
HIGHWAY RESEARCH BOARD Bulletin 148

Soil Series Cement Requirements

National Academy of Sciences-National Research Council

publication 44

HIGHWAY RESEARCH BOARD

Officers and Members of the Executive Committee 1957

OFFICERS

REX M. WHITTON, Chairman HARMER E. DAVIS, Second Vice Chairman FRED BURGGRAF, Director ELMER M. WARD, Assistant Director

Executive Committee

C. D. CURTISS, Commissioner, Bureau of Public Roads

A. E. JOHNSON, Executive Secretary, American Association of State Highway Officials

LOUIS JORDAN, Executive Secretary, Division of Engineering and Industrial Research, National Research Council

R. R. BARTELSMEYER, Chief Highway Engineer, Illinois Division of Highways

J. E. BUCHANAN, President, The Asphalt Institute

W. A. BUGGE, Director of Highways, Washington State Highway Commission

HARMER E. DAVIS, Director, Institute of Transportation and Traffic Engineering, University of California

DUKE W. DUNBAR, Attorney General of Colorado

FRANCIS V. DU PONT, Consulting Engineer, Washington, D. C.

PYKE JOHNSON, Consultant, Automotive Safety Foundation

KEITH F. JONES, County Engineer, Jefferson County, Washington

G. DONALD KENNEDY, President, Portland Cement Association

BURTON W. MARSH, Director, Traffic Engineering and Safety Department, American Automobile Association

GLENN C. RICHARDS, Commissioner, Detroit Department of Public Works

C. H. SCHOLER, Head, Applied Mechanics Department, Kansas State College

WILBUR S. SMITH, Wilbur Smith and Associates, Bureau of Highway Traffic, Yale University

REX M. WHITTON, Chief Engineer, Missouri State Highway Department

K. B. WOODS, Head. School of Civil Engineering and Director, Joint Highway Research Project, Purdue University

Editorial Staff

FRED BURGGRAF	ELMER M. WARD	HERBERT P. ORLAND
2101 Constitution	Avenue	Washington 25, D. C.

The opinions and conclusions expressed in this publication are those of the authors and not necessarily those of the Highway Research Board

HIGHWAY RESEARCH BOARD Bulletin 148

Soil Series Cement Requirements

PRESENTED AT THE Thirty-Fifth Annual Meeting January 17–20, 1956

1957 Washington, D. C.

Department of Soils, Geology and Foundations

Frank R. Olmstead, Chairman Chief, Soils Section, Bureau of Public Roads

COMMITTEE ON SURVEYING, MAPPING AND CLASSIFICATION OF SOILS

Preston C. Smith, Chairman Highway Research Engineer, Bureau of Public Roads

Professor Donald J. Belcher, School of Engineering, Cornell University

Earl F. Bennett, c/o Koppers Company, Tar Products Division

- Dr. Donald T. Davidson, Professor of Civil Engineering, Iowa State College
- W.B. Drake, Senior Research Engineer, Kentucky Department of Highways
- R. A. Helmer, Research Engineer, Oklahoma Department of Highways
- L. D. Hicks, Chief Soils Engineer, North Carolina State Highway and Public Works Commission
- O. L. Lund, Assistant Engineer of Materials and Tests, Nebraska Department of Roads and Irrigation
- George W. McAlpin, Deputy Chief of Research, New York State Department of Public Works
- A. E. Matthews, Engineer of Soils, Testing and Research Division, Michigan State Highway Department
- D. J. Olinger, Principal Materials Engineer, Wyoming State Highway Department
- Arnold C. Orvedal, Chief, World Soil Map, Soil Survey, Soil Conservation Service, Plant Industry Station, Beltsville, Maryland
- D. J. Steele, Assistant Division Engineer, Bureau of Public Roads, San Francisco
- Walter H. Zimpfer, Oak Ridge Institute, Oak Ridge, Tennessee

Soil Series as a Basis for Determining Cement Requirements for Soil-Cement Construction

J.A. LEADABRAND, Manager,

L. T. NORLING, Laboratory Chief, and A. C. HURLESS, Soils Engineer *, Soil-Cement Bureau, Portland Cement Association

> One of the most important tools of the soils engineer is a good method of identifying soils. This permits proper classification and comparison of soils for engineering purposes. Proper identification makes classification work simpler whenever the same soils are encountered on future projects. An excellent soil identification method is the pedalogical system developed by the U.S. Department of Agriculture. This method provided the basis for the project described in this paper.

> It has been known for some time that soils of the same series and horizon, as identified by the Department of Agriculture's system require the same cement factor for soil-cement construction. Once the cement factors for a given soil series are established it is unnecessary to conduct tests for soil-cement construction involving the same series no matter where it is encountered. Since it is not uncommon for some soil series to cover large areas, sometimes hundreds of square miles, the importance of this relationship is obvious.

First, this paper reviews briefly the Department of Agriculture's identification system. It then describes the results of a project to determine cement requirements for soil-cement construction for 43 major soil series occurring in several Great Plains states, the eastern half of Washington and the northern part of Idaho. Department of Agriculture soil maps showing the location and extent of the soil series were used to determine sampling locations. In several cases samples of the same series were taken at 3 or 4 widely separated areas. Both soil and soil-cement tests were made on the samples.

Included in the paper are maps showing the areas sampled and tables listing the cement requirements for soil-cement construction for the 43 soil series.

The physical properties of the soil samples taken from widely separated areas but representing the same horizon of a specific soil series were generally similar, reflecting the accuracy of the U.S. Department of Agriculture soil maps. The cement requirements of the duplicate samples were consistently the same. These results prove the usefulness of the pedalogical system of soil identification in soil-cement work.

• IT is important that soils be properly identified before being classified for engineering purposes (1). Proper identification, for example, permits a common ground for comparison of the various engineering classifications, thereby facilitating interpretation of test data. It also simplifies future work when the same soils are encountered on other projects.

A method of soil identification that is growing in use as a basis for making engineering soil classifications is that devised by the U.S. Department of Agriculture. It has been used by agricultural scientists for many years. The value of this identification system in soil-cement construction lies in the fact that cement factors can be established for each horizon of a given soil series and no further soil-cement tests are then needed on future work involving the same series. Thus by proper soil identification, much test work can be eliminated.

Many engineers engaged in soil-cement work have made routine use of the Department

^{*} Now engineer with Contracting and Materials Co., Evanston, Illinois.

of Agriculture identification system for systemizing their work. To add further to the information developed by these individuals and to simplify future soil-cement test work, the Portland Cement Association recently started field and laboratory work to determine the cement requirements of the major soil series in several areas. This report covers the tests made on 43 major soil series occurring in several Great Plains states and in the eastern half of Washington and the northern part of Idaho. Typical samples were taken from the profiles of the major soil series under study. In several cases samples of the same series were takenfrom three or four widely separated points to check and further verify that the cement requirement for a given horizon of a specific soil series is constant.

This paper presents: (1) a brief description of the U.S. Department of Agriculture soil identification system; (2) a description of the areas studied; (3) the sampling procedure used; (4) a description of the laboratory tests made; (5) the tests' results including cement factors for soil-cement construction for 43 soil series; and (6) a summary.

Inasmuch as the Department of Agriculture soil identification system is the basis of this project a brief description of the method follows.

