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A theory of earth pressure on underground conduits is presented. E:q>res-
sions f o r the general case of an s = c -i- a- tan^ material have been derived. 
E:q)ressions relating to s = <rtan<^ and s = c so i l types appear as special 
cases of the general case. 

I t is shown that the pressure on top of both covered-up and mined-in con
duits is governed by the same mathematical relations. However, the values 
of the physical factors appearing in the theoretical expressions depend on the 
geometry and nature of installation, the physical properties, and the in i t i a l 
state of the materials, as wel l as on the construction methods and workman
ship employed. 

Curves f o r the evaluation of the load on top of covered-up conduits i n 
stalled under an s = v tan^ material have been constructed. Under certain 
conditions the same curves can also be used f o r the general case of an s = 
c + <r tan^ material . 

The load on covered-up conduits becomes a minimum i f the conduit side 
supporting material is thoroughly compacted, the ditch directly above the 
conduit is made as high as economically feasible, and the ditch is f i l l e d with 
a compressible, loose material . 

• T H I S paper was intended originally to be the theoretical part of a report on a three-year 
research project directed by the North Carolina State Highway and Public Works Commis
sion. The project involved the study of the performance of a 66-in. f lexible , metal-pipe 
culvert installed under a 170-ft. earth embankment that was constructed by end-dumping. 

Existing earth pressure theories on underground conduits are applicable to low or 
medium height embankments consisting of perfectly granular material . Because of the 
unusual f i l l height and the construction methods employed in this project i t was consi
dered desirable to review and extend these theories, and revise them i f necessary, in 
order to make them applicable to the above conditions. 

In the process of extending these theories i t was noticed that the mathematical 
expressions that govern the loading action of a f i l l placed on top of a conduit also 
govern the loading action of a natural earth deposit on a conduit that has been i n 
stalled by a tunneling process. The geometrical s imi la r i ty existing among various types 
of conduits covered by an earth f i l l and a conduit installed by a mining process is shown 
in Figure 1. 

A l l underground conduits are either covered with an earth embankment after they 
have been assembled In place or are mined-in through a natural earth deposit. There
fore , an earth pressure theory that is applicable to these two main categories is gener
ally applicable to a l l types of underground conduits. 

Because of these considerations the general theoretical treatment is presented here 
as a separate study. The e^er imenta l part of the same project appears as a separate 
report by the North Carolina State Highway and Public Works Commission (Costes and 
Proudley, 1955). In the latter report appropriate mathematical esqpressions were de
rived f r o m the general theory to make a speculative analysis of the earth pressure ex
isting on top of the particular culvert under study. 

Definitions 
In this paper, an underground conduit is defined as a hollow prismatic structure that 

is installed with its longitudinal axis substantially horizontal under either a man-made 
earthen embankment or a natural earthen deposit. 

'Presently, with Snow, Ice and Permafrost Research Establishment, Corps of Engi
neers, U. S. Army . 
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Underground conduits can be used f o r a mult ipl ici ty of purposes; they can be used as 
aquaducts, drainage structures, sewers, viaducts, runways f o r conductors or cables, 
gas mains, etc. 

If a conduit is installed f i r s t , and then an earth embankment is constucted above i t , 
the conduit is definedas a "covered-up conduit. " I f the conduit is installed through a nat
ural earthen deposit by means of a mining process, the conduit is defined as a "mined-in 
conduit." 

If judged according to their relative stiffness, underground conduits may be classified 
as " r i g i d conduits" or as "f lexible conduits." The demarcation line between these two 
classes is not defined clearly. 

Problems Relating to Underground Conduit Design 

When designing an underground conduit, the engineer faces a variety of problems 
whose relative influence on the f ina l design of the conduit depends on the purpose f o r 
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Figure 1. Geometrical relationship among underground conduits, 
which the conduit is installed, the desired l i f e e:Q)ectancy of the conduit, and the size of 
the earth mass that the conduit w i l l sustain. Some of these problems relate to: (1) dur
abil i ty; (2) hydraulic factors in case the conduit is installed as an aquaduct; (3) t r a f f i c 
considerations in case the conduit is installed as a viaduct; (4) adequate space in case a 
close inspection of the conduit is desired; and (5) structural capacity. 

If the conduit is treated f r o m the structural point of view the designer is mainly con
cerned with: (1) choosing the right conduit material and employing the right construction 
methods in order that the load on the conduit w i l l be a minimum; (2) providing f o r ade
quate side support so that the conduit w i l l not f a i l by excessive la teral bulging; (3) se
lecting the proper bedding material and deciding on the proper camber so that the con
duit w i l l not go out of alignment as the foundation settles; and (4) designing properly the 
thickness and the structural connections of the conduit so that i t w i l l withstand the inter
nal stresses that are generated in its structure by the external pressures, namely, the 
top load, the lateral pressures exerted by the side supporting material , and the bottom 
reaction f r o m the bedding material . 

I f the earth mass above the conduit is not too high, then, in addition to the dead load 
due to the earth mass, the influence of live loads that may exist on the surface of the 
mass must be considered also. * I f the earth mass, however, is sufficiently high and 
pressure waves due to l ive loads are dissipated before reaching the conduit, the main 
load on the conduit w i l l be due to the pressure of the earth that i t sustains. 

Scope of Paper 

The purpose of this paper is to (1) present a general, uniplanar, theoretical study of 

' F o r such treatment see References, Spangler and Hennessy (1946). 
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the factors influencing the pressure that is developed on top of both covered-up and 
mined-in conduits due to the earth mass alone; (2) apply the general study to special 
cases; (3) examine the physical meaning of the derived mathematical expressions; (4) 
draw conclusions in connection with the implications that certain installations may have 
on the conduit load; (5) construct curves f r o m which the load on top of a conduit can 
be obtained f o r as many cases as possible; (6) suggest the main principles that should 
guide the engineer's judgment when designing an underground conduit; and (7) make rec
ommendations relating to future research efforts in connection with this f i e l d of e i ^ i -
neering. 

This study makes no differentiation between " r i g i d " or "f lexible" conduits. The 
shape of the conduit is also considered not to be a variable. 

The mathematical treatment deals with the pressures acting in the plane perpendicu
lar to the longitudinal axis of the conduit. The study of the development of earth pres
sures above the conduit and in the direction paral lel to its longitudinal axis is beyond 
the scope of this paper. 

REVIEW OF PREVIOUS RELATED STUDIES 

A l l earth pressure theories relating to underground conduits have been based on one 
of the most universal phenomena encountered in soils, both in the laboratory and in the 
f i e l d , the so-called "arching effect. " The a r c h i i ^ effect as defined by Terzaghi (1943a) 
is a transfer of pressure f r o m a yielding mass of soil onto adjoining relatively station
ary parts. This pressure transfer takes place through a mobilization of the shearing 
resistance of the material which tends to oppose the relative movement within the soi l 
mass. 

Most of the existing theories on arching deal wi th the pressure of dry sand on y ie ld
ing horizontal strips. Terzaghi (1943a) divides these theories into three groups: 

1. In the f i r s t group only the conditions f o r the equil ibrium of the sand Immediately 
above the loaded s tr ip have been considered. No attempt has been made to investigate 
whether or not the results of the computations have been compatible with the conditions 
f o r the equilibrium of the sand at a greater distance f r o m the s t r ip . 

2. The theories of the second group have been based on the unjustified assumption 
that the entire mass of sand located above the yielding str ip is in a state of plastic e-
qui l ibr ium. 

3. In the th i rd group the assumption has been made that the ver t ical sections through 
the outer edges of the yielding s t r ip represent surfaces of sliding and that the pressure 
on the yielding str ip is equal to the difference between the weight of the sand located a-
bove the s t r ip and the f u l l f r i c t iona l resistance along the ver t ica l sections. 

No attempt w i l l be made in this paper to describe each one of the above groups in any 
fur ther de t a i l . ' 

As f a r as studies of pressures on underground conduits are concerned, one may go 
as f a r back as the year 1882 when Forchheimer (1882) studied the development of earth 
pressures on the roof of a tunnel. This study was related to the studies by Janssen and 
A i r y on the development of pressures observed in bins and grain elevators (Janssen, 
1895), (Ketchum, 1913). As a matter of reference, the t e rm, "bin e f fec t , " may be 
found in place of the t e rm , "arching e f fec t , " i n some publications. 

Dean Anson Marston, Professor M . G. Spai^ler, and their associates of Iowa State 
College, deserve great credit f o r advancing the knowledge of loads developed on under
ground conduits. Under their direction, an extensive program of research, starting in 
1908, has been carr ied out. Their main aim was to develop a rational method f o r de
termining the loads on covered-up conduits. The result of their work has been the 
"Marston Theory of Loads on Underground Conduits." This theory has been applied 
extensively in this country in the design of covered-up conduits. The theory is applicable 

^ For a comprehensive summary of each theory, see K. Terzaghi, Theoretical Soil Me
chanics (New York: John Wiley & Sons, 1943), pp. 69-74. Detailed information on the 
same subject may be obtained f r o m the following References: Engesser (1882), Kdtter 
(1899), Janssen (1895), Koenen (1896), Bierbaumer (1913), Caquot (1934), Terzaghi 
(1936),Vbllmy (1937) and Ohde (1938). 
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mainly to embankments constructed of perfectly granular materials (Marston, 1913, 
1930), (Spangler, 1950a, 1950b). 

In addition to the work conducted by Marston in the Iowa Engineering Experiment 
Station, several other extensive studies concerning earth pressures on underground 
conduits have been carr ied out both in the United States and in other countries. 

These studies include the following: 
1. Experiments were conducted at the University of North Carolina in 1927 in which 

the top ver t ica l pressure, radial pressures, and the decrease in the conduit ver t ica l 
diameter were measured in pipes of various diameters and materials, installed as pos
itive projecting conduits (Braune, Cain and Janda, 1929). 

2. Pressure tests were conducted on corrugated metal, concrete, and cast i ron pipe 
culverts by the American Railway Engineering Association at Farma, I l l inois , during 
the period 1923-1926 (Area, 1928). 

3. During the construction of liner-plate and shield tunnels installed in the Chicago, 
I l l ino is , subway, an extensive research on earth pressures developed in mined-in con
duits due to plastic clay, as wel l as on the deformations of the conduit structures, was 
conducted and reported by Terzaghi (1942-1943) and Peck (1943). 

4. Similar tests on earth pressure on tunnels installed in plastic clay were conducted 
and reported by Housel (1943) in Detroit , Michigan. 

5. Strain gage and load cel l pressure measurements, as wel l as data f r o m deforma
tions and settlements, were obtained by the Alabama State Highway Department and 
Armco engineers f r o m corrugated metal culvert pipe installations under 137 f t . of em
bankment (Timmers, 1953). 

6. Similar tests were conducted by the North Carolina State Highway and Public 
Works Commission on a Mult i-Plate culvert pipe installed under 170 feet of embank
ment. An attempt to develop a technique to measure directly the earth pressures exert
ed on the culvert under study is discussed also (Costes and Proudley, 1955). 

7. In the laboratories of the Zurich Technical University, Switzerland, Vbllmy (1936, 
1937) conducted a series of tests on sand located above a yielding support to prove his 
assumption that the potential sliding surfaces are oblique planes. 

8. Experiments on pipe models by using centrifuges to generate forces s imi la r to 
these acting on the pipes in ditch conduit installations were conducted in the Moscow 
Municipal Academy (Pokrowski, 1937). * 

9. A series of art icles on culvert pipe analysis has been published in France by the 
Hungarian engineer Bela (1937), and by Guerrin (1938). 

10. Information of culvert pipe analysis may also be found in the catalogues and pub
lications of pipe manufacturers. * 

THEORETICAL STUDY 

Method of Analysis 

The theoretical concepts and the resulting relations of this paper are presented as 
follows: (1) the basic assumptions are stated and discussed; (2) the fundamental d i f f e r 
ential equation describing the loading action of an earth mass on top of an underground 
conduit is derived; (3) the general load equation f o r an s = c + vtan^ material is derived; 
(4) Case I is defined and discussed; (5) Case I I is defined and discussed; (6) factor u = 
(2Ketan<|>e)He/Bd is evaluated and discussed f o r Case I I existing in covered-up and 
mined-in conduits; (7) the analysis of the general case is applied to an s = <rtan<|> mate
r i a l ; (8) the analysis of the general case is applied to an s = c material ; and (9) famil ies 
of curves are constructed f o r which the load by an s = o- tan^ material on a covered-up 
conduit can be obtained. Conditions are stated under which the same curves can be 
used f o r the evaluation of the conduit load when the loading agent is an s = c + o- tarn^ 
material . 

* For a brief summary of the findings and conclusions of the experiments mentioned in 
items (7) and (8), see D. P. Krynine, "Design of Pipe Lines f r o m Standpoint of Soil Me
chanics," Proceedings of the Highway Research Board, XX (1940), 726-727. 
'see References. 
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Analysis 
Statement of Assumptions. The following basic assumptions are made in the evalua

tion of the theoretical relations governing the loading action of masses on top of under
ground conduits: 

1. The loading agent is an ideal, homogeneous, isotropic material whose shearing 
resistance, s, per unit of area can be represented by the empir ical equation: s = c + 
atan+where o- is a force per unit area, normal on a section through a mass. The sym
bol c represents the cohesion, which is equal to the shearing resistance per unit area if 
<r = 0. The symbol «t» represents the angle of internal f r i c t i o n of the materiaL 

2. Because of the fact that the foundation, which supports the material directly above 
the conduit, does not yield the same amount as the foundation, which supports the ma
te r ia l adjacent to the middle mass, the fo rmer subsides more or less than the adjacent 
material dependii^ upon the relative yielding of their respective supports. The relative 
subsidence takes place along ver t ica l plane surfaces extending f r o m the top of the con
duit to some horizontal plane above the conduit designated as, "plane of equal settlement." 
Above the plane of equal settlement no relative subsidence takes place and a l l parts of 
the f i l l material settle the same amount due to the consolidation of the f i l L Henceforth, 
the mass directly above the conduit w i l l be referred to as the " in ter ior p r i sm. " During 
the subsidence of the interior p r i sm , horizontal layers remain horizontaL 

3. The side supporting material has not been compressed excessively so as to cause 
the structure to f a i l by excessive horizontal bulgir^. 

4. The internal stresses generated in the conduit structure on account of the exter
nal pressures have not exceeded the c r i t i ca l buckling load of the structure. 

5. The unit weight of the material , Y, is constant throughout the f i l l height. 
6. The angle of internal f r i c t i o n of the material , 4>, is constant along the potential 

sliding planes. 
7. The cohesion of the material , c, is constant along the potential sliding planes. 
8. The ratio of the horizontal principal stress component within an element of the 

f i l l material to the ver t ical pr incipal stress acting on the same element, Ke, is constant 
along the potential sliding planes. The ratio may be called, therefore, "hydrostatic 
pressure r a t i o . " 

Discussion of Assumptions. Every stress theory is based on the assumption that the 
material subject to stress is either homogeneous and isotropic or that the departure 
f r o m these ideal conditions can be described by simple equations. I f the material is 
also assumed s t r ic t ly to follow Hooke's law, then the t e rm "homogeneity" denotes iden
t ica l elastic properties at every point of the material in identical directions whereas the 
t e rm "isotropy" involves identical elastic properties throughout the material and in ev
ery direction at any point of i t . When the material under study is soi l not subject to 
strat if ication, then both assumptions may be understood to have a statistical average 
value. 

