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Live loads on highway bridges produce three types of dynamic effects of in-
terest to the designer: (1) those due to the speed at which the load rolls smooth-
ly across the span, (2) those due to shock effects of deck irregularities or
obstructions, and (3) those involving a resonance effect due to repetition of
load at or near the natural frequency of the structure. This paper first dis-
cusses a rational approach to the determination of the effects of the smoothly
rolling loads. The approach is to solve the general nonlinear partial differen-
tial equation which results from consideration of the essential factors involved
by a step-by-step process, in which it 1s reduced to a linear ordinary equation
with constant coefficient for short intervals of time. The constant coefficients
for this equation are obtained by a quantitative analysis of the manner in which
the coefficients of the basic equation vary. The application of the analysis to
structures with simple and continuous spans is discussed, and the resultsare
compared to field tests. A brief analysis of shock loads and of resonance
effects produced by certain axle spacings, spacing of vehicles, and deflections
in the floor system 1s given. The paper concludes with a discussion of this
analysis method to the design problem and suggests the lines along which the
author believes specifications' clauses whould be developed to permit more-
rational design for dynamic effects.

@ THEORETICAL methods for investigation of the effects of dynamic loadings on high-
way bridges have two important objectives: (1) the explanation or prediction of these
effects on existing structures and (2) the formulation of proper allowances for these ef-
fects on structures being designed. Much excellent work has been and 1s being done on
the first of these objectives, which perhaps we should call the fundamental investigation.
Great refinement in the analysis is necessary 1n order that the investigator may be con-
fident that he has the proper explanation for the observed behavior 1n all of its detail.,
However, it is the opimion of the author that the state of knowledge of this phase has now
progressed far enough that a cautious approach to the second objective can be made by
the use of some approximate methods of dynamic load analysis.

This paper will analyse the influence of various dynamic effects of live load on typical
modern highway bridges and their significance from a standpoint of design. The effect
of smoothly rolling loads will be considered first, then the effects of vehicle springing,
impact of wheels passing over obstructions, and dynamic effects induced by varying
stiffness of the floor system. The relative importance of each of these effects for vari-
ous spans of structure will be developed, and then the significance of the results interms
of design will be discussed.

ANALYSIS FOR SMOOTHLY ROLLING LOADS WITHOUT SPRINGING

The fundamental problem which must be solved in any dynamic load analysis is the
golution of the differential equation of motion for a rolling mass moving at uniform vel-
ocity across a structure which 1n its simplest form consists of a simply supportedbeam
of uniform mass and moment of inertia (Figure 1). The differential equation in which
the effect of the mass of the load as well as the mass of the beam and the damping of
the structure is included (but in which only the first mode of vibration of the structure
is considered) is:

™
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In which the notation, borrowed from C. E. Inglis (l) has the following meaning.
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EI = Elastic constant of the beam

m = mass per unit length

47™n m = damping constant, in which n, has the dimensions of a frequency

g = acceleration of gravity

o = vertical acceleration of the load due to movement of the beam, taken posi-
tive when downwards

n=Y_ - speed of vehicle

~ 2L ~ 2xIength of beam

By assuming a solution of the form:
y =1{(t) sin LL’E'
We can, by substitution of an appropriate expression for e as a function of f(t), derive

an ordinary differential equation of the form:
d*£(t)
dt*

The coefficients of this equation are not constants but are a function of the position of
the load on the span, and consequently a function of time, as follows:

df(t) 2y 2 - Mg .
+20T+4"Nof(t) =3 sin 2 7 nt

21r(nb + n% sin 4 7 nt)
G

¢= M The "equivalent damping"
(1 +24 sin® 2 7 nt)
G
WG
- 1 3 "
No =n, v MG + 2M sin® 27 nt The "equivalent natural frequency
where n, = unloaded natural frequency
and B=1+2 %— sin® 2 Tnt The "equivalent" total mass factor
G

An exact solution of this equation can be obtained by the use of infinite series, but
fortunately there is no need to do this for the purposes at hand.

Let us consider the actual amount by which these coefficients vary for the range of
modern highway bridges. To to this we need to have some idea of the typical dynamic
parameters of these structures. Figure 2 shows the typical variation of the weight per
foot, the centerline moment of 1nertia, and the dead load to live load ratio for highway
bridges for spans from 20 to 300 feet. These curves were developed by preliminary
designs for two lane structures with H20-S16 loadings, according to usual AASHO speci-
fications. The effective moment of inertia was based on an allowance for composite
action of roadway slab where appropriate (2). The corresponding parameters for rail-
way bridges taken from Inglis's work are also shown to point out the fact that, although
the investigations of the dynamics of railway bridges are fruitful sources of insight into
the highway-bridge problem, they mustbe carefully interpreted due to the great differ-
ence in the dead load to live load ratio.

The resulting natural unloaded and loaded frequencies are shown in Figure 3, which
also shows an estimated damping factor. The frequencies shown by these curves are
merely indicative of average values for each type of bridge. However, it will be noted
that the abrupt discontinuities in the curves at which a change in type occurs do not
cause changes of frequency of more than about 20 percent. Of further significance is
the fact that the loaded frequencies do not differ appreciably from the unloaded values.

