30	40	50	35	252	25	130	0	562
South Dakota	10	16	60	52	65	30	16	20	269
Tennessee	40	100	56	30	240	47	31	40	584
Texas	57	139	317	286	479	57	35	-	1350
Utah	6	11	40	12	65	8	6	-	148
Vermont	18	26	45	29	186	12	0	38	334
Vurgina	60	75	83	38	206	36	60	88	646
Washington	28	31	28	40	135	21	20	36	339
West Virgima	12	6	20	20	50	4	30	7	149
Wisconsin ${ }^{1}$	27	30	215	20	215	11	34	19	571
Wyoming ${ }^{2}$	8	***	20	20	160	8	15	8	239
Dist of Columbra	55	-	50	70	40	6	4	-	225
Hawail	8		40	14	120	12	10	6	210
Puerto Rico	44	-	130	38	125	12	40	9	388
Totals	2208	2075	8860	3634	14066	2274	1677	1454	36248
${ }^{1}$ Not reported Figures shown same as in Table 5 ${ }^{2}$ Only total reported Breakdown estimated									
* Location and Road Design combined ** Location, Construction and Maintenance combined ***Location and Construction combined									

NUMBER OF POSITIONS EXPECTED TO BE FILLED BY CONBULTANTS FOR PROGRAM EXPANDED BY 50%

State	Plan e Traff	Loc	Road Design	Bridge Design	Const	Mat 8 Teat'g	Maint	Other	Total
Alabama	0	0	0	0	0	0	0	0	0
Arizona	0	0	0	0	0		0	0	0
Arkansas	0	0	0	0	0	0	0	0	0
California	0		0		0	0	0	0	0
Colorado	-	-	-	-	-	-	-	-	-
Connectucut	-	-	100	40	-	-	-	-	140
Delaware	-	-	4	15	-	-	-	-	19
Florida	0	0	0	0	0	0	0	0	0
Georgla	0	0	0	0	0	0	0	0	0
Idaho	1	3	4	12	-	-	-	-	20
Illunovs	12	*	33	39	-	-	-	-	84
Indiana	0	0	0	0	0	0	0	0	0
lowa	0	0	0	0	0	0	0	0	0
Kansas	0	0	0	0	0	8	0	8	16
Kentucky	3	*	24	2	-	-	-	-	29
Loulszana	0	0	0	0	-	0	0	0	0
Mane		-	3	5	5	-	-	-	13
Maryland	2	20	55	58	78	5	0	15	233
Massachueetts	-	75	410	**	-	-	-	-	485
Michigan	0	*	10	75	0	1	0	0	88
Munnesota	0	0	0	2	0	0	0	0	2
Mıssissippi	0	0	0	0	0	0	0	0	0
Missouri	0	0	0	10	0	4	0	0	14
Montana	1	-	-	-	5	-	-	5	11
Nebraska	-	-	33	10	c	3	-	-	52
Nevada	-	-	-	-	-	-	-	-	-
New Hampghire	-	-	-	4	-	-	-	-	
New Jersey	*	*	25	40	-	-	-	-	65
New Mexico	0	0	2	0	0	0	0	0	2
New York	-	*	1000	100	-	-	-	-	1100
North Carolina	0	0	0	0	0	0	0	0	0
North Dakota	0	1	2	0	4	0	0	0	7
Oho	-	-	-	-	-	-	-	-	-
Oklahoma	0	10	20	10	0	0	0	0	40
Oregon	0	0	0	0	0		0	0	0
Pennsylvanta	-	-	40	60	-	-	-	-	100
Rhode Island	7	5	12	12	10	6	-	4	56
South Carolina	0	0	0	0	0	0	0	0	
South Dakota	0	10	10	0	0		0	0	20
Tennessee	-	-	-	-	-	-	-	-	-
тexas	-	-	-	-	-	-	-	-	-
Utah	-	-	-	-	-	-	-	-	
Vermont	-	6	5	5	-	-	-	-	16
Virgma	10	0	0	5	0	5	0	0	20
Washington	0	0	0	0	0	0	0	0	0
West Virgima	4	-	-	10	-	-	-	-	14
Wisconsun	-	-	20	5	20	-	-	-	45
Wyoming	0	0	0	0	0	0	0	0	0
Dist of Columbia	20	-	20	35	0	0	0	0	75
Hawan	0	-	10	3	0	0	0	0	13
Puerto Rico	-	-	8	5	-	-	-	-	13
Totals	60	130	1850	558	128	32	0	32	2790

TABLE 9
NUMBER OF POSITIONS EXPECTED TO BE FILLED BY CONSULTANTS FOR

State	Plan Traff.	Loc.	$\begin{gathered} \text { Road } \\ \text { Design } \end{gathered}$	Bridge Design	Const.	Mat. \& Test'g.	Maint.	Other	Total
Alabama	0	0	0	0	0	0	0	0	0
Arizona	0	0	0	0	0	0	0	0	0
Artansas	0	0	0	0	0	0	0	0	0
Calfornda	0	0	0	0	0	0	0	0	0
Colorado	-	-	-	-	-	-	-	-	-
Connecticut	-	-	125	45	-	-	-	-	170
Delaware	-	-	8	20	-	-	-	-	28
Florida	0	0	0	0	0	0	0	0	0
Georgia	0	0	0	0	0	0	0	0	0
Idaho	1	4	5	16	-	-	-	-	26
Illinols	14	*	38	48	-	-	-	-	100
Indiana	0	0	0	0	0	0	0	0	0
Iowa	0	0	0	0	0	0	0	0	0
Kansas	0	0	0	0	0	10	0	12	22
Kentucky	4	*	33	3	-	-	-	-	40
Loulsiana	0	0	0	0		0	0	0	0
Mane	-	-	5	10	10	-	-	-	25
Maryland	3	30	75	78	113	10	0	30	339
Massachusetts	-	100	610	**	-	-	-	-	710
Michigan	0	*	15	100	0	1	0	0	116
Minnesota	0	0	0	2	0	0	0	0	2
Mississippi	0	0	0	0	0	0	0	0	0
Mıssouri	0	0	0	20	0	8		0	28
Montana	1	-	-	-	10	-	-	10	21
Nebraska	-	-	44	20	8	4	-	-	78
Nevada	-	-	-	-	-	-	-	-	-
New Hampshire	-	-	-	-	-	-	-	-	-
New Jersey	-	*	50	80	-	-	-	-	130
New Mexico	0	0	3	0	0	0	0	0	3
New Yort	-	*	1300	200	-	-	-	-	1500
North Carolina	0	0	0	0	0	0	0	0	0
North Dakota	0	2	4	0	6	0	0	0	12
Oho	-	-	-	-		-	-	-	-
Oklahoma	0	20	30	20	0	0	0	0	70
Oregon	0	0	0	0	0	0	0	0	0
Pennsylvanta	-	-	50	70	-	-	-	-	120
Rhode Island	7	8	18	24	15	9	-	4	85
South Carolina	0	0	0	0	0	0	0	0	0
South Dakota	0	15	15	0	0	0	0	0	30
Tennessee	-	-	-	-	-	-	-	-	-
Texas	-	-	-	-	-	-	-	-	-
Utah	-	-	-	-	-	-	-	-	-
Vermont	-	12	10	10	-	-	-	-	32
Virguna	20		0	10	0	7	0	0	37
Washington	0	0	0	0	0	0	0	0	0
West Virginia	4	-	-	10	-	-	-	-	14
Whisconsin	-	-	35	10	35	-	-	-	80
Wyoming	0	0	0	0	0	0	0	0	0
Dist, of Columbla	25	-	30	40	0	0	0	0	95
Hawail	0	-	15	6	0	0	0	0	21
Puerto Rico	-	-	12	8	-	-	-	-	20
Totals	79	191	2530	850	197	49	0	56	9852

