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Live loads on highway bridges produce three types of dynamic effects of i n 
terest to the designer: (1) those due to the speed at which the load ro l l s smooth
ly across the span, (2) those due to shock effects of deck irregulari t ies or 
obstructions, and (3) those involving a resonance effect due to repetition of 
load at or near the natural frequency of the structure. This paper f i r s t dis
cusses a rational approach to the determination of the effects of the smoothly 
ro l l ing loads. The approach is to solve the general nonlinear par t ia l d i f feren
t i a l equation which results f r o m consideration of the essential factors involved 
by a step-by-step process, in which i t is reduced to a linear ordinary equation 
with constant coefficient for short intervals of t ime. The constant coefficients 
f o r this equation are obtained by a quantitative analysis of the manner i n which 
the coefficients of the basic equation vary. The application of the analysis to 
structures with simple and continuous spans is discussed, and the results are 
compared to f i e ld tests. A brief analysis of shock loads and of resonance 
effects produced by certain axle spacings, spacing of vehicles, and deflections 
in the f loor system is given. The paper concludes with a discussion of this 
analysis method to the design problem and suggests the lines along which the 
author believes specifications' clauses whould be developed to permit more-
rational design fo r dynamic effects. 

# THEORETICAL methods f o r investigation of the effects of dynamic loadings on high
way bridges have two important objectives: (1) the explanation or prediction of these 
effects on existing structures and (2) the formulation of proper allowances f o r these ef
fects on structures being designed. Much excellent work has been and is being done on 
the f i r s t of these objectives, which perhaps we should ca l l the fundamental investigation. 
Great refinement i n the analysis i s necessary m order that the investigator may be con
fident that he has the proper explanation fo r the observed behavior m a l l of i ts detail. 
However, i t is the opinion of the author that the state of knowledge of this phase has now 
progressed fa r enough that a cautious approach to the second objective can be made by 
the use of some approximate methods of dynamic load analysis. 

This paper w i l l analyse the influence of various dynamic effects of l ive load on typical 
modern highway bridges and their significance f r o m a standpoint of design. The effect 
of smoothly ro l l ing loads w i l l be considered f i r s t , then the effects of vehicle springing, 
impact of wheels passing over obstructions, and dynamic effects induced by varying 
stiffness of the f loor system. The relative importance of each of these effects fo r v a r i 
ous spans of structure w i l l be developed, and then the significance of the results in terms 
of design w i l l be discussed. 

ANALYSIS FOR SMOOTHLY ROLLING LOADS WITHOUT SPRINGING 

The fundamental problem which must be solved i n any dynamic load analysis i s the 
solution of the different ial equation of motion for a ro l l ing mass moving at uniform v e l 
ocity across a structure which in its simplest f o r m consists of a simply supported beam 
of uniform mass and moment of inertia (Figure 1). The different ial equation in which 
the effect of the mass of the load as well as the mass of the beam and the damping of 
the structure is included (but i n which only the f i r s t mode of vibration of the structure 
is considered) i s : 

EI + 4'^a.m M = | [ M g - M ^ l s i n 2^ 
9x* ^ 3t 3t^ J 

In which the notation, borrowed f r o m C. E. Inglis (jL) has the following meaning. 
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EI = Elastic constant of the beam 
m = mass per unit length 
4'^n. m = damping constant, in which n. has the dimensions of a frequency 
g = acceleration of gravity 
a = vert ical acceleration of the load due to movement of the beam, taken posi

tive when downwards 
_ V _ speed of vehicle 

" ~ '217 ~ 2 X length of beam 

By assuming a solution of the f o r m : 

y = f (t) sin ^ 

We can, by substitution of an appropriate expression fo r a as a function of f ( t ) , derive 
an ordinary differential equation of the f o r m : 

dt» o ^ ' p 

The coefficients of this equation are not constants but are a function of the position of 
the load on the span, and consequently a function of t ime, as fol lows: 

2iT(n^ + n ^ sin 4 irnt) 

„ The "equivalent damping" 
(1 + 2 ^ sin' '2 7rnt) 

= "o T + 2M sin" 2 n nt "^^^ "equivalent natural frequency" 
G 

where n = unloaded natural frequency 

and p = 1 + 2 sin* 2 TTnt The "equivalent" total mass factor 

An exact solution of this equation can be obtained by the use of infinite series, but 
fortunately there is no need to do this fo r the purposes at hand. 

Let us consider the actual amount by which these coefficients vary fo r the range of 
modern highway bridges. To to this we need to have some idea of the typical dynamic 
parameters of these structures. Figure 2 shows the typical variation of the weight per 
foot, the centerline moment of inertia, and the dead load to live load rat io fo r highway 
bridges fo r spans f r o m 20 to 300 feet. These curves were developed by prel iminary 
designs fo r two lane structures with H20-S16 loadings, according to usual AASHO speci
fications. The effective moment of inertia was based on an allowance f o r composite 
action of roadway slab where appropriate (2). The corresponding parameters fo r r a i l 
way bridges taken f r o m Inglls 's work are also shown to point out the fact that, although 
the investigations of the dynamics of railway bridges are f r u i t f u l sources of insight into 
the highway-bridge problem, they must be carefully interpreted due to the great d i f f e r 
ence in the dead load to live load rat io. 

The resulting natural unloaded and loaded frequencies are shown in Figure 3, which 
also shows an estimated damping factor. The frequencies shown by these curves are 
merely indicative of average values fo r each type of bridge. However, i t w i l l be noted 
that the abrupt discontinuities i n the curves at which a change in type occurs do not 
cause changes of frequency of more than about 20 percent. Of fur ther significance is 
the fact that the loaded frequencies do not d i f fe r appreciably f r o m the unloaded values. 