THE DEPARTMENT OF AGRICULTURE SOIL IDENTIFICATION SYSTEM¹

As a result of early studies by agricultural soil scientists in Russia and later in the United States, it was observed that certain soils could be grouped together as similar irrespective of their parent material. It was recognized that soils having the same parent material in different parts of the country were entirely different, whereas soils in the same climatic zone having different parent materials were similar. It was also observed that each soil was characterized by a distinct series of layers, the morphology of which depended upon the environment in which the soil was formed. These layers of soil have been designated as horizons and make up what is referred to as the soil profile.

These observations led to the development of the Department of Agriculture system of identifying soils. This system recognizes such factors as parent material, age, topography, climate and biologic activity (plant and animal life), all of which influence the type of soil formed and its physical and chemical properties.

Three Main Orders

In this classification system, the soils of the United States are divided into three main divisions or orders: zonal, intrazonal and azonal depending upon the amount of profile development.²

The zonal soils are mature soils characterized by well differentiated horizons and profiles that differ noticeably according to the climatic zone in which they occur. They are found in areas where the land is well drained but not too steep. Intrazonal soils are those having well developed characteristics resulting from some influential local factor of relief or parent rock and are usually local in occurrence. Bog and peat soils are typical examples of intrazonal soils. Azonal soils are relatively young and reflect to a minimum degree the effects of environment. They do not have the profile development, arrangement and structures usually developed by the soil forming processes. Alluvial soils of flood plains and sands along large lakes are examples of azonal soils.

Great Soil Groups

The three main orders are then subdivided into suborders and then further subdivided into great soil groups on the basis of the combined effect of climate, vegetation and to-

¹ The Department of Agriculture soil identification system is described in detail in U.S. Department of Agriculture Yearbook of Agriculture 1938, Soils and Men. It is also summarized in PCA Soil Primer published by the Portland Cement Association, available free only in the United States and Canada.

² These three divisions of the top order replace the two categories (Pedalfers and Pedacals) previously used by the Department of Agriculture. See James Thorp and Cuy D. Smith, "Higher Categories of Soil Classification: Order, Suborder and Great Soils Groups," Soil Science, Vol 67, January to June, 1949, p. 117.

pography. For example, the great soil group Chernozems belong to the suborder developed under grass vegetation in temperate subhumid areas. Laterites belong to the suborder developed in areas of abundant rainfall and high temperature.

Soil Series

Soils within each great soil group are divided further into soil series and soil type. Similar soils within a great soil group having uniform development (the same age, climate, vegetation and relief) and similar parent material are given a soil series designation. All soil profiles of a certain soil series therefore are similar in all respects with the exception of some variation in the texture of the topsoil or A horizon. The soil series were originally named after some town, county, stream or other local feature where the soil series was first identified. This method of naming series, however, is not necessarily used at present as it may in some cases interfere with the present system of the Department of Agriculture of correlating series over wide areas.

Soil Type

As already mentioned, the texture of the surface soil or A horizon may vary slightly within the same soil series. The soil series is therefore subdivided into the final classification unit called the soil type. The soil type recognizes the texture of the surface soil and is made up of the soil series name, plus the textural classification of the topsoil or A horizon.

Availability of Soil Maps

A large portion of the United States has been surveyed and mapped by the Soil Survey Division, Department of Agriculture. At the completion of a soil survey, usually covering an area of one county, a soil map is made and a report written describing the soil types occurring in the county. These maps are available to the public and can be viewed or obtained from the U.S. Department of Agriculture, county extension agents, colleges, universities, libraries, etc.

The Highway Research Board reports the status of soil mapping by the Department

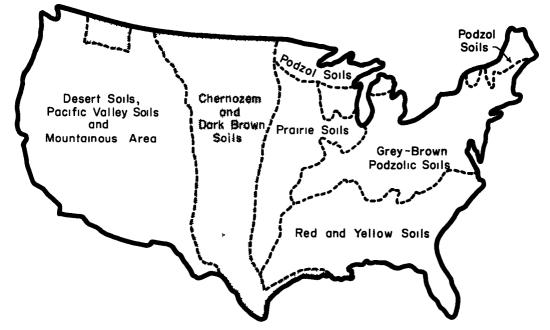


Figure 1. Distribution of the major great soil groups as identified by the U.S. Department of Agriculture.

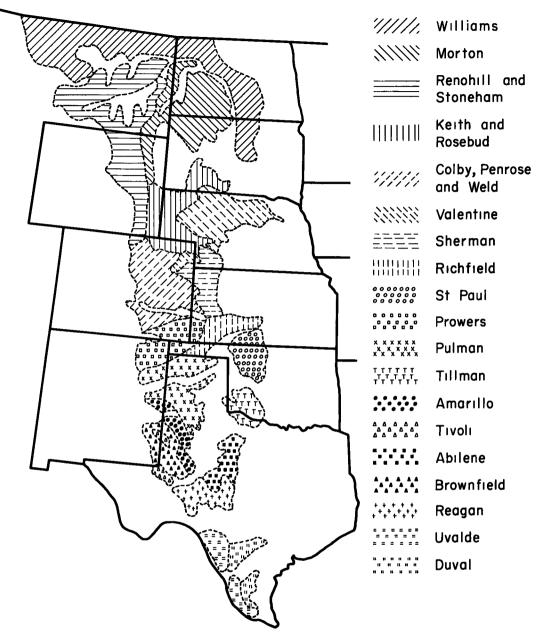


Figure 2. Approximate area where the 23 major soil series studied in the Great Plains area are found.

of Agriculture and other agencies periodically through publications sponsored by the Committee of Soil Surveying and Mapping (2, 3, 4, 5, 6). These publications list the soil surveys completed and the new ones underway since the preceding publication was published. Bulletin No. 22, "Engineering Use of Agricultural Soil Maps," also gives an accuracy rating of the soil maps available.

Application to Soil-Cement Testing

The use of the Department of Agriculture soil identification system is most helpful

in soil-cement testing and construction work. For instance, the cement requirement of a given horizon of a specific soil series will be found the same regardless of where it is sampled. As indicated further on in this report some soil series cover large areas, hundreds of square miles in some cases. Once the cement requirement has been determined no further soil-cement tests for the particular soil horizon of that series are needed, even when it is encountered on another project located many miles from the original point of sampling. Thus by identifying soils by series and horizon, the need for conducting soil-cement tests can be eliminated for large areas. An increasing number of engineers are adopting this system of identification to simplify their soil-cement work (7).

AREAS STUDIED

Soil samples of major soil series in nine states of the Great Plains area, the eastern half of the state of Washington and the northern part of Idaho (see shaded areas in Figure 1) were obtained and tested.

