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A theory of earth pressure on underground conduits is presented. Expres-
sions for the general case of an s = ¢ + ¢ tan$ material have been derived.
Expressions relating to s = o tan$ and s = ¢ soil types appear as special
cases of the general case.

It is shown that the pressure on top of both covered-up and mined-in con-
duits is governed by the same mathematical relations. However, the values
of the physical factors appearing in the theoretical expressions depend on the
geometry and nature of installation, the physical properties, and the initial
state of the materials, as well as on the construction methods and workman-
ship employed.

Curves for the evaluation of the load on top of covered-up conduits in-
stalled under an s = o tané material have been constructed. Under certain
conditions the same curves can also be used for the general case of an s =
¢ + o tan¢ material.

The load on covered-up conduits becomes a minimum if the conduit side
supporting material is thoroughly compacted, the ditch directly above the
conduit is made as high as economically feasible, and the ditch is filled with
a compressible, loose material.

@ THIS paper was intended originally to be the theoretical partof a report on athree-year
research project directed by the North Carolina State Highway and Public Works Commis-
sion. The project involved the study of the performance of a 66-in. flexible, metal-pipe
culvert installed under a 170-ft. earth embankment that was constructed by end-dumping.

Existing earth pressure theories on underground conduijts are applicable to low or
medium height embankments consisting of perfectly granular material. Because of the
unusual fill height and the construction methods employed in this project it was consi-
dered desirable to review and extend these theories, and revise them if necessary, in
order to make them applicable to the above conditions.

In the process of extending these theories it was noticed that the mathematical
expressions that govern the loading action of a fill placed on top of a conduit also
govern the loading action of a natural earth deposit on a conduit that has been in-
stalled by a tunneling process. The geometrical similarity existing among various types
of conduits covered by an earth fill and a conduit installed by a mining process is shown
in Figure 1.

All underground conduits are either covered with an earth embankment after they
have been assembled in place or are mined-in through a natural earth deposit. There-
fore, an earth pressure theory that is applicable to these two main categories is gener-
ally applicable to all types of underground conduits.

Because of these considerations the general theoretical treatment is presented here
as a separate study. The experimental part of the same project appears as a separate
report by the North Carolina State Highway and Public Works Commission (Costes and
Proudley, 1955). In the latter report appropriate mathematical expressions were de-
rived from the general theory to make a speculative analysis of the earth pressure ex-
isting on top of the particular culvert under study.

Definitions

In this paper, an underground conduit is defined as a hollow prismatic structure that
is installed with its longitudinal axis substantially horizontal under either a man-made
earthen embankment or a natural earthen deposit.

! presently, with Snow, Ice and Permafrost Research Establishment, Corps of Engi-
neers, U.S. Army. 12
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Underground conduits can be used for a multiplicity of purposes; they can be used as
aquaducts, drainage structures, sewers, viaducts, runways for conductors or cables,
gas mains, etc.

If a conduit is installed first, and then an earth embankment is constucted above it,
the conduit is definedasa "covered-up conduit. " If the conduit is installed through a nat-
ural earthen deposit by means of a mining process, the conduit is defined asa "mined-in
conduit. "

If judged according to their relative stiffness, underground conduits may be classified
as "rigid conduits" or as "flexible conduits.” The demarcation line between these two
classes is not defined clearly.

Problems Relating to Underground Conduit Design

When designing an underground conduit, the engineer faces a variety of problems
whose relative influence on the final design of the conduit depends on the purpose for
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Figure 1. Geometrical relationship among underground conduits.

which the conduit is installed, the desired life expectancy of the conduit, and the size of
the earth mass that the conduit will sustain. Some of these problems relate to: (1) dur-
ability; (2) hydraulic factors in case the conduit is installed as an aquaduct; (3) traffic
considerations in case the conduit is installed as a viaduct; (4) adequate space in case a
close inspection of the conduit is desired; and (5) structural capacity.

If the conduit is treated from the structural point of view the designer is mainly con-
cerned with: (1) choosing the right conduit material and employing the right construction
methods in order that the load on the conduit will be a minimum; (2) providing for ade-
quate side support so that the conduit will not fail by excessive lateral bulging; (3) se-
lecting the proper bedding material and deciding on the proper camber so that the con-
duit will not go out of alignment as the foundation settles; and (4) designing properly the
thickness and the structural connections of the conduit so that it will withstand the inter-
nal stresses that are generated in its structure by the external pressures, namely, the
top load, the lateral pressures exerted by the side supporting material, and the bottom
reaction from the bedding material,

If the earth mass above the conduit is not too high, then, in addition to the dead load
due to the earth mass, the influence of live loads that may exist on the surface of the
mass must be considered also.? If the earth mass, however, is sufficiently high and
pressure waves due to live loads are dissipated before reaching the conduit, the main
load on the conduit will be due to the pressure of the earth that it sustains.

Scope of Paper

The purpose of this paper is to (1) present a general, uniplanar, theoretical study of

? For such treatment see References, Spangler and Hennessy (1946).
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the factors influencing the pressure that is developed on top of both covered-up and
mined-in conduits due to the earth mass alone; (2) apply the general study to special
cases; (3) examine the physical meaning of the derived mathematical expressions; (4)
draw conclusions in connection with the implications that certain installations may have
on the conduit load; (5) construct curves from which the load on top of a conduit can

be obtained for as many cases as possible; (6) suggest the main principles that should
guide the engineer's judgment when designing an underground conduit; and (7) make rec-
ommendations relating to future research efforts in connection with this field of engi-
neering.

This study makes no differentiation between "rigid" or "flexible" conduits. The
shape of the conduit is also considered not to be a variable.

The mathematical treatment deals with the pressures acting in the plane perpendicu-
lar to the longitudinal axis of the conduit. The study of the development of earth pres-
sures above the conduit and in the direction parallel to its longitudinal axis is beyond
the scope of this paper.

REVIEW OF PREVIOUS RELATED STUDIES

All earth pressure theories relating to underground conduits have been based on one
of the most universal phenomena encountered in soils, both in the laboratory and in the
field, the so-called "arching effect. " The arching effect as defined by Terzaghi (1943a)
is a transfer of pressure from a yielding mass of soil onto adjoining relatively station-
ary parts. This pressure transfer takes place through a mobilization of the shearing
resistance of the material which tends to oppose the relative movement within the soil
mass.

Most of the existing theories on arching deal with the pressure of dry sand on yield-
ing horizontal strips. Terzaghi (1943a) divides these theories into three groups:

1. In the first group only the conditions for the equilibrium of the sand immediately
above the loaded strip have been considered. No attempt has been made to investigate
whether or not the results of the computations have been compatible with the conditions
for the equilibrium of the sand at a greater distance from the strip.

2. The theories of the second group have been based on the unjustified assumption
that the entire mass of sand located above the yielding strip is in a state of plastic e-
quilibrium.

3. In the third group the assumption has been made that the vertical sections through
the outer edges of the yielding strip represent surfaces of sliding and that the pressure
on the yielding strip is equal to the difference between the weight of the sand located a-
bove the strip and the full frictional resistance along the vertical sections.

No attempt will be made in this paper to describe each one of the above groups in any
further detail. *

As far as studies of pressures on underground conduits are concerned, one may go
as far back as the year 1882 when Forchheimer (1882) studied the development of earth
pressures on the roof of a tunnel. This study was related to the studies by Janssen and
Airy on the development of pressures observed in bins and grain elevators (Janssen,
1895), (Ketchum, 1913). As a matter of reference, the term, "bin effect,’ may be
found in place of the term, "arching effect,” in some publications.

Dean Anson Marston, Professor M. G. Spangler, and their associates of Iowa State
College, deserve great credit for advancing the knowledge of loads developed on under-
ground conduits. Under their direction, an extensive program of research, starting in
1908, has been carried out. Their main aim was to develop a rational method for de-
termining the loads on covered-up conduits. The result of their work has been the
"Marston Theory of Loads on Underground Conduits,” This theory has been applied
extensively in this country in the design of covered-up conduits. The theory is applicable

3For a comprehensive summary of each theory, see K. Terzaghi, Theoretical Soil Me-
chanics (New York: John Wiley & Sons, 1943), pp. 69-74. Detailed information on the
same subject may be obtained from the following References: Engesser (1882), Kdtter
(1899), Janssen (1895), Koenen (1896), Bierbaumer (1913), Caquot (1934), Terzaghi
(1936), Vollmy (1937) and Ohde (1938).
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mainly to embankments constructed of perfectly granular materials (Marston, 1913,
1930), (Spangler, 1950a, 1950b).

In addition to the work conducted by Marston in the Jowa Engineering Experiment
Station, several other extensive studies concerning earth pressures on underground
conduits have been carried out both in the United States and in other countries.

These studies include the following:

1. Experiments were conducted at the University of North Carolina in 1927 in which
the top vertical pressure, radial pressures, and the decrease in the conduit vertical
diameter were measured in pipes of various diameters and materials, installed as pos-
itive projecting conduits (Braune, Cain and Janda, 1929).

2. Pressure tests were conducted on corrugated metal, concrete, and cast iron pipe
culverts by the American Railway Engineering Association at Farina, Illinois, during
the period 1923-1926 (Area, 1928).

3. During the construction of liner-plate and shield tunnels installed in the Chicago,
Illinois, subway, an extensive research on earth pressures developed in mined-in con-
duits due to plastic clay, as well as on the deformations of the conduit structures, was
conducted and reported by Terzaghi (1942-1943) and Peck (1943).

4, Similar tests on earth pressure on tunnels installed in plastic clay were conducted
and reported by Housel (1943) in Detroit, Michigan.

5. Strain gage and load cell pressure measurements, as well as ddta from deforma-
tions and settlements, were obtained by the Alabama State Highway Department and
Armco engineers from corrugated metal culvert pipe installations under 137 ft. of em-
bankment (Timmers, 1953).

6. Similar tests were conducted by the North Carolina State Highway and Public
Works Commission on a Multi-Plate culvert pipe installed under 170 feet of embank-
ment, An attempt to develop a technique to measure directly the earth pressures exert-
ed on the culvert under study is discussed also (Costes and Proudley, 1955).

7. In the laboratories of the Zurich Technical University, Switzerland, Vollmy (1936,
1937) conducted a series of tests on sand located above a yielding support to prove his
assumption that the potential sliding surfaces are oblique planes.

8. Experiments on pipe models by using centrifuges to generate forces similar to
these acting on the pipes in ditch condu1t installations were conducted in the Moscow
Municipal Academy (Pokrowski, 1937),*

9. A series of articles on culvert pipe analysis has been published in France by the
Hungarian engineer Bela (1937), and by Guerrin (1938).

10. Information of culvert p1pe analysis may also be found in the catalogues and pub-
lications of pipe manufacturers. °

THEORETICAL STUDY
Method of Analysis

The theoretical concepts and the resulting relations of this paper are presented as
follows: (1) the basic assumptions are stated and discussed; (2) the fundamental differ-
ential equation describing the loading action of an earth mass on top of an underground
conduit is derived; (3) the general load equation for an s = ¢ + otan¢ material is derived;
(4) Case I is defined and discussed; (5) Case II is defined and discussed; (6) factor u =
(2Ketande)He/Bq is evaluated and discussed for Case II existing in covered-up and
mined-in conduits; (7) the analysis of the general case is applied to an s = otané mate-
rial; (8) the analysis of the general case is applied to an s = ¢ material; and (9) families
of curves are constructed for which the load by an s = ¢ tan¢$ material on a covered-up
conduit can be obtained. Conditions are stated under which the same curves can be
used for the evaluation of the conduit load when the loading agent is an s =c + o tan¢g
material,

* For a brief summary of the findings and conclusions of the experiments mentioned in
items (7) and (8), see D. P. Krynine, "Design of Pipe Lines from Standpoint of Soil Me-
chanics, " Proceedings of the Highway Research Board, XX (1940), 726-727.

8see References.
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Analysis

Statement of Assumptions. The following basic assumptions are made in the evalua-
tion of the theoretical relations governing the loading action of masses on top of under-
ground conduits:

1. The loading agent is an ideal, homogeneous, isotropic material whose shearing
resistance, s, per unit of area can be represented by the empirical equation: s =c¢ +
o tand where ¢ 1s a force per unit area, normal on a section through a mass. The sym-
bol ¢ represents the cohesion, which is equal to the shearing resistance per unit area if
o= 0. The symbol ¢ represents the angle of internal friction of the material.

2. Because of the fact that the foundation, which supports the material directly above
the conduit, does not yield the same amount as the foundation, which supports the ma-
terial adjacent to the middle mass, the former subsides more or less than the adjacent
material depending upon the relative yielding of their respective supports. The relative
subsidence takes place along vertical plane surfaces extending from the top of the con-
duit to some horizontal plane above the conduit designated as, "plane of equal settlement. "
Above the plane of equal settlement no relative subsidence takes place and all parts of
the fill material settle the same amount due to the consolidation of the fill. Henceforth,
the mass directly above the conduit will be referred to as the "interior prism." During
the subsidence of the interior prism, horizontal layers remain horizontal.

3. The side supporting material has not been compressed excessively so as to cause
the structure to fail by excessive horizontal bulging.

4. The internal stresses generated in the conduit structure on account of the exter-
nal pressures have not exceeded the critical buckling load of the structure.

5. The unit weight of the material, ¥, is constant throughout the fill height.

6. The angle of internal friction of the material, ¢, is constant along the potential
sliding planes.

7. The cohesion of the material, ¢, is constant along the potential sliding planes.

8. The ratio of the horizontal principal stress component within an element of the
fill material to the vertical principal stress acting on the same element, K¢, is constant
along the potential sliding planes, The ratio may be called, therefore, "hydrostatic
pressure ratio. "

Discussion of Assumptions. Every stress theory is based on the assumption that the
material subject to stress is either homogeneous and isotropic or that the departure
from these ideal conditions can be described by simple equations. If the material is
also assumed strictly to follow Hooke's law, then the term ""homogeneity" denotes iden-
tical elastic properties at every point of the material in identical directions whereas the
term "isotropy" involves identical elastic properties throughout the material and in ev-
ery direction at any point of it. When the material under study is soil not subject to
stratification, then both assumptions may be understood to have a statistical average
value.