The estimated damping factor p , the rat io of successive residual deflections, is 
quite f rankly an educated guess, since l i t t l e data is available on this problem. I t was 
ar r ived at by a study of the variation of damping in railway bridges reported by Inglis, 
taking particular note of the fact that much of the high damping fo r short span railway 
bridges was found to result f r o m the f r i c t i o n of the track on the ballast, a factor com
pletely lacking in highway bridges. A few spot checks were made on this curve with 



18 

results which indicate i t is of the correct 
order of magnitude. 

Returmng now to our equation of mo
tion fo r the case of the smoothly ro l l ing 
load, we w i l l use these estimated dynamic 
characteristics to evaluate the range of 
variation of the equivalent damping Q, the 
equivalent natural frequency N , and the 
equivalent mass factor, p 

. i r t 

Figure 1. Smoothly r o l l i n g m a s s on a beam 
of uniform cross-section. 

Figure 4 indicates the results of studies of a 20-foot span, such a short span being 
most sensitive to these variations. I t w i l l be noted that the effect of the second te rm 
of the equivalent damping factor is to increase the damping as the load moves toward 
the center of the span, absorbing energy by participating in larger oscillations, and 
then decreases the damping as i t leaves the span by feeding energy back into the struc
ture. I t w i l l also be noted that the effect on the equivalent natural frequency f o r this 
span is quite large, reducing i t by some 30 percent when the load is at the middle of 
the span. 

These coefficients do not vary over nearly so wide a range when the span length 
increases, as is shown by Figure 5. The equivalent damping not only decreases in ab
solute value but also the range of variation decreases rapidly up to spans of about 100 
feet, after which both the absolute value and range are quite small . The variation curve 

X 

1 ^ 

L E N G T H OF SPAN , F E E T 

Figure 2. Design characteris t ics of steel highway and railway bridges. 

f o r the equivalent natural frequency also reaches a rather stable value fo r spans above 
100 feet. The discontinuities i n this curve are due to taking successively larger l ive 
loads to represent the ro l l ing mass M as the span increases. 

Having established that the variation of the coefficients is important p r imar i ly fo r 
spans under 100 feet, we may now obtain an approximate solution f o r our equation f o r 
even a quite short span by considering the coefficients as constants for very short i n 
tervals of t ime. 

Under these conditions, the solution of our equation within any such time interval i s 
l ike the fami l i a r solution fo r a one degree of freedom system with damping. 

*1 • 

y = I e {Asia z ' f w ^ i + ts cos z " J N ^ I ; + u c o s f ' m+u sin e, "nt sin - j — 

Which may be rewrit ten, after ignoring a slight phase shift and modification of one te rm 

= e" °*(Asin 2 irN^t + B cos 2 m\) + Ccos27r nt+D sin 2 irnt | 
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by damping, which can be shown to be negligible fo r even high speeds and short spans, 
and by introducing proper boundary conditions, as: 

y = » s t . 
• 1 1 r . a t 

n 2 sin 2 Tmt - e (B ) sin 2 ^ N t sin ^ 
n_ n_ o 1J 

o J L o J 

where B cn.= Static deflection at a given position for the same position of the load. 
b t . 

The physical interpretation of this e:q)ression can be best studied by a reference to 
Figure 6, which depicts the results of applying this analysis to a 20-foot span with a 
single axle moving at 60 mph. In this f igure we have plotted the centerline deflection 
against t ime. The shape of this curve fo r a slowly moving "c rawl" load is shown by 
the dotted line. 

The effect of the f i r s t t e rm of the expression above is to produce a slight increase 
in the amplitude of the maximum deflection, i n the amount of 1 of the static 

o 

deflection, resulting in the dashed line curve. The effect of the second te rm is to add 
a f ree oscillation to the system to meet the starting condition of zero velocity, produc
ing the solid line curve. The frequency and amplitude of this oscillation vary in accord
ance with the variations of Q and No discussed above. The results in this case were 
computed by correction of these values every one half cycle, making ten steps of calcu
lations to trace the behavior a l l the way across the span. These same oscillations are 
isolated in the lower part of the f igure to show the effects of these variations. 

Some conclusions as to the importance of smoothly ro l l ing load effects can be drawn 
by a study of this f igure plus Table 1. Since the effect of the equivalent damping during 
the period the load is approaching the center i s always to reduce the f ree oscillations, 
the assumptions of constant damping is conservative. The effect of the variable f r e 
quency has l i t t l e significance with regard to amplification of static deflections, since 
a small change of velocity can shift the peaks of the oscillations so that a maximum 
downward oscillation occurs as the load is near the center of the span. I t is only the 
envelope of this oscillation which is important. The dynamic increments under these 
conditions are dependent on the aforementioned amplification factor and upon: 

n > - 2 ' r i 
y = ' ' s t ^ n ^ ^ ^ ^ 

These quantities are tabulated in Table 1 and i t can be seen that the smoothly ro l l ing 
effects of a single axle load are quite small fo r a l l except short spans. 