table 10

1954 ENGINEERING-PERSONNEL SITUATION IN THE CITIES

Completed questionnaires were returned by 141 of the 205 cities covered in the canvass. For purpose of analysis, the cities were divided into four groups: Group I from 50,000 to 75,000 population; Group II from 75,000 to 100,000 population; Group III from 100, 000 to 500,000 popula tion; and Group IV above 500,000 population. The data reported are shown in Tables 11 through 50.

The total number of engineers on the rolls in 1954 in the 141 reporting cities is 2,019. The average distribution among areas of activity is about 16 percent in planning and traffic, 28 percent in street design, 11 percent in bridge design, 28 percent in construction, 4 percent in materials and testing, 6 percent in maintenance and 7 percent in other categories with only minor variations among the four groups.

About 65 percent of the cities used con-. sultants in 1954, again with only minor variations among the groups. The reports show that it would be necessary to employ 542 additional engineers, about 27 percent increase over those now on the rolls, if consultants were not used. The average distribution of the 542 engineers equivalent to work done by consultants is 13 percent in planning and traffic, 25 percent in street design, 36 percent in bridge design, 9 percent in construction, 8 percent in materials and testing, 1 percent in maintenance, and 8 percent in other. There is considerable variation among the four population groups in this percentage distribution, the greatest variation occurring in bridge design with 15 percent for Group I and 56 percent for Group IV, and in construction with 12 percent for Group I and 3 percent for Group IV.

The present shortage in the 141 reporting cities totals 845 engineers. The percentage distribution of the total shortage among the severalareas of activity is quite close to the distribution of engineers on the rolls in 1954. Twenty-seven of the 141 cities reported no shortage. The shortage in Group I is 76 percent of the number on the rolls; in Group II, 63 percent; in Group III, 43 percent; and in Group IV, 33 percent. The overall shortage is 42 percent of the number on the rolls. There are extreme variations in the percent shortage in the several areas of activity in the four groups.

The sum of the 2,019 engineers on the rolls, the 542 equivalent to work handled by consultants and the 845 additional engineers desired is 3,406 . This is the total number of engineers desired by the 141 reporting cities for their 1954 programs involving in total a capital outlay of about $\$ 210$ MLLION

In comparing the data from the cities with that from the states for the distribution of 1954 employees among the several areas of activity, the principal differences are in planning and traffic, where the city average is 16 percent and the state average is 6 percent, and in construction, where the city average is 28 percent and the state average is 40 percent. The percentages for all areas are shown in Table A.
table A
PERCENTAGE DISTRIBUTION OF EMPLOYEES ON THE ROLLS IN 1954 Averages for the Cities

Area of Actuvity	Group 1	Group II	Gromp III	Group IV	All Groups	Avarages for the States
Pla	8	${ }^{5}$	\%	\%	8	8
Planning and Tratfic	20	15	18	16	16	6
Location and Design	34	30	27	27	38	28
Bridge Deswn	3	5	9	14	11	8
Construction	20	25	27	30	28	40
Materuals and Teating	,	5	3	6		
Maintenance	19	10	5	3		6
Oher	7	10	13	2	7	5
Total	$t 00$	100	100	100	100	100

Reports from the cities show that 65 percent of them are using consultants. This figure for the states is 67 percent. The average distributions among areas of activity of positions affected by consultants are quite different in planning and traffic, where the city average is 13 percent and the state average is 3 percent, in street or road design, where the city average is 25 percent and the state average is 71 percent (including location), and in bridge design, where the city average is 36 percent and the state average is 18 percent. Percentages for all areas are shown in Table B.

TABLE B
PERCENTAGE DIGTRUBUTION OF POSITIONS AFFECTED BY CONSULTTANTS Averages for the Cities

Area of Activity	Grown I	Group II	Gronp III	Group IV	All Gromp	Averages for the Staters
	\%	\%	考	\%	\%	\%
Plaming and Traffic	20	13	14	10	13	3
Location and Dastgn	20	48	28	23	25	71
Bridge Deagg	15	25	34	56	36	18
Cosetruction	12	16	12	3	9	5
Materials and Teating	8	16	11	1	8	1
Malntanance	3	0	1	0	1	0
Other	22	4	10	7	8	2
Total	100	100	100	100	100	100

The present shortage in the cities is 42 percent of the number on the rolls. The corresponding figure for the states is 22 percent.

The 141 cities reported a total of 631 engineering positions expected to be vacated by retirement in the next 10 years, which is 31 percent of the number on the rolls. The corresponding figure for the states is 18 percent.

The differences between the cities and the states are, in general, less for the larger cities, but even there the patterns are not similar.

1954 ENGINEERING-PERSONNEL SITUATION IN CONSULTING FIRMS

Questionnaires were sent to 150 consulting firms engaged in highway engineering. Reasonably complete replies were received from 64 firms and these form the bases of this phase of the study. The total number of engineers reported to be engaged in street and highway work in 1954 by these 64 consulting firms is 2,366 . Letters were received from six additional firms giving the total number of engineers employed in 1954 but providing no information concerning distribution among areas of activity or needs for expanded programs. Including these six consulting firms, the total number of engineers engaged in highway work in 1954 would be raised to 3,100 .