Assumption 2 that the potential surfaces of sliding are vertical planes, is unlikely
to occur in the actual case and it is made only to simplify the mathematical computations.
Actually, as Terzaghi (1943a) points out, the real surfaces of sliding are curved and at
the top of the fill their spacing is considerably greater than the width of the conduit.
From this, it follows that along the assumed vertical, potential sliding surfaces the in-
ternal friction of the material will never be fully mobilized and, thus, plastic equilibrium
conditions are not realized. The error due to ignoring this fact is on the unsafe side.

Also, during the relative subsidence of the material above the conduit, horizontal
layers within the interior prism do not remain horizontal, but they become either con-
cave or convex curved surfaces depending on whether or not the interior prism subsides
more or less than the adjacent masses. Therefore, the surfaces of equal, normal pres-
sure are not plane but are curved, like arches.

The existence of the "plane of equal settlement' was discovered on purely mathema-
tical grounds by Marston (1922), The actual existence of such a plane has been demon-
strated by laboratory models, and by measurements of the settlements of the soil both
over and adjacent to some experimental conduits (Spangler, 1950a, 1950b).

Assumptions 3 and 4 must be fulfilled in order that the analysis made in this paper
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has a meaning. The problems of insuring adequate side support to the conduit as well
asg designing the conduit structure to withstand the internal stresses that are generated
due to the external pressures are beyond the scope of this paper.

Assumption 5 requires that an overall average value of the unit weight of the material
be used. Actually, everything else remaining constant the unit weight of the material
will vary with the fill height with higher values at the bottom of the fill. The method of
fill construction and the water content are major factors influencing Y.

Assumptions 6 and 7 pertain to the values of the angle of internal friction and cohesion
that are actually mobilized along the potential sliding planes. Because of the reasoning
applied in discussing Assumption 2 , both values will generally be smaller than the la-
boratory values of ¢ and ¢ exhibited by a series of tests from samples of the same ma-
terial. Therefore, in the subsequent theoretical treatment of the problem the values of
¢ and c that are used will denote the amount of both properties that are actually mobi-
lized. They will be designated as ¢e and ce respectively. These values depend not only
on the nature of the soil and its initial state, but also on the rate of stress application,
the permeability of the material, the deformation characteristics, and the size of the
mass.

The last assumption, that the ratio of the horizontal principal stress to the vertical
principal stress acting on an element within the mass of the material is constant along
the potential sliding planes, is at great variance with reality. Everything else remain-
ing constant this ratio depends on the nature, initial state, and strain characteristics of
the material.

If the material is a solid block, then the ratio is equal to zero. If the material be-
haves like a liquid then the ratio is equal to one.

For a semiinfinite, sedimentary deposit of cohesionless material, it has been found
experimentally that this ratio varies between 0, 45 and 0. 55 depending on the geologic
history of the deposit and it is approximately the same for every point of the mass. In
this particular case, the ratio is called the coefficient of earth pressure at rest, or co-
efficient of natural earth pressure and it is denoted by Ko. The range of values of K
for clays in their natural state is not yet known.

If a homogeneous, semiinfinite mass bounded by a horizontal plane and extending to
infinity downward and in every horizontal direction is given an opportunity for lateral
expansion toa very great depth, z, in suchamanner that the lateral strain remains constant
with depth, then the mass passes from an initial state of elastic equilibrium to an active
state of plastic equilibrium. In this condition the internal resistance of the material is
fully mobilized and conditions of incipient shear failure exist along two sets of surfaces
of sliding that are symmetrical to each other with respect to a vertical axis and inclined
at an angle of 45‘1¢/2 with the vertical. Under such conditions the lateral intensity of
pressure decreases to the smallest value compatible with equilibrium. Such a condition
is called an active earth pressure condition. The value of the lateral earth pressure is
designated op and the ratio K is equal to

Kp = tan’ (45% 42) - 2 tan@as®- 4) (1)

for an s = ¢ + otan¢ material.
For an s = otan¢ material

KA = tan® (45°-%%). (2)
For a perfectly cohesive material; that is, for an s = ¢ material
_ 2c
Ka=1- ¥z* (3)

If the same semiinfinite mass is compressed laterally toa great depth, z, in sucha
manner that the lateral compressive strain remains constant, then the mass reaches a
passive state of plastic equilibrium. In this state the internal resistance of the material
is fully mobilized and conditions for incipient shear failure exist along two sets of sliding
surfaces, symmetrical to each other with respect to a vertical axis and inclined at an
angle equal to 456° + %/, with the vertical. Under such conditions the lateral intensity of
pressure increases to the largest value compatible with equilibrium. Such a condition
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is called a state of passive earth pressure. The corresponding lateral pressure is de-
signated op and the ratio K is equal to

Kp = tan® (45° + bh) + 12—: tan (45° + 94) 4)

for an s = ¢ + o tané material.
For a cohesionless material; that is, for an s = ¢ tan¢ material

Kp = tan® (45° + $4). (5)
For a perfectly cohesive material; that is, for an s = ¢ material
_ 2c
Kp=1+ ¥z ° (6)

In the actual case, the lateral expansion or compression which cohesive soils must
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Figure 2. Variation of o) and K wath fill height.

undergo in order that they reach active or passive states of plastic equilibrium is much
greater than any allowable movement within the engineering structures which they bear
contact with and, therefore, the ratio K will always lie between the limiting values Kp
and Kp.

Wigl cohesionless soils such as dry clean sand, a very small lateral stretching is
sufficient to insure active state conditions, whereas a considerable compressive move-
ment must precede passive state conditions.

However, even if the least trace of moisture is present in a cohesionless mass, the
material will exhibit a property known as "apparent cohesion" and it will behave like a
cohesive material (Terzaghi 1943a). Since in engineering practice water is almost al-
ways present in a soil mass, even a granular mass must be stretched laterally a con-
siderable amount before an active state of plastic equilibrium is reached and before K
assumes the limiting value Kj.

From Equations 1 and 3 it can be seen that for cohesive materials in an active state
of plastic equilibrium K depends mathematically on the fill height and for small values
of the fill height it may assume even negative values.

The above discussion on the ratio K was made in reference to constant strain condi-
tions for various materials. If the lateral strain within the mass varies with depth then
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K must be expected to vary also. resrrecre o SO o
In the case of an underground conduit,

as the middle prism slides along the ver-
tical planes, the lateral strain along
these planes may be visualized to vary as
follows: Along the vertical extensions of —Flane of Equal Settlement
the sliding planes from the top of the T | |

4 | I

J |

embankment to the plane of equal settle- Potential Sliding
ment, the lateral strain within the mass vy r/ Planes

is zero because the settlement is uniform H

at all parts of the mass. Therefore, K az ___, hBadz”-e—vhdFKacvduKe Vogr
may be expected to be constant within He B4
this region. If the conduit is mined in a T

sedimentary deposit of granular material

!
I
the value of K will be Ko. If the conduit :
is installed under a man-made granular le—
[
|
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Vz¢dVy
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embankment the value of K will be Kg.
Kg will be dependent on the nature and
condition of the material, the methods of
compaction, the degree of compaction B

and the height of the fill.

In the region between the plane of e-
qual settlement two cases may develop: Figure 3. Force diagram for an underground
(1) the adjacent mass may settle more conduit.
then the interior prism and (2) the interior prism may settle more than the adjacent
mass.

In the first case the lateral strain changes from zero at the plane of equal set-
tlement and becomes compressive gradually increasing to a maximum at the top of
the conduit. Accordingly, K should be expected to increase from the value Ko or
Ks at the plane of equal settlement to a maximum value in the vicinity of the top of
the conduit (Figure 2a).

In the second case the lateral strain changes from zero at the plane of equal set-
tlement and becomes tensile gradually increasing to a maximum at the yielding sup-
port of the conduit. Accordingly, K should be expected to decrease from the values
Ko or Kg at the plane of equal settlement to a smaller value approaching KA in the
vicinity of the yielding support of the middle prism (Figure 2b).

Since the object of the subsequent mathematical treatment is to develop a relation
for the load on top of the conduit upon which the integrated influence of K is re-
flected, the diagram of the variation of K with fill height may be substituted with an
equivalent diagram in which K is constant and has a value equal to the mean abscis-
sa, Ke of the diagrams of Figure 2. Thus, the mathematical computations will be
simplified appreciably without altering the resulting load expression, Adequate ex-
perimentation will give values of Ke for various types of installations and earthen
materials.

In Figure 2 the lateral principal stress diagrams ohys oh, and The corresponding

to K =Ky, K =K, and K = K¢ respectively, are also shown for the two cases. From
these diagrams it can be seen that the ordinates of the equivalent hydrostatic stress dia-
gram, ohe, are larger or smaller in magnitude than the ordinates of the lateral stress
at rest diagram, ohgy, depending on whether the interior prism subsides less or more
than the adjacent mass.

Differential Equation Describing the Loading Action of an s = ¢ + ¢ tan$ Material on Top
of Underground Conduits

Let Figure 3 represent the installation conditions and the force diagram for an under-
ground conduit of external diameter B, installed under an embankment composed of an
8 = ¢ + o tan¢ material.,
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Let:
H = height of embankment measured from the top of the conduit, ft.
He = height of the potential sliding planes from the top of the conduit to the plane of
equal settlement. Henceforth, this height will be referred to as "height of arching,"
ft.

z = distance from the plane of equal settiement down to any horizontal plane, ft.
B = width of conduit, ft.
Bd = effective width of the interior prism, ft.

Y = unit weight of the material on top of the conduit, pcf.
ée = portion of the angle of internal friction of the material that is mobilized along the
potential sliding planes.
ce = portion of the cohesion of the material that is mobilized along the potential sliding
planes, psf.
oy = vertical principal stress acting on an element of the material along the sliding
planes at a distance z from the plane of equal settlement, psf.
oh = horizontal principal stress acting on an element of the material along the sliding
planes at a distance z below the plane of equal settlement, psf.
Ke =% = equivalent hydrostatic pressure ratio along the sliding planes.
Vyz =oyBd = resultant vertical pressure acting on a horizontal layer in the interior
prism at a distance z from the plane of equal settlement, 1b. per lin. ft. of length.
We = vertical load on top of the conduit due to overburden material, lb. per lin. ft. of
length.

W =YBg4H = weight of the earth column on top of the conduit, 1b. per lin. ft. of length.
The weight of the thin slice of the interior prism with a thickness dz at a depth z be-

low the plane of equal settlement is YBqdz per unit of length perpendicular to the plane

of the drawing. The slice is acted upon by the forces indicated in the figure. The con-

dition that the sum of the vertical components that act on the slice must equal to zero

can be expressed by the equation

\'
YBddz + Vg - dVy - V3 £ 2 (ce + Ke .B(ZT tange) dz = 0, (7N
or
- V2 4 2Ke %3- tande + 2ce +¥Bq = 0. (8)

Equation 8 is the fundamental differential equation describing the conditions of equi-
librium during the loading action of an s = ¢ + o tan¢ material acting on top of an under-
ground conduit. The plus or minus signs represent the case in which the interior prism
subsides less or more than the adjacent masses respectively.

Evaluation of the General Load Expression for an s = ¢ + ¢ tan$ Material

Equation 8 is a linear differential equation of first order.
Integrating and considering the limits

V = (H-Hg) YBq for z=0

V=Vg for z=12
one obtains after rearranging terms
__YBY +(2Ketang) e [ H-H 2ce ] - 2ce
Ve~ Wetande |° Bd | (2Ketanbe)gy®) + (1 #gg [+ L eypy | - @
When z = He Vz = Wc.

Substituting in Equation 9 one obtains
He
= YBY + (2Ketande) =~ [ H-He 2ce ] .+ 2
We = 3x tange |° Bd [(2Ketande)Tge ) + (14 322)] 3 (12320 (10)

Equation 10 is the general load expression for an s = ¢ + ¢ tan¢ material. The plus
or minus signs represent respectively the cases in which the interior prism subsides
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less or more than the adjacent masses.
Equation 10 may be written also

W = YBd(Bg/2Ketande)C, (11)
where+ (2Ketané, )H—e H-H +2c + 2¢
C= o 1M By [ (axotane)he) r a2 Re)| 212 2o ), (12)
Henceforth, factor C will be called the "load factor. "
Letting (Bq/2Ketande)C = Heff (13)
and substituting in Equation 11 one obtains
We = YBdHejt. (14)

Factor Heff may be thought of as an effective height along which no relative subsidence
occurs between the material directly above the conduit and the adjacent material. In
such case neither mass would tend to brace itself against the adjacent one, no sliding
surfaces would tend to form, and the load on top of the conduit per unit length would be
equal to the full weight of the column of the material directly above it.

By inspection of Equation 12 , and since:

C-= [(2Ketan¢e)/13d] H = Co,

Heff = H,
and Wc = YBgH = W, (15)
when He = 0,

it can be seen that if the interior prism subsides less than the adjacent masses, in which
case the shearing resistance of the material mobilized along the sliding planes have the
same direction and sense as the weight of any thin slice within the interior prism, the
positive signs are used in Equations 7 through 12,

Cp = Load factor with positive signs >Cop ,
Heff > H9
We > W.

Similarly, if the interior prism subsides more than the adjacent masses, in which
case the shearing resistance of the material mobilized along the sliding planes has the
same direction but opposite sense than the weight of any thin slice within the interior
prism, the negative signs are used in Equations 7 through 12,

and

Cp = load factor with negative signs < C,,,
Heff < H,
We < W.

In the subsequent analysis the above two cases will be studied separately. However,
every engineer dealing with underground conduits should direct all his efforts toward
creating the proper environmental conditions during the construction of such structures
in order that conditions corresponding to the second case will be realized.

and

Case I. The Interior Prism Subsides Less Than the Adjacent Masses

This case may develop as a result of the following two environmental conditions in the
construction of a conduit.