TABLE 1 

MAXIMUM DYNAMIC INCREMENTS FOR SINGLE AXLE 
SMOOTHLY ROLLING LOADS 

Dynamic Increments Forced 
Free Component Totals 

Oscillations To 

6.9 1.02 7.9 
7.1 0.8 7.9 
6.5 0.6 7.1 
5.0 0.4 5.4 
3.7 0.3 4.0 

EFFECTS OF VEHICLE SPRINGING 

The previous discussion of the dynamic effects due to a smoothly ro l l ing load gives 
results which are in some respects more severe and in other respects less severe than 

Span n - I % 
e 2 n 

f t . no 

20 0.101 0. 690 
50 0.0937 0.755 

100 0.0809 0.800 
200 0.0652 0.774 
300 0. 0553 0. 668 
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when the effects of vehicle springing are included. Spring mounting of the load has 
three important effects on the response of the structure: (1) i f the load enters the span 
with i ts springs in the equilibrium position, i t may be set into motion by the vibrations 
of the structure, absorbing some of the energy; (2) i f the load enters the span with i ts 
springs in any position other than that of equilibrium, the potential energy thus avai l
able w i l l be part ly transmitted to the structure, adding to the effects of the smoothly 
ro l l ing load; (3) the presence of the sprmg-borne load changes the frequency of the sys
tem and provides a second point of energy dissipation i f heavy damping is present in the 
spring system. 

Before discussion of how these effects are produced, i t is necessary to select some 
typical vehicle characteristics for study and to establish the range of variation of these 
characteristics which are of importance. 
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Figure 3. Dynamic character is t ics of highway bridges. 

Since we are ultimately concerned in this study with dynamic effects significant f r o m 
a design standpoint, we w i l l confine our interest to those types of vehicles which can 
produce .maximum live load stresses; namely, the heavy truck and t ruck- t ra i le r combi
nations. We shall exclude vehicles of extreme axle weights or special equipment which 
would t ravel under permit and, hence, supposedly under controlled conditions. Infor
mation on this problem is scattered and incomplete and the best that can be offered is 
the following estimate fo r axles corresponding to an H20-S16 loading: 

Sprung weight per wheel 
Unsprung weight per wheel 
Spring constant per wheel 
Spring damping factor 

Force to initiate spring action 
Natural frequency of spring mass 

on springs 

12,000 lb. 
4,000 lb. 
2,000 lb. per inch 

0. 7 (Ratio of residual oscillations, 
equivalent viscous) 

1, 600 lb. per wheel 

1. 28 cps. 

Since the t i res of the vehicle also have spring characteristics which may be involved, 
i t is well to indicate average values f o r these (for the same H20-S16 axle): 

T i r e spring constant 21,400 lb. per in . 
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T i re damping constant 0. 6 (greatly variable) 
Natural frequency of unsprung mass 

on t i res 7. 20 cps. 
Natural frequency of total mass 

on t i res 3. 60 cps. 

I t must be emphasized that considerable range fo r a l l of these factors must be an
ticipated, part icularly when such matters as the possibility of resonance with the struc
ture are considered. 

Let us now consider the beneficial effects of vehicle springing fo r the case where the 
load comes on to the span in the equilibrium condition. In this event, the vehicle w i l l 
act somewhat as a dynamic vibration absorber. Inglis has shown, in his work on r a i l 
way bridges, that a good approximation of this effect can be obtained by mounting this 
spring-borne mass at the center of the bridge in a stationary position. For the effect 
of springing of the vehicle upon the oscillations induced in highway bridges, we can 
make a s imilar approximation by considering a simple two degrees of freedom system 
in which one mass is the mass of the girder plus the unsprung weight and the other mass 
is that of the sprung weight. 

Now assume that the structure has begun to oscillate in i ts own fundamental frequency 
due to a ro l l ing load entering the span. Ini t ia l ly the springs of the vehicle w i l l remain 
locked and the load w i l l fo l low the structure since at the end of the bridge the amplitudes 
of the fundamental mode vibrations are small and produce small accelerative forces. 
At any position of the load along the span, maximum value of these forces may be ex
pressed approximately as: 

Force = M ^ - ^ \ = Me ^ T T ^ n ^ (—) sin vrx r . l 

2 2 ,n V . T T X 
"o (-H-) ^ ^ " - I T o . 

or. 
neglecting damping. 

Force = M 4 

That is, the accelerations to which the load is subject are the maximum accelerations 
of the structure at i ts centerline multiplied by the factor sinTrK_ . Spring action w i l l 

L 
not be initiated unti l this product equals the force necessary to overcome f r i c t i on . 

Based on the average dynamic characteristics of structures and vehicles presented 
above, the sigmficance of this w i l l be found by inspection of Table 2. The results of 
this calculation for the assumed spring initiation force of 1, 600 lb. shows that the f ree 
oscillations of the spans are far too mi ld to br ing the springing into play except fo r the 
short spans under about 40 feet. Even i f a low value of the force is taken, say 240 lb. 
or 2 percent of the sprung mass, the effect is s t i l l nonexistent except fo r spans under 
100 feet. 

For these short spans where spring action is initiated, the system may be idealized 
as shown m Figure 7. The symbols used in this f igure are those common in dynamic 
theory, except fo r the l i t t l e l ink " F " , which represents the f r i c t iona l force in the springs 
which keeps them locked unti l the acceleration forces are large enough to initiate spring 
movement. This is a rather incomplete analogy of the Coulomb type f r i c t i o n damping, 
but w i l l serve its purpose for our present problem. 