The state headquarters of the 64 consulting firms and the numbers of engineers on their rolls in 1954 is shown in Table C.

Many of the firms are active in a num ber of states and are engaged in highway work for toll road authorities, counties and cities, as well as for the states.

The percentage distributions among areas of activity from reports of consulting firms and from reports of the cities and state highway departments on positions affected by consultants and on their own employees are shown in Table D.

TABLE D
COMPARISON OF DATA REPORTED BY CONSULTANTS, CITIES AND STATES

Area of Activity	Consultants	Poritions Arfected by Consultants Cities States		Engmeers on the Rolls in 1954 Cities States	
Planntug and Traffic	\%	${ }_{13}$	\%	$\begin{aligned} & \mathbf{8} \\ & 18 \end{aligned}$	$\begin{aligned} & \% \\ & \mathbf{8} \end{aligned}$
Location	15	-	3	-	5
Road (Street) Design	19	25	${ }^{68}$	28	29
Bridge Destign	28	38	18	11	8
Conatruction	18	9	5	28	40
Materials end Teating	8	8	1	4	7
Maintenance	0	1	0	6	6
Other	8	8	2	7	5
Total	100	100	100	100	100

The lack of agreement in these data may be attributed to incomplete returns and the fact that the consultants are engaged in highway work for toll road authorities and counties as well as for cities and states. The consultants' reports indicate that of the 2,366 engineers on their rolls engaged in highway engineering, 29 percent are on state highway work, 3 percent on county highway work, 9 percent on municipal street and highway work, and 59 percent on toll roads and other public works.

Returns from the 64 consulting firms show a need for a total of 509 additional engineers to work at the highest level of effectiveness on their 1954 programs with a distribution among areas of activity quite close to that for present employees. The additional need reported for planning and traffic is 16 percent of the number on the rolls, for location 20° percent, for road design 26 percent, for bridge design 22 percent, for construction 20 percent, for materials and testing 29 percent and for "other" 15 percent. The overall shortage is 21 percent of the number on the consultants' rolls, which compares with 22 percent for the states and 42 percent for the cities.

The number of engineering positions expected to be vacated by retirement in the next 10 years reported by the 64 firms totals 100, which is 4 percent of the number on the rolls-much less than the 31 percent reported by the cities and 18 percent reported by the states.

1954 ENGINEERING-PERSONNEL SITUATION IN TOLL-ROAD AUTHORITIES

Replies were received from 10 of the 21 toll-road authorities covered in the canvass. A tabulation of these replies is shown in Table E.

As indicated by the data shown in Table E, consultants are used extensively by toll-road authorities. Distribution among areas of activity varies with the stage of the program, being heaviest in planning and location in the initial stages and heaviest in design and construction in later stages. The reported data are not sufficient to support any conclusions other than these.

ESTIMATED ENGINEER REQUIREMENTS FOR EXPANDED PROGRAMS

Data submitted by the states, the District of Columbia, Hawair, and Puerto Rico for programs 50 percent and 100 percent larger than their 1954 programs are shown in Tables 4 through 9.

The minimum number of engineers needed in total for programs 50 percent larger than in 1954, as shown in Table 4,
is 26,721. This total exceeds the total number of engineers now on the rolls by 8,687, or 48 percent. The average distribution among areas of activity is about the same as for those on the rolls in 1954.

The minimum number of engineers needed in total for programs 100 percent larger than in 1954, as shown in Table 5, is 32,086 . This exceeds the total now on the rolls by 14, 052, or 78 percent. Again there is no significant change in distribution among areas of activity.

Optimum numbers of engineers desired for programs 50 percent and 100 percent larger than in 1954 are shown in Tables 6 and 7 and are in total 12 percent and 13 percent greater than the corresponding minimum totals shown in Tables 4 and 5.

Tables 8 and 9 show the extent to which consultants would be used in programs 50 -percent and 100 -percent larger than in 1954. These are tentative indications only and probably minımums, since consultants doubtless would be called upon to take on additional work for haghway departments unable to handle the larger programs with their own forces. As shown in Table 8, it is estimated that, for programs 50 -percent

Figure 4.
larger than in 1954, consultants would be used to handle work that would otherwise require the employment by the highway departments of 2,790 additional engineers. For programs 100 -percent larger than in 1954, the number is 3,952 , as shown in Table 9. These numbers added to the corresponding minimum numbers of engineer employees needed by the highway departments for programs 50 -percent and 100-percent larger, as shown in Tables 4 and 5, give estimated minimum total requirements of 29,511 engineers for $50-$ percent-larger programs and 36,038 engineers for 100 -percent-larger programs. For 1954, the sum of the engineers on the rolls and the number equivalent to work done by consultants, from Tables 1 and 2 , is 22,226 . The increase for a $50-$ percent-larger program is 33 percent; for a 100 -percent-larger program, 62 percent.

This situation is shown graphically by Figure 3, in which the totals have been distributed among the several areas of activity as reported. The greatest needs
are in the areas of road design and construction and the least in the areas of maintenance and "other."

Table 10 shows that between 3,000 and 4, 000 losses due to retirement are expected in the 10 -year period from 1955 through 1964. These are necessarily general estımates and in a number of cases include only compulsory retirements.

In the canvass of the cities, additional needs are based on program expansions of 25 percent and 50 percent. For a $25-$ percent expansion, the 141 reporting cities estimate a minimum total need of 2,913 engineers, or 44 percent more than the number now on the rolls. For a $50-\mathrm{per}-$ cent expansion, the reported minimum total need is 3,592 , engineers, or 78 percent more than are now on the rolls. (The percentage increases reported by the states for 50 -percent and 100 -percent expansions, as previously noted, are 48 percent and 78 percent.) The percentage increases are above average for Groups I, II, and IV and

TABLE F

AVERAGE PERCENTAGE INCREASE IN NUMBER OF EMPLOYEES REPORTED FOR EXPANDED PROGRAMS

Percentage Expansion	Group I	Group II	Group III	Group IV	All Groups
25%	59%	45%	40%	48%	44%
50%	103%	90%	71%	80%	$\mathbf{7 8 \%}$

below average for Group III, as shown in Table F.

The percentage distribution among the several areas of activity is about the same as for those on the rolls in 1954. The optimum numbers of engineers desired by the reporting cities for programs 25 percent and 50 percent larger than in 1954 are, in total, 19 percent and 20 percent greater than the corresponding minimum totals.