Walla Walla, Whitman Burke Grant. Lincoln Douglas Douglas Ephrata Benton, Franklin, Grant Walla Walla, Yakıma Hesseltine Adams, Lincoln, Spokane, Whitman Marble Ferry, Lincoln, Spokane, Stevens Mission Ferry, Pend Oreille, Spokane, Stevens Nez Perce Lewis County, Washington, and Clear Water and Nez Perce Counties, Idaho Othello Palouse Columbia, Garfield, Lincoln, Spokane, Walla Walla, Whitman Benton, Chelan, Douglas, Franklin, Grant, Kittitas, Okanogan, Quincy Walla Walla, Yakıma Ritzville Adams, Asotin, Benton, Columbia, Douglas, Franklin, Garfield, Grant, Kittitas,

Whitman, Yakıma

TABLE 1

LOCATION IN WHICH SOIL SERIES OCCUR AS MAJOR SERIES

Asotin, Columbia, Garfield,

Location^a

Soil Series

Athena

Sagemoor Adams, Benton, Franklin, Grant, Kittitas, Klickitat, Okanogan, Walla Walla, Yakima Southwick Northern Idaho Springdale Ferry, Lincoln, Spokane, Stevens, Pend Oreille Timmerman Benton, Franklin, Grant Touhey Douglas, Okanogan Waits Ferry, Pend Oreille, Spokane, Stevens Walla Walla Columbia, Garfield, Walla Walla, Whitman Typical Basalt Eastern Washington ^aCounties listed are in the state of Washington unless noted otherwise

Klickitat, Lincoln, Okanogan, Walla Walla,

The Great Plains Area

The Great Plains area included por-

tions of nine states ranging from North Dakota on the north, Texas on the south, the Rocky Mountains on the west and an approximate line running from the center of North Dakota to the tip of Texas on the east. Twenty-three major series of the area covering approximately 60 million acres were studied. Figure 2 shows the approximate areas where each of these series are found.

Washington and Idaho Areas

Twenty soil series covering the eastern half of Washington and the northern part of Idaho were studied. The counties in which these soils occur as major series are given in Table 1.

SAMPLING PROCEDURE

Each sampling location was prepared by digging a pit to permit an inspection of the soil profile. Samples of each horizon were then taken from the face of the pit starting with the A horizon. Seventy-five-pound samples were taken from each horizon of the profile for all series. In the case of the Great Plains area, additional 25-lb check samples were taken of each series at two or three other points located several miles apart.

LABORATORY TEST PROCEDURES

Each sample was prepared for testing by screening through a 3-in., $\frac{3}{4}$ -in. and No. 4 sieve and the gradation determined by AASHO Designation T88-54. The soils were classified texturally using the U.S. Department of Agriculture definitions and specifications for texture. The maximum density and optimum moisture content of each soil mixed with cement were then determined.³

To determine the cement requirements of the soils representing the Great Plains area, soil-cement tests were first made on each horizon of one of the four profiles from each series. These tests involved the molding of test specimens and subjecting them to wetting-and-drying and freezing-and-thawing tests.³ The criteria commonly used to determine cement requirements for soil-cement road, street and airport construction were used as a basis to determine whether or not specimens were of satisfactory hardness at the conclusion of tests.

After the cement requirement for each horizon of each soil series from the Great Plains area had been determined on the 75-lb samples as outlined above, check tests were made on the 25-lb check samples. In most cases, only two test specimens were molded for each check sample, each containing the cement content determined as adequate by test on the first sample. One specimen was subjected to the wet-dry test, the other to the freeze-thaw test and the results compared with those obtained on the first sample.

Compressive strength tests were also made on each sample at the required cement content. The test specimens were 2 in. in diameter and 2 in. high and were broken in compression at age 2, 7 and 28 days. They were cured by storing at room temperature in an atmosphere of high humidity and then soaked in water for one hour before breaking. A rate of load application of 20 psi per second was used.

The cement requirements of the soils from the eastern half of Washington and the northern part of Idaho were determined using the same procedures as given above except that samples representing only one profile of each series were tested.

TEST RESULTS

Test results are given in Table 2 for the major soil series in the Great Plains area and similar data for the Washington and Idaho areas are given in Table 13. Detailed discussions of the test data follow.

The textural classifications used in the tables and the discussion are those of the U.S. Department of Agriculture. The following abbreviations are used:

CS	coarse sand	VFSL	very fine sandy loam
S	sand	\mathbf{L}	loam
FS	fine sand	SiL	silt loam
VFS	very fine sand	Si	silt
LCS	loamy coarse sand	SCL	sandy clay loam
LS	loamy sand	CL	clay loam
LFS	loamy fine sand	SiCL	silty clay loam
LVF	Sloamy very fine sand	SC	sandy clay
CSL	coarse sandy loam	С	clay
\mathbf{SL}	sandy loam	SIC	silty clay
FSL	fine sandy loam		

The Great Plains Area

Table 2 lists test results for the samples from the Great Plans area. The data given for each horizon of each of the series are average values (based on four samples in most cases) and include the cement requirements for soil-cement construction.

A detailed discussion of the test data for samples representing four of the 23 soil series is given below.

Sherman Silt Loam. The Sherman soil series is found in Kansas, Nebraska and eastern Colorado. It includes Chestnut soils developed in silty and calcareous loess on up-

³Details of the test procedures used are described in Soil-Cement Laboratory Handbook, available free only in the United States and Canada from the Portland Cement Association and are modifications of the following AASHO test methods:

Moisture-Density Test	-	AASHO Designation T134-45
Wetting-and-Drying Test	-	AASHO Designation T135-45
Freezing-and-Thawing Test	-	AASHO Designation T136-45