Ini t ia l ly , both masses w i l l oscillate together as a single degree of freedom system. 
At some instant of time "a", the l ink F is broken, after which the system behaves as a 
two degree of freedom system. The displacements and velocities of the two masses at 
the instant "a" determine what happens during this second phase. The general solution 
fo r the two degrees of freedom system without damping in terms of the generalized co
ordinates qi and q2 i s : 

qi = Aicos (pi t + tti) + Bicos (pzt + a-s) 
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q2 = Agcos (pi t + ai) + Bzcos (pat + ig ) 

where p i and P2 are the two real positive solutions of the frequency equation derived 
f r o m Lagrai^e conditions, 

* - [ ( M + M ^ j ) + M K J p + K K Q = 0 

and the constants A i , A2, B i , Bz are determined f r o m the boundary condition with re 
spect to t ime. For example, if we consider a span of 50 feet and the effects of a single 
32,000 lb. axle, of which 24, 000 is sprung weight, we have: 

M = = 747 slugs M _ = 16700 + 8000 = 5430 slugs 
g 

Kg = 2(12) (2000) = 4.8 X 10* lb. / f t . = 5. 58 x 10* lb . / f t . 

By substitution of these values in the frequency equation we f ind that: 

Pi* =65 pi = 8.04 * 

pz'' = 1037 Pa = 32.1 

f i = ^ = 1. 28 cycles per second 

U = 5' 12 cycles per second 

TABLE 2 

POSITION OF LOAD IN SPAN TO INITIATE SPRING ACTION 

Based on a Sprung Mass of 12 Kips per wheel 

Span Static Natural Centerline Maximum Position as Fraction of 
Deflection Frequency Maximum Centerline Length to 

64*̂  Load no Accelerations Force/Wheel Initiate Spring Action 
F = l , 600 lb . F=240 lb. 

f t . f t . cps. f t /sec ' lb. 
20 0. 0120 21.75 22. 40 8,340 0. 061 0. 0092 
50 0. 0115 9.38 3.78 1,410 No action 0. 055 

100 0. 0123 5.43 1.17 436 0.186 
150 0.0119 4.01 0. 54 201 No action 
200 0. 0119 3.37 0.37 138 11 

250 0. 0117 2.96 0. 27 101 " t i 

300 0.0113 2. 66 0.16 60 " 

Let us now assume that the spring f r ic t iona l forces are released as the structure 
reaches the peak of a downward oscillation at the instant of t ime "a". This w i l l impose 
boundary conditions with respect to time on the two degree of freedom system as f o l 
lows, introducing a new variable t ' which is the time after instant "a". When t ' = 0; 
qi = amplitude of the f ree oscillation of the structure, D 

, - l f t . 
« ' K i p ( L ° ^ ' * ) ) = 0. 000179 (32) (0. 094) = 5. 38x10 

qz = 0 

^1 = {jz 0 

The resulting motion is governed by the following equations, and is presented graphic 
cally in Figure 7. 

qi 

q? 

D 

D 

•0. 012 cos (8.04t') + 1,012 cos (32.1 f ) 

- 1 . 077 cos (8.04t') + 1.077 cos (32.1 f ) 

The oscillations of both the vehicle and the structure now consist of two superimposed 
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sinusoidal vibrations, the periods of which correspond closely to the natural periods of 
structure and vehicle. I t can be seen that i f no damping is present in the vehicle spring
ing, no beneficial effect is produced on the oscillations of the structure. The more-
complete treatment of the problem, using equivalent viscous damping to approximate 
the Coulomb f r i c t i o n effects, yields equations nearly identical to those above, except 
that each te rm is modified by a time decay function and a small phase angle is in t ro
duced as fol lows: 

qi = D 

qz = D 

-0.012e -0-'*25t' (8 .04t ' -ai) + 1.012e "°-®^^*cos (32. I t ' -ag) 

-1.077e cos ( 8 . 0 4 f - a , ) + 1.077e '^^ ^^^*cos (32. I t ' - a^) 

where a 1 

12 
3. 03 deg. 
1.15 deg. 

Ein4nnt fit* n 

VARIATION OF I • £ ^ s i n ' 2 ' » n t 

Figure 4. Variation of equivalent damping 
and frequency of 20-f t . span with 60 mph. 

load. 

The results of these effects upon the 
centerline deflection of the structure are 
depicted in Figure 8. As can be seen, the 
number of oscillations which take place 
while the deflection is near a maximum is 
small fo r these short spans in which spring 
action can be imtiated, and consequently, 
the reduction of amplitude of the oscil la
tions with time due to damping is of l i t t l e 
importance. 

If we now consider what takes place 
when the springs of the vehicle are com
pressed or the vehicle is oscillating as the 
load enters the span, we w i l l f i nd an en
t i re ly different situation. As regards the 
length of span in which this effect w i l l be 
important, we must consider spans fo r 
which the natural frequency of the struc
ture w i l l be close to the natural frequency 
of the load on its springs, since this w i l l 
permit a resonance condition loading to 
large amplitudes. 

Suppose that we take the same single 
axle load of 32, 000 lb. as before and se
lect a span as near the same natural f r e 
quency as that of the sprung mass as pos
sible. Now, fo r the average vehicle and 
bridge characteristics assumed m this 

discussion, the longest spans considered do not have natural frequencies below 2 cps., 
hence, complete resonance is not possible. If we presume that the vehicle frequency 
may go as high as 1. 5 cps. and that a structure of 200-foot span may have a frequency 
of as low as 2 cps. we w i l l be about as close to resonance as we can get. 

Let us further assume that the cause of the in i t i a l oscillation of the load, whether i t 
be due to deck roughness, or to some type of self excited vehicle oscillation, shall con
tinue to supply the energy necessary to keep the vehicle oscillating at constant ampl i 
tude. Under these conditions we have a problem almost identical to that of the hammer 
blow effect of locomotives on railway bridges. The one difference is that the magni
tude and frequency of the pulsating force is independent of the speed of the vehicle. This 
leads to a peculiar paradox: The dynamic increment of deflection is greatest fo r a 
moderate speed, since this allows the pulsating force to apply more increments of 
energy to the structure. 