The reporting cities estimate that consultants would be used for work that would otherwise require the employment of 545 additional engineers for a 25 -percent expansion of their program and 818 additional engineers for a 50 -percent expansion. The sum of the engineers on the rolls and the number equivalent to work handled by consultants is 2,561 for the 1954 program. This figure for a 25 -percent expansion is estimated by the cities to be 3,458 (minimum) and, for a 50 percent expansion, 4,410 (minımum). While there is some variation in the four population groups, the largest increases generally are in street design, bridge design, and construction.

In the canvass of consulting firms, additional needs are based on program expansions of 50 percent and 100 percent as in the case of the states. The reported data are shown, together with the distribution of engineers on the rolls in 1954, in Table G

The minimum number of engineers required for a 50 -percent expanded program is 46 percent more than the number on the rolls in 1954. For a 100 -percent expanded program, the minimum increase is 86 percent. Corresponding figures based on reports from the states are 48 percent and 78 percent. The optimum numbers desired for 50 -percent and 100 -percent expanded programs are 23 percent and 31 percent greater than the corresponding minimums.

The situation in the toll-road authorities is different from that in the other reporting organizations in that the 50 -percent and 100 -percent program-expansion bases for estimating future needs are not applicable. Some of the toll-road authorities have no work under way at the present time but are expecting to begin large programs in the near future, others are completing present programs and have no further work planned, and in one case the preliminary study snuwed the proposed project to be unfeasible.

The discussion up to this point represents the engineer-personnel situation as reported by the highway departments of the states, the District of Columbia, Hawaii, and Puerto Rico, about 70 percent of the cities with populations of 50,000 or more and substantial samples of consulting firms and toll road authorities.

TABLE G

	Minimum Required for Expanded Program			Optimum Desired for Expanded Program	
Area of Activity	Program	25\% Exp.	50\% Exp.	25\% Exp.	50\% Exp.
Planning and Traffic	159	234	298	304	407
Location	351	547	722	692	963
Road Design	465	707	913	869	1203
Bridge Design	660	915	1165	1114	1510
Construction	438	632	790	766	996
Materials and Testing	111	171	229	217	307
Other	182	243	286	293	369
Total				4403	4255

ESTIMATING FUTURE ENGINEER REQUIREMENTS

Because returns from the states are complete and returns from the cities, consultants, and toll-road authorities are not complete, future needs are estimated on the basis of the information received from the states. The major part of the engineering work for an expanded program will probably be handled directly by the states. Estimates of additional needs for expanded programs reported by the other organizations appear to be reasonably close to those reported by the states, viewed in the light of probable proportionate expansions. It appears, therefore, that results obtained in estimating future needs in this way should be more reliable than if an attempt were made to expand the incomplete returns to approximate complete coverage and to weight the figures for each type of reporting organization in accordance with a hypothetical distribution of the work volume resulting from an expanded program.

In the program proposed by President Eisenhower's Advisory Committee on a National Highway Program, as in any program based on actual needs, the degree of expansion will vary from state to state. One state's part of the total program may be 80 percent larger than its present program, while for another state the increase may be 150 or 200 percent.

However, the data obtained in the canvass, of the states, showing the numbers of engineers needed for the 1954 program and for programs 50 percent and 100 percent larger, combined with corresponding capital outlay amounts, establish a relationship between annual capital outlay and engineers required which can be applied to proposed program capital outlays to determine probable total engineer needs for those amounts.

This has been done in the following way: On a graph with annual capital outlay and number of engineers required as coordinates, three points were plotted. The first point was plottedusing the sum of the total number of engineers employed by the highway departments in 1954 (from Table 1) and the total number of engineers equivalent to work done by consultants in 1954 (from Table 2) as the ordinate and the 1954 total capital outlay by the highway departments as the abscissa. The second point was plotted using the sum of the total mini-
mum number of engineers estimated to be required for a program 50-percent larger than in 1954 (from Table 4) and the total number of engineers estimated to be equivalent to work which would be handled by consultants in a 50 -percent larger program (from Table 8) as the ordinate and a capital outlay 50-percent greater than the 1954 amount as the abscissa. The third point was plotted in the same way using figures for a 100-percent expansion (from Tables 5 and 9).

These three points determined a curve which represents the relationship between annual capital outlay and minimum number of engineers required for a range of capital outlay from about $\$ 2 \frac{1}{2}$ billion to $\$ 5$ billion based on the data reported by the highway departments. The curve was extended to the zero point on the left and extended to the right as a curve of constantly increasing radius finally becoming a straight line. The result is shown in Figure 4. For any given annual capital outlay the number of engineers required may be determined from the curve. For example: for a $\$ 10$-billion annual capital outlay, a need of about 58,000 engineers is indicated.

Since netther the 1954 capital outlay nor the capital outlay contemplated in the proposed program include's maintenance costs, the numbers of engineers used in the calculation exclude maintenance engineers, and the engineer requirements as determined from the curve exclude maintenance engineers.

APPARENT VARIATIONS IN STATE PRACTICES

The results obtained in this way are approximate, not only because of projecting the curve but also because of the variable and indeterminate factors involved. For example, the relationship between size of program and engineers needed is based on state-highway-department practices, whereas segments of an expanded program will be handled by consultants, cities, counties, and local jurisdictions.

Among the states themselves the results of the canvass reveal what appear to be appreciable differences in operating efficiencies as indicated by the ratio of the number of engineers employed (excluding maintenance engineers) per million dollars of capital outlay. For the 1954 programs this ratio ranges from 2.0 to 28.2 with no

TABLE 11
NUMBER OF PROFESSIONAL ENGINEERS EMPLOYED DN 1054 Group I Cities (Population 50, 000 to 75,000)