 TABLE 2

 TEST RESULTS ON MAJOR SOIL SERIES IN THE GREAT PLAINS AREA²

		TEST	RESUL	IS ON		SOIL SEI Gradation	RIES	IN THE	GREA	T PLAIN	IS AREA ^a		Beaured	Compress	we strong
Soil	Horizon	Color (moist)	No 4 Sieve	% No 10 Sieve	Passing No 40 Sieve			Smaller 0 005 mm		USDA textural class	Maximum density pcf	Optimum moisture %	cement content	at recomi content 7 day	nended cer
Series Abilene	AB	Gr br Dk gr br to br	100 100	100 100	98 98	76 76	68 69	39 46	27 39	CL	103 0 101 1	19 7 21 2	12 12 12	508 - 543	585 744
Amarılio	<u> </u>	Lt br Br	100 100	99 100	96 98	77 46	72 33	52 16	45	C VFSL	106 7 116 2	17 6	13	525 368	787 575
	В С	Red br to yel rd Pink	100 100	100 100	99 98	58 52	46 39	27 24	25 22	SCL SCL	110 2 114 4	13 0 12 9	8	411 482	571 685
Brownfield	A B C	Br to lt red br Red Yel red	100 100 100	100 100 100	99 99 99	21 38 34	9 29 26	3 20 19	3 20 19	FS FSL FSL	117 9 115 5 115 2	98 136 128	8 8 8	181 355 382	247 470 530
Colby	A C	Gr br to pale br V pale br	100 100	100 100	100 100	76 70	60 56	24 27	19 22	L L	106 9 110 4	17 6 15 6	12 12	519 516	675 666
Duval	A Bı Bı	Red br Red Red	100 100 100	100 100 99	100 99 98	44 51 54	30 38 42	13 19 22	12 17 21	VFSL VFSL SCL	112 7 113 5 111 8	12 4 14 2 15 0	8 8 8	324 372 438	397 552 496
Keith	<u>с</u> А	Yel to red yel Dk gr br	100	100	98 100	51 85	37 76	13 32	12 18	VFSL SiL	110 2 100 3	14 8 19 3	8	337 430	608 568
	BC	Dk gr br to gr br V lt gr br	100	100	100	86 84	77 75	35 27	22 13	S1L S1L	102 7 103 1	17 9 18 0	11	580 590	693 772
Morton	A B C	Vdkbr Dkbr Br	100 100 100	100 100 100	99 100 98	75 73 66	69 66 61	32 35 35	18 27 28	SiL CL CL	97 5 102 6 105 3	21 4 19 8 18 6	14 13 13	477 434 496	496 480 781
Penrose	D A B	Yel br Gr br Lt gr br	100 100 100	100 97 96	97 91 91	29 70 74	22 58 67	15 23 32	14 20 25	FSL L L	112 2 103 8 106 4	11 4 17 2 17 8	11 10 7	508 331 370	684 398 458
Powers	A B	V lt gr br Br Br	100 100 100	96 99 100	91 96 99	76 80 89	66 71 82	34 24 34	29 16 24	CL SiL SiL	109 5 104 8 104 5	16 3 17 2 18 0	7 10 9	366 354 314	462 437 448
Pullman	C A	Pale br Gr br	100	99 100	98	88 83	82 77	28 38	18 26	SiL SiL	107 2	16 9 18 4	8	<u>387</u> 337	509 469
	B C D	Br Br Red yel	100 100 100	100 100 100	100 100 100	90 91 86	86 85 81	52 51 44	42 42 36	SiC SiC CL	973 1000 1012	23 3 21 0 20 2	12 12 12	471 508 592	609 612 828
Reagan	A B C	Pale br V pale br Pink white	100 100 99	100 99 98	97 98 92	68 77 68	60 68 63	31 40 42	22 32 38	L CL CL	105 9 105 1 109 8	16 9 18 2 16 0	11 10 9	558 608 463	695 855 656
Renohill	A B C	Lt br gr Yel br Yel gr	100 100 100	100 100 100	99 100 99	84 84 82	77 77 77 75	46 43 44	30 35 35	CL CL CL	102 4 103 9 105 9	19 6 18 5 17 2	15 14 14	412 462 501	440 653 705
Richfield	A B ₁ B ₂	Dk br Dk br to br Lt gr br	100 100 100	100 100 100	99 99 99	80 83 95	71 76 91	28 41 48	18 39 34	SiL CL SiCL	103 6 100 7 98 2	17 8 21 1 23 0	10 12 12	335 434 480	428 516 667
Rosebud	C A B	Br to lt br Dk gr br Gr br	100 100 100	100 100 100	99 94 95	94 70 74	88 59 65	43 19 28	31 12 22	SiCL L SiL	97 7 104 5 102 2	22 0 17 5 18 8	12 10 11	568 464 383	924 546 478
St Paul	C A Bı	Lt yel br Red br to dk red br Dk red br	100 100 100	99 100 99	90 99 98	56 82 75	47 72 64	20 24 28	16 14 18	FSL SiL L	110 8 107 4 109 8	16 3 15 2 16,0	10 10 10	399 337 395	562 418 453
Sherman	Ba C	Red br Br red	100 100 100	99 100 100	93 98 100	63 76 94	54 65 83	26 30	19 22	L L	113 1 110 5 99 8	14 3 15 9	10 10	484 383	614 506
snerman	A B C	Dkgr Meddkgr Gr	100 100	100 100	100 100	96 95	86 85	31 34 31	17 20 16	SıL SıL SıL	99 8 100 1 99 2	19 7 20 8 21 3	13 12 10	631 635 621	785 814 829
stoneham	A B C	Br to gr br Br Lt br	100 100 100	100 100 100	98 98 98	46 56 45	26 36 31	7 10 7	6 7 6	VFSL VFSL FSL	108 1 108 5 108 5	14 8 15 3 15 2	10 10 9	400 528 420	511 645 575
fillman	A B C	Red br Red br Lt red br	100 100 100	100 100 100	99 99 99	90 94 94	83 90 90	34 48 43	21 38 32	S1L S1CL S1CL	105 2 103 9 108 1	17 2 18 4 17 3	12 13 12	397 411 466	468 484 543
Fivoli	A C	Lt gr br Lt yel	100 100 100	100 100	96 96	8 9	0 2	0	0	FS FS	100 1 111 4 110 9	10 4 10 6	10 10	191 204	228 275
Jvalde	A B C	Gr br Pale to v pale br V pale br	100 100 100	100 100 100	98 99 99	85 88 88	77 80 82	39 45 47	35 42 44	CL C C	99 9 100 0 103 8	21 0 21 1 19 9	10 11 10	481 533 571	589 638 729
/alentine	A B	Dk gr br Gr br	100 100 100	100 100 100	96 96 97	12 12	4	1	1 0 0	FS FS	114 1 113 3	10 0 10 3	10 11	301 410	447 582
Veld	C A B	Lt gr br Gr br Br	100 100	100 100	99 99	12 80 87	66 79	1 24 36	20 29	FS L CL	113 6 105 6 102 0	10 0 16 6 19 2	11 12 13	354 587 510	531 670 696
Williams	C A B	Lt yel br V dk br to dk br Dk gr br	100 99 100	100 98 99	99 91 94	89 63 66	79 56 60	28 16 24	22 6 17	SiL SiL L	103 0 98 0 104 0	19 5 21 3 18 2	13 16 16	479 460 563	646 526 660
	С	Yel br three or four sample	100	99	94	68	63	30	22	ĩ	108 0	17 2	11	441	507

lands. The series is quite deep and is a combination of two soil profiles, one on top of the other. The top profile developed and combined with the A horizon of the bottom profile to form one profile with a deep A horizon. This series covers approximately 190,000 acres.

Samples of the soil profile were taken at the following locations in Kansas:

Soil No. 111 to 113 - Sec 1 T8S R35W

Soil		Depth below ground	Color of moist	Gradation, % of total soil							U.S.D.A. textural	
No.	Horizon	surface, in.	soil	vcs	CS	MS	FS	VFS	Si	С	classification	
111	А	1 to 26	Dark grey	0	0	0	1	15	69	15	silt loam	
114	А	1 to 26	Dark grey	0	0	1	1	13	66	19	silt loam	
117	Α	1 to 26	Dark grey	0	0	1	2	17	67	13	silt loam	
120	Α	1 to 24	Dark grey	0	0	1	2	15	60	22	silt loam	
112	в	26 to 40	Med dk grey	0	0	0	1	16	68	15	silt loam	
115	в	26 to 48	Med dk grey	0	0	0	1	12	64	23	sılt loam	
118	в	26 to 48	Med dk grey	0	0	0	1	13	66	20	silt loam	
121	В	24 to 36	Med dk grey	0	0	0	1	12	63	24	silt loam	
113	С	40 -	Grey	0	0	0	1	9	74	16	silt loam	
119	С	48 to 60	Grey	0	0	1	1	16	68	14	silt loam	
122	С	36 to 50	Grey	0	0	0	2	14	65	19	silt loam	

TABLE 3 GRADATION OF SHERMAN SILT LOAM

Soil No. 114 and 115 - Sec 14 T7S R35W Soil No. 117 to 119 - Sec 14 T7S R36W Soil No. 120 to 122 - Sec 9 T8S R36W

The gradations are tabulated in Table 3 and the range in gradation is shown in Figure 3. Results of soil-cement tests are given in Table 4.

The A horizon is dark grey brown and has a crumb to prismatic structure. All four samples are similar in gradation, being classified texturally as silt loams. Maximum densities ranged from 96 to 101 pcf, three of them being 101, and optimum moisture contents ranged from 18.4 to 21.5 percent. Thirteen percent cement by volume provides adequate hardening for all four samples.