1. In the case of a covered-up conduit, the conduit is installed by means of the so-
called "positive projection” method (Spangler 1946). According to this method the con-
duit is installed with its top projecting some distance above the natural ground surface.
Then, the fill material is placed around and on top of the conduit. No special effort is
made to compact the side material to a higher degree of compaction than the rest of the
fill material (Figure 4).
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_Top of Embankmen! Assuming that the natural ground sur-
S T face settles by the same amount every-
where, let us compare the vertical defor-
mation of the interior prism with the de-
formation of the two adjacent masses ex-
Plane of Equal Seftlement _ tending from the natural ground surface to
TT———7T - T - -T~ the plane of equal settlement and having a
!
|

| | width equal to the width of the interior
prism which in this case is equal to the

I

|

l same overburden weight equal to (H-Hg)

' YBg. Therefore, any relative differential

| deformation existing among them would be
fe—Bg—t+—Bg—+—8B4 — a function of the weight of each prism

I

|

|

which, accordingly, is a function of its
height as well as the characteristics of the
material. Hence, if no contact existed
among these prisms and each one were
allowed to deform freely, the summation
of deformations from the bottom upward
Figure 4. Installation diagram for a posi- would normally be at a greater rate in the
tive-projecting conduit. high prisms than in the lower ones.

Since the two exterior prisms are higher than the interior prism by anamount Hm, and
since the material within this region is compacted by the same amount as any other part of the
fill, the exterior prisms will tend to settle at a greater rate than the interior prism. However,
intheactual case all three prismsare in contact with each other and, consequently, the ex-
terior prismstransfer part of their vertical pressures to the interior prism. The resultis
that, because of this stress transfer, the rate of summation of vertical deformations will be
reduced inthe exterior prisms and increased in the interior prism. The total summation of
deformations in the interior prism will approach that inthe exterior prisms, and the height
at which the deformations become equal is the height of equal settlement (Marston 1922).

2. In the case of a mined-in conduit, the conduit is installed in a bed of a very soft
compressible material, and the conduit is too rigid to "give in" under the influence of
the top vertical load. Under such conditions it is conceivable that the material adjacent
to the conduit will have the tendency to settle more than the material on top of it. There-
fore, as in the case of "positive projecting conduits," the exterior prisms will tend to
brace themselves against the interior prism and in doing so they will transfer part of
their vertical pressures on to the interior prism.

From the above discussion and for reasons which were discussed, one should use the
positive signs in the general load expression when the conditions insuring the existence
of Case I have been realized.

Hence, Equation 10 becomes

We Klggq,e +(2Ketan¢e) Bd [(ZKetan‘l’e)(——e) +£(-“-e-)] -(1+ 2—03) E (16)

Natural Ground

from which
et (2Ketan¢e)(—ﬂ) [ 2ce ]
Cp (2Ketan¢e)( ) +(L+gpe )]-@a+ YB d (17)
A quick inspection of Equations 16 and 17 will show that in this case the shearing re-
sistance of the material on top of the conduit works against the engineer; the more re-
sistant to shear the material is and the larger the portion of its shear components that
is mobilized along the sliding planes, the greater will be the load on top of the conduit.
Furthermore, from Figure 2b, it was shown that in Case I the equivalent hydrostatic
pressure ratio Ky will generally be larger in magnitude than the coefficients of earth
pressure at rest, Ko, or Kg. By inspecting Equations 16 and 17 again, one can also see

H Exterior Interior | Exterior
Prism Prism | Prism width of the conduit. Henceforth, these
two masses will be called "exterior prisms. "
He All three prisms are loaded with the
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that the larger the value of K¢ the larger will be the load.

Now let us examine what other serious implications Case I might have on the load ex-
pression.

Equations 16 and 17 contain the ascending exponential function e%, where u = (2Ketande)
He/ Bq >0, multiplied by a positive sum. The ascending exponential function is equal to
1 for u = 0, and increases very rapidly with increasing values of u. For example:

ifu=1, el =2,7;, ifu=2, el'=174;
if u=4, eu=54; if u = 8, eu =2980, etc.

Therefore, if the over-all height of the material on top of the conduit is in the region of
100 ft. or more, which with modern construction equipment has come within the realm
of engineering endeavor, the load on top of the conduit, W¢, will be many times greater
than the weight of the column of the material, W. Consequently, even if the side-sup-
porting material is able to mobilize sufficient reactive pressure to equalize the top pres-
sure before the structure bulges out excessively, the ring stresses that are generated in
the conduit structure will exceed the critical buckling load of the conduit and the results
will be catastrophic.

To illustrate the above, let H = 100 ft.
B4 = 5.0 ft
Ke =1.0
¢e = 100
ce = 200 psf.
Y = 120 pcf.

The weight of the column of the material above the conduit is, therefore, W = YBgH =
60,000 1b. per lin. ft.

Substituting the above data in Equations 16 and 17 and solving for Hg = 0, He = 10 ft.,
He = 20 ft., and He = 50 ft. one obtains respectively:

He Cp Heff Hefi/H We/W
0 7.1 100 1.0 1.0
10 ft. 14.6 207 ft. 2.1 2.1
20 ft. 28.3 401 ft. 4.0 4.0
50 ft. 176 2495 ft. 25.0 25.0

In other words, if the height of arching is one-half the fill height, the load on a 5.0 ft.
diameter conduit due to a 100 ft. fill will be almost twenty-five times the weight of the
column of the material on top of it; i.e., W, = 1,320,000 1b. per lin. ft. No conceivable
factor of safety employed in the design of the conduit will provide for such a possibility
and stay within reasonable economical limits.

From the above, one may conclude that conditions for Case I are very undesirable
from the engineering standpoint and, therefore, every effort should be made to avoid
them in the field.

If a conduit is installed by the "positive projection"” method, the material immediately
adjacent to the conduit should be thoroughly compacted to a much higher degree than the
remainder of the fill material. If such a procedure is followed, the stiffness of the
mass within the height Hy, will be much greater than that of the material within the rest
of the exterior prism. Consequently, the effective height of the exterior prism will be
decreased to a value approaching the height of the interior prism. Furthermore, if the
conduit is sufficiently flexible, the support furnished by the stiffened mass to the short-
ened exterjor prism, will yield much less than the support under the interior prism.
Therefore, the reverse action will take place; the interior prism will tend to brace itself
against the exterior prisms thereby reducing the load on top of the conduit.

In the case of a mined-in conduit within a bed of soft compressible material, if the
conduit is made sufficiently flexible so as to adjust its shape to any external differential
pressure, then, even if the top load is originally greater in magnitude than the weight of
the column of the material, a subsequent change in the conduit shape will result in a re-
distribution of the external pressures. Further changes in the conduit shape will result
in further redistribution of the external pressures and this process will continue until
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all differential moments that are generated within the conduit structure are elimmated
and only axial ring stresses will exist. Hence, if the conduit is designed to withstand
these stresses, no failure will occur and the conduit will function satisfactorily.

Case II. The Interior Prism Subsides More Than the Adjacent Masses

This case will be discussed in detail, because it is most likely to occur in the field.
It may be present even in positive projecting conduits, provided their side supporting
material has been compacted very thoroughly. The engineer should always be able to
visualize the action which takes place in this case and to know what to expect in terms
of load ranges from various construction methods and materials.

The existence of Case II is insured by the following construction methods and condi-
tions:

1. Covered-up conduits are installed by the following three methods:

(a) The Ditch Conduit Method. According to this method (Spangler, 1946) the conduit
is placed in a ditch not wider than two or three times its outside width and it is covered
up with backfill material that is in a relatively loose condition as compared to the natural
ground in which the ditch is dug. (Figure 5a).

Top of Embankment Top of Embankment Top of Embankment
RS ITSY— — — = 7

7 TIIIIT T IITITIV I

Fill Material Fil Material

Plane of Equal Settlement  Plane of Equal Settlement

Thoroughly Compacted

Natural Ground Matenial
(a) Ditch Conduit (b) Negative Projecting (c) Imperfect Ditch
Conduit Conduit

Figure 5. Covered-up conduits.

In a ditch conduit the potential sliding planes will be the walls of the ditch. The back-
fill material has the tendency to settle downward. In doing so it tends to brace itself
against the sides of the ditch transferring part of its weight onto the natural ground.
Thus, the load on top of the conduit is reduced by an equal amount.

(b) The Negative Projecting Conduit Method. Conduits falling within this category
are placed in shallow ditches of such depths that the top of the conduit is below the adja-
cent natural ground surface that is covered by an embankment as shown in Figure 5b
(Spangler, 1946).

(c) The Imperfect Ditch Conduit Method. In this method of construction the conduit is
originally installed as a positive projecting conduit (Spangler, 1946). The soil on both
sides and above the conduit for some distance above its top is thoroughly compacted.
Then a ditch is dug in this compacted fill by removing the prism of material directly
over the conduit. The ditch is refilled with very loose compressible material, after
which the embankment is compacted above it (Figure 5c¢).

In the last two cases the potential sliding planes are assumed to be the vertical ex-
tensions of the sides of the ditch on top of the conduit. These planes will extend as far
as the plane of equal settlement. In both cases the material on top of the ditch will sub-
side more than the adjacent masses. The loose material in the ditch furnishes a support
that yields much more than the adjacent natural ground in the case of a negative project-
ing conduit or more than the very well compacted material in the case of an imperfect
ditch conduit.
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2. In the case of a mined-in conduit that is flexible enough so that its roof will give
in sufficiently to act as a yielding support to the material above, three cases (Terzaghi,
1942-.1943, 1943a, 1943b) are of interest:

(a) The conduit is installed through cohesive material and its lower part is located
within an exceptionally stiff layer of clay between soft layers (Figure 6a). The sliding
planes will extend through the edges of the bottom of the conduit (Terzaghi, 1942-1943),

(b) If the cohesive material on both sides of the conduit is not exceptionally stiff
(Figure 6b), the width of the interior prism is approximately Bq = B¢ + 2Hm (Terzaghi,
1942-1943).

(c) The conduit is installed through cohesionless granular material (Figure 6c). In
this case, because of the yield of the timbering and the imperfection of the joints on the
sides of the conduit, the granular material adjoining these sides subsides to the same
extent as the subsiding material on top of the conduit on account of the yield of its roof.
This lateral yield may cause the granular mass to come to an active state of plastic e-
quilibrium. In such case the boundaries of the zone of subsidence will rise at the bottom
of the conduit at an angle 45° - 9/2 with respect to the vertical and gradually the boun-
daries will become vertical at the plane of equal settlement. The width of the interior
prism will, therefore, be equal to:

B, + 2H, tan(45° - $/2) = Bq on top of the conduit
and
By at the plane of equal settlement where By > By.

Ground Surface Ground Surface Ground Surface
—— 84—
Plane of Equal Settiement  Plane of Equal Settlement Plane of Equal Settlement
TTTT T T T TTTITT T
| { [ [
I [ ! : [ 0
I I | | [ ]
Ii‘"Bd": :‘—Bd — | ——Bd— |
I Ll |
I I i i Iy
: | ?.232; | o~ | T\k I‘Bc"l J
e —‘—F—.; —J— \
Hm L RN s oA 4542
¥ p) ¥ L
b B! ke Hprpbe— Be— Hye! —

Be + 2Hitan(45°-4/2)
{a) (b) (c)

Figure 6. Mined-in conduits.

In order that the mathematical computations be simplified, it is assumed that the ef-
fective width of the interior prism is equal to By throughout the height from the top of
the conduit to the plane of equal settlement (Terzaghi, 1943a).

From the above discussion and for reasons that were discussed previously one should
use the negative signs in the general load expression when the conditions insuring the
existence of Case II have been realized.

Hence, Equation 10 becomes

2 (2 _Iie - 9
W, =2__TI:eBtacl!l . e (2Ketandg) Bd [(ZKetan¢e)(H B:ie) -1 -%—‘;)] +(1 -Y._;.g ) f, (18)

from which

_ He -
Cp = e ~(¥Ketante) 52 [(2Ketanse)E e - 1 -%g—)] +(1 -.%%Ld)_ (19)

A quick inspection of Equations 18 and 19 will show that the shearing resistance of
the material on top of the conduit works to the engineer's advantage. The more resistant
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to shear the material is and the larger the portion of its shear components that is mo-
bilized along the sliding planes, the lower will be the load on top of the conduit.
The above discussion may be expressed in mathematical form as follows:

limW, = 0, (20)
¢e nd 900

limW, = - . (21)
ce—i [o4]

Equation 21 has mathematical meaning only. Physically, it may mean that for a cer-
tain installation, if the material is able to mobilize a sufficient amount of cohesion and
if the deformation characteristics within the mass are such that such an amount is mo-
bilized along the sliding planes, the load on top of the conduit will be a minimum ap-
proaching zero.

Let us see now what other implications some other conditions may bring on the load
expression.

Equations 18 and 19 contain the descending exponential function e"Y where u =
(2Ktande) He/Bq > 0. This function is equal to 1 for u = 0 and decreases very rapidly
with increasing positive values of u, and approaches zero. For example:

fu=1, ecU=0,3679; if u =2, e~u= 0, 1353;
if u=4, e"u=0,0183; and, if u = 8, e =0, 003, etc.
From the above it can be seen that if u>>1 the first part of Equation 19 will become
negligible and

Cph~1- [ 2ce/YBd] , (22)
from which .
YB _2ce
We * 7% fage (1~ 785" (23)

Hence, if the material is potentially able to mobilize along the sliding planes an a-
mount of cohesion equal to cg = YBg the load on top of the conduit will be:

We = 0. (24)

The above expression is at variance with reality because the general load expression
was evaluated on the assumption that the normal stresses in the interior prism are the
same everywhere on a horizontal layer. Actually, the surfaces of equal normal stress-
es will be curved like arches. If the conduit has a flat roof, then the region within the
surface of zero pressure and the roof of the conduit will be in a state of tension. Con-
sequently, the material within this planoconvex region will have the tendency to drop out
of the roof. As Terzaghi points out, "in order to prevent such an accident, an unsup-
ported Broof in a tunnel through cohesive earth should always be given the shape of an
arch.”