State and City	Pop	Plan e Traffic	Street Desiga		Constr	Mater \& Tests	Maint	Other	Total
Ala Cadsen	55, 725	0	0	0	0	0	1	0	1
Calif Alhambra	53, 558	2	0	0	0	0	0	0	2
Stockton	70,853	1	1	-	-	-	-	-	2
Col Pueblo	63, 685	1	1	0	-	-	-	-	2
Ca Augusta	71,508	1	2	-	2	-	1	-	6
Iil Aurora	50,578	0	1	0	1	0	0	0	2
Joliet	51, 601	-	1	-	-	-	-	-	1
Iowa Cedar Rap	72, 296	-	2	-	1	-	-	1	4
Ky Lexington	55, 534	1	-	-	-	-	3	-	4
Mass Pittesield	53,348	1	6	-	-	-	-	-	7
Mach Kalamazoo	57,704	2	1	0	1	-	1	-	5
Pontiac	73, 681	0	1	0	1	0	1	0	3
Mo Springfield	68,731	-	1	-	1	-	1	3	6
N J Atlantic C	61, 657	-	2	-	-	-	-	-	2
Cution	64, 511			-	-	$\overline{-}$	$\overline{7}$	-	-
Pasbaic	57, 702	1/2	\%	0	1	\%	\%	1	5
N Y New Roch'l	59, 725	1	1	-	1	-	-	1	4
Tray	72,311	-	1	-	-	-	-	-	1
N C Raleigh	65, 678	1	1	0	1	0	1	0	4
Onio Hamiton	57,951	1	1	0	1	0	0	0	3
Luma	50, 246	-	-	-	0	-	-	0	0
Pa Chester	66, 039	-	1	-	1	-	-	-	2
R.I Cranston	55, 060	1	1	0	1	0	0	0	3
S C Charleston	70, 174	0	1	-	1	-	1	0	3
Greenville	58, 161	0	1	0	1	0	0	0	2
S D Stoux F	52, 696	1	2	-	-	-	-	-	3
Tex Labbock	71, 747	3	3	1	4	0	1	1	13
Utah Ogden	57, 112	1	1	0	-	3	-	-	5
Va Alex'dria	61,787	0	1	1	0	0	1	0	3
Wis Green Bay	52,735	1	1	1	1	0	0	0	4
Racine	71, 193	-	1	-	1	-	1	-	3
Total		20^{3}	36^{2}	3	21	3\%	13/2	7	105

TABLE 14
MINIMUM NUMBER OF PROFESSIONAL ENGINEERS REQURED FOR
PROGRAM EXPANDED BY 25 PERCENT
Plan \& Btreet Bridge

State and City	Pop	Traff			Constr	$\begin{gathered} \text { Mater } 8 \\ \quad \text { Testa } \\ \hline \end{gathered}$	Maint	Other	Total
Ala Gadsen	55, 725	-	-	-	4	-	2	-	21/2
Calid Alhambra	53, 558	1	1	1	1	-	-	1	5
Stockion	70, 853	1	1	-	1	-	-	-	3
Col Pueblo	63, 885	2	2	-	2	2	2	-	10
Ca Augusta	71,508	1	2	-	3	-	1	-	7
Ill Aurora	50, 576	-	2	-	1	-	-	-	3
Johet	51, 601	-	2	-	2	-	1	-	5
Iowa Cedar Rap	72, 296	-	2	*	1	-	-	1	4
Ky Lexangton	55, 534	1	-	-	-	-	3	1	5
Mase Pittsiceld	53,348	1	6	-	-	-	-	-	7
Mich Keiamazoo	57, 704	2	2	-	2	-	1	-	7
Pontrac	73, 681	1	2	-	3	-	1	-	7
Mo Springheld	66, 731	1	2	-	1	-	-	1	5
N J Atlantic C	61, 657	-	3	-	-	-	-	-	3
Clitton	64, 511	-	1	-		-	-	2	3
Passanc	57, 702	2	1	1	1\%/2	1	\%	1	8
N Y New Roch'l	59,725	2	1	-	1	-	-	1	5
Troy	72,311	-	1	-	-	-	-	-	1
N C Raleıgh	65, 679	2	2	-	2	-	1	-	7
Ohic Hamilton	57,951	1	1	-	1	-	-	-	3
Luma	50, 246	-	-	-	1	-	-	1	2
Pa Chester	66, 039	-	1	-	1	-	-	-	2
R 1 Cranston	55,060	2	3	-	4	-	-	-	8
S C Charleston	70, 174	2	1	-	1	-	1	-	5
Greenville	58, 161	-	1	-	1	-	-	-	2
S D Sroux F	52, 696	1	2	-		-	-	-	3
Tex Lubbock	71, 747	3	3	1	5	-	1	1	14
Utah Ogden	57,112	-	3	-	7	4	-	-	14
Va Alexandria	61,787	1	1	1	1	-	1	-	5
Wıs Green Bay	52, 735	2	2	1	2	-	:	-	7
Racıne	71, 193	-	1	-	2	-	1	-	4
Total		29	52	5	48	7	163	10	167\%,

TABLE 13
NUMBER OF PROFESSIONAL ENGINEERS DESIRED IN ADDITION TO (1) AND (2) Group I Caties (Population 50,000 to 75, 000)

State and Caty	Pop	Plan Traffic	$\begin{aligned} & \text { Ttreet } \\ & \text { lesign } \\ & \hline \end{aligned}$	Bridge Design	Constr	Mater \& Tests	Mant	Other	Total
Ala Gadsen	55,725	\%	0	0	0	0	0	$3 / 2$	1
Calif Altambra	53, 558	0	0	0	0	0	0	0	0
Stol kton	70,853	-	-	-	1	1	-	-	2
Col Pueblo	63, 685	2	2	2	2	2	-	-	10
Ga Augusta	71,508	1	2	-	2	-	1	-	6
Ill Aurora	50, 576	-	1	-	1	-	-	-	2
Joliet	51, 601	-	1	-	1	-	1	-	3
Iowa Cedar Rap	72, 298	-	-	-	-	-			-
Ky Lexington	55, 534	-	-	-	-	-	1	1	2
Mass Pittsiteld	53,348	1	1	1	-	-	-	-	3
Mich Kalamazoo	57, 704	-	1	-	1	-	-	-	2
Pontue	73, 681	1	1	0	1	0	0	0	3
Mo Springrield	66, 731	1	2	-	-	-	-	2	5
N J Atlantic C	61, 657	-	1	-	-	-	-	-	1
Clifton	64, 511	-	-	-	-	-	\cdots	-	0
Pasbarc	57, 702	4	\%/2	1	0	0	0	0	2
N Y New Roch'l	59,725	/2	-	-	2/2	-	-	1	2
Tray	72, 311	2	1	1	1	-	1	-	6
N C Ralergh	65, 679	,	0	-	0	0	0	-	1
Ohio Hamulion	57, 851	-	-	-	-	-	-	-	0
Lima	50, 246	-	1	-	1	-	-	1	3
Pa Chester	66, 039	0	0	0	0	0	0	0	0
21 Cranston	55, 080	2	2	0	4	0	0	0	6
s C Charleston	70, 174	1	1	-	1	-	-	0	3
Greenvile	58, 161	1	0	1	0	0	0	0	2
S D Sioux F	52, 698	-	1	-	1		-	-	3
Tex Lubbock	71, 747	1	0	0	0	0	0		2
Utah Ogden	57, 112	0	1	0	0	2	0	0	3
Va Alexandria	61, 787	2	0	0	1	0	0	0	3
Whs Green Bay	52, 735	0	1	0	1	0	0	0	2
Facine	71, 183	0	0	0	0	0	,	0	0
Total		17\%/2	20\%	6	19\%/	6	4	6/2	80