The estimated damping factor p , the ratio of successive residual deflections, is
quite frankly an educated guess, since little data is available on this problem. It was
arrived at by a study of the variation of damping in railway bridges reported by Inglis,
taking particular note of the fact that much of the high damping for short span railway
bridges was found to result from the friction of the track on the ballast, a factor com-
pletely lacking in highway bridges. A few spot checks were made on this curve with
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results which indicate it 1s of the correct st
order of magnitude. W £~

Returning now to our equation of mo- C P77
tion for the case of the smoothly rolling 7 ; '”’ﬁ’u
load, we will use these estimated dynamic i
characteristics to evaluate the range of Y
variation of the equivalent damping @, the
equivalent natural frequency No’ and the
equivalent mass factor, B.

Figure 4 indicates the results of studies of a 20-foot span, such a short span being
most sensitive to these variations. It will be noted that the effect of the second term
of the equivalent damping factor is to increase the damping as the load moves toward
the center of the span, absorbing energy by participating in larger oscillations, and
then decreases the damping as it leaves the span by feeding energy back into the struc-
ture. It will also be noted that the effect on the equivalent natural frequency for this
span is quite large, reducing 1t by some 30 percent when the load is at the middle of
the span.

These coefficients do not vary over nearly so wide a range when the span length
increases, as is shown by Figure 5. The equivalent damping not only decreases inab-
solute value but also the range of variation decreases rapidly up to spans of about 100
feet, after which both the absolute value and range are quite small. The variationcurve

Figure 1. Smoothly rolling mass on a beam
of uniform cross-section.
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Figure 2. Design characteristics of steel highway and railway bridges.

for the equivalent natural frequency also reaches a rather stable value for spans above
100 feet. The discontinuities in this curve are due to taking successively larger live
loads to represent the rolling mass M as the span increases.

Having established that the variation of the coefficients is 1mportant primarily for
spans under 100 feet, we may now obtain an approximate solution for our equation for
even a quite short span by considering the coefficients as constants for very short in-
tervals of time.

Under these conditions, the solution of our equation within any such time intervalis
like the familiar solution for a one degree of freedom system with damping.

y= [e' nt(Asin 21rN0t + B cos 2 7rNot) + Ccos27 nt+D sin 21rnt] sin %

Which may be rewritten, after ignoring a slight phase shift and modification of one term
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by damping, which can be shown to be negligible for even high speeds and short spans,
and by introducing proper boundary conditions, as:

(% ) sin 2 1rN0t sin—1r—x—

—_— X - 0t
y=8 _(h sin 2mt - e
st.li--(=) i

n
0 o}

where § st= Static deflection at a given position for the same position of the load.

The physical interpretation of this expression can be best studied by a reference to
Figure 6, which depicts the results of applying this analysis to a 20-foot span with a
single axle moving at 60 mph., In this figure we have plotted the centerline deflection
against time. The shape of this curve for a slowly moving "crawl" load is shown by
the dotted line.

The effect of the first term of the expression above is to produce a slight increase
in the amplitude of the maximum deflection, in the amount of 1 of the static

1-(3)*

Y

deflection, resulting in the dashed line curve. The effect of the second term is to add
a free oscillation to the system to meet the starting condition of zero velocity, produc-
ing the solid line curve. The frequency and amplitude of this oscillation vary in accord-
ance with the variations of & and Ng discussed above. The results in this case were
computed by correction of these values every one half cycle, making ten steps of calcu-
lations to trace the behavior all the way across the span. These same oscillations are
isolated in the lower part of the figure to show the effects of these variations.

Some conclusions as to the importance of smoothly rolling load effects can bedrawn
by a study of this figure plus Table 1. Since the effect of the equivalent damping during
the period the load 1s approaching the center is always to reduce the free oscillations,
the assumptions of constant damping 1s conservative. The effect of the variable fre-
quency has little significance with regard to amplification of static deflections, since
a small change of velocity can shift the peaks of the oscillations so that a maximum
downward oscillation occurs as the load 18 near the center of the span, It is only the
envelope of this oscillation which is important. The dynamic increments under these
conditions are dependent on the aforementioned amplification factor and upon:

"

n =27
y= sst(ﬁo)e 4n

These quantities are tabulated in Table 1 and it can be seen that the smoothly rolling
effects of a single axle load are quite small for all except short spans.

TABLE 1

MAXIMUM DYNAMIC INCREMENTS FOR SINGLE AXLE
SMOOTHLY ROLLING LOADS

Span n . S Dynamic Increments Forced
To e n Free Com;onent Totals

1t Oscillations ()

20 0.101 0. 690 6.9 1,02 7.9

50 0.0937 0.755 7.1 0.8 7.9
100 0. 0809 0.800 6.5 0.6 7.1
; 200 0. 0652 0.774 5.0 0.4 5.4
300 0. 0553 0. 668 3.7 0.3 4.0

EFFECTS OF VEHICLE SPRINGING

The previous discussion of the dynamic effects due to a smoothly rolling load gives
results which are in some respects more severe and in other respects less severe than
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when the effects of vehicle springing are included. Spring mounting of the load has
three important effects on the response of the structure: (1) if the load enters the span
with its springs in the equilibrium position, it may be set into motion by the vibrations
of the structure, absorbing some of the energy; (2) if the load enters the span with its
springs in any position other than that of equilibrium, the potential energy thus avail-
able will be partly transmitted to the structure, adding to the effects of the smoothly
rolling load; (3) the presence of the spring-borne load changes the frequency of the sys-
tem and provides a second point of energy dissipation if heavy damping is present inthe
spring system.