In the case of either a covered-up or a mined-in conduit whose top is curved, such as
in the case of circular, eliptical, or oval shaped conduits, Equation 24 may describe
conditions very close to reality if the proper deformation conditions are insured within
the mass and if the material is able to mobilize a sufficient amount of cohesion along the
sliding planes.

From the above discussion, it was shown that if the factor u = (2Kgtandg) He/Bd is
made sufficiently large, the load factor Cp and, accordingly, the load W, will become
minimum on top of the conduit. Therefore, an understanding of the behavior of the fac-
tor u for various physical conditions is considered to be an indispensable guide in direct-
ing the engineer's judgment when dealing with underground conduit design.

In the following chapter, a study of the factors governing the behavior of u will be made
for covered-up as well as for mined-in conduits.

8K. Terzaghi, Theoretical Soil Mechanics (New York: John Wiley & Sons, 1943), p. 199,
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Evaluation of the General Expression Gov- I Top of Embankment s -
erning the Behavior of Factor u = (ZKctande)
He/Bg for Case II

_1. Evaluation of u for Covered-Up Con- Plane of Equal Settlement
duits. In this treatment a negative pro- ¥IrFT—-—""—r———T~—"—"" T
jecting conduit represents the general case. o lV,' [ N L
An imperfect ditch conduit as well as a My | %t i : l : |
ditch conduit can be deduced as special ~u dr TR
cases. H l-l'.l %x' -m_ : ’—llr

Let Figure 7 represent a negative ditch [ _‘_l
conduit installation in which the previous Hg | | [(Co*Keg, tondeldz
notation is employed with the addition of i |
the following: I

Hy = height of ditch above the top of the - _{__
conduit, ft. Ha

H' = H - Hq = height of fill above the top
of the compacted material, ft. _l_'*_B‘_’

Hp = He - Hy = height of the plane of _/
equal settlement above the surface of the Loose Material
compacted material, ft. |

sf = settlement of the conduit foundation,
ft.

d, = shortening of the vertical dimen-
sion of the conduit, ft.

Sq = compression of the loose material Figure 7. Force diagram for a covered-up
in the ditch within the distance Hq, ft. conduit,

sf + dg + sq = settlement of the surface of the loose material, ft.

8o = settlement of the surface of the compacted material, ft.
rgd = settlement ratio = [sg - (sq + d¢ + sf)]/sq

V% = resultant vertical pressure acting on a horizontal layer of width By in
the exterior prism at a distance z from the plane of equal settlement,
1b. per lin. ft. of length.

\j = compression of the interior prism between the surface of the compact-
ed material and the plane of equal settlement due to the vertical pres-
sure within the fill height H', ft.

g = compression of the exterior prisms between the surface of the com-
pacted material and the plane of equal settlement due to the vertical
pressure within the fill height H', ft.

Ef = modulus of deformation of all fill material except the loose mass in the
ditch within the distance Hy, lb. per ft. per ft.

Ej, = modulus of deformation of the loose mass in the ditch within the dis-
tance Hy, 1b. per ft. per ft.

a' = EL/ EF'

The following assumptions must be made in addition to the previously stated basic
assumptions:

(a) The average behavior of both the compacted and the loose fill materials is such
that these materials may be considered to obey Hooke's law when subjected to compres-
sion. Their respective moduli Ep and Ep,, therefore, are assumed to be constant with-
in any region of the fill.

(b) The settlement ratio rgq is considered to be constant throughout the life of the
conduit.

(c) The internal friction of the fill materials distributes the infinitely small decrements
of pressure from shear into the interior prism below the plane of equal settlement in
such a2 manner that the effect on settlement is substantially the same as for uniform ver-
tical pressure (Spangler, 1950a).

(d) The internal friction in the fill materials distributes the infinitely small incre-
ments of pressure from shear onto each of the exterior prisms below the plane of equal

Before Settlement
— — After Settiement




settlement in such a manner that the effect on settlement is substantially the same as
though the pressure were distributed uniformly over a width of prism equal to the width
of the interior prism, By (Spangler, 1950a).

(e) With the exception of the moduli of deformation both the compacted and the loose
masses exhibit the same physical properties.

Assumptions (a) through (e) are made in order that the subsequent mathematical
treatment will be simplified. Their variance with reality depends upon the Rature of the
materials used, the method of construction, and the magnitude of the quantities involved.
The engineer's judgment, based on previous experience, will determine how large the
involved error is and what allowances should be made in each individual case.

To evaluate factor u one must consider the deformation characteristics of the interior
and exterior prisms.

The over-all settlement of the interior prism at the plane of equal settlement must
equal the over-all settlement of the exterior prism at the same plane,

Hence Aj+8d+dg+8f=)Ap+sg (25)

or A =ap + Sg - (sq + dc + s¢). (26)

Tgd = [sg - (sq +dc + Sg)] /sd»

Since

Equation 26 may be written
A =g + TggSq- (27)
Since the material within the interior and exterior prisms is assumed to obey Hooke's
law, the vertical compression of a thin horizontal slice of the interior prism with thick-
ness dz at a depth 2 below the plane of equal settlement must equal

d\j = (Vz/B4Ey) dz. (28)

Similarly, the vertical compression of a thin horizontal slice of the exterjor prism
with thickness dz at a depth z below the plane of equal settlement must equal

d\g = (Vy/B4ER) dz. (29)
Substituting in Equation 28 the value of V, from Equation 9, in which the negative
signs have been employed, and integrating between the limits
2\j=0 for z=0
A=)} for z=Hg
one obtains after rearranging terms
A\ = YEF -(2———71( Tant, i e"ZKeta“"’e’%ﬁ“ [(1 -%%%—) - 2K tan, (———e-H' édH' )] +
H' - H; 2¢c (30)
[2xctante 5 He) 1 (1 - 3o axtante)Ee)- 1) ] |-

To evaluate V;, the conditions of static equilibrium are considered for a thin slice of
the exterior pnsm with a thickness dz at a depth z below the plane of equal settlement
(Figure 7). The conditions that the sum of the vertical forces that act on the slice must
equal zero can be expressed by the equation

YBgdz + (c + Ke %3- tanée) dz + Vi - Vi - dV} = 0, (31)
or v
dvy, = (YBq + ce + Ke EE& tande) dz. (32)

Substituting in Equation 32 the value V, from Equation 9 and integrating between the
limits
Vy, =(H - Hg) YBy for z=0

Vi =V; for z=12
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or, since H - He = H' - Hp, between the limits
Vy = (H' - Hp) YBgq for z=0
=V, for z=12
one obtains after rearranging terms
_ YB§ 3 H' - H; z
Vg = IKetantg, i 7- (ZKetan‘l'e)(——e-d + By )

Z
L [o-Ketante) 5y fiametange) e ) - 1- 2280} 4 - E&)]f

] YBq YBq
or YB ' 1
Ve~ TRty [ et o i) ] - 5y, @)

Substituting in Equation 29 the value V, from Equation 33 one obtains

-1 YB 3 H-He 2z 1 Vg
dhe = FiEF * Exe'm'Ln¢e [E (2Ketande) g~ +g5 )] 4 - 3 Bakp 9%

or, from Equation 28,

=1 YBJ z 1
dre = BdEf ° 2Ketande ['2 (2Ketan¢e) + ﬁ)] dz - 5 d);. (34)

Integrating between the limits
Ae=0 2j=0 for z=0
Ae =Ap \j=1j for z=Hg

one obtains after rearranging terms (35)
, _YBZ 1 H' - H} 1
A\e = E—Fd K neg)® | 2 [(2Ketan¢e)( €) + 5 (2Ketan¢e)_& ] ‘ (2Ketan¢e) - g\

Since the loose material in the ditch is consmered to obey Hooke's law, the vert1ca1
compression of the prism within the distance Hd due to the vertical pressure Vg = He
on top of the ditch is

aq = Vz = H'e
BgEy,

Substituting z = Hp in Equation 9 and since H - He = H' - H}, one obtains

_ yB? -(2K tand,) He " - 2 2
Vi - m, " R e je etande) g4 [<2Ketan¢e><——$>-u c**)] (1- °e)f<37)

Hence, Equation 36 becomes

. Hg. (36)

B H o ~(2Kctans )- H - H 2
o = Engid K tante i o [(ZKetan‘I’e)(——-i) - (- +(1- °e)§,
B 1 Hy | -(2Ketange)Be H - H Zce
84 *TEp (IKetante)® * (2K gtanée) Ta% 1e € Bd [(2Ketan¢e)(Td&) -(1- )]
2c
1-¥B4 f (38)

Substituting the values of A}, A\, and sy from Equations 30, 35, and 38 in Equation 27
and letting

V' = (2K tané,) -}‘3;‘;— , (39)
u' = (2K tange) %ﬁ” , (40)

W' = (2Kgtange) %&L , (41)
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one obtains after collecting terms

3 2 3ce ., (3, rgaw 2c 3 rggw', . 2c -u'
(;u’-ﬁ%u)-(,+—%‘?l>u-ﬁ%>+<,+—§s,i—xu +1-FR)e

(3+7) e

v =

u'+-§(u' - 1)

Equation 42 governs the behavior of u' for a given installation and material. Since
He = Hq + Hp, it follows that u = u' + w'. Therefore, Equation 42 governs the behavior
of factor u as well. All other quantities are independent variables in Equation 42.

Factor u' can be obtairied from the above equation implicitly. This, however, would
be a cumbersome and time consuming operation for design purposes. Since v' is a single
valued function of u', one may solve Equation 39 for v' and construct curves from which
u' can be obtained in a reverse manner for a given installation and material.

An inspection of Equation 42 will show that if the denominator

(%.,_E%i‘ﬂ) e +g(u' -1)

approaches zero, v' increases without limit.

The physical significance of the above is that for a given material and conduit width,
if the fill is made very high, factor u' and, accordingly, the height of arching, He, does
not depend on the cohesion and the unit weight of the material.

Hence, no matter what the values of cohesion or the unit weight of the material are,
for infinitely high fills, the height of arching is governed by the equation

1] 1
(3+ 580 ) ™ 43w - 1) =0, (43)

It should be noted that in Equation 42 u' can be larger in magnitude than v' for certain
conditions. However, physically, u' is limited in the region 0 € u' € v' because the
height of arching, He, can vary only in the region Hq € He € H.

If u' is mathematically larger than v', the plane of equal settlement becomes imaginary.
In such case, a trough-like depression appears at the surface of the embankment directly
above the conduit.

If u' is mathematically smaller than v', then the arching effect does not extend along
the whole fill height. Consequently, the plane of equal settlement will be below the top
of the embankment, and no settlement will be noticeable at the surface.

The above discussion holds for both imperfect ditch and negative projecting conduits
because no differentiation was made between the stiffness of the thoroughly compacted
material and the stiffness of the natural ground in the above theoretical treatment.

In the case of a ditch conduit:

Hq = He = H. (44)

Substituting Equation 44 in Equation 18 one obtains as the load expression for a ditch
conduit and an s = ¢ + ¢ tan$ material

We = YB3 o ~(2Ketande) H/By [_(1 -%S,%)] (1 -2 } ,

EKetaM’e ) YBq
or 2
If H>>1
YBY _ ( _2ce) (46)

We * 3R tangg

which is identical to Equation 23.
Letting (2Kgtande) H/Bq = v, and substituting in Equation 45 one obtains

We = s | 1-a9u-e™ ], (#)

"YBq
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from which 2 v
= -==e -e
Ch=(1 YBd)(l e ). (48)

The method of utilizing dimensionless factors reduces the number of independent var-
iables in any problem and facilitates the mathematical computations considerably. There-
fore, in the subsequent analysis their use will be extensive.

Since u =w' +u' and H -~ He = H' - Hp in imperfect ditch and negative projecting con-
duits, by substituting the dimensionless factors of Equations 39, 40, and 41 in Equations
18 and 19 one obtains, respectively

YB& -w'_-u' ] ' 2Ce zce
gmq,—e e e [(V -u')-(1 YBd)] ‘ (49)
and ' '
Co=e™e™ [(v-w) - -3 ] va-Ee. (50)

As has been discussed previously, if either of the two exponents w' and u' in Equation
50 are large enough, Cp will approach the value 1 - (2ce/YBg).

Factor u' is governed by Equation 42 in which many independent variables must be
determined in order that this factor can be evaluated.

Factor w', however, is an independent variable in Equation 42 and depends only on the
properties of the material, the width of the conduit, and the height of the ditch on top of
the conduit. Therefore, for a given material and width of conduit, if the height of ditch
is made large enough so that w'>>1 then the load on top of the conduit will be

YB& 2Ce

which is identical to Equations 23 and 46.
Again, if the cohesion of the material that is mobilized along the sliding planes is
equal to ce = YBq theoretically there should be no load on top of the conduit.
—*

Equation 42 may be written also (52)
3 rde' [ - - 3 12 3 ' (g -
(g rde)(l_ )--g-u'=YBQ {(2+ ~ )[1+(v u-1e ] ZU +g v (u 1)}.
Ce

If ce is allowed to increase without limit, the left hand member of Equation 52 will
approach zero. Hence in the hmit one obtains

(3 +580%)1 - e™) 3w <o, (53)
Equation 53 may also be written ,
eV o1 2 (54)
3 Tggw' :
(g+=ar )

From Equation 53 or 54 it can be seen that for all real values of the parameter rggw'/a’,
the only solution of Equation 54 is u' = 0.
One may conclude, therefore, that

limu' =0 (55)
Ce— @
In a similar manner it can be shown that
limu' = w, (56)
el
and
limu'=0 (57

TsdW o
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The physical significance of Equations 55, 56, and 57 is as follows:

(a) The higher the amount of cohesion that is mobilized along the sliding planes, the
lower will be the height of arching. However, in such case the quantity 1 - (2ce/YBd)
becomes the predominant factor in the general load equation. Therefore, although in the
same equation the descending exponential e % will become maximum for an infinite a-
mount of cohesion, the load on top of the conduit, as it has been discussed in the previous
section will vanish.