Assumption 2 that the potential surfaces of s l i d i i ^ are ver t ical planes, is unlikely 
to occur in the actual case and i t is made only to s impl i fy the mathematical computations. 
Actually, as Terzaghi (1943a) points out, the real surfaces of sliding are curved and at 
the top of the f i l l their spacing is considerably greater than the width of the conduit. 
From this, i t follows that along the assumed ver t ica l , potential sliding surfaces the i n 
ternal f r i c t i o n of the material w i l l never be f u l l y mobilized and, thus, plastic equilibrium 
conditions are not realized. The e r ro r due to ignoring this fact is on the unsafe side. 

Also, during the relative subsidence of the material above the conduit, horizontal 
layers within the inter ior p r i sm do not remain horizontal, but they become either con
cave or convex curved surfaces depending on whether or not the inter ior p r i sm subsides 
more or less than the adjacent masses. Therefore, the surfaces of equal, normal pres
sure are not plane but are curved, l ike arches. 

The existence of the "plane of equal settlement" was discovered on purely mathema
t ica l grounds by Marston (1922). The actual existence of such a plane has been demon
strated by laboratory models, and by measurements of the settlements of the soi l both 
over and adjacent to some e;q)erimental conduits (Spangler, 1950a, 1950b). 

Assumptions 3 and 4 must be f u l f i l l e d in order that the analysis made in this paper 
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has a meaning. The problems of insuring adequate side support to the conduit as wel l 
as designing the conduit structure to withstand the internal stresses that are generated 
due to the external pressures are beyond the scope of this paper. 

Assumption 5 requires that an overal l average value of the unit weight of the material 
be used. Actually, everything else remaining constant the unit weight of the material 
w i l l vary with the f i l l height wi th higher values at the bottom of the f U l . The method of 
f i l l construction and the water content are major factors influencing Y. 

Assumptions 6 and 7 pertain to the values of the angle of internal f r i c t i o n and cohesion 
that are actually mobilized along the potential sliding planes. Because of the reasoning 
applied in discussing Assumption 2 , both values w i l l generally be smaller than the la
boratory values of ^ and c exhibited by a series of tests f r o m samples of the same ma
ter ia l . Therefore, in the subsequent theoretical treatment of the problem the values of 
^ and c that are used w i l l denote the amount of both properties that are actually mobi
lized. They w i l l be designated as and ce respectively. These values depend not only 
on the nature of the so i l and i ts in i t i a l state, but also on the rate of stress application, 
the permeability of the material , the deformation characteristics, and the size of the 
mass. 

The last assumption, that the ratio of the horizontal principal stress to the ver t ica l 
pr incipal stress acting on an element within the mass of the material is constant along 
the potential sliding planes, is at great variance with real i ty. Everything else remain
ing constant this ratio depends on the nature, in i t i a l state, and s train characteristics of 
the material . 

U the material i s a solid block, then the rat io is equal to zero. I f the material be
haves like a l iquid then the ratio is equal to one. 

For a semiinfini te , sedimentary deposit of cohesionless material , i t has been found 
experimentally that this ratio varies between 0.45 and 0. 55 depending on the geologic 
history of the deposit and i t is approximately the same f o r every point of the mass. In 
this particular case, the ratio is called the coefficient of earth pressure at rest, or co
efficient of natural earth pressure and i t is denoted by K Q . The range of values of KQ 
f o r clays in their natural state is not yet known. 

If a homogeneous, semiinfinite mass bounded by a horizontal plane and extending to 
infini ty downward and in every horizontal direction is given an opportunity f o r lateral 
expansion to a very great depth, z, insuchamanner that the lateral strain remains constant 
with depth, then the mass passes f r o m an in i t i a l state of elastic equilibrium to an active 
state of plastic equil ibrium. In this condition the internal resistance of the material is 
fu l ly mobilized and conditions of incipient shear fai lure exist along two sets of surfaces 
of sliding that are symmetrical to each other with respect to a ver t ical axis and inclined 
at an angle of wi th the ver t ical . Under such conditions the la teral intensity of 
pressure decreases to the smallest value compatible with equilibrium. Such a condition 
i s called an active earth pressure condition. The value of the lateral earth pressure is 
designated OA and the ratio K is equal to 

K A = tan"" (45"- - | £ tan{45°- •/a) (1) 

f o r an s = c + o-tan^ material. 
For an s = <rtan4> material 

KA = tan"(45''-+/2). (2) 
For a perfectly cohesive material ; that i s , f o r an s = c material 

K A = 1 - | ^ . (3) 

If the same semiinfinite mass is compressed laterally to a great depth, z, insucha 
manner that the la teral compressive s train remains constant, then the mass reaches a 
passive state of plastic equilibrium. In this state the internal resistance of the material 
is fu l ly mobilized and conditions f o r incipient shear fa i lure exist along two sets of sliding 
surfaces, symmetrical to each other with respect to a ver t ical axis and inclined at an 
angle equal to 45° + with the ver t ica l . Under such conditions the lateral intensity of 
pressure increases to the largest value compatible with equilibrium. Such a condition 
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is called a state of passive earth pressure. The corresponding lateral pressure is de
signated (Tp and the ratio K is equal to 

K p = tan^ (45" + ^h) +1̂  tan (45" + •/a) (4) 

f o r an s = c + or tan<i) material. 
For a cohesionless material ; that i s , f o r an s = <rtan<|) material 

K p = tan' (45" + ^h). 
For a perfectly cohesive material ; that i s , f o r an s = c material 

KP = 1 ^ | | . 

(5) 

(6) 

In the actual case, the lateral expansion or compression which cohesive soils must 
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Figure 2. Variation of oĵ  and K with f i l l height. 
undergo in order that they reach active or passive states of plastic equilibrium is much 
greater than any allowable movement within the engineering structures which they bear 
contact wi th and, therefore, the ratio K w i l l always l ie between the l imi t ing values 
and K p . 

With cohesionless soils such as dry clean sand, a very smal l la teral stretching is 
sufficient to insure active state conditions, whereas a considerable compressive move
ment must precede passive state conditions. 

However, even if the least trace of moisture is present in a cohesionless mass, the 
material w i l l exhibit a property known as "apparent cohesion" and i t w i l l behave like a 
cohesive material (Terzaghi 1943a). Since in engineering practice water is almost a l 
ways present in a soi l mass, even a granular mass must be stretched laterally a con
siderable amount before an active state of plastic equilibrium is reached and before K 
assumes the l imi t ing value K;^. 

From Equations 1 and 3 i t can be seen that f o r cohesive materials in an active state 
of plastic equilibrium K depends mathematically on the f i l l height and f o r small values 
of the f i l l height i t may assume even negative values. 

The above discussion on the ratio K was made in reference to constant s train condi
tions f o r various materials. If the lateral strain within the mass varies with depth then 
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the inter ior p r i s m may settle more than the adjacent 

K must be expected to vary also. 
In the case of an underground conduit, 

as the middle p r i s m slides along the ver
t ical planes, the lateral strain along 
these planes may be visualized to vary as 
follows: Along the ver t ical extensions of 
the sliding planes f r o m the top of the 
embankment to the plane of equal settle
ment, the lateral s t rain within the mass 
is zero because the settlement is uniform 
at a l l parts of the mass. Therefore, K 
may be e^qiected to be constant within 
this region. I f the conduit is mined in a 
sedimentary deposit of granular material 
the value of K w i l l be K Q . If the conduit 
is installed under a man-made granular 
embankment the value of K w i l l be Ks. 
Ks w i l l be dependent on the nature and 
condition of the material , the methods of 
compaction, the degree of compaction 
and the height of the f i l l . 

In the region between the plane of e-
qual settlement two cases may develop: 
(1) the adjacent mass may settle more 
then the interior p r i s m and (2) 
mass. 

In the f i r s t case the lateral strain changes f r o m zero at the plane of equal set
tlement and becomes compressive gradually increasing to a maximum at the top of 
the conduit. Accordingly, K should be expected to increase f r o m the value Ko or 
Ks at the plane of equal settlement to a maximum value in the vicini ty of the top of 
the conduit (Figure 2a). 

In the second case the lateral strain changes f r o m zero at the plane of equal set
tlement and becomes tensile gradually increasing to a maximum at the yielding sup
port of the conduit. Accordingly, K should be expected to decrease f r o m the values 
KQ or Kg at the plane of equal settlement to a smaller value approaching K A i n the 
vicini ty of the yielding support of the middle p r i sm (Figure 2b). 

Since the object of the subsequent mathematical treatment is to develc^ a relation 
f o r the load on top of the conduit upon which the integrated influence of K is r e 
flected, the diagram of the variation of K wi th f i l l height may be substituted with an 
equivalent diagram in which K is constant and has a value equal to the mean abscis
sa, Ke of the diagrams of Figure 2. Thus, the mathematical computations w i l l be 
s impl i f ied appreciably without altering the resulting load expression. Adequate ex
perimentation w i l l give values of Ke f o r various types of installations and earthen 
materials. 

In Figure 2 the lateral principal stress diagrams o-hg» o'h > ^"^d <^hg» corresponding 

to K = K Q , K = K , and K = Ke respectively, are also shown f o r the two cases. From 
these diagrams i t can be seen that the ordinates of the equivalent hydrostatic stress dia
gram, (Thg, are larger or smaller in magnitude than the ordinates of the lateral stress 
at rest diagram, o-ho, depending on whether the inter ior p r i s m subsides less or more 
than the adjacent mass. 

c + o- tan«t) Mater ia l on Top Different ia l Equation Describing the Loading Action of an s 
01 underground conduits 

Let Figure 3 represent the installation conditions and the force diagram f o r an under
ground conduit of external diameter BQ installed under an embankment composed of an 
s = c + V tan^ material . 
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Let: 
H = height of embankment measured f r o m the top of the conduit, f t . 
He = height of the potential sl iding planes f r o m the top of the conduit to the plane of 

equal settlement. Henceforth, this height w i l l be refer red to as "height of arching," 
f t . 

z = distance f r o m the plane of equal settlement down to any horizontal plane, f t . 
Be = width of conduit, f t . 
Bd = effective width of the inter ior p r i sm, f t . 
7 = unit weight of the material on top of the conduit, pcf. 
4e = portion of the angle of internal f r i c t i o n of the material that is mobilized along the 

potential sliding planes. 
Ce = portion of the cohesion of the material that is mobilized along the potential sliding 

planes, psf. 
9y = ver t ica l pr incipal stress acting on an element of the material along the sliding 

planes at a distance z f r o m the plane of equal settlement, psf. 
= horizontal principal stress acting on an element of the material along the sliding 

planes at a distance z below the plane of equal settlement, psf. 
Ke ~ equivalent hydrostatic pressure ratio along the sliding planes. 

Vz = <ryBd = resultant ver t ical pressure acting on a horizontal layer in the in ter ior 
p r i sm at a distance z f r o m the plane of equal settlement, lb. per l l n . f t . of length. 

Wc = ver t ica l load on top of the conduit due to overburden material , lb. per l i n . f t . of 
length. 

W = VBdH = weight of the earth column on top of the conduit, lb. per l i n . f t . of length. 
The weight of the thin slice of the interior p r i sm with a thickness dz at a depth z be

low the plane of equal settlement is 'YBddz per unit of length perpendicular to the plane 
of the drawing. The slice is acted upon by the forces indicated in the f igure . The con
dition that the sum of the ver t ica l components that act on the slice must equal to zero 
can be expressed by the equation 

KBddz + Vz - dVz - Vz ± 2 (cg + Ke ^ tan+e) dz = 0, (7) 

- ± 2Ke tan+e ± 2ce +TfBd = 0. (8) 

Equation 8 is the fundamental different ial equation describing the conditions of equi
l ib r ium during the loading action of an s = c + cr tan^ material acting on top of an under
ground conduit. The plus or minus signs represent the case in which the inter ior p r i s m 
subsides less or more than the adjacent masses respectively. 

Evaluation of the General Load Expression f o r an s = c -t- g tan^ Mater ia l 

Equation 8 is a linear differential equation of f i r s t order. 
Integrating and considering the l imi t s 

V = (H-He)"VBd f o r z = 0 

V = Vz f o r z = z 

one obtains after rearranging terms 

»*™ ^ . He V» - We. 
Substituting in Equation 9 one obtains 

' - o - f e j e ± < » « ' « ^ e ) t [ , « e . a . W ( i ^ , i a i ^ ^ ) ] ; a i i ^ ) [ . (.0, 
Equation 10 is the general load expression f o r an s = c + v tan^ material . The plus 

or minus signs represent respectively the cases In which the inter ior p r i sm subsides 
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less or more than the adjacent masses. 
Equation 10 may be wri t ten also 

Wc =KBd(Bd/2Ketan+e)C, ( H ) 

C = e i ( 2 K e t a n + e ) | ^ | - ( 2 K e t a n M ^ ) i ( l - , ^ ) ] ^ (12) 

Henceforth, factor C w i l l be called the "load factor. " 

Letting (Bd/2Ketan<|.e)C = Heff (13) 
and substituting in Equation 11 one obtains 

Wc = TfBdHeff. (14) 
Factor Heff may be thought of as an effective height along which no relative subsidence 

occurs between the material directly above the conduit and the adjacent material . In 
such case neither mass would tend to brace itself against the adjacent one, no sliding 
surfaces would tend to f o r m , and the load on top of the conduit per unit length would be 
equal to the f u l l we^ht of the column of the material directly above i t . 

By inspection of Equation 12 , and since: 

C = [(2Ketan.^e)/Bd] H - CQ, 
Heff = H, 

^"'^ W c = V B d H - W , (15) 
when Hg = 0, 

i t can be seen that i f the inter ior p r i s m subsides less than the adjacent masses, in which 
case the shearing resistance of the material mobilized along the sliding planes have the 
same direction and sense as the weight of any thin slice within the inter ior p r i sm, the 
positive signs are used in Equations 7 through 12, 

Cp = Load factor with positive signs > Co , 

H e f f > H , 

Wc > W. 

Similar ly , i f the inter ior p r i s m subsides more than the adjacent masses, in which 
case the shearing resistance of the material mobilized along the sliding planes has the 
same direction but opposite sense than the weight of any thin slice within the inter ior 
p r i sm, the negative signs are used in Equations 7 through 12, 

Cn = load factor with negative signs < C Q , 
Heff < H, 

'' '"^ W c < W . 

In the subsequent analysis the above two cases w i l l be studied separately. However, 
every engineer dealing with underground conduits should direct a l l his effor ts toward 
creating the proper environmental conditions during the construction of such structures 
in order that conditions corresponding to the second case w i l l be realized. 

Case I . The Interior P r i sm Subsides Less Than the Adjacent Masses 

This case may develop as a result of the following two environmental conditions i n the 
construction of a conduit. 