The differential equation which governs the motion of the span under the influence of 
the pr imary component of the oscillating force i s : 
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^x' 5 . 4 • - V - y t 
+ m^; = f- , 

3t« L £ 
sin 2 IT n t sin 17 X sin 2 ' N t 

where the notation is that used in the analysis of the smoothly ro l l ing load except that: 
N = Frequency of oscillation of sprung load. 

The solution fo r this equation has been developed by Inglis and is of the f o r m : 

cos ^ ^ ( N - n ) t - * } - e ' ^ ' V ^ G s i n 2 irn^t + I cos 2Trn^tj.' 

1 / N Z I L V I \ \ \ (N-n)' 

" \ " o / J [ n ^ . 

sin TTX 

2 

cos {2Tr(N+n)t - * } -e " ^ " " V { 
H sin 2irn t + J cos 2irn t 

L J L -

sin- irx 

In which: , . ^ ^ , 
D = static deflection due to a load equal to pulsating force P applied at centerline. 

* ' = T a n - l ^"b -

n " - (N - n)' 

* = T a n - l 2 n ^ ( N ^ 

n ^ ' ' - ( N + n ) " 

The coefficients G, H, I and J of the f ree oscillations to satisfy in i t ia l conditions are: 

I = cos * G = ^ s i n * + ^ c o s * 

H = i i t n s i n * + ; ^ c o s * 
"o 

A calculation of the constants and coef
f icients fo r spans of 20, 50, 100, 200, and 
300 feet indicates: (1) the second te rm of 
the denominator i s always negligible with ^ ^ 
comparison to the f i r s t ; (2) the coefficients ' 
G and H are always small; and (3) the coef- o 
ficients I and J are almost exacily equal to 
one since the phase angles * and * have -'«•. -t 
maximum values of about 5 deg. A sum
mary of these results is given in Table 3. 
Because of these facts, a s implif ied solu
tion of high accuracy can be writ ten fo r the 
centerline deflection as: 

J = cos* 

100 
N. 

cos 2ir(N-n) t -Ca cos 

2 (N+n) t -

V(Ks in 2irn_t + L cos 

100 zoo 
SPAN,FEET 

300 

2ir 
- o 

Figure 5. Pange of variation of equivalent 
damping and equivalent frequency for spans 

20 f t . to 300 f t . 

In Which: Ci = - - - ( ^ > C« = ^—J^'' 
' n " n^ 
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K = CiG - CzH L = Ci - Cz 
The values of these new constants and the frequencies and periods of the oscillations 

induced f o r the same series of spans are given in Table 4. The result of the super
position of these oscillations is shown graphically in Figure 8. In this f igure , only the 
f i r s t few cycles of oscillations are shown fo r the f ree vibrations of the structure, since 
these are rapidly damped into insignificance with respect to the forced oscillations. I t 
is best to look f i r s t at the effects on the 300-foot span, since here the repetitive "beat
ing" pattern of oscillation has had t ime to f u l l y develop. Under these conditions, the 
maximum dynamic affect of the pulsating load is produced by the superposition of the 
two main oscillations m phase, so that the amplitude is 

y = ^ (Ci + Cz) Dp 

The value of this amplitude in terms of Dp i s also given in Table 4. A better appre
ciation fo r the significance of this amplitude can be obtained by assuming that the pu l 
sating force is some reasonable percentage of the total spring load on the axle, say 25 
percent. The ratio of the dynamic increment to the total deflection fo r this assumption 
is given in the last column of Table 4. Thus, i t is seen that the effect of a single os
cil lat ing load can be taken at i ts static equivalent fo r short spans but must be markedly 

TABLE 3 

FACTORS FOR CALCULATION OF EFFECTS OF OSCILLATING LOADS 
ON VARIOUS SPANS 

Span Structure Moving Load /m „\i o „ , / v r r,̂  Or, {tis^r,\ 
'•o N „ ( 4 0 „ p h ) l - ( ! ^ ° ) 5 3 ; ^ 

20 15.00 0.520 1.5 1.465 1.000 0.0000 0.961 0.0137 
50 7.05 0.157 1. 5 0.586 0.983 0.0008 0.912 0.0018 

100 4.79 0.063 1.5 0.293 0.938 0.0014 0.859 0.0021 
200 3.09 0.036 1.5 0.147 0.807 0.0033 0.714 0.0040 
300 2.55 0.038 1.5 0.098 0.696 0.0064 0.605 0.0073 
200Sp. 2.00 0.036 1.5 0.147 0.538 0.0122 0.320 0,0148 

"b 
Span * « G H I J 

f t , d ig! dig] 20 0, 00 0. 82 0, 0347 0. 0347 0. 0375 1. 0000 0. 9999 
50 0, 33 0. 84 0. 0223 0. 0299 0. 0265 1. 0000 0. 9999 

100 0. 40 0. 65 0. 0131 0. 0149 0. 0174 1. 0000 0. 9999 
200 0. 71 0. 98 0. 0117 0. 0172 0. 0209 0. 9999 0. 9998 
300 1. 38 1. 75 0. 0149 0. 0282 0. 0340 0. 9997 0.9995 

200 Sp, 2. 58 5. 28 0. 0180 0. 0486 0. 0942 0. 9990 0. 9958 

TABLE 4 

AMPLITUDES AND FREQUENCIES DUE TO OSCILLATING LOAD 

Span Ci Cz (N-n) (N+n) K L yz(Ci+C2) Percent 
8 St. 