(b). For a given installation and material, the height of arching He varies directly
with the settlement ratio rgq, the height of theditch on top of the conduit, Hd, and the
relative stiffness between the compacted fill material and the loose material in the ditch,
which is expressed by the ratio 1/a’. Therefore, the larger the above quantities are,
the higher will be the height of arching and, consequently, the lower will be the load on
the conduit.

From the above discussion it can be seen that if w' is made large enough, not only
will the exponential e-W' decrease, but the exponential e-u' will also decrease.

As it was pointed out previously, from a physical standpoint, u' cannot be larger than
v' even if the quantity rgqw'/a’' increases without limit. Therefore, for a given installa-
tion and material, u' is bounded by the condition u' = v'.

Substituting the above in Equation 42, one obtains for a given installation and mate-
rials the maximum fill height for which the material on top of the conduit will brace it-
self against the adjacent mass along the whole fill height in a similar manner as in a
ditch conduit.

Hence, for u' =v'

3 * 2 ] 2 -y
=(§v”-y—;eav')-(-g+rsdw )(I-Y%g)+(%+£§5y_)(v'+luy—§§)ev ,

vl

(g- + r:'dw') eV +% (v' - 1)

or, after collecting terms

32 3y (1 22e
R A M- (58)

2ce ,3  rggw'

(l'm)('z'*-‘—av—)

from which v' may be obtained by successive trials.

(c) If the ditch material, the conduit, and the conduit foundation have an over-all stiff-
ness that is equal to the stiffness of the adjacent masses, the middle prism will settle
the same amount as these masses. Consequently, there will be no arching effect.

Since the material in the ditch behaves like the adjacent masses, no distinction can
be made between the two materials; consequently, w' =0 andu' =u = 0.

Substituting the above in Equation 18 and since v' - u' = v - u and v = (2Kgtande) H/Bq
one obtains

Wc =YBgH =W when rgqw'/e' =0, (59)
which is identical to Equation 15.

Evaluation of u for Mined-In Conduits

In this treatment case (a) of Figure 6 will be considered to be the general case. Cases
(b) and (c) can be treated in a similar manner if the quantities involved in the expressions
derived for case (a) are modified accordingly.

Let Figure 8 represent a mined-in conduit installed through cohesive material with its
lower part located within an exceptionally stiff layer of clay between soft layers. The
same notation is employed as in previous sections with the addition of the following:

Hpy, = thickness of the stiff layer on either side of the conduit, ft.
\j = compression of the interior prism between the top of the conduit and the plane
of equal settlement, ft.
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Sround Surface . Ae = compression of the exterior prism
between the top of the conduit and
the plane of equal settlement, it.

Sm = compression of the stiff mass on

TTN] 777 A 7.

Plane of Equal Settlement either side of the conduit within
T Ty the distance Hp,, ft.
: ]"5 ! lv‘ : l\'{ |z 5] = settlement of the foundation sup-
4 L4 l porting the stiff layer, ft.

Sm + s] = settlement of the mass supporting
the exterior prisms, ft.

w | o e T Tioew &
!

] |
[{ces+ Ke‘-g-’ian o,)d\z' lv;uv; de + sf = settlement of the mass support-
|

: ing the interior prism, ft.

| rsm = settlement ratio =[(spy + s)-

| (de + sf)] /sm-

I E¢ = modulus of deformation of all

i other material on top of the con-

J duit except the stiff layer on its
sides, lb. per ft. per ft.

shif Layer Epm = modulus of deformation of the
stiff mass within the distance Hy,,
4——f— o g g e Ib. per ft. per ft.
Before Seftiement o = Em/E;.
_— A:,,,e s.:,:,:::,: The assumptions made in the case of

covered-up conduits are modified in order
Figure 8. Force diagram for a mined-in  that the subsequent analysis can be made.
conduit. Thus:

(a) The average behavior of the material surrounding the conduit is such that it may
be considered to obey Hooke's law when subjected to compression. Thus, the moduli Ef
and Ep, are assumed constant within any region occupied by their respective materials.

(b) The settlement ratio Igm is considered constant throughout the life of the conduit.

Assumptions (c), (d), and (e) are the same as in the case of covered-up conduits.
Assumption (e), however, should be modified to include the stiff mass on the sides of the
conduit instead of the loose mass within the ditch on top of a covered-up conduit.

In addition to the above:

(f) In setting up the expression for sp,, the friction between the sides of the conduit
and the stiff layer is neglected to simplify the mathematical computations (Spangler,
1950Db).

As in the previous case, for the evaluation of u one considers the relative deformation
of the interior and exterior prisms. The over-all settlement of the interior prism at the
plane of equal settlement must equal the over-all settlement of the exterior prism at the
same plane. Hence

Aj+de + 8f =\g + Sy + 8]
or Aj =\Ae + Sy + 81 - (d¢ + sg). (60)
Since rsm = [(sm + 8D - (d + 8p)]/5m,
Equation 60 may be written
\j =g + Tgm - Spm- (61)

To evaluate \; one substitutes in Equation 28 the value of V, from Equation 9 employ-
ing the negative signs, and integrates between the limits

A\{=0 for z=0,
M=\ for z=Hg.

Rearranging terms and letting
(2Ketande) H/Bq = v, (62)

(2Ketande) He/Bg = u, (63)
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(2K tande) Hyp/Bg = W, (64)

one obtams
Y B 2Ce

. ___d_ -u [ _ ] [ . zce _ ) ] E
M i?Ketan ry IR L ygd) (v-uf+](1 )(u ) +(v-u) (65)
Sim1lar1y, by substituting Equation 33 in Equation 29 and integrating between the lim-

its \e=0 Aj=0 for z=0
Xe = Xe ki = Xi for z= He

one obtains in terms of the dimensionless factors v and u defined from Equations 63 and
o "35 \j 66

\e m)z i'z(v u)“} gl ( )
Since the stiff mass w1thm the distance Hy, is considered to obey Hooke's law, the
vertical compression of the prism of width Bq and height Hpy, due to the vertical pres-
sure Vj = He On top of the stiff layer, is |

Sm = (V'z = He/BdEm) Hm. (67) ;

Substituting z = Hg in Equation 33 and since H' - Hp = H - He, one obtains in terms
of the dimensionless factors v and u

Y 31 - 2 2 |
Vi - ne = ppmie 12V -3¢ { [0 - v -] sa-Fe}] 68)

Substltuting in Equation 67 the value for V' = y, from Equation 68 and, since Em =aEj
and 2Ketan¢e d = w one obtains

YBg w {3 1 -u 2% %
Sm = Ef (z_ﬂxetan :iz"‘z{e [(V-u)-(l- e)] a- ——e—}t (69)

Substituting in Equation 61 the values \j, Ag, and sy, from Equations 65, 66, and 69,
respectively, one obtains after rearranging terms

rsmw 2c T \\4
Gt e - 3 - (-5 + 8- TSB% )u v 138y ™ (10)

(3 - Ism¥) ™% 4 3(u - 1 +-5MT)

Equation 70 governs the behavior of u for a given installation and material in the case
of a mined-in conduit. The same equation may be used in the case of positive projecting
conduits if their side supporting material has been thoroughly compacted.

As in the case of covered-up conduits, u may be obtained from curves that have been
constructed by solving Equation 63 for v.

It can be seen for this case that again, for infinitely high fills u does not depend on
the cohesion and the unit weight of the material but is governed by the equation

(3-5%‘!)e'“+3(u-1+£&§3)=o. (1)

By following the same method of approach applied to covered-up conduits, it can be
shown also that

limu=20 (12)
Ce = @
limu=w

73
IsmW| (1)

a

limu=0

74
Ism¥% o (1)

Again, physically, u is bounded by the condition u = v.




35

Substituting u = v in Equation 70 one obtains

(Y -qpSv - - T - ee) (3 SV 4 1 0e o
(3 - T8m¥) ¢~V 4 3(v - 1 + Ism¥)
or
Y ZCe smw
R Al [‘1 - - =] (75)

smW
(1-25e)(3 - Tam¥)

From Equation 75 one may obtain for an s = ¢ + o tan¢ material, the maximum height
of the mass on top of a mined-in conduit for which the arching effect will extend as far
as the ground surface thereby causing a trough-like depression to appear at the surface
directly above the conduit.

From Relation 74 and Equation 18 one may see that, as in the case of a covered-up
conduit, if the over-all stiffness of the body furnishing support to the middle prism e-
quals the stiffness of the mass supporting the exterior prisms above a mined-in conduit,
there will be no relative settlement between the interior and exterior prisms and, con-
sequently, there will be no arching effect. Consequently u = 0 and the load on top of the
conduit will be

We=YBgH=W when rgmw/a =0, ('76)

which is identical to Equations 59 and 15.

In both cases of covered-up and mined-in conduits the corresponding settlement ra-
tios rgq and rgp, are empirical quantities and must be determined by direct measure-
ment. Since in either case the interior prism subsides a greater amount than the ex-
terior prism, both quantities are negative.

A positive settlement ratio would indicate that the reverse action has taken place in
the relative subsidence of the masses on the top of the conduit. Under such circum-
stances, conditions corresponding to Case I would be present, which, as it has been
discussed previously, is very undesirable because of its detrimental influence on the
conduit. Therefore, every effort must be made in the design and construction of an un-
derground conduit in order that the settlement ratio of the masses above it remains
negative at all times.

Both settlement ratios were defined originally by Dean Anson Marston (1922) and
Professor Spangler (1950b) of Iowa State College in their theoretical treatment of covered-
up positive and negative projecting conduits installed in a granular material. To avoid
confusion, the writer has adopted the same definitions in his treatment of the general
case. However, he believes that if both ratios had a common denominator, say de,
which would always be a positive quantity, then the two cases could have been united into
one general treatment. Furthermore, if both ratios were defined in such a manner that
they would be positive quantities, the mathematical treatment and the resulting expres-
sions for all cases would have been much less complicated.

The employment of the shortening of the vertical dimension of the conduit, d¢, as a
denominator in the expressions for settlement ratios would also tie in the height of arch-
ing and, consequently, the load expression, with the stiffness of the conduit and the dis-
tribution of external pressure on its sides and bottom. Consequently, the resulting load
expression would have been also a function of the support which the side material can
furnish to the conduit, as well as of the stiffness of the conduit. Such treatment, how-
ever, is beyond the scope of this paper.

The Analysis of the General Case as Applied to an s = ¢ tan$¢ Material

The theoretical relations describing the loading action of a perfectly cohesionless
material on top of underground conduits can be deduced from the expressions derived
for the general case in which the loading agent is an s = ¢ + ¢ tan$ material, by taking
the limits of these expressions when ce is allowed to approach zero. Thus:

1. From Equation 10 the general load expression for an s = ¢ tan$ material will
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become

lich __YBj z (2Ketan¢e) H- He +
0" m e [(2Ketan¢e)( ) 1] (77
from which He
C = " (Betante) 5o [ axcgtanse)(H Hey 1] 71 (18)
In terms of the dimensionless factors v and u, the above equations may be written
respectively 3
YB -u
cW_ 0 W z [(V u) - 1] +1 : (79)
and
C-e" "[w-wti] 31 (80)

In the event that the interior prism subsides less than the exterior prisms, which
was defined previously as Case I, the positive signs should be used in Equations 77
through 80. Hence, in terms of the d1mensmn1ess factors v and u, one obtains

YB +u
c_o-zl—(—emqg'l (V u+1)-1§ (81)

Ccp=ew-u+1)-1. (82)

From the above equations one may conclude that Case I will be just as detrimental to
an underground conduit installed under an s = o tan$ material.

In the event that the interior prism subsides more than the exterior prisms, which
case was previously defined as Case II, the negative signs should be used in Equations
79 and 80. Hence, in terms of the dimensionless factors v and u, one obtains, respec-
tively

and

E&—Yta—‘?'n‘ie- e v-u-1+1] (83)
and
Cn=e Y(w-u-1+1. (84)
If u 1, e will become negligible. Hence;
Cn=~1
and B2
c:Zco ~ Tfands : (®)

Equation 85 is identical to the expression derived by Terzaghi for the pressure on
top of deep tunnels through dry sand, i.e., for Case ¢ of Figure 6.°
For a ditch conduit, Hq = He = H. Hence, u = v and Equation 83 becomes

_ yp? -v
CSO'ET('EE%Teu'e ). (86)

As in the case of an s = ¢ + o tané material, if the height of the fill is large enough
so that v = (2Kgtange) H/Bq 1, e-V becomes negligible and the load on top of the con-

duit approaches the value .
. By
Wc - Ke an¢e

given by Equation 85. Ce =

For either a negative or an imperfect ditch conduit, since u =w' + u' and H-He=H' - Hp

" Equations 77 and 78 are identical to Equations 11 and 12 obtained by Spangler. See
References, Spangler (1950b), p. 24.
®Terzaghi, op. cit., p. 196.
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Equations 83 and 84 may be written, respectlvely, as

_ YBd -w' - -
W= 0— 'zm i e e (V' u 1) +1 (87)
and .
Cn= e VeV (v-u-1+1. (88)

—w' -1t

Because of the descending exponential functions e ¥ ande™ , if either w' or u' is
large enough, Cp will approach one and the load on top of the conduit will be given by
Equation 85.

Since w' = (2Ketan¢e) Hy4/Bg, it follows that for a given material and width of ditch,
if the height of ditch is made large enough so that w'>>1, the conduit load will be

YBY
w 0 ZKetanq’e

2. The equation governing the behavior of u' for a covered-up conduit may be obtained

by taking the limit of Equation 42 when cg is allowed to approach zero. Thus

Isd——)+( - L de )u' +1) e
I‘de)

(89)

e
(3 '+,z(uv-1)

Similarly, the equation governing the behavior of u in the case of a mined-in conduit
may be obtained by taking the limit of Equation 70 when c¢ is allowed to approach zero.
Thus

Sut-(3-IsmV¥), (3 TsmWy,, gt %0
limv = 2 ) (90)
ce—0 (3_l‘_sam_W)e'“+3(u_l+Ls;m_W)

By inspection it can be seen that if the denominator of the right hand member of the
above equations approaches zero, factors v' and v will increase without limit.