1. In the case of a covered-up conduit, the conduit is installed by means of the so-
called "positive projection" method (Spangler 1946). According to this method the con
duit is installed with its top projecting some distance above the natural ground surface. 
Then, the f i l l material is placed around and on top of the conduit. No special e f for t is 
made to compact the side material to a higher degree of compaction than the rest of the 
f i l l material (Figure 4). 
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Assuming that the natural ground sur
face settles by the same amount every
where, let us compare the ver t ica l defor
mation of the interior p r i s m with the de
formation of the two adjacent masses ex
tending f r o m the natural ground surface to 
the plane of equal settlement and having a 
width equal to the width of the inter ior 
p r i sm which in this case is equal to the 
width of the conduit. Henceforth, these 
two masses w i l l be called "exterior pr isms. 

A l l three prisms are loaded with the 
same overburden weight equal to (H-Hg) 
•YBd- Therefore, any relative different ial 
deformation existing among them would be 
a function of the weight of each p r i s m 
which, accordingly, is a function of its 
height as we l l as the characteristics of the 
material . Hence, if no contact existed 
among these prisms and each one were 
allowed to deform f ree ly , the summation 
of deformations f r o m the bottom upward 
would normally be at a greater rate in the 
high pr isms than in the lower ones. 

and 

Figure 4. Installation diagram for 
tive-projecting conduit. 

Since the two exterior pr isms are higher than the interior p r i sm by an amount Hm> 
since the material within this region is compacted by the same amount as any other part of the 
f i l l , the exterior pr isms w i l l tend to settle at a greater rate than the interior p r i sm. However, 
in the actual case a l l three pr isms are in contact wi th each other and, consequently, the ex
t e r io r pr i sms transfer part of their ver t ical pressures to the inter ior p r i sm. The result is 
that, because of this stress transfer, the rate of summation of ver t ical deformations w i l l be 
reduced in the exterior prisms and increased in the inter ior pr i sm. The total summation of 
deformations in the interior p r i s m w i l l approach that in the exterior pr isms, and the height 
at which the deformations become equal is the height of equal settlement (Marston 1922). 

2. In the case of a mined-in conduit, the conduit is installed in a bed of a very soft 
compressible material , and the conduit is too r ig id to "give in" under the influence of 
the top ver t ica l load. Under such conditions i t is conceivable that the material adjacent 
to the conduit w i l l have the tendency to settle more than the material on top of i t . There
fo re , as in the case of "positive projecting conduits," the exterior prisms w i l l tend to 
brace themselves against the inter ior p r i sm and in doing so they w i l l t ransfer part of 
their ver t ica l pressures on to the interior p r i sm. 

F rom the above discussion and f o r reasons which were discussed, one should use the 
positive signs in the general load expression when the conditions insuring the existence 
of Case I have been realized. 

Hence, Equation 10 becomes 
Ho 

W, •YB'd 
2Ketan(|.e 

f r o m which 

^ +(2Ketan+e) 

Cp = e ^ ( 2 K e t a n * 3 ) ( | j [ ( 2 K e t a n + e ) & ) . d . | ^ ) ] - d 

[(2Ketan^>e)(?^) . d ^ | ^ ) ] - d - | ^ , ) [ « d^ ) 

•VBd' 
(17) 

A quick inspection of Equations 16 and 17 w i l l show that in this case the shearing re 
sistance of the material on top of the conduit works against the engineer; the more re 
sistant to shear the material is and the larger the portion of its shear components that 
is mobilized along the sliding planes, the greater w i l l be the load on top of the conduit. 

Furthermore, f r o m Figure 2b, i t was shown that in Case I the equivalent hydrostatic 
pressure ratio Kg w i l l generally be larger in magnitude than the coefficients of earth 
pressure at rest, K Q , or Kg. By inspecting Equations 16 and 17 again, one can also see 
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that the larger the value of Ke the larger w i l l be the load. 
Now let us examine what other serious implications Case I might have on the load ex

pression. 
Equations 16 and 17 contain the ascending e^onential function e", where u = (2Ketan^e) 

Hg/Bd^O, multiplied by a positive sum. The ascending exponential function is equal to 
1 f o r u = 0, and increases very rapidly with increasing values of u. For example: 

i f u = 1, e" » 2 . 7; if u = 2, e" « 7. 4; 
i f u = 4, eu a=54; i f u = 8, eu « 2 9 8 0 , etc. 

Therefore, i f the over-a l l height of the material on top of the conduit is in the region of 
100 f t . or more, which with modern construction equipment has come within the realm 
of engineering endeavor, the load on top of the conduit, Wc, w i l l be many times greater 
than the weight of the column of the material , W. Consequently, even i f the side-sup
porting material is able to mobilize sufficient reactive pressure to equalize the top pres
sure before the structure bulges out excessively, the r ing stresses that are generated in 
the conduit structure w i l l exceed the c r i t i ca l buckling load of the conduit and the results 
w i l l be catastrophic. 

To i l lustrate the above, let H = 100 f t . 
Bd = 5.0 f t . 
Ke = 1. 0 
•e = 10° 
ce = 200 psf. 
7 = 120 pcf. 

The weight of the column of the material above the conduit i s , therefore, W = VBdH = 
60,000 lb. per l i n . f t . 

Substituting the above data in Equations 16 and 17 and solving f o r Hg = 0, He = 10 f t . , 
He = 20 f t . , and He = 50 f t . one obtains respectively: 

He Cp Heff H e f f / H Wc/W 

0 7.1 100 1.0 1.0 
10 f t . 14,6 207 f t . 2 . 1 2. 1 
20 f t . 28.3 401 f t . 4 .0 4.0 
50 f t . 176 2495 f t . 25.0 25.0 

In other words, i f the height of arching is one-half the f i l l height, the load on a 5.0 f t . 
diameter conduit due to a 100 f t . f i l l w i l l be almost twenty-five times the weight of the 
column of the material on top of i t ; i . e., Wj. = 1,320,000 lb. per l i n . f t . No conceivable 
factor of safety employed in the design of the conduit w i l l provide f o r such a possibility 
and stay within reasonable economical l imi t s . 

From the above, one may conclude that conditions f o r Case I are very undesirable 
f r o m the engineering standpoint and, therefore, every ef for t should be made to avoid 
them in the f ie ld . 

If a conduit is installed by the "positive projection" method, the material immediately 
adjacent to the conduit should be thoroughly compacted to a much higher degree than the 
remainder of the f i l l material. I f such a procedure is followed, the stiffness of the 
mass within the height Hm w i l l be much greater than that of the material within the rest 
of the exterior p r i sm. Consequently, the effective height of the exterior p r i s m w i l l be 
decreased to a value approaching the height of the interior p r i sm. Furthermore, i f the 
conduit is sufficiently f lexible , the support furnished by the stiffened mass to the short
ened exterior p r i sm , w i l l y ie ld much less than the support under the inter ior p r i sm. 
Therefore, the reverse action w i l l take place; the interior p r i sm w i l l tend to brace itself 
against the exterior pr isms thereby reducing the load on top of the conduit. 

In the case of a mined-in conduit within a bed of soft compressible material , i f the 
conduit is made sufficiently f lexible so as to adjust its shape to any external different ia l 
pressure, then, even i f the top load is originally greater in magnitude than the weight of 
the column of the material , a subsequent change in the conduit shape w i l l result in a re 
distribution of the external pressures. Further chaises in the conduit shape w i l l result 
in fur ther redistribution of the external pressures and this process w i l l continue unti l 



24 

a l l different ial moments that are generated within the conduit structure are elimmated 
and only axial r ing stresses w i l l exist. Hence, i f the conduit is designed to withstand 
these stresses, no fa i lure w i l l occur and the conduit w i l l function satisfactorily. 

Case I I . The Inter ior P r i sm Subsides More Than the Adjacent Masses 

This case w i l l be discussed in detail, because i t is most likely to occur in the f i e ld . 
I t may be present even in positive projecting conduits, provided their side supporting 
material has been compacted very thoroughly. The engineer should always be able to 
visualize the action which takes place in this case and to know what to expect in terms 
of load ranges f r o m various construction methods and materials. 

The existence of Case n is insured by the following construction methods and condi
tions: 

1. Covered-up conduits are installed by the following three methods: 
(a) The Ditch Conduit Method. According to this method (Spangler, 1946) the conduit 

is placed in a ditch not wider than two or three times its outside width and i t is covered 
up with backf i l l material that is in a relatively loose condition as compared to the natural 
ground in which the ditch is dug. (Figure 5a). 

Top of Embankment 

— ™ 

Loose 
iMotenol 

Top of Embonkment 

Fi l l Material 

Top of Embankment 

Fil l Material 

Plane of Equal Settlement Plane of Equal ̂ efljement 

Natural Ground 
• Loose, Compressible 

Material 

Loose 
iMoteriol 

. Natural Ground 

(o) Ditcti Conduit 

Tlwroughly Compacted 

(b) Negative Projecting 
Conduit 

(c) Imperfect Ditcli 
conduit 

Figure 5. Covered-up conduits. 
In a ditch conduit the potential sliding planes w i l l be the walls of the ditch. The back

f i l l material has the tendency to settle downward. In doing so i t tends to brace itself 
against the sides of the ditch t ransferr ing part of its weight onto the natural ground. 
Thus, the load on top of the conduit is reduced by an equal amount. 

(b) The Negative Projecting Conduit Method. Conduits fa l l ing within this category 
are placed in shallow ditches of such depths that the top of the conduit is below the adja
cent natural ground surface that is covered by an embankment as shown in Figure 5b 
(Spangler, 1946). 

(c) The Imperfect Ditch Conduit Method. In this method of construction the conduit is 
originally installed as a positive projecting conduit (Spangler, 1946). The so i l on both 
sides and above the conduit f o r some distance above its top is thoroughly compacted. 
Then a ditch is dug in this compacted f i l l by removing the p r i s m of material directly 
over the conduit. The ditch is r e f i l l ed with very loose compressible material , af ter 
which the embankment is compacted above i t (Figure 5c). 

In the last two cases the potential sliding planes are assumed to be the ver t ical ex
tensions of the sides of the ditch on top of the conduit. These planes w i l l extend as f a r 
as the plane of equal settlement. In both cases the material on top of the ditch w i l l sub
side more than the adjacent masses. The loose material in the ditch furnishes a support 
that yields much more than the adjacent natural ground in the case of a negative project
ing conduit or more than the very wel l compacted material in the case of an imperfect 
ditch conduit. 
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2. In the case of a mined-in conduit that is f lexible enough so that i ts roof w i l l give 
in sufficiently to act as a yielding support to the material above, three cases (Terzaghi, 
1942-1943, 1943a, 1943b) are of interest: 

(a) The conduit is installed through cohesive material and its lower part is located 
within an exceptionally s t i f f layer of clay between soft layers (Figure 6a). The sliding 
planes w i l l extend through the edges of the bottom of the conduit (Terzaghi, 1942-1943). 

(b) I f the cohesive material on both sides of the conduit is not exceptionally s t i f f 
(Figure 6b), the width of the interior p r i sm is approximately Bd = Be -•- 2Hm (Terzaghi, 
1942-1943). 

(c) The conduit is installed through cohesionless granular material (Figure 6c). In 
this case, because of the yield of the t imbering and the imperfection of the joints on the 
sides of the conduit, the granular material adjoining these sides subsides to the same 
extent as the subsiding material on top of the conduit on account of the yie ld of its roof. 
This lateral yield may cause the granular mass to come to an active state of plastic e-
qui l ibr ium. In such case the boundaries of the zone of subsidence w i l l r ise at the bottom 
of the conduit at an angle 45° - t / 2 with respect to the ver t ical and gradually the boun
daries w i l l become ver t ical at the plane of equal settlement. The width of the in ter ior 
p r i sm w i l l , therefore, be equal to: 

and 
Be + 2Hi tan(45" - */2) = Bd on top of the conduit 

B(i at the plane of equal settlement where Bj i > Bd-
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Plane of Equal^ Settlement 

1 
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Figure 6. Mined-in conduits. 

In order that the mathematical computations be s impl i f ied, i t i s assumed that the ef
fective width of the inter ior p r i sm is equal to Bd throughout the height f r o m the top of 
the conduit to the plane of equal settlement (Terzaghi, 1943a). 

From the above discussion and f o r reasons that were discussed previously one should 
use the negative signs in the general load expression when the conditions insuring the 
existence of Case n have been realized. 

Hence, Equation 10 becomes 

_ TfB'd j„ - (2Ke tan< | . e )5® \ i f y tmilr w"' "e^ ^1 ^ c e x l . „ 2c. - 2Ketan+e ® « Bd L(2Ketan<t.e)(—g^) - ( 1 - ^ ) J 

f r o m which 

^^^^ - (2Ke tan4 , e )H | . [ ^ ^ K e t a n ^ ^ ) - d - ^ ) ] ^ ^ - ^ ) - (^9) 

A quick inspection of Equations 18 and 19 w i l l show that the shearing resistance of 
the material on top of the conduit works to the engineer's advantage. The more resistant 

(18) 
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to shear the material is and the larger the portion of its shear components that is mo
bilized along the sliding planes, the lower will be the load on top of the conduit. 

The above discussion may be expressed in mathematical form as follows: 

llmWc = 0, (20) 

«l'e-90'' 

limWg = - 0 0 . (21) 

C e - " 

Equation 21 has mathematical meaning only. Physically, it may mean that for a cer
tain installation, if the material is able to mobilize a sufficient amount of cohesion and 
if the deformation characteristics within the mass are such that such an amount is mo
bilized along the sliding planes, the load on top of the conduit will be a minimum ap
proaching zero. 

Let us see now what other implications some other conditions may bring on the load 
expression. 

Equations 18 and 19 contain the descending exponential function e'*̂  where u = 
(2Ketan<t>e) He/Bd » 0. This function is equal to 1 for u = 0 and decreases very rapidly 
with increasing positive values of u, and approaches zero. For example: 

if u = 1, e-u * 0. 3679; if u = 2, e""- 0.1353; 
if u = 4, e-u »* 0. 0183; and, if u = 8, e"" ^O. 003, etc. 

From the above it can be seen that if u » l the first part of Equation 19 will become 
negligible and P -. 

C n * l - L ^ C e A B d J , (22) 
from which 

^c-5Klibi;;(^-|?d>- (23) 
Hence, if the material is potentially able to mobilize along the sliding planes an a-

mount of cohesion equal to Cg = YBd the load on top of the conduit will be: 
Wc * 0. (24) 

The above expression is at variance with reality because the general load expression 
was evaluated on the assumption that the normal stresses in the interior prism are the 
same everywhere on a horizontal layer. Actually, the surfaces of equal normal stress
es will be curved like arches. If the conduit has a flat roof, then the region within the 
surface of zero pressure and the roof of the conduit will be in a state of tension. Con
sequently, the material within this planoconvex region will have the tendency to drop out 
of the roof. As Terzaghi points out, "in order to prevent such an accident, an unsup
ported roof in a tunnel through cohesive earth should always be given the shape of an 
arch. "* 

In the case of either a covered-up or a mined-in conduit whose top is curved, such as 
in the case of circular, eliptical, or oval shaped conduits. Equation 24 may describe 
conditions very close to reality if the proper deformation conditions are insured within 
the mass and if the material is able to mobilize a sufficient amount of cohesion along the 
slidmg planes. 