- f t 
20 1.000 1.040 0.035 2.965 -0.0043 -0.040 1.020 25.6 
50 1.017 1.097 0.914 2.086 0.0013 -0.080 1.057 26.4 

100 1.065 1.165 1.207 1.793 -0.0044 -0.100 1.125 28.1 
200 1.240 1.401 1.353 1.647 -0.0080 -0.161 1.320 33.0 
300 1.438 1.652 1.402 1.598 -0.0156 -0.214 1.545 38.6 

200 1,858 3.125 1.353 1,647 -0,2002 -1.267 2.492 62.3 
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increased fo r longer spans. Moreover, present designs of highway bridges of spans of 
about 300 feet are getting quite close to the condition of resonance for oscillations of 
heavy vehicles, which would accent this effect greatly, unless some type of heavy damp
ing is incorporated into the structure. 

P O S I T I O N O F L O A D F R O M L E F T E N D , F E E T 

F O R C E D D Y N A M I C C R A W L * 

F R E E O S C I L L A T I O N 

V A R I A T I O N O F F R E E O S C I L L A T I O N 

Figure 6. Response of a 20 f t . span to single axle at 60 mph. 
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Figure 7. Ef fec t of vehicle springing upon osci l1ation of the structure. 

In closing this section i t would be well to mention a study which was made of the 
possibility of induced oscillations of effective contact force between load and deck due 
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to differential deflections in the deck system fo r various positions of the load. I t was 
found that i t was quite possible to obtain a pulsating force of about 3 percent of the live 
load with a frequency dependent on the vehicle speed, hence the possibility of resonance 
exists. The dynamic increments of deflections produced under a condition of resonance 
with the springing effect of the vehicle included is about 30 percent of the total axle load, 
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Figure 8. Osci l lat ion: i produced in spans by o s c i l l a t i n g load. 

SHOCK EFFECTS OF DECK ROUGHNESS AND OBSTRUCTIONS 

The presence of small i r regular i t ies in the running surface w i l l have as their chief 
effect the production of vehicle oscillation and its maintenance as discussed above. 
Sharp defects or obstructions w i l l have a more direct and somewhat different effect. 
A study was made of this effect by assuming the s implif ied system shown in Figure 9. 
Here the t i r e of the vehicle is replaced by a massless ro l le r and an elastic spring, upon 
which rests the unsprung mass of the vehicle. The sprung mass of the vehicle is as
sumed to fol low a horizontal path during the short interval that the wheel is passing 
over the obstruction, hence the force of the spring acting down on the unsprung mass 
can be represented as shown. The sinusoidal bump represents an idealized path of the 
hub of the wheel in passing slowly over a l -by-2- inch board. 

The analysis of this system has shown that the contact force between the wheel and 
the surface becomes negative at the rather moderate speed of 15 mph., that i s , the 
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8000 

Figure 9. S impl i f i ed system representing 
vehicle passing over obstruction. 

the t i re leaves the surface and follows a I 
t rajectory in space. This is the case of i 
most interest, since the shock on the struc
ture which occurs as the wheel returns to 
the surface is much greater than the in i t i a l 
shock of contact with the bump. 

What happens in this case is i l lustrated | 
qualitatively by Figure 10. The effect of 
the in i t i a l shock i s ignored, since i t i s 
rather small compared to what follows. As j 
the wheel leaves the surface, the structure 
is without any load; hence i t begins to return 
to a no-load position at i ts own natura l f re-
quency of vibration. Ji the wheel is out of 
contact with the surface fo r a time just equal 

a. 

1—1 

I — - - ] " ' 

Figure 10. Qual i tat ive behavior of structure as wheel passes over 
obstruction. ' 

to half of a natural period fo r the structure, the maximum effect w i l l be produced. This , 
is possible fo r short spans, where this time is of the order of f r o m 0. 03 to 0.10 sec. 
and the vehicle would have moved only 1. 60 to 6. 00 feet. In this event, the structure 
would have just reached the maximum upward deflection represented by point "a" on 
the f igure. At this instant we have the sudden application of the load, which is augment
ed by the downward velocity of the unsprung mass. , 

Under these conditions i t would be possible to get the theoretical 100 percent impact i 
of the classic analysis of a suddenly applied load, followed by oscillations of the struc
ture and vehicle. Actual tests of a structure in which these conditions were approached 
gave an increment of about 60 percent. 

I t w i l l be noted that the shock effects of single axles w i l l be greatly reduced for spans 
beyond about 100 feet, since incomplete recovery of the structure to i ts no load position j 
w i l l have taken place. The natural frequency of heavy t i res is of the order of 7 
cps. , giving a half period for the t i re of about 0. 07 sec., and the half period for the] 
oscillation of the unsprung mass against the vehicle springs is about 0.195 sec., which 
would be the upper bound of the length of time the t i re would not be in contact with the 
surface. 

SIGNIFICANCE OF THE VARIOUS DYNAMIC EFFECTS IN DESIGN 

The designer is faced with two problems in making proper allowance fo r the dynamic 
effects of live loads. The f i r s t of these is the establishment of a suitable allowance in 
te'-ms of percentage of the static affect of the live load to provide a proper stress mar
gin. The second one, not yet always recognized, is to prevent resonance effects which 
are dangerous to the structure, or are psychologically disturbing to the users. 

In the previous portions of this discussion, we have considered separately the varioui^ 
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dynamic effects which can be produced by single-axle live loads. We must now relate 
this information to the f i r s t design problem, namely, the stress problem. We shall 
begin by recapitulation of the magnitude of these separate effects fo r spans of various 
lengths, as presented graphically in Figure 11. 
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Figurt 11. Variation of single-axle effects with span length. 