The B horizon is dark grey brown. These four samples are also classified texturally as silt loams. Maximum densities ranged from 99 to 101 pcf and optimum moisture contents ranged from 20.0 to 21.7. Twelve percent cement by volume is adequate for all four samples.

The C horizon 1s grey brown. The three samples are quite similar and are classified texturally as sult loams. Maximum densities ranged from 98 to 100 pcf and optimum moisture contents ranged from 21.0

to 21.5 percent. Ten percent cement by volume is adequate for all three samples.

As shown in Tables 3 and 4, the profile of the Sherman silt loam was quite similar at the four locations sampled. The cement requirement of each horizon at all four locations was identical.

Also of interest is the similarity in physical properties of the A, B and C horizon materials. The gradation curves shown in Figure 3, for example, are almost identical. It should be noted, however, that the cement requirements of the profile decrease with depth, ranging from 13 percent by volume for the A horizon to 10 percent for the C horizon. Because of the similar physical properties, this difference in cement requirement must be due to differences in chemical properties of each horizon. This change in chemical properties with change in horizon is par-

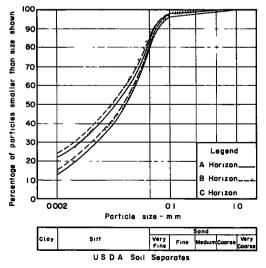


Figure 3. Range in gradation of Sherman silt loam.

TABLE 4

SOIL-CEMENT	TEST	RESULTS	ON	SHERMAN	SILT	LOAM

						men		Basam (
			O ptimum		loss during freeze-thaw test			mended	Recom- Compressive st mended at recomme		
		Maximum	moisture			con	tent	cement	cemen	t content,	
Soil		densıty	content	0	% by	vol		content	ps		
No.	Horizon	pcf	%	10	11	12	13	% by vol	7 day	28 day	
111	Α	101. 2	18.4			8		13	668	859	
114	Α	100.8	19.0				5	13	735	890	
117	Α	101.0	20.0				6	13	579	642	
1 2 0	Α	96.2	21.5				3	13	541	750	
112	в	100.5	21.7	15		3		12	547	820	
115	в	99.0	21.4		11			12	691	855	
118	в	100.8	20.0		9			12	735	906	
121	В	100.0	20.0		8			12	567	674	
113	С	99 . 6	21.5	4		3		10	534	788	
119	Ċ	98. 2	21.5	6				10	738	890	
122	С	99.7	21.0	7				10	592	808	

tially evident in the change in color and organic content as given in Table 5. This is an excellent example of the importance of the chemical property of a soil in soil-cement and emphasizes the value of an identification system that recognizes the factors that influence this property, such as parent material, age, topography, climate, vegetation. Keith Silt Loam. The Keith soil series is found in southwestern Nebraska and adja-

TABLE 5

COLOR AND ORGANIC CONTENT OF SHERMAN SILT LOAM

Horizon	Color	Organic content ppm ^a
Α	dark grey	2700
в	med dark grey	800
C	grey	400
a Average	e of four samples	5.

cent parts of Colorado and Kansas. It includes normal soils of the loess-mantled level uplands and has a low-lying horizon of lime and a deeply developed profile. This series covers approximately 5,100,000 acres.

Samples of the soil profile were taken at the following locations in Nebraska:

Soil No.	66 to 68 - Sec 22 T14N	R41W
Soil No.	69 to 71 - Sec 32 T15N	R41W
Soil No.	72 to 74 - Sec 17 T14N	R40W

TABLE 6

Soil		Depth below ground	Color of moist	Gradation, % of total soil							U.S.D.A. textural	
	Horizon	0	soil	vcs	CS	MS	FS	VFS	Si	С	classification	
66	Α	1 to 8	Dk gr br	0	0	0	3	16	62	19	sılt loam	
69	Α	1 to 6	Dk gr br	0	0	0	4	19	60	17	sılt loam	
72	Α	1 to 8	Dk gr br	0	0	1	8	21	51	19	silt loam	
67	в	8 to 20	Gr br	0	0	0	4	14	58	24	silt loam	
70	в	6 to 18	Gr br	0	0	0	6	25	49	20	loam	
73	в	8 to 24	Gr br	0	0	0	8	22	48	22	loam	
68	С	20 to 48	Vlt gr br	0	0	0	4	18	68	10	silt loam	
71	Ċ	18 to 48	Vit gr br	0	0	0	6	18	57	19	silt loam	
74	Ċ	24 to 48	Vlt gr br	0	0	0	10	18	62	10	silt loam	

GRADATION OF KEITH SILT LOAM

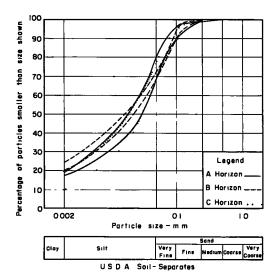


Figure 4. Range in gradation of Keith silt loam.

The gradations are tabulated in Table 6 and the range in gradation is shown in Figure 4. Results of soil-cement tests are given in Table 7.

The A horizon is dark grey brown. The three samples are very similar in gradation, all being classified as silt loams. Maximum densities were also quite consistent, ranging from 99 to 102 pcf. Optimum moisture contents ranged from 18, 5 to 20.3 percent. Eleven percent cement by volume was adequate for all three samples. Compressive strengths at 11 percent cement were excellent.

The B horizon is light grey brown. The texture of the three samples was quite consistent, ranging from loams to silt loam. Maximum densities ranged from 102 to 106 pcf and optimum moisture contents ranged from 15.8 to 20.5. Eleven percent cement by volume was adequate for all three samples. Compressive strengths at this cement content were excellent.

The C horizon is very light grey brown. The three samples were similar in gradation, all being classified as silt loams. Maximum densities and optimum moisture contents were quite consistent, ranging from 102 to 104 pcf and from 17.7 to 18.3 percent, respectively. Eleven percent cement by volume was adequate for all three samples and compressive strengths at this cement content were excellent.

The profile of the Keith silt loam was very similar in physical properties at the three locations sampled and cement requirements were constant.

The A, B and C horizon materials were also similar and showed little change with depth. In addition, each required the same cement content indicating that the chemical properties of each horizon are similar.

<u>Weld Loam.</u> The Weld soil series is found in Colorado, Kansas, Nebraska and Wyoming. The soils were developed on uplands from silty loess or loess-like deposits which probably were blown from the soft shale and sandstone materials in the region and to some extent from old river flood plains. This series covers approximately 4, 800, 000 acres.