Hence, for a given material, if the mass on top of a conduit is infinitely high, u' and
u will be governed by the equations

3 l
3+ e™ 1 Jw -1 = (91)
and r W -u ) o \'J
(3__5%“ +3(u-1+—%m—)=0 (92)
respectively.

Equations 91 and 92 are respectively identical with Equations 43 and 71 which had been
derived for infinitely high masses consisting of s = ¢ + ¢ tan$ material. One may con-
clude, therefore, that for very high earth masses on top of either covered-up or mined-
in conduits, the influence of the cohesion of the material on the height of arching is negli-
gible and an s = ¢ + ¢ tan¢ material will behave like a perfectly granular material. Since
the general load equation depends primarily on the height of arching it follows that for
very high masses consisting of s = ¢ + otan¢ material, the conduit load may be computed
as for an s = ¢ tan material. The error due to neglecting the cohesion, besides being on
the safe side, will be negligible.

What constitutes a very high earth mass will depend not only on the height, H, but on
the factors 2Ketan$, and Bq as well, because v = (2Ketanée) H/Bg.

3. As in the general case of an s = ¢ + o tan$ material the following relations can be
established for an s = o tané¢ material:

(a) lim We = 0.

ce=0 (93)
<|> —90°

® Equations 89 and 90 are respectively identical to Equations 18 (Spangler, 1950a, p. 158),
and 18 (Spangler, 1950b, p. 28).
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(b) In the case of a covered-up conduait:

limu' = w,
94
rde' I e ( )
u!
lim u' =0,
95
reaw _ o (95)
a'
(c) In the case of a mined-in conduit:
limu=o,
(96)
IsmW |
a
lim u = 0.
(97

IsmW _,
a

As in the general case u' and u are physically bounded by the conditions u' = v', and
u = v respectively.

The maximum height of a mass of a perfectly granular material above an underground
conduit for which the arching effect will extend as far as the surface of the mass causing
a trough-like depression to appear on the surface may be obtained by substituting u' = v'
and u = v in Equations 89 and 90 respectively.

Thus, for a covered-up conduit one obtains after rearranging terms

3 . 3,
PO AR A

& T reqw, | ! o 1
(3 +=55=) ‘
a
For a mined-in conduit 3.2, 3y [rsmw _1]
e-v _ 2 a + 1 . (99)
3 - smw
a

From relations 95 and 97 and by applying the same reasoming as in the general case
it can be shown also that
lim W¢ = YBgH = W, (100)
Ce= 0

TsdW' _
a

Iim We = YBgH = W. (101)
Ce= 0

Ism¥V _, ¢
a

The Analysis of the General Case as Applied to an s = ¢ Material

As 1n the previous section, the theoretical relations describing the loading action of
a perfectly cohesive material on top of underground conduits may be deduced from the
general case by taking the limits of the expressions derived from an s = ¢ + ¢ tan$ ma-
terial when ¢¢ is allowed to approach zero. Thus:

1. From Equation 10, the general load expression for an s = ¢ material will become
equal to

lim We _yne §(H- He + 2ce \ He
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from which
H - He t2ce) He
C=(—x—)+(1 md)B . (103)
Let
H/Bq = vo, H'/Bq =V'o,
He/Bd = ug, H'o/Bq = W',
Hp/Bq = Wo, Hyq/Bg4 = W'q,
Substituting in Equations 102 and 103 one obtains
+ 2¢c
W%—YBd,(vo ug) + (1 - YBg) ‘ (104)
and
+ 2Ce
=(vp - up) + (1 - de) (105)
respectively.

In the above equations the positive signs should be used in the event that the interior
prism subsides less than the exterior prisms, and the negative signs in case the reverse
action takes place.

Hence, if Case I obtains

4:/% YBY i(vo ug) + (1 +YBd) uos (106)
and
Cp = z(Vo uo) + (1 +5 e) “°i (107)
If Case II obtains
We —YBd,(vo u0)+(1— ) oi (108)
e
and
Cn={(Vo-uo)+(1 -Yz%g)uoi. (109)

From the above equations, it can be seen that the conditions for Case I are just as
undesirable for an s = ¢ material as for an s = ¢ + otané or for an s = ¢ tan¢ material.
For a ditch conduit, since Hj = He = H

=yB% (1 - 2¢e) H
We = VB4 (1 - 322 )50 » (110)
e
or
= yn2 _
VZC =YBg@ YBd) Vo- (111)
e
Hence, if ce =l];-‘1 ,
W = 0. (112)

Equation 112 is similar to Equation 24,
For a negative or an imperfect ditch conduit, since Hg = Hj + H'e and H - He = H' -~ Hl,
Equation 102 may be written

W, = YBY z(E_EE_G.) 2ce )(EQ_"’_I'_I_G.) 2 (113)
¢ 0
or
We = YBY {(v'o -ug)+ (1 -%‘;—g Mu'o + w'y) ‘ . (114)

450
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in terms of the dimensionless factors vy, u'y, and w',.

2. The equation governing the behavior of u'p in the case of a covered-up conduit may
be obtained from the general case as follows:

Equation 42 may be written also

3 ] 3Ce '
H _ - 1 (zu “YB )'('2+
—_— = o-~ [
Bd 2Ketande ;3 +l‘sdw)e u +§Tu - 1) (115)

TSV )(1 - 228) + (3 + 280 )(w + 1 - o0 e

Applying L'Hospital's rule twice on Equation 115 and letting ¢¢ approach zero one

obtains
3 u'oz _ rs"jw'o u

limvg _ 2ce % a o
%e—0 ~ T VBgq rsdw'g (116)

from which

ul = 2‘1_1{1_(?-‘»'—"—2—;. (117)

! YBgy

Similarly the equation governing the behavior of ug in the case of a mined-in conduit
if Equation 70 is written in the form

3 60 2C r w 9 _
1 (g w? YB% u) - (3 - _i_)(1 __e) (3 %)(u+1_1§%) u

H
Bd “ZKetande (8- —m—“ el +3u-1+ __rs:nw) (118)

If L'Hospital's rule is applied twice on Equation 118 and ¢¢ is allowed to approach
zero one obtains

3 uz + l I'smWo

(o) Uo
lim v = - %932 L) 2 (119)
$e—0 d rS!:lWO
from which
1 rgmw J
uo =3 sglo{-l 1-r‘1 Yde (120)

By inspection of Equations 117 and 120 and by noting that rg4 and rgy, are negative
quantities the physical meaning of these equations can be interpreted if written as follows:

) 3V'O
wo=2 IsdWo jl- J1 - e T (121)
3v|° u' YBd
for all values of rggw'o ch )
o' YBq
12 v
1 rgmw ‘[ 0
= - ~sSmuo - 2
U 3 o gl+ 1 Esx:ﬂ’_o' _Ygg_df (122)
12vo
for I'smWg ___2(:e #0,
a YBd
and -
Yo (123)
for 12Vo =0.
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3. From the above equations the following relations can be established for an s = ¢
material:

(a) lim We = - . (124)
¢e= 0
C.— ©
(b) In the case of a covered-up conduit:
lim u'p = 0, (125)
ce—o w
limu'y = », (126)
IsdWlo I_. ®
ul
lim uly = 0. (127)
rsdw'o _, 0
a'
(c) In the case of a mined-in conduit:
lim ug =0, (128)
Ce—o @
limu =w, (129)
I'smWo | _, o
a
lim uy = 0. (130)
I'smWo _, o

As in the cases of s = ¢ + ¢ tan$ material and s = ¢ tan$ material, u'y and up are
bounded by the conditions u'y = v'g and ug = v, respectively.

The maximum height of a mass of s = ¢ material above an underground conduit for
which the arching effect will extend as far as the surface of the mass causing a trough-
like depression to appear on the surface may be obtained by substituting u'y = Vlg and
Uy =V, in Equations 116 and 119, respectively.

Thus for a covered-up conduit one obtains after rearranging terms:

- _2 YBg rggw' 2ce
v'°max =-3 Ce _S.d_.Q‘IL (1 “¥Bg ). (131)
If
ce =124, Vo ayg = O (132)
For a mined-in conduit:
- _2 YBd IrsmW¥o ce
vOmax = - 3 —c—e- Y (1 +Y_Ba . (133)

From Relations 127 and 130 and by applying the same reasoning as in the general
case, it can be shown also that

lim “=/c0= YBgH=W, (134)
lim W, = YBq H = W.
Eﬁﬁr&e -0 (135)

From Equations 102, 117, and 120, it can be seen that the load on top of underground
conduits installed under a purely cohesive material is independent of the pressure ratio
K.
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Construction of Load Curves for a Covered-Up Conduit Installed Under an s = ¢ tan¢
Material

The purpose of the construction of the following families of curves is to facilitate the
computation of load on top of covered-up conduits if the loading agent is an s = o tan¢$
material. Curves to estimate the earth load on top of mined-in conduits can be con-
structed in a similar manner.

The presentation of these curves will follow the same sequence as the order in which
they would be used by a designer to make a load estimate for a given installation and
material.

1. Factor Ktané has been plotted against the angle of internalfriction ¢ for various
values of the equivalent hydrostatic pressure ratio K = Ke. (Table A and Figure A in the
Appendix).

The upper boundary of this family of curves is the curve Kptan¢ which is obtained if
K assumes the upper limiting value, Kp = tan® (45° + $/2) for a passive state of plastic
equilibrium.

The lower boundary of the same family of curves is the curve Katan$ which is ob-
tained if K assumes the lower limiting value, KA = tan®*(45° - ¢/2) for an active state of
plastic equilibrium.

Ke can be obtained by constructing an equivalent pressure ratio diagram similar to
Figure la. The value ¢ may be considered to be a fraction of the maximum value of the
angle of internal friction of the material. This fraction will depend on the desired factor
of safety for the particular project.

2. By solving Equation 89 for v', curves were prepared showing the relation v' versus
u' for various values of rggw'/a’'. From these curves, which are not presented in this
paper, u' was plotted against rggqw'/a' for various values of v'. (TableB and Figure B
in the Appendix).

The upper boundary of this family of curves 1s the curve for which u' = v' and it is
obtained by solving Equation 98.

The lower boundary of the same family of curves is the curve for which v' = o, and
it is obtained by solving Equations 43 or 91.

From the given data of the project and the value Ketande obtained in Step 1, the values
v' = (2Kgtande) H'/Bd and w' = (2Ketande) Hd/Bq can be computed.

From available records of previous installations, the settlement ratio rgq as well as
the stiffness ratio o' = E[,/Ep can be estimated for a given installation and material.
Hence, the quantity rgq w'/a* can be computed. Accordingly, u' can be obtained from
the above family of curves.

By substituting the obtained values of v', u', W' and 2Ketan¢e, in Equation 87, the
load We can be computed.

From the above curves it can be seen that for a given finite value of rgqw'/a', as v’
increases, u' decreases from a maximum value u' = v'mgx to a lower limiting finite
value u'y' = . For values of v' less than v'max, u' is larger than v' in magnitude and,
therefore, it becomes imaginary from a physical standpoint.

From the above, the nature and extent of arching for a given material and ditch width
can be visualized as follows:

If the yield of the loose mass in the ditch induces a constant relative movement within
the fill material above the top of the ditch, the shearing resistance of the material will
be mobilized along the whole fill height and will oppose this movement. This action is
called the "arching effect." During this action a visible, trough-like depression will
exist on the surface of the fill directly above the conduit.

If the fill height exceeds a maximum value Hmax, the arching effect will extend up-
ward to the surface below the top of the fill which is called, "the plane of equal settle-
ment." Above this plane no relative movement exists within the soil mass, therefore, ‘
no depression will appear on the surface of the fill directly above the conduit. |

If the fill height increases without limit, the height of arching will approach a lower ;
limiting finite value. |

3. To facilitate the computational part of the above described procedure, two other
families of curves have been plotted as follows:

1



43

The load factor Cp may be written also:
7!
Ch=1+e" Cp (136)
where

Cp=e (v -u - 1. (137)

By substituting in Equation 137 the values for v' and u' from the family of curves
presented in Step 2, Cp, has been plotted versus v' for different values of rggw'/a’
(Table C and Figures C andC1in the Appendix).

The above family of curves makes possible the evaluation of the conduit load W,
without computing u' first.

The upper boundary of these curves isthe curve for whichrgdw'/a' =0. From Relation 95
and the discussion involved in evaluating the general expression governing the behavior of
factor u, it was shown that under such conditions, u' =0andw' =0. Hence, v' =vand the upper
boundary will be the curve Cp=v' -l=v-L (138)

Since u' 1s physically bounded by the condition u' = v' the above curves will be bound-
ed by the same condition.
Letting u' = v' in Equation 137 one obtains

Cp=-e" (139)

which, as it can be seen from Equation 86 is the corresponding Cny, factor for a ditch
conduit. Hence, the locus of the lower points of the above curves, is the Cp curve ob-
tained for a ditch conduit.

Since Equations 137 and 139 have obviously the same derivative with respect to v' at
the point v' = u', it follows that the ditch conduit Cy, curve is tangent to each one of the
curves of the above family., Hence, at their respective v' = u' points, each one of these
curves merges with the ditch conduit curve.

From the above it follows that the process of arching as visualized in Step 3 is also
mathematically continuous.

It can be shown also that for a fixed value of rgqw'/a’

limCmy = o, (140)
Vi o
whereas
1imCmy = 0. (141)
I‘sd'W' - o
a
Vieo o

4, By solving Equation 136, Cp has been plotted versus Cy, for different values of
w' (Table D and Figure D).

The upper boundary of this family of curves is the curve obtained for w' = 0. As it
was previously shown, under such conditions

Tsd¥ _9  and  uw =0.
a
Therefore,
Cm=v-1 and Ch=vVv.
Since

v = (2Kgtande) H/B,

=_JYBd = -
Wc -m . (2Ketan¢e) H/Bd = YBdH =W.