TABLE 15
MINIMUM NUMBER OF PROFESSIONAL ENGINEERS REQUIRED FOR PROGRAM EXPANDED BY 50 PRRCENT
Group I Cities (Populition 50,000 to 75,000)

TABLE 16
OPTIMUM NUMBER OF PROFESSIONAL ENGNEERS DESRED FOR
PROGRAM EXPANDED BY 25 PERCENT
Group I Cities (Population 50,000 to 75, 000)

Slate and Cily	POP	$\begin{aligned} & \text { Plan ot } \\ & \text { Trafie } \\ & \hline \end{aligned}$	skreef Design			Mater 2 Tests	Maint	Other	Total
Aln Gadsen	55, 725	32	-		\%/2	-	2	\%	3\%
Calif Alhambra	59, 559	1	2	2	-	-	-		6
Stockton	70,853		1	-	2	1	-	-	5
Col Pueblo	63, 885	2	2	2	2	2	2	-	12
Ca Augusta	71, 508	1	4	-	5	-	2	-	12
fll Aurora	50,576	-	2	-	2	-	-	-	4
Joliet	51, 601	-	2	-	2	-	1	-	5
Iowa Cedar Rap	72, 298	-	2	-	1	-	-	1	4
Ky Lexangton	35, 534	1	-	-	-	-	3	1	5
Mass Pittsfield	53, 348	2	7	1	-	-	-	-	10
Mich Kalamazoo	57, 704	3	2	-	3	-	2	-	10
Pontrac	73, 681	1	3	-	3	-	2	-	9
Mo tpringfield	68, 731	2	3	-	2	-	*	1	8
N J Atlantic C	61, 657	-	3	-	-	-	-	-	3
Clifton	64, 511	-	1	-		-		3	3
Passaic	57, 702	2	1	1	1/2	1	1\%/	1	8
N Y New Roch'1	59, 725	2	1	-	1	-	-	2	6
Troy	72,311	-	1	-	-	-	-	-	1
N C Raleigh	65, 679	2	2	1	2	1	2	-	10
Onio Hamilton	57,951	1	1	-	1	-	-	-	3
Luma	50,246	-	-	-	2	-	-	1	3
Pa Chester	66, 039	-	1	-	1	-	-	-	2
R I Cranston	55, 060	2	4	-	6	-	-	-	12
s C Charleston	70, 174	2	1	-	,	-	1	1	6
Greenville	58, 181	1	1	1	1	-	-	-	4
S D Stoux F	52, 698	,	3	-	1	1	-	-	6
Tex Lubbock	71, 747	3	5	1	5	-	1	2	17
Utah Ogden	57, 112	-	3	-	8	4	-	-	15
Va Alexandria	61,787	3	2		2	-	2	*	9
Wis Green Bay	52, 735	2	2	1	2	-	-	-	7
Racine	71, 193	-	1	-	2	-	1	-	4
Total		34/2	68	12	59	10	21/2	131/2	213/2

apparent regional pattern. The median value is 7.2. The range is about the same for the 50 -percent and 100 -percent expanded programs, but the median value decreases to 6.9 and 6.4. For the cities, the median values for the 1954 programs and for 25 percent and 50 percent expanded programs are $10.5,13.5$ and 14.5 respectively.

While these differences appear to be attributable principally to operating practices rather than program characteristics, they cannot be suggested as valid measures of operating efficiency without a much-more-detalled analysis. The differences among the states in classifying personnel as professional or subprofessional may well be responsible alone for a significant part of the wide variation. The ratios are presumed also to reflect variations among the highway departments in the effective use of their professional engineers and in methods and procedures used.

Returning to Figure 4, it 1s indicated that about 58, 000 engineers will be required for an annual rate of capital outlay of $\$ 10$ billion, which is the average annual rate of the program proposed by the Advisory Committee on a National Highway Program. As shown previously, there are presently employed in the highway departments 18,034 engineers. If there are added to the number of engineers employed in the highway departments, the numbers empioyed on highway work by cities, counties,

TABLE 30
NUMEER OF POSITIONS TO BE VACATED BY RETIREMENT
DURING NEXT 10 YEARS
Group II Cities (Population 75, 000 to 100, 000)
Plan \& Street Bridge Mater

State and City	Pop	Traffic	Desagn		Lgn Constr	Tests	Mant	Other	Total
Calif Burbank	88, 043	-	-	-	-	-	-	2	2
Fresno	91, 689	0	1	-	*	-	*	-	1
Glendale	95, 702	-	-	-	-	-	-	-	0
Ruchmond	98, 545	-	-	-	-	-	-	-	0
Fla St P'burg	98, 738	-	-	-	-	-	-	-	-
Ga Columbus	79,611	-	-	-	-	-	-	-	-
Ind Hammond	87, 594	-	0	-	-	0	-	,	-
Iowa Sioux City	83, 991	0	0	0	0	0	0	2	2
Kans Topeka	78, 791	-	-	-	-	-	-	-	-
Me Portland	77,634	-	2	-	-	-	-	-	2
Mass Lawrence	80, 536	-	1	-	-	-	-	-	1
Lowell	97, 249	-	-	-	-	-	-	-	0
Lynn	89, 738	1	1	0	1	0	0	1	4
Newton	81,994	-	1	-	-	-	1	1	3
Quncy	83, 835	4	3	2	6	2	0	0	17
Mich Dearborn	94, 994	-	1	-	1	-	-	-	2
Lansing	92, 129	-	-	-	-	-	0	-	0
Saginaw	92, 918	0	2	0	,	0	0	0	3
Miss Jackson	98, 271	0	0	0	2	0	0	-	2
Mo St Joseph	78, 588	-	-	-	-	-	-	-	0
N H Manchester	82, 732	1	1	-	-	$\overline{0}$	-	O	2
N J E Orange	79,340	1	1	0	0	0	0	0	2
N M Albu'que	96, 815	-	-	-	-	-	-	-	0
N Y Binghamp'n	80, 674	-	-	-	1	-	-	-	1
Sch'dy	91, 785		1	0	0	0	0	1	,
N C Winst-Sal	87,811	0	1	0	0	0	0	0	,
Pa Wikes-B'e	76, 826	1	1	1	,	-	-	-	
R I Paptucket	81, 436	1	0	0	0	0	0	0	1
Tex Waco	84,706	-	-	-	-	-	.		0
Va Portsm th	80, 039	0	1	0	0	0	1	0	2
Roanoke	91,921	-	1	-	1	-	1	-	3
W Va Huntington	86,353	-	-	-	-	-	-	-	0
Total		10	19	3	13	2	3	5	57