Τł	\ Β	L	Е	7
ΤĮ	łΒ	L	E	7

SOIL-CEMENT	RESULTS	ON	KEITH	SILT	LOAM
-------------	---------	----	-------	------	------

Soil		Maximum density	Optimum moisture content	lo free cen		lurn thaw con vol	ng v <u>test</u> tent	Recom- mended cement content	Compressive strength at recommended cement content, psi		
No.	Horizon	pcf	<u>%</u>	10	11	12	14	% by vol	7 day	28 day	
66 69 72	A A A	99.6 102.1 99.2	20.3 19.0 18.5	8	4 7	4	4	11 11 11	525 395 369	649 480 -	
67 70 73	B B B	101.5 100.7 105.8	20.5 17.3 15.8	9	8 7	5	4	11 11 11	439 643 598	579 845 655	
68 71 74	C C C	103.9 103.4 102.0	18.3 18.1 17.7	8	5 7	6	5	11 11 11	509 550 611	916 629 770	

Soil		Depth below ground	Color of moist	Gra	adatı		U.S.D.A. textural				
No. Horizo	Horizon	0 .	soil	VCS	CS	MS	FS	VFS	Si	С	classification
87	Α	1 to 8	Br	0	0	1	9	15	43	32	clay loam
90	Α	1 to 8	Gr br	0	0	1	10	30	43	16	loam
93	Α	1 to 6	Gr	0	0	3	10	18	54	15	silt loam
96	Α	1 to 9	Gr br	0	1	2	13	22	47	15	loam
88	в	8 to 18	Br	0	0	1	5	14	46	34	clay loam
91	в	8 to 18	Br	0	0	1	5	15	49	30	clay loam
94	в	6 to 18	Br	0	0	4	7	13	54	22	silt loam
97	В	9 to 18	Gr br	0	0	1	6	13	51	2 9	clay loam
89	С	18 to 48	Lt br	0	0	0	5	11	54	30	silty clay loam
92	Č	18 to 48	Lt br	0	0	1	4	18	49	28	clay loam
95	Ċ	18 to 48	Lt br	0	0	1	6	16	61	16	silt loam
98	Ċ	18 to 48	Lt br	0	0	1	6	14	65	14	silt loam

TABLE 8 GRADATION OF WELD LOAM

Samples of the soil profile were taken at the following locations in Colorado:

Soil No. 87 to 89 - Sec 5 T5N R67W Soil No. 90 to 92 - Sec 25 T5N R67W Soil No. 93 to 95 - Sec 12 T2N R52W Soil No. 96 to 98 - Sec 33 T3N R52W

The gradations are given in Table 8 and the range in gradation is shown in Figure 5. Results of soil-cement tests are given in Table 9.

The A horizon is grey brown and has a crumb structure. The four samples ranged in texture from loams to clay loam. Maximum densities ranged from 102 to 112 pcf, with loam soils having the higher densities. Although there was considerable variation in physical properties, 12 percent cement was adequate for all four samples. Compressive strengths at 12 percent cement were excellent.

The B horizon is brown and has a prismatic structure. The texture of the four samples ranged from silt loam to clay loams. Maximum densities ranged from 97 to 106 pcf and optimum moisture contents ranged from 17.5 to 21.8. Thirteen percent cement

by volume was adequate for all samples. Compressive strengths at 13 percent cement were excellent.

The C horizon is light yellowish brown and has a cloddy structure. The texture of the four samples ranged from silt loams to silty clay loams. Maximum densities ranged from 98 to 107 pcf and optimum moisture contents ranged from 18.0 to 23.0. Thirteen percent by volume was adequate for all four samples even though they varied considerably in physical properties. Compressive strengths at 13 percent cement were excellent.

The profile of the Weld loam showed appreciable variation in physical properties at the four locations sampled, indicating some variation in the area mapped as Weld loam. The variation is not considered as excessive, however, and is probably within the accuracy of any prac-

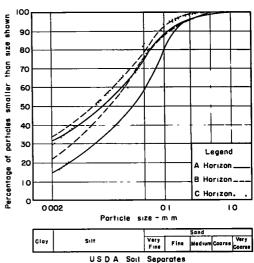


Figure 5. Range in gradation of Weld loam.

TABLE 9

Soil		Maximum density	Optimum moisture content		lurıng thaw	g test ent	Recom- mended cement content	Compressiv at recomm cement co psi	nended ontent,
No.	Horizon	pcf	%	10 12	13	14	% by vol	7 day	28 day
87	А	102.6	19.0	4			12	439	525
90	Α	111 . 5	13.0	6		3	12	672	-
93	Α	101.5	17.5	10			12	675	850
96	Α	106.6	16.7	6			12	563	634
88	В	105.5	18.4		7		13	573	691
91	в	106.0	17.5	8		6	13	462	770
94	в	100.0	19.0		3		13	592	739
97	В	96.7	21.8		7		13	414	586
89	С	10 6. 9	18.5		5		13	506	636
9 2	С	104.5	18.0	11 8		3	13	455	636
95	С	10 2. 0	18.5		5		13	573	834
98	С	98.4	23.0		4		13	382	480

SOIL-CEMENT TEST RESULTS ON WELD LOAM

tical system of soil mapping and identification. The chemical properties of each horizon at the four locations, however, are apparently quite consistent. This is evident by the constant cement requirement of the four samples of each horizon (Table 9) and by the similar color and organic content as given in Table 10. The variation in physical properties at the four locations is apparently not significant enough to cause a change in cement requirement and is overshadowed by the apparent consistency in chemical properties.

Valentine Sand. The Valentine soil series is found in Colorado, Nebraska and North Dakota under a rather sparse grassy vegetation and level terrain. The soils are developed from wind-blown materials composed largely or entirely of sand. In most virgin areas enough organic and fine material have accumulated in the surface layers to darken them some. This series covers approximately 7,000,000 acres.

Samples of the soil profile were taken at the following locations in Wyoming and Ne-

TABLE 10

COLOR AND ORGANIC CONTENT OF WELD LOAM

Soil			Organic content
No.	Horizon	Color	ppm
87	Α	brown	800
90	Α	grey-brown	-
93	Α	grey	900
96	Α	grey-brown	1100
88	в	brown	300
91	B	brown	-
94	В	brown	300
97	в	grey-brown	200
89	С	light brown	100
92	С	light brown	-
95	С	light brown	200
98	С	light brown	325

braska:

Soil No. 51 to 53 - Sec 10 T26N R65W Soil No. 54 to 56 - Sec 7 T24N R60W Soil No. 57 to 58 - Sec 7 T15N R38W Soil No. 60 to 62 - Sec 5 T15N R38W

The gradations are given in Table 11 and the range in gradation is shown in Figure 6. Results of soil-cement tests are given in Table 12.

The A horizon is dark grey brown. All four samples were quite similar in physical properties, ranging in texture from sand to fine sands. Maximum densities ranged from 110 to 117 pcf and optimum moisture contents ranged from 9.5 to 10.7 percent. Ten percent cement by volume was adequate for all four samples.

The B horizon 1s grey brown. The texture ranged from sand to fine sand and the maximum densities ranged from 112 to 116

Soil		Depth below ground	Color of moist	Gra	adati	U.S.D.A. textural					
No.	Horizon	0	soil	VCS	CS	MS	FS	VFS	Si	С	classification
51	А	1 to 5	Dk gr br	1	5	29	41	16	8	0	sand
54	Α	1 to 5	Dk gr br	0	0	8	72	20	0	0	fine sand
57	Α	1 to 8	Dk gr br	0	0	25	53	22	0	0	fine sand
60	Α	1 to 4	Dk gr br	0	0	25	51	14	6	4	fine sand
52	В	5 to 15	Gr br	2	5	33	42	18	0	0	sand
55	в	5 to 20	Gr br	0	0	10	53	37	0	0	fine sand
61	В	4 to 10	Gr br	0	0	23	47	29	1	0	fine sand
53	С	15 to 48	Lt gr br	0	0	25	51	22	2	0	fine sand
56	С	20 -	Lt gr br	0	0	10	48	42	0	0	fine sand
58	С	8 to 48	Lt gr br	0	0	2 1	56	23	0	0	fine sand
62	С	10 to 48	Lt gr br	0	2	24	53	21	0	0	fine sand

TABLE 11 GRADATION OF VALENTINE SAND

pcf. Optimum moisture contents were similar, ranging from 10.0 to 10.4 percent. Soil-cement losses were also similar and 11 percent by volume was adequate for all three samples.