From the above discussion, it was shown that if the factor u = (2Kgtani)ig) Hg/Bd is 
made sufficiently large, the load factor C Q and, accordingly, the load Wj, will become 
minimum on top of the conduit. Therefore, an understanding of the behavior of the fac
tor u for various physical conditions is considered to be an indispensable guide in direct
ing the engineer's judgment when dealing with underground conduit design. 

In the following chapter, a study of the factors governing the behavior of u will be made 
for covered-up as well as for mined-in conduits. 

e K. Terzaghi, Theoretical Soil Mechanics (New York: John Wiley & Sons, 1943), p. 199. 
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Evaluation of the General Expression Gov
erning the Behavior of Factor u = (2Ketan<fre) 
Hfi /Bd f o r Case I I 

1. Evaluation of u f o r Covered-Up Con
duits. In this treatment a negative p ro 
jecting conduit represents the general case. 
An imperfect ditch conduit as wel l as a 
ditch conduit can be deduced as special 
cases. 

Let Figure 7 represent a negative ditch 
conduit installation in which the previous 
notation is employed wit l i the addition of 
the following: 

Hd = height of ditch above the top of the 
conduit, f t . 

H' = H - Hd = height of f i l l above the top 
of the compacted material , f t . 

Hfe = He - Hd = height of the plane of 
equal settlement above the surface of the 
compacted material , f t . 

sf = settlement of the conduit foundation, 
f t . 

dg = shortening of the ver t ical dimen
sion of the conduit, f t . 
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Sd = compression of the loose material 
in the ditch within the distance Hd, f t . 

Sf + dc + Sd 

for a covered- up 

Sff = 

r sd 

E F 

Figure 7. Force diagram 
conduit. 

settlement of the surface of the loose material , f t . 
settlement of the surface of the compacted material , f t . 
settlement ratio = [ sg - (sd + dg + S f ) ] / s d 
resultant ver t ica l pressure acting on a horizontal layer of width Bd in 
the exterior p r i s m at a distance z f r o m the plane of equal settlement, 
lb . per l i n . f t . of length. 
compression of the inter ior p r i s m between the surface of the compact
ed material and the plane of equal settlement due to the ver t ica l pres
sure within the f i l l height H ' , f t . 
compression of the exterior prisms between the surface of the com
pacted material and the plane of equal settlement due to the ver t ica l 
pressure within the f i l l height H ' , f t . 
modulus of deformation of a l l f i l l material except the loose mass in the 
ditch within the distance Hd, lb. per f t . per f t . 

E L = modulus of deformation of the loose mass in the ditch within the dis
tance Hd) lb. per f t . per f t . 

a' = E L / E F -

The following assumptions must be made in addition to the previously stated basic 
assumptions: 

(a) The average behavior of both the compacted and the loose f i l l materials is such 
that these materials may be considered to obey Hooke's law when subjected to comyires-
sion. Their respective moduli Ep and E^* therefore, are assumed to be constant w i th 
in any region of the f i l l . 

(b) The settlement ratio r^^ is considered to be constant throughout the l i fe of the 
conduit. 

(c) The internal f r i c t i o n of the f i l l materials distributes the infinitely small decrements 
of pressure f r o m shear into the interior p r i s m below the plane of equal settlement in 
such a manner that the effect on settlement is substantially the same as f o r un i form ve r 
t ica l pressure (Spangler, 1950a). 

(d) The internal f r i c t i o n in the f i l l materials distributes the infinitely smal l incre
ments of pressure f r o m shear onto each of the exterior pr isms below the plane of equal 
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settlement in such a manner that the effect on settlement is substantially the same as 
though the pressure were distributed uniformly over a width of prism equal to the width 
of the interior prism, Bd (Spangler, 1950a). 

(e) With the exception of the moduli of deformation both the compacted and the loose 
masses exhibit the same physical properties. 

Assumptions (a) through (e) are made in order that the subsequent mathematical 
treatment wi l l be simplified. Their variance with reality depends upon the nature of the 
materials used, the method of construction, and the magnitude of the quantities involved. 
The engineer's judgment, based on previous experience, wi l l determine how large the 
involved error is and what allowances should be made in each individual case. 

To evaluate factor u one must consider the deformation characteristics of the interior 
and exterior prisms. 

The over-all settlement of the interior prism at the plane of equal settlement must 
equal the over-all settlement of the exterior prism at the same plane. 

X'i + sd + dc + Sf = Xfe + sg (25) 

°^ Xi = + Sg - (Sd + d̂ . + Sf). (26) 
Since _ _ 

Tgd = [Sg - (Sd + dc + Sg)J /Sd, 
Equation 26 may be written 

^ = ^e + '̂ sdSd• (27) 
Since the material within the interior and exterior prisms is assumed to obey Hooke's 

law, the vertical compression of a thin horizontal slice of the interior prism with thick
ness dz at a depth z below the plane of equal settlement must equal 

dXi = (Vz/BdEp) dz. (28) 
Similarly, the vertical compression of a thin horizontal slice of the exterior prism 

with thickness dz at a depth z below the plane of equal settlement must equal 
dXe = (V^/BdEp) dz. (29) 

Substituting in Equation 28 the value of V 2 from Equation 9, in which the negative 
s^ns have been employed, and Integrating between the limits 

Xi = 0 for z = 0 
Xi = X̂  for z = 

one obtains after rearranging terms 

>. - ^ B ' ^ 1 -(2Ketan<t.e)-^ 2c£^x tmA " H • 
M - E f (ZKetan+e)' ^ ^ ^ Bd - ^ ) - 2Ketan+e ( Bd ' J * 

[2Ketan4,e ( ^ ^ ^ ) + d - ^^){(^«e^^*e)(^)- l ) ] • 

To evaluate the conditions of static equilibrium are considered for a thin slice of 
the exterior prism with a thickness dz at a depth z below the plane of equal settlement 
(Figure 7). The conditions that the sum of the vertical forces that act on the slice must 
equal zero can be expressed by the equation 

TfBddz + (Cg + Ke | | - tan+g) dz + - - dV^ = 0, (31) 
or 

dVjj = (7Bd + Cg + Kg tan+g) dz. (32) 

Substituting in Equation 32 the value from Equation 9 and integrating between the 
limits 

= (H - Hg) 7Bd for z = 0 
V i . = V ^ for z = z 

(30) 
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or, since H - He = H' - H^, between the limits 
= (H' - Hfe) YBd for z = 0 

V i = V ^ for z = z 

or 

one obtains after rearranging terms 

V z = ^ ^ ^ j | . ( 2 K e t a n * e ) ( ^ . 5 ^ ) 

. 1 [ e - ( 2 K e t a n , e ) ^ { ( . K e t a n ^ e K ? ^ ) - d - . d - ^ ) ] . 

= 1 5 f ^ , [ § ( 2 K e t a n + e ) ( « : ^ ^ ^ ) ] " 5 V,- (33) 

Substituting in Equation 29 the value V 2 f rom Equation 33 one obtains 

or, f rom Equation 28, 

Integrating between the limits 
Xe = 0 ^ i = 0 for z = 0 
Xg = Xfe Xj = XJ for z = 

one obtains after rearranging terms (35) 

(2KeL^e)^ ^ [ ( 2 K e t a n + e ) ( ^ ^ ) 4 (2Ketan+e)^ ] | (2Ketan+e) ̂  - ^ J -

Since the loose material in the ditch is considered to obey Hooke's law, the vertical 
compression of the prism within the distance Hd due to the vertical pressure V 2 = H ' s 
on top of the ditch is 

«d = ^ ^ g p p - • Hd- (36) 

Substituting z = in Equation 9 and since H - He = H* - one obtains 
H I , 

Hence, Equation 36 becomes 

(38) 

Substituting the values of X ,̂ X^, and s^ from Equations 30, 35, and 38 in Equation 27 
and letting 

v- = (2Ketan+e) ̂  , (39) 

u- = (2Ketan+e) ̂  , (40) 

w ' = (2Ketan+e)^ . (41) 
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one obtains after collecting terms 

.3 uM- + £ s a S l ) n . 2£e w / 3 rgjjwlw , . i . 2ce_x 
^, J ? " r^^^' ^i*^:^'^^ yBd'^'z*^^'^'^ *^ IB^'^ . (42) 

( 3 , I ^ ) e - ' 4 ( u . - l ) 

Equation 42 governs the behavior of u' for a given installation and material. Since 
He = Hd + H^, it follows that u = u' + w'. Therefore, Equation 42 governs the behavior 
of factor u as well. A l l other quantities are independent variables in Equation 42. 

Factor u' can be obtained from the above equation implicitly. This, however, would 
be a cumbersome and time consuming operation for design purposes. Since v' is a single 
valued function of u ' , one may solve Equation 39 for v' and construct curves from which 
u' can be obtained in a reverse manner for a given installation and material. 

An inspection of Equation 42 wi l l show that if the denominator 

( 3 , £ ^ ) e - ' 4 ( u . - l ) 
approaches zero, v' increases without l imit . 

The physical significance of the above is that for a given material and conduit width, 
if the f i l l is made very high, factor u' and, accordingly, the height of arching, Hg, does 
not depend on the cohesion and the unit weight of the material. 

Hence, no matter what the values of cohesion or the unit weight of the material are, 
for infinitely high f i l l s , the height of arching Is governed by the equation 

( | + £ s d w : ) e - " ' + | ( u ' - l ) = 0. (43) 

It should be noted that in Equation 42 u* can be larger in magnitude than v' for certain 
conditions. However, physically, u' is limited in the region 0 < u' < v ' because the 
height of arching. He, can vary only in the region Hd < He < H. 

If u' is mathematically larger than v ' , the plane of equal settlement becomes imaginary. 
In such case, a trough-like depression appears at the surface of the embankment directly 
above the conduit. 

If u' is mathematically smaller than v ' , then the arching effect does not extend along 
the whole f i l l height. Consequently, the plane of equal settlement wi l l be below the top 
of the embankment, and no settlement wi l l be noticeable at the surface. 

The above discussion holds for both imperfect ditch and negative projecting conduits 
because no differentiation was made between the stiffness of the thoroughly compacted 
material and the stiffness of the natural ground in the above theoretical treatment. 

In the case of a ditch conduit: 
Hd = He = H. (44) 

Substituting Equation 44 in Equation 18 one obtains as the load expression for a ditch 
conduit and an s = c + a- tan^ material 

^ VB^ / I 2ce 
c*2Ketan4.e ^ ^ ' m 
n 23. 

_ = v, and substituting in 

If H » l 

(45) 

which is identical to Equation 23. 
Letting (2Ketan<|)e) H/Bd = v, and substituting in Equation 45 one obtains 
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from which „ 
Cn = ( l - e " ^ ) . (48) 

The method of utilizing dlmenslonless factors reduces the number of Independent var
iables in any problem and facilitates the mathematical computations considerably. There
fore, in the subsequent analysis their use wi l l be extensive. 

Since u = w' + u' and H - He = H' - Hfe in imperfect ditch and negative projecting con
duits, by substituting the dimensionless factors of Equations 39, 40, and 41 in Equations 
18 and 19 one obtains, respectively 

* C - 5 K & i [ ( ' • - « ' ) - » - , ^ ) ] * < ' - , ^ ) j (49, 

C . . e - « V » - [ „ . - u . , - , . - ? ^ , ] . a - , ^ , . ,50, 

As has been discussed previously, if either of the two exponents w' and u' in Equation 
50 are large enough, Cn wi l l approach the value 1 - (2ceABd). 

Factor u' is governed by Equation 42 in which many independent variables must be 
determined in order that this factor can be evaluated. 

Factor w', however, is an independent variable in Equation 42 and depends only on the 
properties of the material, the width of the conduit, and the height of the ditch on top of 
the conduit. Therefore, for a given material and width of conduit, if the height of ditch 
is made large enough so that w' 3>1 then the load on top of the conduit wi l l be 

^ c - , i S i ^ ( l - , ^ ) . (51) 

which is identical to Equations 23 and 46. 
Again, if the cohesion of the material that is mobilized along the sliding planes is 

equal to Ce =JVBd theoretically there should be no load on top of the conduit. 

Equation 42 may be written also (52) 
(3 ,lsmlni . e - ' ) - I u. =2B4 ( ( | . M : ) [ l . ( V - u - - l ) e - " ' ] - | u - - . H | v (u' - 1) 

* ( Ce 
If Ce is allowed to increase without limit, the left hand member of Equation 52 wi l l 

approach zero. Hence in the limit one obtains 
{ | . ^ ' ) ( l . e - " ) - | u ' = 0 . (53) 

Equation 53 may also be written 3 , 

e = 1 - a • (54) 

From Equation 53 or 54 it can be seen that for all real values of the parameter rsdW'A'. 
the only solution of Equation 54 is u' = 0. 

One may conclude, therefore, that 

l im u' = 

In a similar manner it can be shown that 

(55) 

I—» 00 
and 

lim u' = 00 , (56) 
rsdw'l 

l im u' = 0 (57) 
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The physical significance of Equations 55, 56, and 57 is as follows: 
(a) The higher the amount of cohesion that is mobilized along the sliding planes, the 

lower wi l l be the height of arching. However, in such case the quantity 1 - (2ce/'VBd) 
becomes the predominant factor in the general load equation. Therefore, although in the 
same equation the descendii^ exponential e""̂  w i l l become maximum for an infinite a-
mount of cohesion, the load on top of the conduit, as it has been discussed in the previous 
section wi l l vanish. 

(b) . For a given Installation and material, the height of arching He varies directly 
with the settlement ratio rg^, the height of the "ditch on top of the conduit, Hd, and the 
relative stiffness between the compacted f i l l material and the loose material in the ditch, 
which is expressed by the ratio 1/a'. Therefore, the larger the above quantities are, 
the higher wi l l be the height of arching and, consequently, the lower wi l l be the load on 
the conduit. 

From the above discussion it can be seen that if w' is made large enough, not only 
w i l l the exponential e-W decrease, but the exponential e-u' wi l l also decrease. 

As it was pointed out previously, from a physical standpoint, u' cannot be larger than 
v' even if the quantity rg^w ' / i ' increases without limit. Therefore, for a given installa
tion and material, u' is bounded by the condition u' = v ' . 

Substituting the above in Equation 42, one obtains for a given installation and mate
rials the maximum f i l l height for which the material on top of the conduit wi l l brace i t 
self against the adjacent mass along the whole f i l l height in a similar manner as in a 
ditch conduit. 

Hence, for u' = v' 

( § * ^ , e - ' ' * | ( V - l , 

or, after collecting terms 

| v ' ^ - | v ( l - ^ „ ^ ) g-v ^4 2 TfBd_ ^ 1 (58) 
(1 2ce w3 rsdw'v 

7Bd 
from which v' may be obtained by successive trials. 

(c) If the ditch material, the conduit, and the conduit foundation have an over-all stiff
ness that is equal to the stiffness of the adjacent masses, the middle prism wi l l settle 
the same amount as these masses. Consequently, there wi l l be no arching effect. 

Since the material in the ditch behaves like the adjacent masses, no distinction can 
be made between the two materials; consequently, w' = 0 and u' = u = 0. 