Before discussion of how these effects are produced, it is necessary to select some
typical vehicle characteristics for study and to establish the range of variation of these
characteristics which are of importance.
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Figure 3. Dynamic characteristics of highway bradges.

Since we are ultimately concerned in this study with dynamic effects significant from
a design standpoint, we will confine our interest to those types of vehicles which can
produce maximum live load stresses; namely, the heavy truck and truck-trailer combi-
nations., We shall exclude vehicles of extreme axle weights or special equipment which
would travel under permit and, hence, supposedly under controlled conditions. Infor-
mation on this problem is scattered and incomplete and the best that can be offered is
the following estimate for axles corresponding to an H20-S16 loading:

Sprung weight per wheel 12,000 1b.
Unsprung weight per wheel 4, 000 1b.
Spring constant per wheel 2,000 Ib. per inch
Spring damping factor 0.7 (Ratio of residual oscillations,
equivalent viscous)
Force to initiate spring action 1,600 1b. per wheel
Natural frequency of spring mass
on springs 1. 28 cps.

Since the tires of the vehicle also have spring characteristics which may be involved, |
it is well to indicate average values for these (for the same H20-S16 axle):

Tire spring constant 21, 400 1b. per in.



21

Tire damping constant 0. 6 (greatly variable)
Natural frequency of unsprung mass

on tires 7. 20 cps.
Natural frequency of total mass

on tires 3. 60 cps.

It must be emphasized that considerable range for all of these factors must be an-
ticipated, particularly when such matters as the possibility of resonance with the struc-
ture are considered.

Let us now consider the beneficial effects of vehicle springing for the case where the
load comes on to the span in the equilibrium condition, In this event, the vehicle will
act somewhat as a dynamic vibration absorber. Inglis has shown, in his work on rail-
way bridges, that a good approximation of this effect can be obtained by mounting this
spring-borne mass at the center of the bridge in a stationary position. For the eifect
of springing of the vehicle upon the oscillations induced in highway bridges, we can
make a similar approximation by considering a simple two degrees of freedom system
in which one mass is the mass of the girder plus the unsprung weight and the other mass
is that of the sprung weight.

Now assume that the structure has begun to oscillate in its own fundamental frequency
due to a rolling load entering the span. Imtially the springs of the vehicle will remain
locked and the load will follow the structure since at the end of the bridge the amplitudes
of the fundamental mode vibrations are small and produce small accelerative forces.

At any position of the load along the span, maximum value of these forces may be ex-
pressed approximately as:

2 -27n t
Force =M [ 2¥ = Me nb 2 2 n)sm1rx t
3t?/ max 58

neglecting damping,

TX
Force = M [4 sst 7? n, (—)] sin I

That is, the accelerations to which the load is subject are the maximum accelerations
of the structure at 1ts centerline multiplied by the factor sin 7x . Spring action will

not be initiated until this product equals the force necessary to overcome friction,

Based on the average dynamic characteristics of structures and vehicles presented
above, the sigmificance of this will be found by inspection of Table 2. The results of
this calculation for the assumed spring imitiation force of 1, 600 Ib, shows that thefree
oscillations of the spans are far too mild to bring the springing into play except for the
short spans under about 40 feet. Even if a low value of the force is taken, say 240 1b,
or 2 percent of the sprung mass, the effect 1s still nonexistent except for spans under
100 feet.

For these short spans where spring action 1s initiated, the system may be idealized
as shown in Figure 7. The symbols used in this figure are those common 1n dynamic
theory, except for the little link "F", which represents the frictional force in the springs
which keeps them locked until the acceleration forces are large enough to imtiate spring
~ movement. This 1s a rather incomplete analogy of the Coulomb type friction damping,

" but will serve 1its purpose for our present problem.

Initially, both masses will oscillate together as a single degree of freedom system.
At some instant of time "a'", the link F 1s broken, after which the system behaves as a
two degree of freedom system. The displacements and velocities of the two masses at
~ the 1nstant "a" determine what happens during this second phase. The general solution
- for the two degrees of freedom system without damping in terms of the generalized co-
ordinates q, and q is:

= Ajcos (pit + a,) + Bycos (pat + a3)
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Q2 = Azcos (pat + a,) + Bacos (pat + &)
where p; and p; are the two real positive solutions of the frequency equation derived
from Lagrange conditions,
2
4 -
MGMp - [(M + MG) Ks + MKG] p + KsKG =0

and the constants A,, A;, B,, B; are determined from the boundary condition with re-
spect to time. For example, if we consider a span of 50 feet and the effects of a single
32,000 Ib. axle, of which 24, 000 is sprung weight, we have:

M= u_ogoo - 747 slugs M, = 16700 + 8000 = 5430 slugs

g
K, = 2(12) (2000) = 4.8 x 10* lb. /ft. K, = 5. 58 x 10° Ib. /ft.