TABLE 31

TABLE 41
NUMBER OF PRCFESSIONAL ENGINEERS EMPLCYED IN 1954 Group IV CHies (Population aver 500,000)

State and City	Group IV Cuties (Population over 500,000)							Other Total	
	Pop	Plan Trafic	$\begin{aligned} & \text { Street } \\ & \text { Deaign } \\ & \hline \end{aligned}$		Constr	Mater * Tests	Mant		
Calui Los Ang's	2, 104, 683	42	116	20	8	2	-	-	188
San Fran	775, 357	7	17	1	4	1	5	10	45
Ill Chicago	3, 620, 962	20	20	60	50	5	-	-	155
La. New Orlea	570, 445	5	6	1	4	-	4	3	23
Mass Boston	801, 444	8	9	6	36	3	3	1	66
Mich Detrozt	1,849,568	30	15	4	9	1	2	8	68
Minr Minne'lis	521,718	4	3	2	4	2	3	-	18
Mo st Louls	856, 796	5	3	3	8	3	5	-	27
N Y Brooklyn	2, 738,175		3	0	3	0	3	0	18
Buffalo	580, 132	1	2	-	-	-	1	1	5
Manh'tan	1,960, 101	2	20	,	13	0	2	0	43
Ohio Cler'nd	914,808	7	6	4	16		2	-	36
Cuncin	503,998	13	18	9	,	22	6	-	68
Pa Phila	2071,605	5	9	9	115	11	9	-	158
Wis Milm kee	637,302	6	22	13	27	4	2	-	74
Total		159	269	138	297	55	47	23	988

TABLE 46
OPTIMUM NUMBER OF PROFESSIONAL ENGINEERS DESIRED FOR Prow IV Cities (Population over 500 , 000

State and City		Pep	Plan \& Street Traffic Design		Bridge Design Constr		Mater : Testa	Maint, Other Total		
Calif	Lod Ang's	2, 104, 885	61	288	48	22	10	-		407
	San Fran.	775, 357	13	29	2	4	3	5	13	63
IIL	Chicago	3, 620,962	30	40	100	70	10	-	-	250
L2.	New Orlea.	570,445	6	8	2	5	-	5	3	20
Mass	Boston	801,444	B	0	6	38		3	1	66
Mich.	Detroit	1,849,568	42	60	36	20	3	3	10	174
Minn	Minne'lis	521, 718	8	7	6	7	3	5	-	36
Mor	St Louls	856, 796	13	5	8	4	1	2	-	36
N. $\%$	Buffalo	580, 132	1	4	-	1	1	1	1	9
	Brooklyn	2,788,175	10	3	-		1	4	-	24
	Manh'tan	1, 860, 101	2	22	6	14	-	3	-	47
Ohio	Clev'nd	914,808	10	,	-	19	1	-	-	47
	Cincin	503, 908	24	31	22	32		8	-	117
Pa.	Phila	2,071,805	8	13	13	204	25	24	-	287
Wis	Milw kee	637, 392	8	29	21	34	5	3	-	100
	Total		244	531	276	478	69	60	28	1692

TABLE 47
OPTLMUM NUMEER OF PROFESSIONAL ENGINEERS DESIRED FOR Group IV Cities (Population over 500,000)

Plan \& Street Bridge
Mater \&

State und City		Pop	Plan \& Street Tratice Design		$\begin{aligned} & \text { Bridge } \\ & \text { Degign Constr } \end{aligned}$		Mater Tests	Mant	Other Tota	
Calit	Los Ang's	2, 104,663	74	402	69	33	15	-		593
	San Fran	775, 357	16	25	2	5	3	5	14	70
Inl	Chicago	9, 820,962	35	50	110	80	15	-	-	290
La.	New Oriea	570,445	5	7	1	4	1	4	1	23
Mass	Boaton	801,444	10	10	8	40	3	3	1	75
Mach.	Detrout	1,849,568	50	75	48	30	4	6	10	223
Mın.	Minne'lis	521,718	9	8	7	8	4	6	-	42
Mo	St Lous	856,796	18	d	8	8	8	4	-	51
N Y	Brooklyn	2, 738, 175	12	4	-	8	1	4	-	27
	Buffalo	580, 132	1	,	-	2	1	2	2	12
	Manh tan	1, 860, 101	2	24	6	18	-	4	-	54
Oha.	Clev'nd	814,808	9	8	8	22	1	-	-	46
	Cincm	503,998	28	38	25	38	-	10	-	139
Pa	Phula	2,071,605	O	15	15	235	29	26	-	329
W1s	Milw'kee	637,382	9	32	25	37	5	4	-	112
	Total		287	707	330	568	90	78	28	2086

TABLE 48
NUMBER OF POSITICNS EXPECTED TO BE FILLED BY CONSULTANTS FOA ProGram Expanded by 25 PERCENT
Group IV Cities (Population over $\$ 00,000$)

State and City		Pop	Plan \& Street Traffic Deeligr		Bridge Design Constr		Mater Tegta	Maint,	Other Total	
Calif	Los Ang's	2, 104, 689	-		-	-	-	-	\cdots	
	San Fran	775, 357	2	4	4	-	-	-	-	10
IIL	Chacago	3, 620,962	10	10	70	-	-	-	-	90
La.	New Orlea.	570,445	2	2	2	2	2	2	2	14
Mass	Boston	801, 444	-	-	-	-	-	-	-	
Mich	Detrout	1,849,568	-	-	-	-	3	-	30	33
Mun	Minne lis	521,718	-	-	-	-	-	-	.	-
Mo	St Louis	856, 798	-	5	5	-	-	-	-	10
NY	Brooklyn	2,738, 175	10	4	15	-	-	-	-	29
	Buffalo	580, 132	-	-	2	1	1	-	-	4
	Manh'tan	1,960, 101	-	-	-	-	-	-	-	-
Oho	Clev'nd	914,808	2	15	σ	-	2	-	-	25
	Cnain	503,988	-	25	20	-	-	-	-	45
Pa	Phula	2,071,605	-	-	-	-	-	-	-	-
N/E	Mulw'kee	637, 392	-	-	-	-	-	-	-	-
	Tota!		28	65	124	3	8	2	32	260