Substituting the above in Equation 18 and since v' - u' = v - u and v = (2Ketan<t>e) H/Bd 
one obtains 

Wc = "VBdH = W when rgdw'/a' = 0, (59) 
which is identical to Equation 15. 

Evaluation of u for Mined-In Conduits 
In this treatment case (a) of Figure 6 wi l l be considered to be the general case. Cases 

(b) and (c) can be treated in a similar manner if the quantities involved in the expressions 
derived for case (a) are modified accordingly. 

Let Figure 8 represent a mined-in conduit installed through cohesive material with its 
lower part located within an exceptionally stiff layer of clay between soft layers. The 
same notation is employed as in previous sections with the addition of the following: 

H Q I = thickness of the stiff layer on either side of the conduit, f t . 
Xj = compression of the interior prism between the top of the conduit and the plane 

of equal settlement, f t . 
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stiff Layer 

-Before Settlement 
-After Settlement 

compression of the exterior prism 
between the top of the conduit and 
the plane of equal settlement, f t . 
compression of the stiff mass on 
either side of the conduit within 
the distance Hm, ft-
settlement of the foundation sup
porting the stiff layer, f t . 
settlement of the mass supporting 
the exterior prisms, f t . 
settlement of the mass support
ing the interior prism, f t . 
settlement ratio = [(sm + si)-
(dc + Sf)]/sni. 
modulus of deformation of al l 
other material on top of the con
duit except the stiff layer on its 
sides, lb. per f t . per f t . 
modulus of deformation of the 
stiff mass within the distance H I Q , 
lb. per f t . per f t . 

a = Em/Ef. 
The assumptions made in the case of 

covered-iqi conduits are modified in order 
that the subsequent analysis can be made. 
Thus: 

Sm + SI 

dc + sf 

'sm 

E, 

E m 

Figure 8. Force diagram for a mined-in 
conduit. 

(a) The average behavior of the material surrounding the conduit is such that it may 
be considered to obey Hooke's law when subjected to compression. Thus, the moduli Ef 
and Em are assumed constant within any region occupied by their respective materials. 

Co) The settlement ratio rgjQ is considered constant throughout the life of the conduit. 
Assumptions (c), (d), and (e) are the same as in the case of covered-up conduits. 

Assumption (e), however, should be modified to include the stiff mass on the sides of the 
conduit instead of the loose mass within the ditch on top of a covered-iq) conduit. 

In addition to the above: 
(f) In setting up the expression for Sm> the friction between the sides of the conduit 

and the stiff layer is neglected to simplify the mathematical computations (Spangler, 
1950b). 

As in the previous case, for the evaluation of u one considers the relative deformation 
of the interior and exterior prisms. The over-all settlement of the interior prism at the 
plane of equal settlement must equal the over-all settlement of the exterior prism at the 
same plane. Hence 

Xi + dc + sf = Xe + Sm + SI 
or 

Since 

Equation 60 may be written 

Xi = Xe + Sm + SI - (dc + Sf). 

rsm = [(sm + si) - (dg + Sf)] /sm. 

(60) 

(61) ^ i = ̂ e + Tsm • Sm-
To evaluate Xi one substitutes in Equation 28 the value of from Equation 9 employ

ing the negative signs, and integrates between the limits 
Xj = 0 for z = 0, 

Xi = Xi for z = He • 
Rearranging terms and letting 

(2Ketan+e) H/Bd = v, (62) 
(2Ketan+e) He/B,, = u, (63) 
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(2Ketan<|.e) Bm/B^ = (64) 
one obtains 

= ^ - 7 % ) - - ")] ^ - V % ) ( " - 1) - (V - u ) ] j . (65) 

Similarly, by substituting Equation 33 in Equation 29 and integrating between the l im-
Xg = 0 Xi = 0 for z = 0 
Xg = Xg Xj = Xj for z = Hg 

one obtains in terms of the dimensionless factors v and u defined from Equations 63 and 

^ e = ^ f 2 K ^ , . j | ( v - ^ u ) u } - ^ X i . (66) 
Since the stiff mass within the distance Hm is considered to obey Hooke's law, the 

vertical compression of the prism of width Bd and height Hm, due to the vertical pres
sure Vz = He ° " °^ layer, is 

Sm = (V'z = Hg/BdEm) Hm • (67) 
Substituting z = Hg in Equation 33 and since H' - H^ = H - He, one obtains in terms 

of the dimensionless factors v and u 

V z . H e = , a ^ j ^ - ^ - ' ' { [ ( v - u ) , .8 , 

Substituting in Equation 67 the value for V z = Hg ^^oi" Equation 68 and, since Em = <iEf 
and 2Ketan<|>g = w one obtains 

^ M - ^ i a t i ? ) - 1 l l ' - 5 { ' " " [ " - " ' - » - v T | ' ] * < ' - f e ' } S -
Substituting in Equation 61 the values X ,̂ Xg, and Sm fi'om Equations 65, 66, and 69, 

respectively, one obtains after rearranging terms 
^ . ' I ° ' - (3 - ^ X . W 3 - )(u . . • ^ ) 

( 3 - £ 5 1 I l E ) e - ° * 3 ( u - l t - I S f f i ? ) a a 

Equation 70 governs the behavior of u for a given installation and material in the case 
of a mined-in conduit. The same equation may be used in the case of positive projecting 
conduits if their side supporting material has been thoroughly compacted. 

As in the case of covered-up conduits, u may be obtained from curves that have been 
constructed by solving Equation 63 for v. 

It can be seen for this case that again, for infinitely high f i l l s u does not depend on 
the cohesion and the unit weight of the material but is governed by the equation 

( 3 - £ s i s W ) e - " + 3(u_ i+£aiaW) = 0. (71) a a 

By following the same method of approach applied to covered-up conduits, it can be 
shown also that 

l i m u = 0 
Ce -* CO 

a 

('*) 
a 

Again, physically, u is bounded by the condition u = v. 
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Substituting u = v in Equation 70 one obtains 

(3 - ^ ^ V) - (3 - £ ^ ) ( 1 - ^ ^ ) . (3 - £ ^ ) ( v . 1 -^^e) e-v 

( 3 - £ ^ ) e - ^ + 3(v- l + I ^ ) 

- v _ ^ v J^H^ yS^I — 5 — J + 1 . ( 7 5 ) 

( l - ^ ^ « ) ( 3 - ^ ) 

From Equation 75 one may obtain for an s = c + o- tan<fr material, the maximum height 
of the mass on top of a mined-in conduit for which the arching effect wi l l extend as far 
as the ground surface thereby causing a trough-like depression to appear at the surface 
directly above the conduit. 

From Relation 74 and Equation 18 one may see that, as in the case of a covered-up 
conduit, if the over-all stiffness of the body furnishing support to the middle prism e-
quals the stiffness of the mass supporting the exterior prisms above a mined-in conduit, 
there wi l l be no relative settlement between the interior and exterior prisms and, con
sequently, there wi l l be no arching effect. Consequently u = 0 and the load on top of the 
conduit wi l l be 

Wc = "VBdH = W when rsm^/a = 0, (76) 
which is identical to Equations 59 and 15. 

In both cases of covered-up and mined-in conduits the corresponding settlement ra
tios rgd and rgjQ are empirical quantities and must be determined by direct measure
ment. Since in either case the interior prism subsides a greater amount than the ex
terior prism, both quantities are negative. 

A positive settlement ratio would indicate that the reverse action has taken place in 
the relative subsidence of the masses on the top of the conduit. Under such circum
stances, conditions corresponding to Case I would be present, which, as it has been 
discussed previously, is very undesirable because of its detrimental influence on the 
conduit. Therefore, every effort must be made in the design and construction of an un
derground conduit in order that the settlement ratio of the masses above it remains 
negative at al l times. 

Both settlement ratios were defined originally by Dean Anson Marston (1922) and 
Professor Spai^ler (1950b) of Iowa State College in their theoretical treatment of covered-
up positive and negative projecting conduits Installed in a granular material. To avoid 
confusion, the writer has adopted the same definitions in his treatment of the general 
case. However, he believes that if both ratios had a common denominator, say d .̂, 
which would always be a positive quantity, then the two cases could have been united into 
one general treatment. Furthermore, if both ratios were defined in such a manner that 
they would be positive quantities, the mathematical treatment and the resulting expres
sions for all cases would have been much less complicated. 

The employment of the shortening of the vertical dimension of the conduit, dc, as a 
denominator in the expressions for settlement ratios would also tie in the height of arch
ing and, consequently, the load expression, with the stiffness of the conduit and the dis
tribution of external pressure on its sides and bottom. Consequently, the resulting load 
expression would have been also a function of the support which the side material can 
furnish to the conduit, as well as of the stiffness of the conduit. Such treatment, how
ever, is beyond the scope of this paper. 

The Analysis of the General Case as Applied to an s = o- tan<t) Material 
The theoretical relations describing the loading action of a perfectly cohesionless 

material on top of undergroimd conduits can be deduced from the expressions derived 
for the general case in which the loading agent is an s = c + <r tan<t> material, by taking 
the limits of these expressions when Ce is allowed to approach zero. Thus: 

1. From Equation 10 the general load expression for an s = o- tan«t> material wi l l 
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become 

from which „ 
C = e-(2Ketan+e) f j - [ ( 2 K e t a n * e ) ( S ^ ) ^ 1 ] ; 1 . ' (78) 

In terms of the dimensionless factors v and u, the above equations may be written 
respectively ^ 

J c J = , K ^ | e - [ ( v - u ) t l ] ; i [ (79) 

C = e " [ ( v - u ) ^ i j + 1 . (80) 
In the event that the interior prism subsides less than the exterior prisms, which 

was defined previously as Case I , the positive signs should be used in Equations 77 
through 80. Hence, in terms of the dimensionless factors v and u, one obtains 

Wc = ^ J ^ j e - ( v - u . l ) - l [ (81) 

Cp = e*"(v - u +1) - 1 . (82) 
From the above equations one may conclude that Case I wi l l be just as detrimental to 

an underground conduit installed under an s = r tan^ material. 
In the event that the interior prism subsides more than the exterior prisms, which 

case was previously defined as Case I I , the negative signs should be used in Equations 
79 and 80. Hence, in terms of the dimensionless factors v and u, one obtains, respec
tively 

Cn = e " (v - u - 1) + 1 . (84) 
K u » 1 , e wi l l become negligible. Hence; 

Cn* 1 
and 

^ . (85) . ^ C Q « 2Ketan+, 

Equation 85 is identical to the expression derived Terzaghi for the pressure on 
top of deep tunnels through dry sand, i . e., for Case c of Figure 6. ' 

For a ditch conduit, Hd = He = H. Hence, u = v and Equation 83 becomes 

W S „ - a & <•-"''• <«' 
As in the case of an s = c + n tan<̂  material, if the height of the f i l l is large enough 

so that v = (2Ketan<^e) H/Bd ^ ' ^ becomes negligible and the load on top of the con
duit approaches the value 

Ce = 0 
given by Equation 85. 

For either a negative or an imperfect ditch conduit, since u = w' + u' and H - He = H' 
^Equations 77 and 78 are identical to Equations 11 and 12 obtained by gpangler. See 
References, Spangler (1950b), p. 24. 
'Terzaghi, op. c i t . , p. 196. 
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Equations 83 and 84 may be written, respectively, as 
and 

Cn = e'^'e""' (v* - u' - 1) + 1 . (88) 
Because of the descending exponential functions e'^ and e"" , if either w' or u' is 

large enough, Cn wi l l approach one and the load on top of the conduit wi l l be given by 
Equation 85. 

Since w' = (2Ketan<|)e) Hd/Bd, i t follows that for a given material and width of ditch, 
if the height of ditch is made large enough so that w' » 1 , the conduit load wil l be 

2. The equation governing the behavior of u' for a covered-up conduit may be obtained 
by taking the limit of Equation 42 when Ce is allowed to approach zero. Thus 

, | . - - ( | . £ g g ) . ( | . r g g l ) ( u w i ) e - " ' . , 3 , , 

Similarly, the equation governing the behavior of u in the case of a mined-in conduit 
may be obtained by taking the limit of Equation 70 when Cg is allowed to approach zero. 
Thus 

3 , . . ( 3 - £ s ^ ) . ( 3 - ^ ) ( u . l ) e - « (90) 
l im V = 

C e - 0 ( 3 - I § m W ) e - " + 3 ( u - 1 + J M ' ) 

By inspection it can be seen that if the denominator of the right hand member of the 
above equations approaches zero, factors v' and v wi l l increase without limit. 

Hence, for a given material, if the mass on top of a conduit is infinitely high, u' and 
u wi l l be governed by the equations 

( | + £ ^ ) e - " ' + | ( u ' - l ) = 0 (91) 

and 
(3 .ISS^) e"" + 3(u - 1 ) = 0 (92) a a 

respectively. 
Equations 91 and 92 are respectively identical with Equations 43 and 71 which had been 

derived for infinitely high masses consisting of s = c + o- tan+ material. One may con
clude, therefore, that for very high earth masses on top of either covered-up or mined-
in conduits, the influence of the cohesion of the material on the height of arching is negli
gible and an s = c + o- tan<̂  material wi l l behave like a perfectly granular material. Since 
the general load equation depends primarily on the height of arching it follows that for 
very high masses consisting of s = c + o-tan )̂ material, the conduit load may be computed 
as for an s = o- tan<̂  material. The error due to neglecting the cohesion, besides being on 
the safe side, wi l l be negligible. 

What constitutes a very high earth mass wi l l depend not only on the height, H, but on 
the factors 2Ketan<|ig and Bd as well, because v = (2Ketan<|>e) H/Bd-

3. As in the general case of an s = c + o- tan<̂  material the following relations can be 
established for an s = o- tan<|> material: 

(a) l im Wc = 0. 
ce= 0 (93) 

^ 9 0 -
"Equations 89 and 90 are respectively identical to Equations 18 (Spangler, 1950a, p. 158), 
and 18 (Spangler, 1950b, p. 28). 
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(b) In the case of a covered-up conduit: 
l im u' 

I rsdW • 
I * 
lim u' = 0, 

(95) 
rsdW _ 0 

a 
(c) In the case of a mined-in conduit: 

l im u = 00 , 

l im u = 0. 
r w (̂ "̂ ^ 

a 

As in the general case u' and u are physically bounded by the conditions u' = v ' , and 
u = V respectively. 

The maximum height of a mass of a perfectly granular material above an underground 
conduit for which the arching effect wi l l extend as far as the surface of the mass causing 
a trough-like depression to appear on the surface may be obtained by substituting u' = v' 
and u = v in Equations 89 and 90 respectively. 