G
By substitution of these values in the frequency equation we find that:
pZ =65 p;=8.04 f, =,an = 1, 28 cycles per second
p2® = 1037 p.=32.1 fa =1:—'1r = 5,12 cycles per second
TABLE 2

POSITION OF LOAD IN SPAN TO INITIATE SPRING ACTION
Based on a Sprung Mass of 12 Kips per wheel

Span Static Natural Centerline Maximum  Position as Fraction of
Deflection Frequency Maximum Centerline Length to
64K Load ng Accelerations Force/Wheel Initiate Spring Action
F=1,600 Ib, F=240 Ib,
ft. ft. cps. ft/sec® 1b.
20 0. 0120 21.75 22. 40 8, 340 0. 061 0. 0092
50 0.0115 9.38 3.78 1,410 No action 0. 055
100 0.0123 5.43 1.17 436 " 0. 186
150 0.0119 4.01 0. 54 201 " No action
200 0.0119 3.37 0.37 138 " "
250 0.011%7 2,96 0. 27 101 " "
300 0.0113 2.66 0.16 60 " "

Let us now assume that the spring frictional forces are released as the structure
reaches the peak of a downward oscillation at the instant of time "a". This will impose
boundary conditions with respect to time on the two degree of freedom system as fol-
lows, introducing a new variable t' which is the time after instant ""a"'. Whent' = 0;
q1 = amplitude of the free oscillation of the structure, D

D=8y ;) (Load) (£-) =0.000179 (32) (0.094) = 5, 3gx10~41t:

0
gz =0 ‘\
fH=4=0

The resulting motion 1s governed by the following equations, and is presented graphi-
cally in Figure 7.

a=D [—0. 012 cos (8.04t') + 1.012 cos (32. 1 t')] |
9:=D [-1. 077 cos (8. 04t') + 1. 077 cos (32.1 t')]
The oscillations of both the vehicle and the structure now consist of two superimposed
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sinusoidal vibrations, the periods of which correspond closely to the natural periods of
structure and vehicle. It can be seen that i1f no damping 1s present 1n the vehicle spring-
1ng, no beneficial effect 1s produced on the oscillations of the structure. The more-
complete treatment of the problem, using equivalent viscous damping to approximate
the Coulomb friction effects, yields equations nearly identical to those above, except
that each term 1s modified by a time decay function and a small phase angle is intro-
duced as follows:

-0, 425¢' -0. 645t

cos (8.04t'-a;) + 1.012e cos (32, 1t'- ‘12)]

-0. 645t

@ =D [-o. 012e

42 =D [-1, 017e %423 (o (8.04t'-ay) + 1.07Te cos (32. 1t'-n2)]
where a,; = 3. 03 deg.

az =1,15 deg.

The results of these effects upon the
centerline deflection of the structure are
depicted in Figure 8. As can be seen, the
""" "~77"—" -~ number of oscillations which take place
i + while the deflection 1s near a maximum 1s

small for these short spans 1 which spring

action can be 1mtiated, and consequently,

the reduction of amplitude of the oscilla-
VARIATION OF nmy+ "H,‘"“"‘“t tions with time due to damping 1s of little
importance.

If we now consider what takes place
when the springs of the vehicle are com-
pressed or the vehicle is oscillating as the
load enters the span, we will find an en-
VARIATION OF 1 +2Mant2mnt tirely different situation. As regards the

¢ length of span in which this effect will be
important, we must consider spans for
which the natural frequency of the struc-
ture will be close to the natural frequency
of the load on 1ts springs, since this will
permit a resonance condition loading to
large amplitudes.

Suppose that we take the same single
axle load of 32,000 1b. as before and se-

VARIATION OF &, N,

"o‘ lect a span as near the same natural fre-
Figure 4. Variation of equivalent damping  quency as that of the sprung mass as pos-
and frequency of 201-ftd. span with 60 mph. sible. Now, for the average vehicle and

oad.

bridge characteristics assumed 1n this
discussion, the longest spans considered do not have natural frequencies below 2 cps.,
hence, complete resonance is not possible. If we presume that the vehicle frequency
may go as high as 1.5 cps. and that a structure of 200-foot span may have a frequency
of as low as 2 cps. we will be about as close to resonance as we can get.

Let us further assume that the cause of the initial oscillation of the load, whether it
be due to deck roughness, or to some type of self excited vehicle oscillation, shall con-
tinue to supply the energy necessary to keep the vehicle oscillating at constant arapli-
tude. Under these conditions we have a problem almost 1dentical to that of the hammer
blow effect of locomotives on railway bridges. The one difference 1s that the magm-
tude and frequency of the pulsating force 1sindependent of the speed of the vehicle. This
leads to a peculiar paradox: The dynamic increment of deflection is greatest for a
moderate speed, since this allows the pulsating force to apply more increments of
energy to the structure.