The lower boundary of the same family of curves is the curve for whichw' = . Un-
der such conditions the second member of Equation 136 vanishes, C,, becomes equal to
one, and the load assumes the value

__YB}
We = og fanse -
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From the last family of curves one can see that the load on top of the conduit is great-
ly influenced by the factor w' = (2Ketange) Hq/Bg.

Recapitulating, one can compute the load on top of covered-up underground conduits
installed under a cohesionless material as follows:

Given the material and the dimensions H, Hy, and Bg:

(a) Estimate Ke, $¢e, Y, rsd, and a'.

(b) From Table A or Figure A obtain the value 2Ketande.

(c) Compute factors, v' = (2Ketande) H'/Bg, W' = (2Ketandg) Hd/Bd, and rggw'/a'.

(d) From Table C or Figures C or C1ldetermine the value of Cy corresponding to v'
and rgqw'/a' computed in Step c.

(e) From TableD or Figure D determine the value of C;, corresponding to the values
of C,,, obtained in Step d, and w' computed in Step c. YBY
(f?lSubstxtute the value of Cp and 2Kgtange in the equation W = TR tande Cn and
compute the load.

Although the above procedure utilizes three different charts for the load evaluation
instead of one utilized in other publications, it has the over-all advantage over the latter
in that the same charts can be used for any kind of covered-up conduit installation. Load
factor charts in other publications can be used for only one value of the quantities Ktan¢,
and Hq/Bg.

In previous sections it was shown that if factor v' = (ZKetan¢e) H‘/Bd increases
without limit, u' = (2Ketande) H'e/Bq is governed by Equations 43 or 91,

t 1]
(g+rsf,w ye ¥ +-g-(u' -1)=0,
regardless of whether the material is an s = ¢ + o tan¢ type or an s = ¢ tan¢ material.

Hence, if factor 2K tande is made large enough by proper construction methods and if the
ratio H/Bg of the fill height to the width of the ditch is also large enough, the use of E-
quation 43 instead of Equation 42, for determining factor u' for an s = ¢ + ¢ tan¢ material,
will not result in a serious error.

Under the above conditions, one may solve the load Equation 49 for an s = ¢ + o tan¢
material, by substituting the value of u' obtained from Equation 43.

It can also be shown by numerical examples that under the same conditions, for the
values of cohesion ce up to ce = YB4/2, an s = ¢ + o tan$ material may be assumed to be
cohesionless and the error, besides being on the safe side, will not be appreciable e-
nough to affect economy. Therefore, in such cases the above constructed charts may be
used also for evaluating the conduit load for an s = ¢ + ¢ tan¢ material.

If the construction of a high ditch with very loose material on top of the conduit is
economically feasible, then factor w' =(2Ketan¢e)Hd/Bd will be large enough and, con-
sequently, the exponential function e~ will approach zero and the first part of the load
factor C, will become negligible. Hence, under these conditions the load becomes inde-
pendent of factor u' and it may be obtained either from Equation 23 or from Equation 85.
However, if the construction conditions are such that w' 1s not large enough to make the |
first part of the load factor Cp negligible, the load must be computed by means of the
appropriate equations.

SUMMARY AND CONCLUSIONS

I. From the construction point of view, underground conduits may be classified into two
main categories:
A. Covered-Up Conduits.
Conduits belonging in this category are installed under artificial earth embank-
ments that are constructed after the conduits have been assembled in place. |
B. Mined~In Conduits. |
Conduits of this category are installed by a mining process through natural earthen ‘
deposits.
II. Mathematical relations have been derived, describing the loading action on top of an
underground conduit of a material whose shearing resistance can be represented by the
general Coulomb equation s = ¢ + o tané.
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III. Theoretical relations governing the loading action of a perfectly cohesionless or a
perfectly cohesive material have been obtained by taking the limits of the expressions
derived for the general case when c or $ are allowed to approach zero, respectively.

IV. From the mathematical standpoint the earth load on top of either covered-up or
mined-in conduits can be evaluated by means of the same general expression

We = YBgHetf

where:
W, = vertical load on top of conduit, 1b. per lin. ft.
Y = unit weight of the material, pcf.
Bg = effective width of the earth column above the conduit, ft.
Hegs = effective height of the earth column above the conduit, ft.

V. The effective height Heff is a fictitious quantity and is a measure of the arching ef-
fect that takes place within the earth mass above the conduit. Generally:
A. If the mass directly above the conduit subsides less than the adjacent masses, the
effective height, Hegs, is greater in magnitude than the actual height of the mass, H.
Accordingly, the conduit load will be greater than the weight of the earth column di-
rectly above the conduit. This possibility has been defined as Case I.

B. If the reverse action takes place, Heff is smaller in magnitude than H, and, con-
sequently, the conduit load will be less than the weight of the earth column above the
conduit. This possibility has been defined as Case II.

C. If no relative movement takes place within the earth mass above the conduit, Hesf
will equal H and, consequantly, the weight on top of the conduit will be equal to the
weight of the earth column directly above it.

VI. Case I has been shown to have detrimental effects on underground conduits regard-
less of the type of overlying soil. Therefore, this condition should always be avoided by
proper methods of design and construction.

Case II with possibility C as a limiting condition is very advantageous and, conse-
quently, the conditions for this case must always be sought by proper methods of design
and construction. The theoretical analysis presented in this paper has dealt mainly with
the factors influencing the conduit load when the conditions insuring the existence of Case
II have been realized.

VII. From the analysis for Case II one may conclude that the effective height is the prod-
uct of the effective width of the column of earth directly above the conduit multiplied by
a function of dimensionless factors that depend:

A. Directly:

1. On the geometry of the installation.
2. On the initial state and physical properties of the loading agent.
3. On the height of arching, He.

B. Indirectly:

1. On the relative movement that takes place within the soil mass directly above
the conduit.

2. On the relative stiffness between the body supporting the soil prism directly
above the conduit defined as the "interior prism, ' and the body supporting the soil
prisms adjacent to the interior prism, defined as "exterior prisms. "

3. On the construction methods and workmanship employed.

VIII. Elaborating on Item VII, the following may be deduced from the mathematical anal-
ysis for Case II:

A. The higher the factor v = (2Ketan¢e) H/Bd, the higher will be the effective height.

B. The higher the factors 2Ketande, 2ce/YB4 and u = (2Kgtande) He/By, the lower
will be the effective height.
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C. For given values of v and 2ce/YBq, factor u varies directly with:
1. Factor rggw'/a' = rgq(Ep/Ey)(2Ketanée) Hq/Bq for covered-up conduits.

2. Factor rgmw/e = rgm(Ef/Epy)(2Ketanée) Hyy,/Bq for mined-in conduits, or
positive projecting conduits with their side supporting material compacted very
thoroughly.

Factors rggw'/a' or rgmw/e are measures of the relative yielding and the rela-
tive stiffness between the supports of the interior and the exterior prisms in cov-
ered-up or mined-in conduits respectively. Therefore, the larger in magnitude of
these quantities, the higher will be the factor u, or, for a given installation, the
higher will be the height of arching, He.

D. For fixed values of 2ce/YB{, and given values of fgqw'/a' or rgyw/a, if v' orv
are allowed to increase without limit, u' or u decrease respectively from maximum
values u' = v'max O U = Vpyax to limiting finite values u' =u'yt —pOru=uy - o »
that are independent of the cohesion ce.

For values of v' or v smaller in magnitude than v' 5% Or vmax, factors u' or u
are respectively greater in magnitude than v' or v and, therefore, they do not have a
physical meaning dimensionwise.

E. For given values of v' and rgqw'/a', or v and rgmw/a, if 2ce/YBq is allowed to
increase without limit, u' or u will approach zero. Under the same conditions the
effective height will approach the value - «. However, physically, the above height
can approach only the value zero. Consequently, the load on top of the conduit will
vanish.

IX. From a knowledge of the behavior of the physical factors that are involved in the
aforementioned mathematical analysis, the following conclusions may be drawn relative
to the development of earth pressure on top of underground conduits:

A. The unit weight v, the angle of internal friction ¢ and the cohesion ¢ of the load-
ing agent are understood to have a statistical average value meaning. Local devia-
tions from this value depend:

1. In the case of covered-up conduits on the type of earthen material, the method
of fill construction, and the water content of the fill material.

2. In the case of mined-in conduits on the geologic history, the initial state, and
the water content of the overlying natural earth deposit.

B. Inasmuch as the potential sliding surfaces are not vertical planes but are in real-
ity curved surfaces whose spacing is considerably greater at the top of the mass than
it is at the top of the conduit, the shearing resistance of the soil is only partially mo-
bilized along the assumed vertical planes in order to oppose any relative movement
within the soil mass above the conduit. Consequently:

1. Only a portion of the maximum value of the angle of internal friction of the soil
is mobilized along the vertical planes.
2. Only a portion of the maximum value of the cohesion of the material is mobi-
lized along the vertical planes.
3. The earth pressure ratio, K, will never assume the extreme values Ko and
Kp that are realized respectively for active and passive states of plastic equili-
brium, but it will vary between these two limiting values.

To simplify the theoretical treatment of the problem, the above factors are as-

sumed constant along the vertical planes and equal to ¢p, Ce, and Kg, respectively.

C. The values of ¢g, Ce, and Ke depend on the type, the initial state, the permea-
bility, and the strain characteristics of the soil as well as on the size of the mass
and the rate of application of stress to it.

From the foregoing it may be concluded that for a given installation and soil type,
the construction methods and the workmanship employed, as well as time are major
factors influencing ¢, cg, and Ke.
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D. The strain characteristics of the material as well as the stress application men-
tioned in Item C, depend on the settlement ratio defined as rgq for covered-up con-
duits, and rgm for mined-in conduits. This ratio, which is 2 measure of the rela-
tive yield between the support of the interior prism and the support of the exterior
prisms, depends on time and varies directly with the relative stiffness between sup-
ports.

E. For a given installation and soil type, the greater the magnitude of the settle-
ment ratio, the higher will be the height of arching, He.

Physically, He can be only as high as the height of the mass above the conduit, H.
If numerically, He is greater in magnitude than H, a trough-like depression will ap-
pear at the top of the mass directly above the conduit. This indicates that the soil
mass along the sliding planes is being subjected to a greater amount of strain.

If the above conditions are realized, the effective values ¢¢ and ce that are mobi-
lized along the vertical planes will approach the limiting values of ¢ and ¢ and K will
approach the limiting value Kp at the top of the mass.

F. The maximum fill height up to which the surface of the fill may be expected to
settle directly above an installed conduit can be obtained from Equation 58.

G. Everything else remaining the same, as the fill height increases the height of
arching decreases and a greater portion of the mass acts directly on the conduit.

H. For very high fills the influence of the cohesion of the material becomes negli-
gible and the material acts as if it were perfectly granular.

X. From the discussion of Item IX one may conclude that:

A. Ina Covered-Up Conduit:

1. The better the gradation of the fill material and the more uniformly it 1s com-
pacted, the greater will be the values, Y, ¢, and c.

2. The greater the relative stiffness between the support of the interior prism
and the support of the exterior prisms, the greater will be the relative movement
within the soil above the conduit. Consequently, the greater will be the amount
of ¢ and c that is mobilized along the vertical planes. If such conditions are re-
alized, a greater portion of the load will be sustained by the shearing resistance
of the material; hence, the pressure on top of the conduit will be reduced.

3. Since in the discussion of Item 2 it was indicated that the governing factor in
the development of pressure on top of the conduit is the relative stiffness between
the supports of the interior and exterior prisms and not the individual stiffness of
each constituent part of these supports, it follows that the more rigid the conduit
is:

a. The stiffer should be the side supporting material.

b. The looser and the more compressible should be the material in the ditch

directly above the conduit.

¢. The more yielding should be the foundation.

4. The higher the ditch and the more compressible the material in it, the higher
will be the equivalent earth pressure ratio Ke.

Since the shortening of the vertical diameter of the conduit 1s very small as
compared with the compression of the material in the ditch, it follows that as this
material is compacted due to the weight of the fill it subjects the side masses to
compression. Consequently, K increases gradually from the minimum value it
attains at the top of the ditch, to a maximum value at the top of the conduit. Thus,
the value of the equivalent hydrostatic pressure ratio, Ke is increased also (Fig-
ure 2c¢).

5. From the mathematical analysis and the discussion of Item 4 it follows that
the higher the ditch above the conduit and the more compressible the material in
it, the greater will be the factor w' = (2Ketan¢,) H4/Bq and, consequently, the
lower will be the conduit load.

6. The effective width Bg may be considered to be equal to the mean width of the



ditch above the conduit.
7. The settlement ratio rqq can be determined by measuring directly the subsi-
dence of the parts constituting the supports of the interior and exterior prisms.
8. It may be concluded that:
a. The side supporting material of a covered-up conduit should consist of
thoroughly compacted, well- graded, granular material.

b. The ditch material should be of a compressible type and it should be placed

in such a way that it will be in the loosest possible state.

c. The ditch should be made as high as economically feasible. In order that
a sheeting and bracing operation be avoided during the construction of a high
ditch, the following method may be adopted:

The heavy equipment, which is compacting the material adjacent to the
ditch, may follow a course perpendicular to the longitudinal axis of the con-
duit. Each pass should end at lines pre-staked along the conduit axis and on
both sides of the ditch. When the ditch sides become sufficiently high, the

compressible material may be end-dumped from the heavy equipment into the ditch.

By the above method the ditch can be filled up with compressible material
at the same time it is constructed. Therefore, it can reach any desirable
height with its sides remaining vertical.

d. I Items a, b and c are fulfilled and should other considerations indicate
that they will be more economical to use than flexible conduits, rigid conduits
may also be installed safely under high fills.

B. In a Mined-In Conduit:

1. The values ¢ and c of a natural earth deposit will generally be greater than
the same values of an identical material that has been remolded and used as a
f111 material on top of a covered-up conduit.

2. The greater the relative stiffness between the supports of the interior and
exterior prisms, the greater will be the corresponding settlement ratio; accord-
ingly, the greater will be the height of arching and the portions of ¢ and ¢ that
are mobilized along the sliding planes. Consequently, the load will be lower.