Thus, for a covered-up conduit one obtains after rearranging terms 
3 , 2 3 , 

e"^ =^ ^ + 1 . (98) 

For a mined-in conduit „ 
, 3 v [ l ^ - l ] 

g-v = l _ l _ i Z E I _ i _ + 1 - (99) 
3 _ rsmw 

a 
From relations 95 and 97 and by applying the same reasoning as in the general case 

it can be shown also that 
l i m Wc = VBdH = W, (100) 

ce= 0 

a' 

hm Wc ="YBdH = W. (101) 
ce= 0 

a 

The Analysis of the General Case as Applied to an s = c Material 
As m the previous section, the theoretical relations describing the loading action of 

a perfectly cohesive material on top of underground conduits may be deduced from the 
general case liy taking the limits of the expressions derived from an s = c + <r tan<|) ma
terial when i)>e is allowed to approach zero. Thus: 

1. From Equation 10, the general load expression for an s = c material wi l l become 
equal to 

lim Wc _ ^ r , 2 ^ j / H - J k . ^ 4 . n + 2ce V He /,02^ 
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c = ( i m ^ ) . ( i t | ^ ^ ) i ^ . (103) 

H/Bd = vo, H'/Bd = v'o, 
He/Bd = U Q , H'e/Bd = U ' Q , 
Hm/Bd = Wo, Hd/Bd = W ' Q , 

Substituting in Equations 102 and 103 one obtains 

W c = T f B | j ( v o - U o ) + ( l i „ ^ ) u o , (104) 
and 

C = (vo-Uo) + ( l i | ^ ) u o (105) 

respectively. 
In the above equations the positive signs should be used in the event that the interior 

prism subsides less than the exterior prisms, and the negative signs in case the reverse 
action takes place. 

Hence, if Case I obtains 

and 

If Case I I obtains 

Wc = YB d̂ j (vo - uo) + (1 + Y % ) "o j (106) 

Cp = j (vo-uo) + ( l + ^ ) u o j . (107) 

Wc = >B*d j (Vo - vio) + (1 - ) "o I (108) 

n = j(vo-Uo) + ( l - . ^ ) u o [ . (109) 

From the above equations, it can be seen that the conditions for Case I are just as 
undesirable for an s = c material as for an s = c + crtan<̂  or for an s = o- tan<|) material. 

For a ditch conduit, since Hd = He = H, 

Wc.= ^ B ^ d ( l - | ^ J ^ . (110) 

*e 
and 

ê 
or 

^"i=0 TfBd'Bd 

Hence, if ce , 
Wc = 0. (112) 

Equation 112 is similar to Equation 24. 
For a negative or an imperfect ditch conduit, smce He = Hd + H'e and H - He = H' - H'e, 

Equation 102 may be written 

Wc = -yB'd i ( ^ ^ T ^ ) + (1 - 1^ )("V "'^ ) ! ' ("3) <|)=n ^ d ^Bd Bd 

or 

W c = T ( B * d ( l - f e ) v o . ( I l l ) 
V O "VBd 

^„c^ r Bd ' • 7Bd' 

Wc = yB'd (Vo - u'o) + (1 - ) ( " o + w'o) j . (114) 
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in terms of the dimensionless factors v'o, U ' Q , and W ' Q . 
2. The equation governmg the behavior of U'Q in the case of a covered-up conduit may 

be obtained f rom the general case as follows: 
Equation 42 may be written also 

/3 ,a 3 c e „ , V /3 rgdw'w, 2cex . /3 rg j jw 'w . -u' 

Applying L'Hospital's rule twice on Equation 115 and letting approach zero one 
tains o ^ 

3 „ , 2 TsdW 
l im v'o _ 2ce 1 ° a' 
<t>e-»0 ~ " -YBd rsdw'o 
l i m v ' o _ 2 c e (116) 

a 
from which 

Isdwij. 1 t V i T ^ r f w ' ! ^ 2ce j . (117) 
TfBrf 

, 2 
u'o = 7 

3 a , 
Similarly the equation governing the behavior of U Q in the case of a mined-in conduit 

if Equation 70 is written in the form 

H 1 . ( | u - - | ^ u ) - ( 3 - £ ^ ) ( l - ^ ^ ) . ( 3 - I s m W ) ( u . l - | g ^ ) e - " 

Bd 2Ketan+e (3 - I s m ^ j e - " + 3(u . i + £ s i i } W j ( n g j 
<L a 

If L'Hospital's rule is applied twice on Equation 118 and <t>e is allowed to approach 
zero one obtains 

2ce l "o4 l imvo = - ^ ^ " t ' (119) 

from which , I 12vo 
"o = I ^ ^ S ! E Q j . 1 t V 1 - rsmwo • 2ce . (120) 

By inspection of Equations 117 and 120 and by noting that Tgj and rgm are negative 
quantities the physical meaning of these equations can be interpreted if written as follows 

u'o = I M i l j 1 - J l - r s d w ^ ° 2 c i - j (121) 
* a' - ^ B H 3v'o 

for all values of rsdw'p 2ce ' 
^Bd 

a "VBd 

for 

and 

for 

12vo 
rsmWp 2ce" 

a 7Bd 
^ 0 , 

Up = 0 
12vo 

rsmwo 2ce 
a 7Bd 

(123) 
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3 . From the above equations the following relations can be established for an s = c 
material: 

(a) l im Wc = - oo . ( 1 2 4 ) 

«l»g=0 
Cg-« <D 

(b) In the case of a covered-up conduit: 
l im u'o = 0 , ( 1 2 5 ) 

Cg-» 00 

l im u'o = " , ( 1 2 6 ) 

rsdw'o 
a' 

l im u'o = 0 . ( 1 2 7 ) 

rsdw'o _ 0 
0.' 

(c) In the case of a mined-in conduit: 
l im Uo = 0 , ( 1 2 8 ) 

Cg-, 00 

l im U Q = 00 , ( 1 2 9 ) 

r s m W o U ^ 
a 

l im Uo = 0 . ( 1 3 0 ) 

a 
As in the cases of s = c + <r tan+ material and s = a tan<̂  material, U ' Q and U Q are 

bounded by the conditions u'o = V ' Q and U Q = Vo, respectively. 
The maximum height of a mass of s = c material above an underground conduit for 

which the arching effect wi l l extend as far as the surface of the mass causing a trough
like depression to appear on the surface may be obtained by substituting U'Q = V ' Q and 
U Q = V Q in Equations 1 1 6 and 1 1 9 , respectively. 

Thus for a covered-up conduit one obtains after rearranging terms: 

For a mined-in conduit: 

From Relations 1 2 7 and 1 3 0 and by applying the same reasoning as in the general 
case, it can be shown also that 

l im Wc = "VBd H = W, ( 1 3 4 ) 

V O 
^Sd '̂o -> 0 

a 
l im Wc = "»Bd H = W. 

• e = 0 
Issa^ 0 ( 1 3 5 ) 

From Equations 1 0 2 , 1 1 7 , and 1 2 0 , it can be seen that the load on top of underground 
conduits installed under a purely cohesive material is independent of the pressure ratio 
K. 
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Construction of Load Curves for a Covered-Up Conduit Installed Under an s = o- tan<̂  
Material 

The purpose of the construction of the following families of curves is to facilitate the 
computation of load on top of covered-up conduits if the loading agent is an s = a tan<t) 
material. Curves to estimate the earth load on top of mined-in conduits can be con
structed in a similar manner. 

The presentation of these curves wi l l follow the same sequence as the order in which 
they would be used by a designer to make a load estimate for a given installation and 
material. 

1. Factor Ktan<^ has been plotted against the angle of internal friction <|) for various 
values of the equivalent hydrostatic pressure ratio K = KQ. (Table A and Figure A in the 
Appendix). 

The upper boundary of this family of curves is the curve Kptan<t> which is obtained if 
K assumes the upper limiting value, Kp = tan* (45° + <|)/2) for a passive state of plastic 
equilibrium. 

The lower boundary of the same family of curves is the curve Kŷ tan(|> which is ob
tained if K assumes the lower limiting value, K A = tan*(45° - +72) for an active state of 
plastic equilibrium. 

Kg can be obtained by constructing an equivalent pressure ratio diagram similar to 
F^ure la. The value may be considered to be a fraction of the maximum value of the 
angle of internal friction of the material. This fraction wi l l depend on the desired factor 
of safety for the particular project. 

2. By solving Equation 89 for v' , curves were prepared showing the relation v' versus 
u' for various values of rgdw'/o'. From these curves, which are not presented in this 
paper, u' was plotted against rgdw'/a' for various values of v' . (Table B and Figure B 
in the Appendix). 

The upper boundary of this family of curves is the curve for which u' = v' and it is 
obtained by solving Equation 98. 

The lower boundary of the same family of curves is the curve for which v' = oo, and 
it is obtained by solving Equations 43 or 91. 

From the given data of the project and the value Ketan<t>e obtained in Step 1, the values 
v' = (2Ketan«t)e) H'/Bd and w' = (2Ketan<|>e) Hd/Bd can be computed. 

From available records of previous installations, the settlement ratio rgd as well as 
the stiffness ratio a' = E L / E P can be estimated for a given installation and material. 
Hence, the quantity rgd w'/a' can be computed. Accordingly, u' can be obtained from 
the above family of curves. 

By substituting the obtained values of v ' , u ' , w' and 2Ketan<̂ e> in Equation 87, the 
load Wc can be computed. 

From the above curves i t can be seen that for a given finite value of rgdw'/a', as v' 
increases, u' decreases from a maximum value u' = v'max to a lower limiting finite 
value u'v' = <» • For values of v' less than v'max> ^' Is larger than v' in magnitude and, 
therefore, it becomes imaginary from a physical standpoint. 

From the above, the nature and extent of arching for a given material and ditch width 
can be visualized as follows: 

If the yield of the loose mass in the ditch induces a constant relative movement within 
the f i l l material above the top of the ditch, the shearing resistance of the material wi l l 
be mobilized along the whole f i l l height and wi l l oppose this movement. This action is 
called the "arching effect." During this action a visible, trough-like depression wil l 
exist on the surface of the f i l l directly above the conduit. 

If the f i l l height exceeds a maximum value Hmax> the arching effect wi l l extend up
ward to the surface below the top of the f i l l which is called, "the plane of equal settle
ment. " Above this plane no relative movement exists within the soil mass, therefore, 
no depression wi l l appear on the surface of the f i l l directly above the conduit. 

If the f i l l height increases without l imit , the height of arching wi l l approach a lower 
limiting finite value. 

3. To facilitate the computational part of the above described procedure, two other 
families of curves have been plotted as follows: 
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The load factor Cn may be written also: 

where 
Cn = 1 + e"* Cm (136) 

Cm = e""'(v' - u- - 1). (137) 
By substituting in Equation 137 the values for v' and u' from the family of curves 

presented in Step 2, Cm has been plotted versus v' for different values of rgdW/a' 
(Table C and Figures C and CI in the Appendix). 

The above family of curves makes possible the evaluation of the conduit load Wc 
without computing u' f i rs t . 

The upper boundary of these curves isthecurveforwhichrsdw'/a' =0. From Relation 95 
and the discussion involved in evaluating the general expression governing the behavior of 
factoru, it was shown that under such conditions, u' =Oandw' =0. Hence, v' =vandtheupper 
boundary wi l l be the curve Cm = V - 1 = v - 1. (138) 

Since u' is physically bounded by the condition u' = v' the above curves wi l l be bound
ed by the same condition. 

Letting u' = v' in Equation 137 one obtains 

Cm = -e'' ' ' (139) 
which, as it can be seen from Equation 86 is the corresponding Cm factor for a ditch 
conduit. Hence, the locus of the lower points of the above curves, is the Cm curve ob
tained for a ditch conduit. 

Since Equations 137 and 139 have obviously the same derivative with respect to v' at 
the point v* = u' , i t follows that the ditch conduit Cm curve is tangent to each one of the 
curves of the above family. Hence, at their respective v' = u* points, each one of these 
curves merges with the ditch conduit curve. 

From the above it follows that the process of arching as visualized in Step 3 is also 
mathematically continuous. 

It can be shown also that for a fixed value of rgdW/a' 

llmCm = » . (140) 
V ' 00 

whereas 
limCm = 0. (141) 
^sdW ^ „ 

CI 

4. By solving Equation 136, Cn has been plotted versus Cm different values of 
w' (Table D and Figure D). 

The upper boundary of this family of curves is the curve obtained for w' = 0. As it 
was previously shown, under such conditions 

M l = 0 and 

Therefore, 

Since 

a 

'm V - 1 and Cn 

V = (2Ketan<t.e) H/Bd, 

= 2Ketê n.fre * ^^^etan+e) H/Bd = TfBdH = W. 

The lower boundary of the same family of curves is the curve for which w' = o o . Un
der such conditions the second member of Equation 136 vanishes. Cm becomes equal to 
one, and the load assumes the value 

2Ketan4.e " 
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From the last family of curves one can see that the load on top of the conduit is great
ly influenced by the factor w' = (2Ketan<|>e) Hd/Bd-

Recapitulating, one can compute the load on top of covered-up underground conduits 
installed under a cohesionless material as follows: 

Given the material and the dimensions H, H^, and B^: 
(a) Estimate Ke, <)>e> rsd> and a'. 
(b) From Table A or Figure A obtain the value 2Ketan<t)e. 
(c) Compute factors, v' = (2Ketan<|>e) H'/Bd, W = (2Ketan<|)e) Hd/Bd, and rgdW/a'-
(d) From Table C or Figures C or CI determine the value of Cm corresponding to v' 

and rsdW/o-' computed in Step c. 
(e) From Table D or Figure D determine the value of C„ corresponding to the values 

of Cjn obtained In Step d, and w' computed in Step c. . ^ ^ 2 
(f) Substitute the value of Cn and 2Ketan<t>e in the equation Wc = Cn and 

compute the load. ® 
Althoi^h the above procedure utilizes three different charts for the load evaluation 

instead of one utilized in other publications, i t has the over-all advantage over the latter 
in that the same charts can be used for any kind of covered-up conduit installation. Load 
factor charts in other publications can be used for only one value of the quantities Ktani^, 
and Hd/Bd-

In previous sections it was shown that if factor v' = (2Kgtan<j)e) H'/Bd increases 
without l imit , u' = (2Ketan4>e) H'e/Bd is governed by Equations 43 or 91, 

( | , £ ^ ) e - " \ | ( u ' - 1 ) = 0, 

regardless of whether the material is an s = c + <r tan^ type or an s = o- tan<t) material. 
Hence, if factor 2Ketan^e is made large enough by proper construction methods and if the 
ratio H/Bd of the f i l l height to the width of the ditch is also large enough, the use of E-
quation 43 instead of Equation 42, for determining factor u' for an s = c + o- tan^ material, 
wi l l not result in a serious error. 

Under the above conditions, one may solve the load Equation 49 for an s = c + o- tan<̂  
material, by substituting the value of u' obtained from Equation 43. 

It can also be shown by numerical examples that under the same conditions, for the 
values of cohesion Ce up to Ce = 'YBd/2, an s = c + a- tan<̂  material may be assumed to be 
cohesionless and the error, besides being on the safe side, wi l l not be appreciable e-
nough to affect economy. Therefore, in such cases the above constructed charts may be 
used also for evaluating the conduit load for an s = c + o- tan^ material. 

If the construction of a high ditch with very loose material on top of the conduit is 
economically feasible, then factor w' =(2Ketan<|ie)Hd/Bd wi l l be large enough and, con
sequently, the exponential function e~n approach zero and the f i r s t part of the load 
factor Cn wi l l become negligible. Hence, under these conditions the load becomes inde
pendent of factor u' and it may be obtained either from Equation 23 or from Equation 85. 
However, U the construction conditions are such that w' is not large enough to make the 
f i r s t part of the load factor Cn negligible, the load must be computed by means of the 
appropriate equations. 