The differential equation which governs the motion of the span under the influence of
the primary component of the oscillating force is:
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2
aly 3y, 3%_ 2
Elax4 +4"rnbmat +matg L s1n2‘ﬂ’ntsin1—Lx— sin 2 TNt

where the notation is that used in the analysis of the smoothly rolling load except that:
N = Frequency of oscillation of sprung load.
The solution for this equation has been developed by Inglis and is of the form:

Dp cos {Z“’(N-n)t - i»} e ~2mt {Gsin 2wnt+1cos anot}

= sin wX
2 \l2 [2 _n] 2 B
sy S (N-n) Ve
% n
02
. X
) Dp cos {27(N+n)t _W} e -21rnbt {H sin 21rn0t + J cos 21mot} s ——
T 212 2
1- (Nn+ n) . 12 (N+n) Ya
o n?
o
In which:
Dp = static deflection due to a load equal to pulsating force P apphed at centerline,
) = Tan "1 an(N'n)
no2 - (N - n)?
¢ = Tan -1 Enb (N +n)

no2 - (N + n)?

The coefficients G, H, I and J of the free oscillations to satisfy imtial conditions are:

G=y-'1sin§+—cos§ I=cos®
n n
o o) .
N+n I
H=n sm\lr+i-— cos ¥ J=cosV¥
(o] o

A calculation of the constants and coef- 31
ficients for spans of 20, 50, 100, 200, and

300 feet indicates: (1) the second term of 2™

the denominator is always negligible with | _____________TTo—o—— .
comparison to the first; (2) the coefficients * e

G and H are always small; and (3) the coef- o

ficients I and J are almost exacily equal to

one since the phase angles & and ¥ have =in, 1

maximum values of about 5 deg. A sum- O I _

mary of these results is given in Table 3.
Because of these facts, a simplified solu-
tion of high accuracy can be written for the
centerline deflection as: ]

D 00 200 300
yQ‘= TP[C; cos 2w(N-n) t- C; cos SPAN, FEET

Figure 5. Bange of variation of equivalent

27 (N+m) t - damping and equivalent frequency for spans
- 20 ft. to 300 ft.
e 2 1mbt(Ksm 2wn t + L cos °
0 In which: Cy = ——i—ys Cz = —rcr
2w not)] G “(N-n)® * Ty - N0
n n

c o
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K=CG-CH L=Ci-C:

The values of these new constants and the frequencies and periods of the oscillations
induced for the same series of spans are given in Table 4. The result of the super-
position of these oscillations 1s shown graphically in Figure 8, In this figure, only the
first few cycles of oscillations are shown for the free vibrations of the structure, since
these are rapidly damped into insignificance with respect to the forced oscillations. It
is best to look first at the effects on the 300-foot span, since here the repetitive "beat-
ing" pattern of oscillation has had time to fully develop. Under these conditions, the
maximum dynamic affect of the pulsating load 1s produced by the superposition of the
two main oscillations in phase, so that the amplitude is

y=%— (C1+ Ca) Dp

The value of this amplitude in terms of Dy is also given in Table 4, A better appre-
ciation for the significance of this amplitude can be obtained by assuming that the pul-
sating force is some reasonable percentage of the total spring load on the axle, say 25
percent. The ratio of the dynamic increment to the total deflection for this assumption
is given in the last column of Table 4. Thus, it is seen that the effect of a single os-
cillating load can be taken at its static equivalent for short spans but must be markedly

TABLE 3

FACTORS FOR CALCULATION OF EFFECTS OF OSCILLATING LOADS
ON VARIOUS SPANS

Span Structure Moving Load a\2 _ 2
ng  m N n(40mph)1- (M) 2np (N-m) 4 (Eﬂl) Znp (Nem)

ft. ng n0 n0

20 15.00 0.520 1.5 1. 465 1. 000 0. 0000 0.961 0.0137

50 7.05 0.157 1.5 0. 586 0.983 0. 0008 0.912 0. 0018
100 4.7 0.063 1.5 0.293 0.938 0. 0014 0. 859 0. 0021
200 3.09 0.036 1.5 0.147 0.807 0. 0033 0.714 0. 0040
300 2.55 0.038 1.5 0. 098 0. 696 0. 0064 0. 605 0. 0073
200Sp. 2.00 0,036 1.5 0. 147 0. 538 0.0122 0.320 0.0148

n

Span ) v ng G H 1 J

ft. deg. deg.

20 0.00 0.82 0.0347 0.0347 0.0375 11,0000 0. 9999

50 0.33 0.84 0.0223 0.0299 0.0265 1.0000 0. 9999
100 0.40 0.65 0.0131 0.0149 0.0174 1, 0000 0. 9999
200 0.71 0.98 0.0117 0.0172 0.0209 0,9999 0. 9998
300 1.38 1.75 0.0149 0.0282 0.0340 0,9997 0.9995
200Sp. 2.58 5.28 0.0180 0.0486 0.0942 0.9990 0. 9958

TABLE 4
AMPLITUDES AND FREQUENCIES DUE TO OSCILLATING LOAD
Span C: C: (N-n) (N+n) K L % (C1+C3) Percent
§ st.

it.