The C horizon is light grey brown. The textures of the four samples were similar, all being classified as fine sands. Maximum densities ranged from 110 to 117 pcf and optimum moisture contents ranged from 9.7 to 10.4. Eleven percent cement by volume was adequate for all four samples.

The profile of the Valentine sand soil type was similar in physical properties at the four locations sampled.

As the Valentine soils are sandy soils, the "short-cut test procedure" as developed by the Portland Cement Association can be used to determine cement requirements (8, 9). The data for the eleven Valentine sands are plotted on the short-cut chart, Figure 7. Using this chart, cement contents of 10, 11, 11 and 9 percent, respectively, are indicated for the four A horizon soils which actually require 10 percent cement by AASHO test methods. The 7-day compressive strengths of the three soils plotted in the 10 and 11 percent band are satisfactory, thereby verifying that these cement contents are ade-

quate. The 7-day compressive strength of the soil plotted in the 9 percent area, however, 1s below the minimum required, indicating that more than 9 percent is required for adequate hardness (actually 10 percent is required). Again using the short-cut chart, Figure 7, eleven percent cement is indicated for the B and C horizon soils. This is verified by the 7-day compressive strengths which are above the minimum required. This agrees exactly with the 11 percent cement requirement for those soils based on AASHO tests.

<u>Remaining 19 Soil Series.</u> The test data for the remaining 19 soil series from the Great Plains area showed the same trends as the series described above. The physical properties of all samples representing a specific horizon and series generally were similar. Except for one soil series, the cement requirement of the

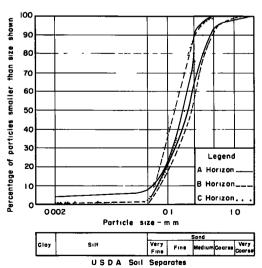


Figure 6. Range in gradation of Valentine sand.

check samples were within one percentage point of the requirement of the original sample and in most cases were identical.

Detailed test data on these 19 soil series can be obtained by writing to the Portland Cement Association.

TABLE	12
-------	----

SOIL-CEMENT TEST RESULTS ON VALENTINE SAND

				S	oil-ce	ement						
				1	oss d	luring	ç	Recom-	Compressive	strength		
	Optim				eze-t	haw t	est	mended	at recommended			
		Maxımum	moisture	ce	ment	conte	ent	cement	cement content,			
Soil		density	content	% by vol				content	psi			
No.	Horizon	pcf	%	8	10	11	12	% by vol	7 day	28 day		
51	A	114.7	9,5		6			10	468	668		
54	Α	110.4	10.7		11			10	245	376		
57	Α	114.6	10.3	19	12		6	10	25 8	344		
60	Α	116.8	9.5		13			10	232	401		
52	в	11 2. 5	10.0			8		11	461	646		
55	в	111.6	10.4			8		11	283	433		
61	в	115.8	10.4			9		11	487	668		
53	С	110.2	10.4			8		11	414	481		
56	Ċ	112.7	9.8			8		11	243	407		
58	Ċ	114.8	10.3	31	19		11	11	267	471		
62	Č	116.5	9.7			13		11	493	764		

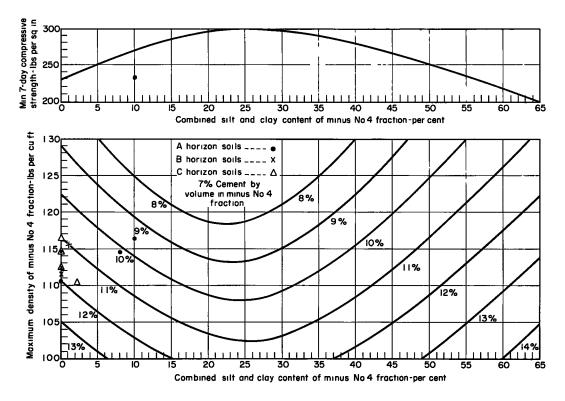


Figure 7. Application of short-cut testing procedure for Valentine sand.