SUMMARY AND CONCLUSIONS 
I . From the construction point of view, underground conduits may be classified into two 
main categories: 

A. Covered-Up Conduits. 
Conduits belonging in this category are installed under artificial earth embank
ments that are constructed after the conduits have been assembled in place. 

B. Mined-In Conduits. 
Conduits of this category are installed by a mining process through natural earthen 
deposits. 

n . Mathematical relations have been derived, describing the loading action on top of an 
underground conduit of a material whose shearing resistance can be represented by the 
general Coulomb equation s = c + or tan^. 
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m . Theoretical relations governing the loading action of a perfectly cohesionless or a 
perfectly cohesive material have been obtained by taking the limits of the expressions 
derived for the general case when c or ^ are allowed to approach zero, respectively. 
IV. From the mathematical stanc^oint the earth load on tc^ of either covered-up or 
mined-in conduits can be evaluated by means of the same general expression 

Wc =^BdHeff 
•where: 

Wg = vertical load on top of conduit, lb. per lin. f t . 
y = unit weight of the material, pcf. 

Bd = effective width of the earth column above the conduit, f t . 
Heff = effective height of the earth column above the conduit, f t . 

V. The effective height Heff is a fictitious quantity and is a measure of the arching ef
fect that takes place within the earth mass above the conduit. Generally: 

A. If the mass directly above the conduit subsides less than the adjacent masses, the 
effective height, Heff, is greater in magnitude than the actual height of the mass, H. 
Accordingly, the conduit load wi l l be greater than the weight of the earth column di 
rectly above the conduit. This possibility has been defined as Case I . 
B. If the reverse action takes place, Heff is smaller in magnitude than H, and, con
sequently, the conduit load wi l l be less than the weight of the earth column above the 
conduit. This possibility has been defined as Case n. 
C. If no relative movement takes place within the earth mass above the conduit, Heff 
wi l l equal H and, consequantly, the weight on top of the conduit wi l l be equal to the 
weight of the earth column directly above it . 

VI . Case I has been shown to have detrimental effects on underground conduits regard
less of the type of overlying soil. Therefore, this condition should always be avoided by 
proper methods of design and construction. 

Case n with possibility C as a limiting condition is very advantageous and, conse
quently, the conditions for this case must always be sought by proper methods of design 
and construction. The theoretical analysis presented in this paper has dealt mainly with 
the factors influencing the conduit load when the conditions insuring the existence of Case 
I I have been realized. 

VII . From the analysis for Case U one may conclude that the effective height is the prod
uct of the effective width of the column of earth directly above the conduit multiplied by 
a function of dimensionless factors that depend: 

A. Directly: 
1. On the geometry of the installation. 
2. On the initial state and physical properties of the loading agent. 
3. On the he^ht of arching. He-

B. Indirectly: 
1. On the relative movement that takes place within the soil mass directly above 
the conduit. 
2. On the relative stiffness between the body supporting the soil prism directly 
above the conduit defined as the "interior pr ism," and the body supporting the soil 
prisms adjacent to the interior prism, defined as "exterior prisms. " 
3. On the construction methods and workmanship employed. 

Vm. Elaborating on Item VII , the following may be deduced from the mathematical anal
ysis for Case n: 

A. The higher the factor v = (2Ketan<|)e) H/B^, the higher wi l l be the effective height. 
B. The higher the factors 2Ketan<|)e, 2ce/'VB<i and u = (2Ketan<|>e) He/Bd, the lower 
wUl be the effective height. 
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C. For given values of v and 2ceABd, factor u varies directly with: 
1. Factor rgdw'/*' = rsd{EF/EL)(2Ketan<|)e) Hd/Bd for covered-up conduits. 
2. Factor rsmw/a = rsin(Ef/Eni)(2Ketan<|>e) Hm/Bd for mined-in conduits, or 
positive projecting conduits with their side supporting material compacted very 
thoroughly. 

Factors rgdW/a' or rgmw/a are measures of the relative yielding and the rela
tive stiffness between the supports of the interior and the exterior prisms in cov
ered-up or mined-in conduits respectively. Therefore, the larger in magnitude of 
these quantities, the higher wi l l be the factor u, or, for a given installation, the 
higher wi l l be the height of arching, Hg-

D. For fixed values of 2ce/'VBd, and given values of rgdw'/a' or rgmw/a, if V or v 
are allowed to increase without l imit , u' or u decrease respectively from maximum 
values u' = v'max or u = Vmax to limiting finite values u' = u'y' = a>oru = U y - a , , 
that are independent of the cohesion Ce. 

For values of v' or v smaller in magnitude than v'max °^ vmax> factors u' or u 
are respectively greater in magnitude than v' or v and, therefore, they do not have a 
physical meaning dimensionwise. 
E. For given values of v' and rsdW/a', or v and rgmw/a, if 2ceABd is allowed to 
increase without l imit, u' or u wi l l approach zero. Under the same conditions the 
effective height wi l l approach the value - «>. However, physically, the above height 
can approach only the value zero. Consequently, the load on top of the conduit wi l l 
vanish. 

IX. From a knowledge of the behavior of the physical factors that are involved in the 
aforementioned mathematical analysis, the following conclusions may be drawn relative 
to the development of earth pressure on top of underground conduits: 

A. The unit weight Y, the angle of internal friction <|> and the cohesion c of the load
ing agent are understood to have a statistical average value meaning. Local devia
tions from this value depend: 

1. In the case of covered-up conduits on the type of earthen material, the method 
of f i l l construction, and the water content of the f i l l material. 
2. In the case of mined-in conduits on the geologic history, the initial state, and 
the water content of the overlying natural earth deposit. 

B. Inasmuch as the potential sliding surfaces are not vertical planes but are in real
ity curved surfaces whose spacing is considerably greater at the top of the mass than 
it is at the top of the conduit, the shearing resistance of the soil is only partially mo
bilized along the assumed vertical planes in order to oppose any relative movement 
within the soil mass above the conduit. Consequently: 

1. Only a portion of the maximum value of the angle of internal friction of the soil 
is mobilized along the vertical planes. 
2. Only a portion of the maximum value of the cohesion of the material is mobi
lized along the vertical planes. 
3. The earth pressure ratio, K , wi l l never assume the extreme values K A and 
Kp that are realized respectively for active and passive states of plastic equili
brium, but i t wi l l vary between these two limiting values. 

To simplify the theoretical treatment of the problem, the above factors are as
sumed constant along the vertical planes and equal to ^Q, CQ, and Kg, respectively. 

C. The values of ^Q, CQ, and Ke depend on the type, the initial state, the permea
bility, and the strain characteristics of the soil as well as on the size of the mass 
and the rate of application of stress to it . 

From the foregoing it may be concluded that for a given installation and soil type, 
the construction methods and the workmanship employed, as well as time are major 
factors influencing 4>e, Ce, and Kg. 
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D. The strain characteristics of the material as well as the stress application men
tioned in Item C, depend on the settlement ratio defined as rgd for covered-up con
duits, and rgm for mined-in conduits. This ratio, which is a measure of the rela
tive yield between the support of the interior prism and the support of the exterior 
prisms, depends on time and varies directly with the relative stiffness between sup
ports. 
E. For a given installation and soil type, the greater the magnitude of the settle
ment ratio, the higher wi l l be the height of arching, He. 

Physically, Hg can be only as high as the height of the mass above the conduit, H. 
If numerically. He is greater in magnitude than H, a trough-like depression wil l ap
pear at the top of the mass directly above the conduit. This indicates that the soil 
mass along the sliding planes is being subjected to a greater amount of strain. 

If the above conditions are realized, the effective values <|>e and ce that are mobi
lized along the vertical planes wi l l approach the limiting values of ̂  and c and K wi l l 
approach the limiting value at the top of the mass. 
F. The maximum f i l l height up to which the surface of the f i l l may be expected to 
settle directly above an installed conduit can be obtained from Equation 58. 
G. Everything else remaining the same, as the f i l l height mcreases the height of 
arching decreases and a greater portion of the mass acts directly on the conduit. 
H. For very high f i l l s the influence of the cohesion of the material becomes negli
gible and the material acts as if it were perfectly granular. 

X. From the discussion of Item DC one may conclude that: 
A. In a Covered-Up Conduit: 

1. The better the gradation of the f i l l material and the more uniformly it is com
pacted, the greater wi l l be the values, "V , <l>, and c. 
2. The greater the relative stiffness between the support of the interior prism 
and the support of the exterior prisms, the greater wi l l be the relative movement 
within the soil above the conduit. Consequently, the greater wi l l be the amount 
of <|> and c that is mobilized along the vertical planes. If such conditions are re
alized, a greater portion of the load wil l be sustained by the shearing resistance 
of the material; hence, the pressure on top of the conduit wi l l be reduced. 
3. Since in the discussion of Item 2 it was indicated that the governing factor in 
the development of pressure on top of the conduit is the relative stiffness between 
the supports of the interior and exterior prisms and not the individual stiffness of 
each constituent part of these supports, i t follows that the more rigid the conduit 
is: 

a. The stiffer should be the side supporting material. 
b. The looser and the more compressible should be the material in the ditch 
directly above the conduit. 
c. The more yielding should be the foundation. 

4. The higher the ditch and the more compressible the material in i t , the higher 
wi l l be the equivalent earth pressure ratio Ke-

Since the shortening of the vertical diameter of the conduit is very small as 
compared with the compression of the material in the ditch, it follows that as this 
material is compacted due to the weight of the f i l l it subjects the side masses to 
compression. Consequently, K increases gradually from the minimum value it 
attains at the top of the ditch, to a maximum value at the top of the conduit. Thus, 
the value of the equivalent hydrostatic pressure ratio, Ke is increased also (Fig
ure 2c). 
5. From the mathematical analysis and the discussion of Item 4 it follows that 
the higher the ditch above the conduit and the more compressible the material in 
i t , the greater wi l l be the factor w' = (2Ketan<|)e) Hd/Bd and, consequently, the 
lower wi l l be the conduit load. 
6. The effective width Bd may be considered to be equal to the mean width of the 
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ditch above the conduit. 
7. The settlement ratio rgd can be determined by measuring directly the subsi
dence of the parts constituting the supports of the interior and exterior prisms. 
8. It may be concluded that: 

a. The side supporting material of a covered-up conduit should consist of 
thoroughly compacted, well- graded, granular material. 
b. The ditch material should be of a compressible type and it should be placed 
in such a way that i t wi l l be in the loosest possible state. 
c. The ditch should be made as high as economically feasible. In order that 
a sheeting and bracing operation be avoided during the construction of a high 
ditch, the following method may be adopted: 

The heavy equq>ment, which is compacting the material adjacent to the 
ditch, may follow a course perpendicular to the longitudinal axis of the con
duit. Each pass should end at lines pre-staked along the conduit axis and on 
both sides of the ditch. When the ditch sides become sufficiently high, the 
compressible material may be end-dumpedf rom the heavy equipment into the ditch. 

By the above method the ditch can be filled up with compressible material 
at the same time it is constructed. Therefore, i t can reach any desirable 
height with its sides remaining vertical. 
d. If Items a, b and c are fulfilled and should other considerations mdicate 
that they wi l l be more economical to use than flexible conduits, rigid conduits 
may also be installed safely under high f i l l s . 

B. In a Mined-In Conduit: 
1. The values <fr and c of a natural earth deposit wi l l generally be greater than 
the same values of an identical material that has been remolded and used as a 
f i l l material on top of a covered-up conduit. 
2. The greater the relative stiffness between the supports of the interior and 
exterior prisms, the greater wi l l be the corresponding settlement ratio; accord
ingly, the greater wi l l be the height of arching and the portions of ^ and c that 
are mobilized along the sliding planes. Consequently, the load wi l l be lower. 

The softer the layer of the soil adjacent to the conduit, the more flexible should 
the conduit be made so that it wi l l adjust its shape and thereby minimize the de
velopment of nonuniform external pressures. 
3. The effective width of the earth column on top of the conduit, Bdi depends on 
the relative stiffness between the material adjacent to the conduit and the remain
der of the mass above it. 
4. The load on top of mined-in conduits that are installed under a deep natural 
earth deposit consisting of as s = c + a- tan ̂  material becomes independent of the 
cohesion and may be evaluated by means of Equation 85. 
5. The maximum height of the mass up to which the surface of the mass should 
be expected to settle assuming a trough-like shape directly above an installed 
conduit can be obtained from Equation 75. 
6. In mined-in conduits the settlement ratio r g ^ can be determined only indi
rectly. In positive projecting conduits, however, it can be obtained by direct 
measurements. 

C. Generally: 
A good knowledge of the physical properties of the soils that are involved in a 

project is always necessary. Therefore, a good soil exploration of the site where 
the conduit is to be installed is imperative. 

The factor of safety can be applied to the values <t>e> and ce that are considered 
to be the developed fractions of the maximum values of the angle of internal friction 
and cohesion of the material. 

The value Kg wi l l vary with the method of installation and with the soil type. 
Tentatively, i t is suggested that for smaU depths of overburden its value be chosen 
between 0. 5 and K ^ ; for high depths its value be chosen between 0. 5 and 1.0 

The relative stiffness between the supports of the interior and exterior prisms 
should be made as high as possible. 
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Xn. Families of curves have been constructed from which the conduit load due to an 
s = c tan^ material can be computed. Under certain conditions these curves can be used 
to evaluate the conduit load due to an s = c + o- tamji soil type. 
XIII . In this investigation consideration has been given to pressures that act in the 
plane of a right, cross-section of the conduit with no allowance for variations caused 
by arching along the longitudinal axis of the conduit nor to tangential forces that act a-
long this axis. 

Since an underground conduit has the tendency to settle more in the middle than at 
its ends, the earth mass, which is above its middle portion, wi l l tend to brace itself 
against the end masses thereby increasing the normal pressure and the longitudinal 
strains at the ends and decreasing the pressure at the middle. The effects of such 
arching action wi l l be especially significant in the case of long conduits installed under 
high f i l l s . 

RECOMMENDATIONS FOR FUTURE STUDY 
In order to obtain a better understanding of earth pressures on underground conduits, 

the author believes that future efforts should be concerned mainly with the development 
of techniques by means of which the earth pressure exerted around the circumference 
of an underground conduit can be measured directly. From such information one wi l l 
be able to gather substantial information to: 

I . Evaluate the values (|>e, ce, and Ke for given installation conditions, 
n. Determine the magnitude of the lateral pressure that a precon:q)acted side s\xp-

porting material is potentially able to mobilize per unit of lateral bulging of the conduit. 
i n . Determine by rational means the type, the size, and the degree of precompaction 

of the side supporting material in order that a given conduit may not bulge excessively. 
IV. Develop a theory expressing the vertical load on top of the conduit as a function 

of the lateral pressures exerted by the side supporting material as well as the bottom 
reaction of the bedding material. 

V. Understand the arching effect on the earth mass above and along the conduit axis. 
VI . Obtain information on settlement ratios especially for mined-in conduits. 

v n . Permit the use of a substantially smaller factor of safety and thereby achieve a 
more economical design. 