20 1.000 1.040 0.035 2,965 -0.0043 -0.040 1.020 25.6

50 1.017 1.097 0.914 2,086 0.0013 -0.080 1. 057 26. 4
100 1.065 1.165 1.207 1.793 -0.0044 -0.100 1.125 28.1
200 1.240 1.401 1.353 1,647 -0.0080 -0.161 1.320 33.0
300 1.438 1.652 1.402 1.598 -0.0156 -0.214 1.545 38.6
200 1.858 3.125 1.353 1.647 -0.2002 -1,267 2. 492 62.3
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mncreased for longer spans. Moreover, present designs of highway bridges of spans of
about 300 feet are getting quite close to the condition of resonance for oscillations of
heavy vehicles, which would accent this effect greatly, unless some type of heavy damp-
ing is incorporated into the structure.

POSITION OF LOAD FROM LEFT END, FEET

FORCED DYNAMIC

19 rREE OSCILLATION

B 070 05l 0 52

\/ ~——

VARIATION OF FREE OSCILLATION

Figure 6. Response of a 20 ft. span to single axle at 60 mph.
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Figure 7. Effect of vehicle springingupon oscillationof the structure.

In closing this section it would be well to mention a study which was made of the

possibility of induced oscillations of effective contact force between load and deck due
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to differential deflections in the deck system for various positions of the load. It was
found that it was quite possible to obtain a pulsating force of about 3 percent of the live
load with a frequency dependent on the vehicle speed, hence the possibility of resonance
exists. The dynamic increments of deflections produced under a condition of resonance
with the springing effect of the vehicle included 1s about 30 percent of the total axle load.
+0y]
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Figure 8. Oscillations produced in spans by oscillating load.

SHOCK EFFECTS OF DECK ROUGHNESS AND OBSTRUCTIONS

The presence of small irregularities in the running surface will have as their chief
effect the production of vehicle oscillation and its maintenance as discussed above.
Sharp defects or obstructions will have a more direct and somewhat different effect.

A study was made of this effect by assuming the simplified system shown in Figure 9.
Here the tire of the vehicle is replaced by a massless roller and an elastic spring, upon
which rests the unsprung mass of the vehicle. The sprung mass of the vehicle 1s as-
sumed to follow a horizontal path during the short interval that the wheel 1s passing
over the obstruction, hence the force of the spring acting down on the unsprung mass
can be represented as shown. The sinusoidal bump represents an idealized path of the
hub of the wheel 1n passing slowly over a 1-by-2-inch board.

The analysis of this system has shown that the contact force between the wheel and
the surface becomes negative at the rather moderate speed of 15 mph., that is, the
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|
J
the tire leaves the surface and follows a |
|

P= Mgvpusd(i- cosé’t‘f) trajectory in space. This 1s the case of
l most interest, since the shock on the struc-
My - ture which occurs as the wheel returns to
8000 I the surface 1s much greater than the imtial

shock of contact with the bump.

What happens in this case 1s illustrated |
qualitatively by Figure 10. The effect of
the 1nitial shock is ignored, since 1t 1s
rather small compared to what follows. As
the wheel leaves the surface, the structure |
is without any load; hence 1t begins to return
to a no-load position at its own naturalfre-
Figure 9. Simplified system representing quency of vibration. If the wheel is. out of

vehicle passing over obstruction. contact with the surface for a time just equal

.

Ao

Figure 10. Qualitative behavior of structure as wheel passes over
obstruction.

to half of a natural period for the structure, the maximum effect will be produced. This
is possible for short spans, where this time 1s of the order of from 0. 03 to 0. 10 sec.
and the vehicle would have moved only 1. 60 to 6. 00 feet. In this event, the structure
would have just reached the maximum upward deflection represented by point ""a'" on
the figure. At this instant we have the sudden application of the load, which is augment-
ed by the downward velocity of the unsprung mass. ‘

Under these conditions it would be possible to get the theoretical 100 percent impact
of the classic analysis of a suddenly applied load, followed by oscillations of the struc-
ture and vehicle. Actual tests of a structure in which these conditions were approached 4
gave an ircrement of about 60 percent.

It will be noted that the shock effects of single axles will be greatly reduced for spans
beyond about 100 feet, since incomplete recovery of the structure to 1its no load position
will have taken place. The natural frequency of heavy tires is of the order of 7 |
cps., giving a half period for the tire of about 0. 07 sec., and the half period for the
oscillation of the unsprung mass against the vehicle springs is about 0. 195 sec., which
would be the upper bound of the length of time the tire would not be in contact with the
surface.

SIGNIFICANCE OF THE VARIOUS DYNAMIC EFFECTS IN DESIGN

The designer is faced with two problems in making proper allowance for the dynamic
effects of live loads. The first of these is the establishment of a suitable allowance 1n
terms of percentage of the static affect of the live load to provide a proper stress mar-
gin. The second one, not yet always recognized, 1s to prevent resonance effects which
are dangerous to the structure, or are psychologically disturbing to the users.

In the previous port:ons of this discussion, we have considered separately the variou
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" dynamic effects which can be produced by single-axle live loads. We must now relate

this information to the first design problem, namely, the stress problem. We shall
begin by recapitulation of the magmtude of these separate effects for spans of various
lengths, as presented graphically in Figure 11.
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Figure 11. Variation of single-axle effects with span length.