The "forced" oscillation due to the smoothly ro l l ing load is so small as to be neg
ligible for a l l spans. The f ree oscillation due to the smoothly ro l l ing load decreases 
with span length due both to frequency relationship conditions and due to the fact that 
in the longer spars the damping w i l l have had time to be effective. The effects of an 
oscillating single axle load become more and more pronounced as the frequency of the 
span approaches Ihe frequency of the vehicle, a tendency which exists fo r either longer 
spans or more flexible structures. 

Obstructions and sharp deck irregulari t ies can produce large effects in short spans. 
The curve presented fo r this effect is intended to indicate maximum possible resulting 
deflections, because i t w i l l be later developed that i ts significance is not nearly as 
great as would appear. 

Obviously one should not combine the percentages of each effect to get the total a l 
lowance or equivalent additional static load. Rather, the allowance must be based upon 
the following conssiderations: (1) the rat io of the maximum stress produced by a single 
axle load to the total design live load stress; (2) the probability of the simultaneous oc
currence of effec -s, and the relative phase of the separate oscillations; (3) the possible 
beneficial effects of the presence of l ive loads other than the single axle being considered; 
and (4) the relationship of stress in the member to centerline deflection of the structure. 

The f i r s t of these factors is perhaps the most important of a l l , as w i l l be seen by 
reference to Table 5. The rapid decrease of the percentage of total live load furnished 
by any one axle for spans in excess of 100 feet greatly reduces the importance of the 
effects of oscillating loads and shock effects fo r these spans. 

The matter of the probability of simultaneous occurrence of the various dynamics 
effects or of the superposition of the effects of a number of axles m phase is a most 
d i f f icu l t problem to treat quantitatively on the basis of presently available data. I t i s 
related to the more general problem of the scientific treatment of safety factors as dis
cussed by A. M . I'reudenthal ^ and others. At present, the best which the wri ter can 
offer is based on estimated probability fo r each type of effect and the combination of 
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TABLE 5 

RATIOS OF SINGLE AXLE TO F U L L LIVE LOAD FOR VARIOUS SPANS 
TWO LANE H20-S16 BRIDGES 

Span Composition of Assumed F j U Live Load Fu l l Single 
Live Load Axle 
Moment Moment Ratio 

f t . f t . Kip f t . Kip 
20 One 32 Kip axle per lane 320 160 0. 500 
50 One H20-S16 vehicle per lane 1,040 400 0. 389 
75 One H20-S16 vehicle per lane 1,940 600 0.309 

100 Two H20-S16 vehicles per lane 2, 690 800 0. 298 
150 640 lb. per f t . plus 18 Kip per lane 4,950 1,200 0. 242 
200 t t ! ! 1! 11 Tf IT »T f f 8,200 1,600 0.195 
250 11 I f 11 11 11 11 11 11 12, 250 2, 000 0.163 
300 11 f f f f f f f1 11 11 11 17,100 2, 400 0.140 

these probabilities by the elementary algebraic methods. 
To begin with we must recogmze that the probability of ever getting f u l l design live 

loads on a span decreases rapidly as the span length increases. Anyone who has had 
the experience of t rying to f ind enough heavy vehicles to apply a f u l l design live load to 
a structure w i l l be convinced of this. Therefore, we should not be overly conservative 
with the manner in which we pile on dynamic effects, since we are probably already 
dealing with small probabilities. 

If we assume that we have a l l t ruck t ra f f ic and that vehicles equivalent to the H20-
S16 vehicle account fo r about 5 percent of this t r a f f i c , then the probability of f u l l live 
load on both lanes of spans of various lengths is as given in Table 6. 

TABLE 6 

PROBABILITY OF F U L L LIVE LOAD ON 
VARIOUS SPAN LENGTHS 

Span Probability p, in 
n Loadings 

f t . 
20 0.0250 
50 0.0125 

100 0. 0062 
150 0. 0042 
200 0. 0031 
250 0. 0025 
300 0. 0021 

These probabilities are large enough to 
make certain that the structure w i l l r e 
ceive its f u l l load at some time during i ts 
l i f e . The value of this l is t ing w i l l come 
only in connection with combining these 
probabilities with those due to dynamic 
effects. 

Here we must assume an order of mag
nitude of probability of reaching f u l l design 
stress which is considered proper. Based 
on the use of allowable stresses in the 
AASHO specifications, a probability of not 
greater than 1 x 10"* would appear to be 
generously adequate. This is admittedly 
the weakest point in our analysis, since 

we are mixing the concej^t of equal probabilities of fai lure with those of allowable stress. 
We must also assume some reasonable probabilities for superposition of individual axle 
effects. 

Suppose that: (1) 0. 25 is the probability that the f ree oscillations introduced in a 
structure by two successive axles w i l l be in phase; (2) 0. 25 is the probability that one 
axle w i l l be oscillating with a pulsating force of 25 percent of static load; (3) 0. 25 is 
the probability that the oscillations produced by two successive oscillating axles w i l l 
be in phase; and (4) 0. 01 is the probability that a fu l ly loaded axle w i l l strike an ob
struction in each of two lanes at the same time. 