TABLE 48
NUMBER OF POSITICNS EXPECTED TO BE FILLED BY CONSULTANTS FOR PROGRAM EXPANDED BY 50 PERCENT
Group IV Cities (Population over 500,000)

State and Crty		Pop	$\begin{aligned} & \text { Pian } \\ & \text { Traffu } \end{aligned}$	Street Desig	Bridge Dabign Constr		Mater. Tegts	Mamt.	Other Total	
Calu	Los Ang's	2, 104, 663	-	-	-		.	-	-	
	San Fran	775, 357	3	7	6	-	-	-	-	18
III	Chicago	3, 620,962	20	20	100	-	-	-	-	140
La.	New Orlea	570,445	,	4	4	4	2	4	4	26
Mass	Boston	801,444	-	-	-	-	-	-		-
Mich	Detrolt	1,849,588	-	-	-	-	4	-	40	44
Mmin	Minne Lis	521, 718	-	-	-		-	-	-	.
Mo	St Louia	856, 786	-	10	10	-	-	-	-	20
N Y	Brooklyn	2,798,175	10	5	15	1	-	1	-	s2
	Buffalo	580, 132	-	-	3	1	1	-	-	5
	Manh tan	1,960, 101	-	-	-	-	-	-	$-$	-
Ohio	Clev'nd	914, 808	5	22	12	-	4	-	-	43
	Cincin	503, 998	-	30	25	-	-	-	-	55
P\%	Phila	2,071,805	-	-	-	-	-	-	-	-
Wis	Milw'kee	637, 392	-	-	-	-	-	-	-	-
	Total		42	88	175	6	11	5	44	381

TABLE 50
NUMBER OF POSITIONS TO BE VACATED BY RETIREMENT
Group IV Cutian (Population over 500, 000)
Plan. \& Street Bridge Mater

state and City		Pop	$\begin{aligned} & \text { Planan } \\ & \text { Traffe } \end{aligned}$	Desip		ongtr	$\begin{aligned} & \text { Mater } \$ 4 \\ & \text { Tests } \end{aligned}$	Maint	Other Total	
Calif	Los Ang's	2,104, 669	18	60	12	4	1			85
	San Fran	775, 357	1	3	1	8	0	2	4	19
In.	Chicago	3, 620, 962	4	4	10	10		-	-	29
La	New Orlea	570, 445	1	0	0	2	0	0	3	
Mass	Boston	801, 444		1	2	4	1	1	-	10
Mich.	Detrolt	1,849,568	6	6	6	10	1	1	6	36
Minn	Munde lis	521, 718	-	1	1	-	,	1	-	4
Mo	St, Louts	856,796	-	-	-	-	-	-	-	0
N Y	Brooklyn	2,738, 175	3	2	0	1	0	1	0	7
	Buffalo	580, 132	-	1	-	-	-	1	1	3
	Mant*tan	1,960, 109	0	4	0	6	0	1	0	11
Oho	Clev'nd	914,808	3	2	2	6	-	-	-	13
	Cinein,	503, 988	3	6	5	4	3	-	-	21
Pa.	Phula	2,071,605	-	1	2	11	-	3	-	15
Wrs	Milw'kee	637, 382	1	10	2	2	-	-	-	7
	Total		41	101	43	68	8	11	14	288

Figure 5.
toll road authorities and consultants, a total of about 33,000 is indicated, which is far short of the number needed. Recruitment of new graduates can and should be increased, but that provides relatively little help. It appears that the solution lies in more-effective application of the engineering talent available, both by care in planning assignments and in the increased use of photogrammetry, standard plans, uniform geometrics, mechanization of procedures, and other time- and labor-saving devices.

POTENTIALITIES IN BETTER ENGINEER UTILIZATION AND IMPROVED METHODS

To explore possibilities in that direction a computation was made to determine what reduction in total need would result if the highway departments with ratios of engineers per million dollars of capital outlay higher than the median values mentioned previously could reduce their ratios to the median values. This was done for the 1954
program and the 50 -percent-larger and the 100 -percent-larger programs, which gave a reduced number of engineers for each of the three capital outlay amounts.

These results were plotted to obtain a curve similar to that in Figure 4. This curve, with the Figure 4 curve plotted with it, is shown in Figure 5.

For a $\$ 10$-billion annual rate of capital outlay there is indicated a reduction in need from 58,000 engineers to 44,000 , a considerable improvement, but still appreciably more than the number now employed. While this is, of course, an approximate comparison, there are indicated possibilıties inherent in more-effective engineer utilization, and certainly there is indicated the value of giving careful consideration to the adoption of all measures possible to reheve engineers of duties which can be performed adequately by clerical and subprofessional personnel, to the increased use of economists, statisticians, accountants, and right-of-way specialists and to greater use of streamlined methods.

The number of engineers which will be actually needed in each state, county or city will, of course, depend on its part of the program finally adopted, as well as on internal operating improvements. This cannot be determined until the magnitude of the total program is definite and until the details, including the rate of anticipated annual expansion and the distribution of work to be accomplished, have been fully developed and accepted.

If a program of the magnitude proposed by the Advisory Committee on a National Highway Program is adopted, the increase in annual capital outlay necessarily will be gradual. There will be time for each highway department to study its own situation and to prepare for increasingly heavy loads as the total program expands. The study covered in this report indicates that the engineer-personnel situation, while requiring immediate attention, may not become critical untilabout the fourth or fifth
year of the proposed program (that is, in 1958 or 1959 if the program is initiated in 1955). It need not become critical if adequate preparation is made.

MORE-COMPLETE STUDY DESIRABLE

The canvass covered in this report concerned only professional engineer personnel. A study should be made of the subprofessional personnel area to determine the demand-supply situation, most effective utilization, and development of intensive training courses.

The technical-personnel situation obviously will be a controlling factor in the successful accomplishment of the proposed program, and a much-more-exhaustive study of the entire technical-personnel field than has been attempted up to now would be helpful in pointing out ways and means of meeting this unprecedented challenge to the highway profession.

[^0]: ** Location and Road Design combined.
 ** Location, Construction and Maintenance combined.
 ** Location and Construction combined.

[^1]: * Location and Road Design combined
 nance combined.