The "forced'" cscillation due to the smoothly rolling load 1s so small as to be neg-
lagible for all spans. The free oscillation due to the smoothly rolling load decreases
with span length due both to frequency relationship conditions and due to the fact that
1n the longer spars the damping will have had time to be effective. The effects of an
oscillating single axle load become more and more pronounced as the frequency of the
span approaches ihe frequency of the vehicle, a tendency which exists for either longer
spans or more flexible structures.

Obstructions and sharp deck irregularities can produce large effects in short spans.

- The curve presented for this effect is intended to indicate maximum possible resulting

deflections, because 1t will be later developed that its significance is not nearly as
great as would appear.

Obviously one should not combine the percentages of each effect to get the total al-
lowance or equivzlent additional static load. Rather, the allowance must be based upon
the following consiiderations: (1) the ratio of the maximum stress produced by a single
axle load to the total design live load stress; (2) the probability of the simultaneous oc-
currence of effec.s, and the relative phase of the separate oscillations; (3) the possible
beneficial effects of the presence of live loads other than the single axle being considered;
and (4) the relationship of stress in the member to centerline deflection of the structure.

The first of thase factors is perhaps the most important of all, as will be seen by
reference to Table 5. The rapid decrease of the percentage of total live load furnished
by any one axle for spans 1n excess of 100 feet greatly reduces the importance of the
effects of oscillating loads and shock effects for these spans.

The matter of the probability of simultaneous occurrence of the various dynamics
effects or of the superposition of the effects of a number of axles in phase is a most
difficult problem to treat quantitatively on the basis of presently available data. It1is
related Lo the more general problem of the scientific treatment of safety factors asdis-
cussed by A. M. Freudenthal @) and others. At present, the best which the writer can
offer is based on estimated probability for each type of effect and the combination of
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TABLE 5

RATIOS OF SINGLE AXLE TO FULL LIVE LOAD FOR VARIOUS SPANS
TWO LANE H20-S16 BRIDGES

Span Composition of Assumed Full Live Load Full Single

Live Load Axle

Moment Moment Ratio
ft. ft. Kip ft. Kip
20  One 32 Kip axle per lane 320 160 0. 500
50 One H20-S16 vehicle per lane 1, 040 400 0. 389
75  One H20-816 vehicle per lane 1, 940 600 0.309
100 Two H20-816 vehicles per lane 2, 690 800 0. 298
150 640 lb. per ft. plus 18 Kip per lane 4,950 1, 200 0. 242
200 11 " " 1" 1" 1 11 1" 8, 200 1, 600 O' 195
250 "o " " " " " 1" 12, 250 2, 000 0. 163
300 nonooon o owonn 17,100 2, 400 0. 140

these probabilities by the elementary algebraic methods.

To begin with we must recognize that the probability of ever getting full design live
loads on a span decreases rapidly as the span length increases. Anyone who has had
the experience of trying to find enough heavy vehicles to apply a full design live load to
a structure will be convinced of this. Therefore, we should not be overly conservative
with the manner in which we pile on dynamic effects, since we are probably already
dealing with small probabilities.

If we assume that we have all truck traffic and that vehicles equivalent to the H20-
816 vehicle account for about 5 percent of this traffic, then the probability of full live
load on both lanes of spans of various lengths is as given in Table 6.

TABLE 6 These probabilities are large enough to
make certain that the structure will re-
PROBABILITY CF FULL LIVE LCAD ON cewve its full load at some time during its
VARIOUS SPAN LENGTHS life. The value of this listing will come
only in connection with combining these

Span Pro: a?_g:i:ésm probabilities with those due to dynamic
ft. effects.
20 0. 0250 Here we must assume an order of mag-
50 0' 0125 nitude of probability of reaching full design
100 0' 0062 stress which is considered proper. Based
150 0. 0042 on the use of allowable stresses in the
200 0. 0031 AASHO specifications, a probability of not
250 0: 0025 greater than 1 x 10" would appear to be

300 0. 0021 generously ade-quate. This is admittedly ;
= the weakest point 1n our analysis, since ,
we are mixing the concept of equal probabilities of failure with those of allowable stress.
We must also assume some reasonable probabilities for superposition of individual axle
effects.

Suppose that: (1) 0, 25 is the probability that the free oscillations introduced 1n a
structure by two successive axles will be 1n phase; (2) 0. 25 is the probability that one
axle will be oscillating with a pulsating force of 25 percent of static load; (3) 0. 25 is |
the probability that the oscillations produced by two successive oscillating axles will |
be in phase; and (4) 0. 01 1s the probability that a fully loaded axle will strike an ob- ‘
struction in each of two lanes at the same time. |

Further assume that only one obstruction of importance exists 1n each lane and that }
the probability of its being within the midspan one fifth of the structure 1s 0. 2. Based
on these assumptions, we will make allowances at full effect for any combinations
which give combined probabilities of greater than 1 x 10~* and reject those which give
less than this probability, For instance, suppose we wish to determine for various
spans the number of axles which should be assumed to induce free vibrations of the
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TABLE 7