Further assume that only one obstruction of importance exists in each lane and that 
the probability of its being within the midspan one f i f t h of the structure is 0. 2. Based 
on these assumptions, we w i l l make allowances at f u l l effect for any combinations 
which give combined probabilities of greater than 1 x 10"* and reject those which give 
less than this probability. For instance, suppose we wish to determine for various 
spans the number of axles which should be assumed to induce f ree vibrations of the 
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TABLE 7 

VARIATION OF EFFECTIVE DYNAMIC INCREMENT OF 
CENTERLINE DEFLECTION FOR VARIOUS SPANS 

Frop Oscillations Shock Effects Vehicle Oscillation Com AASRO 
Span Axles Per Axle Eff . Axles Per Axle Eff. Axles Per Axle Eff . bined "Impact 

Eff. 
f t . No. % 7o No. % % No. % % % % 
20 1 6.9 3.4 1 100 50.0 1 25.6 12.8 53.4 30.0 
50 2 7.1 5. 5 1 70 26.9 2 26.4 21.0 29.6 28.5 

100 3 6. 5 5.8 1 50 14.9 2 25.0 14.9 16.6 22.2 
150 3 5.8 4.2 1 25 6.0 2 24.6 11. 6 13.0 18.2 
200 3 5.0 2,9 1 25 4.9 2 22.0 8. 5 9. 5 15.4 
250 3 4.3 2.1 1 25 4 .1 2 21.6 7.1 7.8 13.3 
300 3 3.7 1. 5 1 25 3.5 2 19.3 5.4 5.9 11.8 

structure which are in phase. The probability of getting any f ive axles so superimposed 
when f u l l live load is on a 300 foot span i s : 

p = (0. 0021) (0. 25)* = 8. 4 X l O " ' 
which would not be used. Three axles would give a probability of 1. 32 x 10"* which is 
within our l i m i t . The increment of live load moment, based on f u l l l ive load moment 
would be: 

3(3. 7) (0.140) = 1. 55 percent 
For the superposition of oscillating load effects, the probability of four axles being 

in phase on this same span i s : 
p = (0. 0021) (0. 25) (0. 25)* = 8. 4 x 10"' 

Thus, fo r this effect we must take only two axles, fo r which the probability is 
1. 32 X 10"* and the dynamic increment i s : 

2(38.6) (0.140) = 10,8 percent 
For the possible shock effects we have the following probability that a f u l l y loaded 

axle w i l l strike an obstruction at the same instant m each lane near the center of the 
bridge when f u l l l ive load is on the structure and that the resulting oscillations w i l l be 
in phase: 

p = (0. 0021) (0. 01) (0. 2) (0. 25) = 1, 05 x 10"* 
which IS rejected. 

Usmg only one axle, the resulting shock effect i s : 
1(0. 25 percent) (0.140) = 3. 5 percent 

It IS also possible to combine these effects in such a way that the combined proba
bi l i ty IS greater than 1 x 10"*, as long as any effects combined are not physically i n 
compatible, as IS the case with combining oscillating loads with obstruction effects 
where only two axles can be near the center of the span at one t ime. The following 
combinations are proposed: (1) f ree oscillations for one axle plus obstruction effect 
fo r one axle and (2) f ree oscillations fo r one axle plus forced oscillations f o r two axles. 

Before indicating how this approach affects the establishment of l ive load dynamic 
allowances, let us consider the th i rd problem mentioned above, namely, the beneficial 
effects of having the structure loaded. These are of particular importance in consider
ing the effects of vehicle oscillations. An analysis made earlier indicated that the 
springing of vehicles had l i t t l e benefit in reducing the forced oscillations of the struc
ture. However, fo r those oscillations induced by bouncing vehicles, the presence of 
the vehicles on the span of nearly the same frequency would provide an excellent dy
namic vibration absorber. This would only be true for spans beyond about 75 feet, 
because fo r shorter spans the induced vibrations have frequencies much higher than 
those of the oscillating vehicle. It w i l l be assumed in what follows that this absorption 
of energy is roughly proportioned to the number of vehicles which are on span other than 
the one supplying the energy, with percentage reduction as fol lows: 10 percent at 75 
feet, 25 percent at 150 feet, and 50 percent at 300 feet. 

The result of applying these l imi t ing probabilities and other modifications to the 
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single-axle l ive load effects shown previously in Figure 11 is given in Table 7. Here 
the percentage allowance based on total live load for each effect and for certain com
binations IS given. The currently used AASHO impact allowance formula is also shown 
for comparison. 

The allowances computed by the above methods are based on the assumption that the 
increase in stress in any member is proportional to the increase of centerline deflec
tion. This is a good approximation f o r simple spans composed of rol led shapes or 
plate girders of moderate length, in which the centerline bending moment controls the 
design. The assumption is also good for quarter point moment. The assumption is 
not nearly so good for shearing forces at the end of the structure as the length of the 
span increases. It is also questionable in i ts application to the members of the web 
system of a truss, i n which the live load would be placed only on a portion of the i n 
fluence line but for which any dynamic forces due to inertia of the span would be dis
tributed throughout the span length in sinusoidal fashion. For instance, the oscillation 
of a structure due to a shock effect at the center of the span produces practically no 
shear at this point. The use of the concept of loaded length f o r such a member in de
termining the allowance fo r dynamic effects is also questionable, since the response 
of the member is p r ima r i l y a function of the frequency of the supporting element of 
which i t is a part, namely, the mam truss. 

In conclusion, i t is suggested that the rational treatment of dynamic stress allow
ances fo r highway bridges should involve the following steps, some of which can be 
greatly aided by proper specification clauses and by prepared tables and charts f o r 
making estimates: (1) estimation of the fundamental frequency of vibration of the struc
ture, taking into account the type of material , s tructural system and span length; (2) 
selection of the reasonable combinations of dynamic effects which are probable with 
f u l l live load, considering span length, class of load and number of lanes; (3) compu
tation of the probable percent increase of centerline deflection due to dynamic effects; 
(4) relating dynamic stress increase in each member to increase in centerline deflec
tion; and (5) checking structure after completion of design f o r resonance and near r e 
sonance effects. 
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