In conjunction with the above discussion the reader is referred to a report prepared 
by the research department of the North Carolina State Highway and Public Wc" ks Com
mission (Costes and Proudley, 1955) in which an attempt to develop a technique for the 
direct measurement of the lateral earth pressures acting on a flexible culvert pipe in
stalled under a high f i l l is outlined. 
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Appendix 

Figure A. 
5* W 

T A B L E A 
V A L U E S O F Ktan+ FOR GIVEN V A L U E S O F K AND • 

5° 10° 15° 20° 25° 30° 35° 
• 

40° 45° 50° 55° 60° 65° 70° 75° 

0 158 0 178 0 189 0 192 0 190 0.182 0 171 0.159 0 141 0 125 0. 105 0. 085 0 063 158 
0.093 

0 107 0.137 0.187 
0.130 0.161 0.206 0. 280 

0. 143 0 173 0 215 0 275 0.373 
0 179 0.214 0. 260 0 322 0.412 0 560 

0 200 0. 238 0 286 0 346 0. 429 0 550 0 746 

0 210 0 252 0 300 0. 358 0.428 0 520 0 644 0 824 1.120 
0 231 0 280 0 336 0 400 0 477 0. 571 0.693 0.858 1 099 1 493 

0 182 0. 233 0 289 0 350 0.420 0 500 0. 596 0 714 0.866 1 073 1 374 1 866 
0 161 0 218 0 280 0 346 0 420 0.503 0 600 0. 715 0.857 1.039 1 287 1 649 2. 239 
0 214 0 291 0. 373 0 462 0 560 0 671 0 800 0 954 1 142 1 386 1 716 2 198 2 986 
0 268 0 364 0 466 0 577 0 700 0 839 1 000 1 192 1 428 1 732 2 145 2 748 3 732 

0 402 0 546 0 699 0 866 1 050 1.259 1 500 1 788 2 142 2 598 3 218 4 122 5 598 402 
0 728 0 932 1 154 1 400 1.678 2 000 2 384 2 856 3 464 4 290 5 496 7 464 

1 731 2 100 2 517 3 000 3 576 4 284 5 196 6 435 8 244 11 196* 1 
3 356 4 000 4 768 5 712 6 928 8 580 10 992 a 14 928a 

5 000 5 960 7 140 8.660 10 725* 13 740a 18 6603 
7.152 8 568 10. 392 = 12 870" 16.482 a 22.392 a 

0 455 0 742 1 147 1 731 2 583 3.860 5 827 8 995 14. 3693 24 123 a 43 649 a 88 378 a 215 333 a 

KA 
0 025 
0 050 
0 075 
0 100 
0 150 
0.200 

0 300 
0 400 
0 500 
0 600 
0 800 
1 000 
1 500 
2 000 
3 000 
4 000 
5 000 
6 000 
K p _ 

0 073 0 125 

0 087 
0 142 
0 177 

0 104 0 252 
Values of Ktanc^ beyond plotting range of Figure A 
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a 50 

v ' « ( 2 K e t a n « e ) H ' / B h 

U-:>(2Ketan«e) H l / B d 

W ' ( 2 K e » a n « e ) H d / B d 

rsd'Setti Ratio 

V'» I 00 

Figure B. 

60 rsdW 

T A B L E B 

V A L U E S O F u' FOR GIVEN V A L U E S O F V AND rsdw'/o' 

V' 0.0 -0 s -1 0 -1 5 -2 0 -3 0 -4.0 -5 0 -7.5 -10 -20 -30 40 _ 50 60 -70 
0.0 0 000 0 000 0 000 0.000 0 000 0 000 0 000 0.000 0 000 0 000 0 000 0 000 0. 000 0. 000 0.000 0.000 

v' = u' 0 000 1 234 1 680 2.000 2 260 2 693 3.043 3.343 3.975 4 495 6 058 7 243 8 200 9. 100 9. 888 10. 595 
1 0 0 000 . a - - - - - - _ _ _ _ _ _ _ _ 
2 0 0 000 0 794 1.210 2 000 - - - _ _ _ _ _ _ _ _ 
3 0 0 000 0 732 1.025 1.270 1.495 2 000 - - - - - - - - - -
4.0 0 000 0.708 0.970 1.170 1 347 1 658 1.960 2 265 3. 625 _ _ _ _ _ _ 
5 0 0 000 0 695 0.941 1 125 1 281 1 546 1 775 1.990 2 575 3 19 _ _ - _ 
6 0 0 000 0 687 0.925 1 100 1 245 1.483 1 688 1 875 2 280 2 69 - _ - _ _ 
7 0 0 000 0.682 0.915 1 085 1. 222 1 445 1 637 1. 799 2 163 2.49 3 95 _ _ _ _ 
8.0 0 000 0.677 0.907 1.070 1 205 1. 420 1 598 1 745 2 077 2 37 3 45 4.90 - - - -
9 0 0 000 0 674 0.90O 1 063 1.193 1 401 1 572 1 720 2 040 2.29 3 21 4 21 5 70 _ _ _ 

10 0 0 000 0 672 0 897 1 056 1.185 1 389 1. 550 1 680 1 978 2.23 3 04 3 85 4 80 6. 19 8 50 _ 

12 5 0.000 0 668 0.889 1.044 1 168 1 362 1 518 1.649 1 920 2 18 2 81 3.40 3 95 4 62 5 38 6 22 
IS 0 0.000 0 666 0 883 1.035 1.158 1.348 1 493 1 625 1. 875 2 08 2 69 3 18 3 62 4 04 4. 51 5 07 
20.0 0.000 0.663 0.877 1.026 1.145 1 327 1 475 1 589 1 831 2. 03 2.56 2 96 3 30 3 62 3 93 4 24 

30 0 0 000 0.660 0.870 1.016 1 133 1 309 1 456 1.565 1 778 1 97 2 45 2 78 3 05 3 29 3 51 3 71 
40.0 0 000 0 658 0 867 1.012 1.128 1. 301 1.441 1 545 1.765 1 94 2.40 2. 71 2 95 3 16 3 34 3 51 
50 0 0 000 0 657 0.866 1 010 1 124 1 298 1 437 1.535 1 750 1 93 2 37 2 66 2 90 3. 09 3 26 3.41 

100 0 0.000 0 655 0 861 1.005 1 117 1 283 1 419 1 525 1 728 1 92 2 32 2.59 2 79 2 96 3 11 3. 25 
m 0 000 0.653 0.859 1.000 1 110 1 278 1 408 1 514 1 718 1. 872 2.271 2.524 2.701 2 845 2 980 3. 065 

^ For these values of v' and rsdw'A' > u' is equal to v' physically 



TABLE C 
VALUES OF Cm FOR GIVEN VALUES OF v' AND rgdW/a' 

0.0 1.0 Z.O 3.0 4.0 ^ 5.0 6 0 7.0 8.0 9.0 10 

0.00 -1.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7 000 8.000 9.000 
0.01 -1.000 -0.110 0.799 1.700 2.580 3.480 4.390 5.280 6.14 7.04 7.90 
0.05 -1.000 -0.200 0.586 1.370 2.180 2.950 3.720 4.500 5.30 6.11 6.90 
0.10 -1.000 -0.265 0.464 1.175 1.910 2.620 3.340 4.050 4.77 5.51 6.25 
0.20 -1.000 -0.325 0.314 0.959 1.600 2.230 2.850 3.490 4.13 4.77 5.40 
0.40 -1.000 -0.368* 0.155 0.704 1.230 1.800 2.350 2.900 3.45 4.00 4.48 
0.60 -LOOO -0.368 0.054 0.548 1.020 1.550 2.040 2.520 3.02 3.52 4.00 
0.80 -1.000 -0.368 -0.010 0.440 0.880 1.350 1.800 2.250 2.68 3.13 3.58 
1.00 -1.000 -0.368 -0.059 0.352 0.777 1.190 1.610 2.020 2.43 2.85 3.26 
1.50 -1.000 -0.368 -0.132 0.211 0.572 0.932 1.300 1.680 2.04 2.40 2.75 
2.00 -1.000 -0.368 -0.135^ 0.119 0.440 0.760 1.070 1.400 1.76 2.05 2.40 
3.00 -1.000 -0.368 -0.135 0.000 0.262 0.530 0.800 1.080 L 37 1.62 1.90 
4.00 -1.000 -0.368 -0.135 -0.049 0.150 0.380 0.617 0.858 1.13 1.35 1.59 
5.00 -1.000 -0.368 -0.135 -O.OSO!> 0.078 0.280 0.488 0.701 0.93 1.13 1.35 
6.00 -1.000 -0.368 -0.135 -0.050 0.028 0.201 0.386 0.580 0.80 0.98 1.17 
8.00 -1.000 -0.368 -0.135 -0.050 -0.017 0.100 0.249 0.410 0.59 0.75 0.92 

10.00 -1.000 -0.368 -0.135 -0.050 -0.018* 0.035 0.155 0.293 0.44 0.58 0.73 
15.00 -1.000 -0.368 -0.135 -0.050 -0.018 -0.007 a 0.034 0.123 0.23 0.33 0.45 
20.00 -1.000 -0.368 -0.135 -0.050 -0.018 -0.007 -0.0038 0.035 0.11 0.20 0.29 

CD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

* For values of v' and rsdw'/»' below marked horizontal lines, u' is equal to v' physically and Cm = -e"'' (Ditch Condition). 
rsdw' 
a' IS 20 30 40 50 

v' 
60 70 80 90 ioo CD 

0.00 14.000 19.000 29.000 39. 000 49.000 59.000 69.000 79.000 89.000 99.000 OD 

0.01 12.4 16.8 25.8 34.7 43.8 52.5 61.0 70.8 80.0 88.5 OD 

0.05 10.8 14.7 22.6 30.5 38.5 46.3 54.2 62.1 70.5 78.0 OD 

0.10 9.85 13.4 20.5 27.9 35.2 42.6 49. 8 57.0 64.0 71.5 00 

0.20 8.62 11.8 18.2 24.6 31.0 37.5 44.0 50.2 57.0 63.0 00 

0.40 7.35 10.1 15.6 21.0 26.5 32.1 37.5 43.1 48.9 54.0 00 

0.60 6.48 8.95 13.8 18.8 23. 8 28.7 33.6 38.7 43.8 48.6 m 
0.80 5.87 8.10 12.7 17.3 21.9 26.5 31.0 35.5 40.3 44.8 00 

1.00 5.40 7.50 11.7 16.0 20.2 24.5 28.7 33.0 37.3 41.5 CO 

1.50 4. 59 6.40 10.1 13.8 17.5 21.1 24.8 28.4 32.0 35.9 OD 

2.00 4.04 5. 66 8.98 12.3 15.6 18.8 22.1 25.3 28.7 32.0 00 

3.00 3.28 4.65 7.48 10.2 13.0 15.7 18.5 21.4 24.2 27.0 OD 

4.00 2. 78 4.00 6.45 8.90 11.3 13.8 16.2 18.7 21.2 23.5 OD 

5.00 2.46 3. 56 5.75 8.00 10.2 12.4 14.6 16.8 19.0 21.2 CD 

6.00 2.18 3.17 5.20 7.20 9.20 11.2 13.3 15.3 17.4 19.4 00 

8.00 1.75 2.61 4.35 6.10 7.82 9. 59 11.3 13.1 14.8 16.5 00 

10.00 1.50 2.24 3.75 4.09 6.85 8.39 9.90 11.5 13.0 14.5 00 

IS. 00 1.02 1.64 2. 86 4.04 5.30 6. 50 7.75 9.00 10.2 11.5 CO 

20.00 0.77 1.27 2.28 3.30 4.30 5.35 6.40 7.43 8. SO 9.55 OD 

CD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
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Cm - - e ~ * (Ditch Condition) 

(2Kfltan • a ) H ' / B H 

U » ( 2 K e t a n # e ) H e / B d 

W'= ( 2 K e t a n « e ) H d / B ( , 

rsd' Sett l . Ratio 

a;= E L / E F 

Figure C. 



(2Ketan^e) H /Bd 

(2Ketan(».)He/Bd 
M i l l 

(2Ketan ^e^Hd^Bd 

Settl. Ratio 

Figure CI 

TABLE o 

VALUES OF Cn FOR GIVEN VALUES OF Cm AND W 

0 0 0 S 1 0 1.5 2 0 2.5 3.0 3.5 4.0 4.5 5.0 6 0 7.0 8.0 

0 1 
0.2 
0.4 
0.5 
0.6 

0 8 
1 0 
2.0 
4.0 
5.0 

6 0 
8.0 

10.0 
20.0 
40.0 

50.0 
60 0 
80.0 

100.0 

1.10 
1 20 
1 40 
1.50 
1.60 

1.80 
2.00 
3.00 
5.00 
6.00 

7.00 
9.00 

11.00 
21 00 
41.00 

51 00 
61.00 
81 00 

101 00 

1.06 
1.12 
1.24 
1. 30 
1. 36 

1 49 
1.61 
2 21 
3.43 
4 03 

4.64 
5.85 
7.07 

13.13 
25.26 

31.33 
37 39 
49.52 
61. 65 

1.04 
1.07 
1.11 
1.18 
1.22 

1.29 
1 37 
1.74 
2 47 
2 84 

3. 21 
3.94 
4 68 
8.36 

15.72 

19.39 
23.07 
30.43 
37.79 

1 02 
1 04 
1.09 
1.11 
1.13 

1.18 
1 22 
1.45 
1.89 
2 12 

2 34 
2.79 
3.23 
5 46 
9.93 

12 16 
14 39 
18.85 
23.31 

1.01 
1.03 
1 05 
1 07 
1.08 

1.11 
1.14 
1 27 
1.54 
1.68 

1. 81 
2.08 
2. 35 
3. 71 
6.41 

7.77 
9.12 

11.83 
14. 53 

1 01 
1.02 
1.03 
1.04 
1 05 

07 
08 
16 
33 

1.41 

1.49 
1.66 
1 82 
2.64 
4.28 

5.11 
5.93 
7. 57 
9.21 

1.00 
1 01 
1.02 
1 02 
1.03 

1.04 
I 05 
1.11 
1 20 
1.25 

1.30 
1.40 
1.50 
2.00 
2.99 

3.49 
3 99 
4.98 
5.98 

1.00 
1 01 
1 01 
1.02 
1.02 

1 02 
1 03 
1.06 
1.12 
1 15 

1 18 
1 24 
1.30 
1 60 
2. 21 

2.51 
2. 81 
3.42 
4 02 

1.00 
1.00 
1.01 
1.01 
1.01 

1.01 
1 02 
1.04 

1.73 

1 92 
2.10 
2 47 
2.83 

1.00 
1 00 
1.00 
1.01 
1. 01 

1.01 
1. 01 
1.02 
1 04 
1.06 

1.07 
1. 09 
1.11 
1 22 
1.44 

1. 56 
1 67 
1.89 
2.11 

1 00 
1.00 
1.00 
1.00 
1.00 

1.01 
1 01 
1 01 
1.03 
1.03 

1.04 
1.05 
1.07 
1. 13 
1. 27 

1 34 
1.40 
1.54 
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