VARIATION OF EFFECTIVE DYNAMIC INCREMENT OF
CENTERLINE DEFLECTION FOR VARIOUS SPANS

Frece Oscillations Shock Effects Vehicle Oscillation Com- AASHO
Span Axles Per Axle Eff. Axles Per Axle Eff. Axles Per Axle Eff. bined "Impact”
Eff.
ft. No. % 9,0 No. % % No. % % % 70
20 1 6.9 3.4 1 100 50.0 1 25,6 12.8 53.4 30.0
50 2 7.1 5.5 1 70 26.9 2 26.4 21.0 29.6 28.5
100 3 6.5 5.8 1 50 14.9 2 25.0 14.9 16.6 22.2
150 3 5.8 4.2 1 25 6.0 2 24,6 11.6 13.0 18.2
200 3 5,0 2.9 1 25 4.9 2 22.0 8.5 9.5 15.4
250 3 4.3 2.1 1 25 4.1 2 21.6 7.1 7.8 13.3
300 3 3.7 1.5 1 25 3.5 2 19.3 5.4 5.9 11.8

structure which are in phase. The probability of getting any five axles so superimposed
when full live load is on a 300 foot span 1s:

p = (0. 0021) (0. 25)*=8.4x 10"°
which would not be used. Three axles would give a probability of 1. 32 x 10™* which is
within our limit. The increment of live load moment, based on full live load moment
would be:
3(3.7) (0. 140) = 1. 55 percent
For the superposition of oscillating load effects, the probability of four axles being
in phase on this same span is:
= (0. 0021) (0. 25) (0. 25)° = 8.4 x 10~°
Thus, for this effect we must take only two axles, for which the probability 1s
1.32 x 10~* and the dynamic increment 1s:
2(38.6) (0. 140) = 10. 8 percent
For the possible shock effects we have the following probability that a fully loaded
axle will strike an obstruction at the same instant in each lane near the center of the
bridge when full live load 1s on the structure and that the resulting oscillations will be
in phase:
p = (0. 0021) (0.01) (0.2) (0.25) =1.05x 10°°
which 1s rejected.
Using only one axle, the resulting shock effect 1s:
1(0. 25 percent) (0. 140) = 3. 5 percent
It 1s also possible to combme these effects 1n such a way that the combined proba-
bility 1s greater than 1 x 10-%, as long as any effects combined are not physically 1n-
compatible, as 1s the case with combining oscillating loads with obstruction effects
where only two axles can be near the center of the span at one time. The following
combinations are proposed: (1) free oscillations for one axle plus obstruction effect
for one axle and (2) free oscillations for one axle plus forced oscillations for two axles.
Before 1ndicating how this approach affects the establishment of live load dynamic
allowances, let us consider the third problem mentioned above, namely, the beneficial
effects of having the structure loaded. These are of particular importance in consider-
ing the effects of vehicle oscillations. An analysis made earlier indicated that the
springing of vehicles had little benefit in reducing the forced oscillations of the struc-
ture. However, for those oscillations induced by bouncing vehicles, the presence of
the vehicles on the span of nearly the same frequency would provide an excellent dy-
namic vibration absorber. This would only be true for spans beyond about 75 feet,
because for shorter spans the induced vibrations have frequencies much higher than
those of the oscillating vehicle. It will be assumed in what follows that this absorption
of energy 1s roughly proportioned to the number of vehicles which are on span other than
the one supplying the energy, with percentage reduction as follows: 10 percent at 75
feet, 25 percent at 150 feet, and 50 percent at 300 feet.
The result of applying these limiting probabilities and other modifications to the
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single-axle live load effects shown previously 1n Figure 11 is given in Table 7. Here
the percentage allowance based on total live load for each effect and for certain com-
binations 1s given. The currently used AASHO impact allowance formula 1s also shown
for comparison.

The allowances computed by the above methods are based on the assumption that the
increase in stress 1n any member is proportional to the increase of centerline deflec-
tion. This is a good approximation for simple spans composed of rolled shapes or
plate girders of moderate length, in which the centerline bending moment controls the
design. The assumption is also good for quarter point moment. The assumption is
not nearly so good for shearing forces at the end of the structure as the length of the
span increases. It is also questionable in its application to the members of the web
system of a truss, in which the live load would be placed only on a portion of the in-
fluence line but for which any dynamic forces due to inertia of the span would be dis-
tributed throughout the span length in sinusoidal fashion. For instance, the oscillation
of a structure due to a shock effect at the center of the span produces practically no
shear at this point. The use of the concept of loaded length for such a member in de-
termining the allowance for dynamic effects is also questionable, since the response
of the member is primarily a function of the frequency of the supporting element of
which it is a part, namely, the main truss.

In conclusion, 1t is suggested that the rational treatment of dynamic stress allow-
ances for highway bridges should involve the following steps, some of which can be
greatly aided by proper specification clauses and by prepared tables and charts for
making estimates: (1) estimation of the fundamental frequency of vabration of the struc-
ture, taking into account the type of material, structural system and span length; (2)
selection of the reasonable combinations of dynamic effects which are probable with
full live load, considering span length, class of load and number of lanes; (3) compu-
tation of the probable percent increase of centerline deflection due to dynamic effects;
(4) relating dynamic stress increase 1n each member to increase in centerline deflec-
tion; and (5) checking structure after completion of design for resonance and near re-
sonance effects.
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