The softer the layer of the soil adjacent to the conduit, the more flexible should

the conduit be made so that it will adjust its shape and thereby minimize the de-

velopment of nonuniform external pressures.

3. The effective width of the earth column on top of the conduit, By, depends on

the relative stiffness between the material adjacent to the conduit and the remain-

der of the mass above it.

4, The load on top of mined-in conduits that are installed under a deep natural

earth deposit consisting of as 8 = ¢ + ¢ tan ¢ material becomes independent of the

cohesion and may be evaluated by means of Equation 85.

5. The maximum height of the mass up to which the surface of the mass should

be expected to settle assuming a trough-like shape directly above an installed

conduit can be obtained from Equation 75.

6. In mined-in conduits the settlement ratio rg,, can be determined only indi-

rectly. In positive projecting conduits, however, it can be obtained by direct

measurements.
C. Generally:

A good knowledge of the physical properties of the soils that are involved in a
project is always necessary. Therefore, a good soil exploration of the site where
the conduit is to be installed is imperative.

The factor of safety can be applied to the values $g, and ce that are considered
to be the developed fractions of the maximum values of the angle of internal friction
and cohesion of the material.

The value K, will vary with the method of installation and with the soil type.
Tentatively, it is suggested that for small depths of overburden its value be chosen
between 0.5 and Kp; for high depths its value be chosen between 0.5 and 1.0

The relative stiffness between the supports of the interior and exterior prisms
should be made as high as possible.
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XII. Families of curves have been constructed from which the conduit load due to an
s = o tan¢ material can be computed. Under certain conditions these curves can be used
to evaluate the conduit load due to an s = ¢ + o tan¢ soil type.

XIII. In this investigation consideration has been given to pressures that act in the
plane of a right, cross-section of the conduit with no allowance for variations caused
by arching along the longitudinal axis of the conduit nor to tangential forces that act a-
long this axis.

Since an underground conduit has the tendency to settle more in the middle than at
its ends, the earth mass, which is above its middle portion, will tend to brace itself
against the end masses thereby increasing the normal pressure and the longitudinal
strains at the ends and decreasing the pressure at the middle. The effects of such
arching action will be especially significant in the case of long conduits installed under
high fills.

RECOMMENDATIONS FOR FUTURE STUDY

In order to obtain a better understanding of earth pressures on underground conduits,
the author believes that future efforts should be concerned mainly with the development
of techniques by means of which the earth pressure exerted around the circumference
of an underground conduit can be measured directly. From such information one will
be able to gather substantial information to:

I. Evaluate the values ¢g, ce, and Ke for given installation conditions.

II. Determine the magnitude of the lateral pressure that a precompacted side sup-
porting material is potentially able to mobilize per unit of lateral bulging of the conduit.

III. Determine by rational means the type, the size, and the degree of precompaction
of the side supporting material in order that a given conduit may not bulge excessively.

IV. Develop a theory expressing the vertical load on top of the conduit as a function
of the lateral pressures exerted by the side supporting material as well as the bottom
reaction of the bedding material.

V. Understand the arching effect on the earth mass above and along the conduit axis.

VI. Obtain information on settlement ratios especially for mined-1in conduits.
VII. Permit the use of a substantially smaller factor of safety and thereby achieve a
more economical design.

In conjunction with the above discussion the reader is referred to a report prepared
by the research department of the North Carolina State Highway and Public We-ks Com-
mission (Costes and Proudley, 1955) in which an attempt to develop a technique for the
direct measurement of the lateral earth pressures acting on a flexible culvert pipe in-
stalled under a high fill is outlined.
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Figure A.
TABLE A
VALUES OF Ktan¢ FOR GIVEN VALUES CF K AND ¢
¢
X 5° 10° 15° 20° 25°  30° 35° 40° 45° 50° 55° 60° 65° 70° 75°
Ka 0073 0125 0158 0178 0 189 0192 0 190 0.182 0 171 0.159 O 141 0125 0.105 0.085 0 063
0 025 0.093
0 050 0 107 0,137 0.187
0 075 0.130 0.161 0.206  0.280
0 100 0.143 0178 0215 0275 0.373
0 150 0179 0.214 0.260 0 322 0.412 0 560
0. 200 0200 0.238 0 286 0 346 0,429 0550 0 746
0 300 0210 0252 0300 0.358 0.428 0520 0 644 0 824 1.120
0 400 0231 0280 0336 0400 0 477 0,571 0.693 0.858 1099 1493
0 500 0182 0.233 0289 O 350 0.420 0 500 0.596 O 714 0.866 1073 1374 1 8668
0 600 0 161 0218 0280 0346 0 420 0.503 0 600 0.715 0.857 1.039 1 287 1 649 2,239
0 800 0142 0214 0291 0.373 0462 0560 0671 0800 0954 1142 138 1716 2198 2986
1000 0087 0177 0268 0364 0466 0577 0700 0839 1000 1192 1428 1732 2145 2748 3732
1 500 0402 0546 0699 0866 1050 1.250 1500 1 788 2142 2598 3 218 4122 5 598
2 000 0728 0932 1154 1400 1,678 2000 2 384 2 856 3 464 4 290 5 406 7 464
3 000 1731 2100 2517 3000 3576 4 284 5 196 6435 8 244 11 1963
4 000 3356 4000 4768 5 712 6928 8 580 10 9922 14 9282
5 000 5000 5960 7 140 8.660 10 7253 13 7402 18 6603
6 000 7.152 8 568 10.3923 12 8702 16.4822 22,3922
Kp 0104 0252 0455 0742 1147 1731 2 583 3.860 5 827 B 995 14,3692 24 1232 43 6492 88 3787 215 3332

2 yalues of Ktané beyond plotting range of Figure A
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Figure B.
TABLE B
VALUES OF u' FOR GIVEN VALUES OF v' AND rgqw'/a’
TeaW
v' 0.0 -05 -10 -15 -20 -30 -4, 50 7.5 -10 -20 -30 -40 -50 ~-60 -70

a
0
00 0.000 0 000 0 000 O 000 O 000 0.000 0,000 0,000 O.000

0.0 0000 0000 0000 0.000 0000 0O 000 OO
vi=u 0000 1 224 1680 2,000 2260 2693 3.043 3.343 3.975 4 495 6 058 7 243 8 200 9,100 9, 888 10.595
10 0000 - - - - - - - - - - - - - - -
20 0000 O 794 1.210 2 000 - - - - - - - - - - - -
30 0000 O 732 1.025 1.270 1.495 2 000 - - - - - - - - - -
4.0 0000 0.708 0.970 1.170 1 347 1 658 1.960 2 265 3.625 - - - - - - -
50 0000 0695 0.941 1125 1281 1546 177 1.990 2 575 3 19 - - - - - -
60 0000 0687 0.925 1100 1245 1.483 1688 1875 2 280 2 69 - - - - - -
70 0000 0.682 0.915 1085 1.222 1445 1637 1.799 2 163 2.49 3 95 - - - - -
8.0 0000 0.677 0.907 1.070 1205 1.420 1598 1745 2077 237 345 4.9 - - - -
90 0000 0674 0.900 1063 1.193 1401 1572 1 720 2040 2,29 321 421 570 - - -
100 0000 0672 0 897 1056 1.185 1389 1.550 1680 1978 2,23 304 38 48 6.19 850 -
125 0.000 0668 0.889 1.044 1168 1362 1518 1.640 1920 218 281 3.40 395 462 538 622
150 0.000 0666 0883 1.035 1.158 1.348 1493 1625 1.875 208 269 318 362 404 4.51 5 07
20.0 0.000 0.663 0.877 1.026 1.145 1327 1475 1589 1831 2,03 2.56 296 330 362 393 424
300 0000 0.660 0.870 1.016 1133 1309 1456 1.565 1778 197 245 278 305 329 351 3171
40,0 0000 O 658 0 867 1.012 1,128 1.301 1.441 1545 1.765 194 2.40 2.71 295 316 334 351
600 0000 O 657 0.866 1010 1124 1298 1437 1,535 1750 193 237 266 290 3.09 326 3,41
1000 0.000 0655 0861 1.005 1117 1283 1419 1525 1728 192 232 2.59 279 296 311 3.25
@ 0000 0.653 0.859 1,000 1 110 1278 1408 1514 1 718 1.872 2.271 2.524 2.701 2 845 2 980 3.065

2 For these values of v' and rgdw'/a', u' 15 equal to v' physically



TABLE C

o
VALUES OF Cp, FOR GIVEN VALUES OF v' AND rggvw'/a' -
Tsdw v
o 0.0 1.0 2.0 3.0 4.0 5.0 60 7.0 8.0 9.0 10
0.00 -1,000 0.000 1,000 2,000 3.000 4,000 5.000 6. 000 7 000 8.000 9. 000
0.01 -1, 000 -0.110 0. 799 1, 700 2,580 3.480 4,390 5. 280 6. 14 7.04 7.90
0.05 -1.000 -0. 200 0.586 1,370 2.180 2, 950 3.720 4,500 5. 30 6.11 6. 90
0.10 -1. 000 -0. 265 0. 464 1,175 1.910 2. 620 3.340 4, 050 4.7 5.51 6. 25
0.20 -1.000 -0. 325 0.314 0. 959 1,600 2,230 2, 850 3. 490 4.13 4.7 5. 40
0.40 -1, 000 -0.368%  0.155 0. 704 1,230 1, 800 2, 350 2, 900 3.45 4.00 4,48
0.60 -1.000 -0. 368 0. 054 0.548 1,020 1,550 2. 040 2, 520 3.02 3.52 4,00
0. 80 -1, 000 -0.368 -0.010 0,440 0. 880 1,350 1. 800 2. 250 2.68 3.13 3.58

1.00 -1, 000 -0.368 -0.059 0. 352 0.777 1,190 1.610 2. 020 2,43 2. 85 3.26
1.50 -1. 000 -0.368 -0.132 0.211 0.572 0.932 1, 300 1. 680 2.04 2.40 2.75
2.00 -1, 000 -0.368 -0.13523 0. 119 0. 440 0. 760 1,070 1. 400 1.76 2.05 2.40
3.00 -1, 000 -0.368 -0.135 0. 000 0. 262 0.530 0. 800 1.080 1. 37 1.62 1.90
4,00 -1. 000 -0.368 -0.135 -0, 049 0. 150 0. 380 0.617 0. 858 113 1. 35 1.59
5. 00 -1, 000 -0.368 -0.135 -0.0502 0.078 0. 280 0.488 0. 701 0.93 1.13 1,35
6.00 -1, 000 -0.368 -0.135 -0. 050 0.028 0.201 0. 386 0.580 0. 80 0.98 1.17
8.00 -1, 000 -0.368 -0.135 -0.050 -0.017 0. 100 0.249 0.410 0.59 0.75 0.92

10. 00 -1.000 -0.368 -0.135 -0. 050 =0.0182 0,035 0. 155 0.293 0. 44 0.58 0.73
15. 00 -1,000 -0.368 -0.135 -0.050 -0.018 0. 0073 0, 034 0.123 0.23 0.33 0.45
20. 00 -1. 000 -0.368 -0.135 -0. 050 -0.018 -0.007 -0.0032 0.035 0.11 0.20 0.29
© 0. 000 0. 000 0,000 0. 000 0, 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000
2 por values of v' and rgdw'/e' below marked horizontal lines, u' 18 equal to v' physically and Cm = -e-V' (Ditch Condition).
rgdw’ v ;

o' 15 20 30 40 50 60 70 80 90 100 ®
0.00 14. 000 19. 000 29, 000 39, 000 49. 000 59. 000 69. 000 79. 000 89. 000 99.000 o
0.01 12.4 16.8 25. 8 34.7 43.8 52.5 61.0 70.8 80.0 88.5 ©
0.05 10.8 14.7 22,6 30.5 38.5 46.3 54.2 62,1 70.5 78.0 ®
0.10 9. 85 13.4 20.5 27.9 35.2 42,6 49.8 57.0 64.0 71.5 ©
0.20 8. 62 11.8 18.2 24,8 31.0 37.5 44.0 50.2 57.0 63.0 ®
0.40 7.35 10. 1 15.6 21.0 26.5 32,1 317.5 43,1 48.9 54.0 @
0. 60 6.48 8. 95 13.8 18.8 23.8 28,7 33.6 38.7 43.8 48.6 ©
0. 80 5. 87 8. 10 12.7 17.3 21.9 26.5 31.0 35.5 40.3 44.8 ®
1.00 5.40 7.50 11,7 16.0 20.2 24,5 28.7 33.0 37.3 41.5 ©
1,50 4,59 6.40 10.1 13.8 17.5 21,1 24,8 28.4 32.0 35.9 ©
2.00 4,04 5.66 8.98 12.3 15.6 18.8 22,1 25.3 28.7 32.0 @
3.00 3.28 4.65 7.48 10.2 13.0 15. 7 18.5 21.4 24,2 27.0 ®
4,00 2.78 4.00 6.45 8.90 11,3 13.8 16.2 18,7 21.2 23.5 ©
5. 00 2.46 3.56 5.75 8.00 10. 2 12. 4 14.6 16. 8 19.0 21,2 @
6.00 2.18 3.17 5.20 7.20 9.20 11,2 13.3 15.3 17.4 19.4 ®
8.00 1.7 2.61 4,35 6. 10 7.82 9.69 11.3 13.1 14.8 16.5 ®

10.00 1.50 2, 24 3.7 4,09 6. 85 8.39 9. 980 11.5 13.0 14.5 L
15,00 1.02 1.64 2, 86 4,04 5.30 6. 50 7.75 9.00 10. 2 11.5 ®
20, 00 0.77 1,27 2.28 3.30 4.30 5.35 6.40 7.43 8.50 9.55 ®

@ 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0, 000 0. 000 0. 000 0.000 ©
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Figure Cl.

TABLE D
VALUES OF Cp FOR GIVEN VALUES OF Cp AND w'
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