			-			adatı		n	AL and	uand	AASHO	Manun	0-4	Required Cement	Compressiv	
Soil		Color	No	% Pas	No	No	0 05	Smaller	than 0 002	USDA Textural	Soul	Max1mum Density	Optimum Moisture	Content	at recommen content	
Series	Horizon	(moist)	4	10	40	200	mm	mm	mm	Class	Class	pcf	%	% by vol	7 day	28 day
Athena	A	Br	100	100	99	96	88	21	13	\$1L	A-4(8)	99 O	20.4	15	299	-
	в	Br	100	100	100	96	90	24	13	SIL	A-4(8)	98.0 101 0	19.4 20.0	15 10	357 307	318
	<u> </u>	Yel br	100	100	99	96	85	23	15	SiL	A-6(10)		-			
Burke	A Bi	Lt br Lt gr br	100 87	100 82	98 78	62 61	25 49	3 6	2 2	LVFS SiL	A-4(8) A-4(5)	93 7 99 0	200 187	10 9	197 471	363 778
	B,	Gr	48	36	33	24	20	2	ī	G S1L	A-4(6)	112 5	14 2	7	310	-
Douglas	A	Br	100	100	87	57	48	13	7	FSL	A-4(4)	112 5	13 5	7	363	423
•	В	Lt br	100	99	80	45	37	8	4	SL	A-4(2)	102 3	15 3	6	466 627	621 745
	с	Yel br	100	100	88	48	40	4	1	FSL	A-4(3)	104 5	15 5	6		
Ephrata	A B	Lt br Lt br	92 82	73 58	51 5	39 2	34 2	4	1	GCSL CS	A-4(1) A-1-b(0)	119 0 116 8	128 97	7 9	461 251	-
	ĉ	Lt br	79	57	6	3	2	ô	ŏ	GCS	A-1-b(0)	121 5	95	9	173	-
Hasseltine	A	Br	67	60	52	42	38	11	7	G S1L	A-4(1)	113 0	15 7	8	325	-
	c	Lt br	61	55	49	39	35	8	3	G S1L	A-4(1)	113 0	15 4	7	438	
Mission	A	Dk br	100	100	98	91	84	20	8	SIL	A-4(8)	94 0	22 5	14	323	493
	В	Lt br Gr br	100 100	100 100	99 99	91 95	87 89	25 23	10 8	SiL Si	A-4(8) A-4(8)	102 5 98 5	175 221	14 14	503 455	648
	c	-	100	100	70		13	4	2	S	A-2-4(0)	115 0	12 8	10	242	344
Marble	A C	Lt br Yel br	100	100	70	16 8	13	0	0	s S	A-2-4(0) A-3(0)	115 0	11 4	6	251	388
Nez Perce	A	Dk br	100	100	98	92	88	27	12	SiL	A-5(8)	86, 3	28 0	14	-	-
NEZ PERCE	B	Br	100	100	98	95	92	39	24	SIL	A-7-6(13)	100 0	20 5	12	312	337
	C	Red br	100	160	97	93	91	47	35	SICL	A-7-6(16)	96 7	24.5	12	387	637
Othello	Α	Lt gr br	100	100	99	68	46	3	2	VFSL	A-4(7)	92 5	20, 9	10	166	306
	<u> </u>	Lt gr br	100	100	98	72	58	5	2	SIL	A-4(7)	99 1	18 0	10	365	573
Palouse	A	Dk br	100	100	100	96	90 87	19 23	6	Si Si	A-4(8) A-4(8)	100 5 105 0	20.0 18 3	10 8	264 515	296 713
	в С	Br Yel br	100 100	100 100	100 98	97 96	89	23	12 9	SıL SıL	A-4(8)	105 4	17 8	8	372	589
Quincy	A	Lt br	100	100	85	28	17	4	3	LS	A-2-4(0)	119, 8	11 0	7	-	-
Quincy	В	Grbr	100	100	81	17	11	0	ō	S	A-2-4(0)	116 2	11 7	7	280	546
	С	Gr	100	100	97	76	64	6	1	SiL	A-4(8)	100 0	21 0	11	421	789
Rıtzville	A C	Lt br Lt br	100 100	100 100	99 98	85 85	67 76	7 8	42	SıL SıL	A-4(8) A-4(8)	100 5 99 0	18 0 19 7	10 10	644 627	1044 770
Sagemoor	A	Lt gr br	100	100	98	72	60	15	4	\$1L	A-4(8)	105 5	17 1	10	453	630
	В С	Br gr	100 100	100 100	98 100	82 91	74 82	20 11	10	SiL SiL	A-4(8) A-4(8)	103 5 99 2	19.0 20 5	10 10	480 380	672 522
		Brgr	100	100	98	92	87	24	12	SiL	A-5(8)	89,1	27 0 ove		168	181
Southwick	A B	Dk br Br	100	100	98	92	90	30	17	SIL	A-5(6) A-7(12)	94 0	22 8	16	248	286
	ē	Lt br	87	87	82	75	71	23	13	SIL	A-4(8)	103 5	19 0	12	245	344
Springdale	A	Lt br	57	46	29	23	20	6	2	GCSL	A-1-b(0)	126, 0	98	7	292	-
	BC	Pale yel	51 47	40 24	18 4	13 2	11 2	3	1	GLCS GCS	A-1-a(0) A-1-a(0)	137 6 127 0	7270	777	270 215	-
		Lt br					47	6				114 7	12 7	8	363	780
Timmerman	A B	Lt br Br gr	100 100	100 100	71 17	57 12	47	4	1 0	CSL CS	A-4(4) A-1-b(0)	129 0	10 8	7	363 449	554
	č	Gr	100	100	4	ō	ō	ō	ō	CS	A-1-b(0)	113 5	12 8	13	320	802
Touhey	A	Gr br	98	97	89	51	41	6	2	VFSL	A-4(3)	107 0	14 7	10	188	223
-	В	Gr br	92	89	79	54	48	7	1	SIL	A-4(4)	115 0	12 5	10	312 301	522
	С	Lt br gr	74	69	61	45	38	8	1	G S1L	A-4(2)	125 1	10 0	10		
Waite	A B	Dk br Lt br	88 74	77 62	62 50	47 35	42 30	5 5	2 2	G Sıl GFSL	A-5(2) A-2-4(0)	85 0 108 5	27 0 ove 15 7	er 20 10	143 270	153
	C	Yel br	45	33	26	15	13	2	î	GSL	A-1-a(0)	129 7	91	5	410	-
Walla Walla	A	Lt br	100	100	98	91	82	22	9	SIL	A-4(8)	101 0	19 5	7	451	748
	в	Gr br	100	100	97	87	77	10	2	SIL	A-4(8)	968	20 8	9	591	955
	с	Lt gr br	100	100	97	87	78	10	2	SiL	A-4(8)	91 7	22 4	11	635	993
E Washington	С	Dkgr	53	36	19	12	10	2	1	GLCS	A-1-a(0)	127 6	9.3	7	216	-

TABLE 13

Washington and Idaho Areas

Results of tests on the 20 series from eastern Washington and northern Idaho are given in Table 13. They are all excellent materials for soil-cement construction except for the A horizon for the Waits and Southwick series which require high cement factors due to organic material, and the C horizon of the Nez Perce series, a "tough" clay which would require special effort to pulverize during construction.

Of interest is the Walla Walla series which is developed from loessal materials and which has little textural or structural development. The maximum densities range from 101.0 pcf for the A horizon to 91.7 for the C horizon. Optimum moisture contents range from 19.5 to 22.4, respectively. These values would generally indicate that the soils would require rather high cement factors. The cement requirements for these soils, however, range from 7 percent by volume for the A horizon to 11 percent for the C horizon. Another similar example is the A horizon of the Othello series which is a fine sandy loam having a maximum density of 92.5 pcf and an optimum moisture content of 20.9 percent. This soil requires only 10 percent cement by volume.

It is also of interest to note that the Basalt material reacts very well with cement

and requires 7 percent cement by volume. Basalts are found in large quantities in the southeastern part of Washington. The quality is variable due to variations in amount of weathering and additional testing would be required to determine definitely a blanket cement requirement for basalt materials.

SUMMARY

The test results on 43 major soil series from the Great Plains area and from eastern Washington and northern Idaho show them to be, in general, excellent materials for soil-cement construction. The A horizons of four series (Renohill, Williams, Southwick and Waits) required above average amounts of cement due to organic material.

In cases where a soil series was sampled at three or four different locations, the data showed marked similarity in physical properties. This reflects the accuracy of the Department of Agriculture soil maps. Where these check samples were taken, the cement requirements of each profile checked within one percentage point, except in the case of one series, and in most cases results were identical. This further verifies that the cement requirement of a specific soil series and horizon is the same regardless of where it is encountered and points up the value of the pedalogical method of soil identification in soil-cement work.

The importance of the chemical properties of a soil as related to soil-cement is illustrated. Changes in chemical properties of a soil with change in depth in the profile are reflected in changes in cement requirement. These changes in chemical properties outweigh changes in physical properties. This further shows the value of an identification system which recognizes the factors that influence this property such as parent material, age, topography, climate and vegetation.

The cement recommendations given for each of the 43 soil series can be used in construction when these soils are identified in the field. Department of Agriculture soil maps which are available through county extension agents, colleges, universities, libraries, etc, can be used to determine the soil series on any particular project.

It should be recognized that there are a number of soil series in the areas studied which are similar to those investigated. These other soil series would be similar due to similar climatic conditions, rainfall, etc, with some variation in topography, drainage and parent material. These associate soils probably require about the same cement content as the major series tested. A minimum of testing would be needed to establish the cement requirement of these associate soil series and would greatly expand and add to the value of the data presented in this paper.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to members of the staff of the Division of Soil Survey, U.S. Department of Agriculture, for their counsel and cooperation on this project. Their field forces also were most cooperative in the field identification and sampling work. Helpful suggestions of members of the Physical Research Laboratory, Bureau of Public Roads, is also appreciated.

REFERENCES

1. Earl J. Felt, "Soil Series Names as a Basis for Interpretive Soil Classification for Engineering Purposes," Symposium on the Identification and Classification of Soils, Special Technical Publication No. 113, ASTM, 1951.

2. Engineering Use of Agricultural Soil Maps, Highway Research Board Bulletin No. 22 (1949).

3. Soil Exploration and Mapping, Highway Research Board Bulletin No. 28, (1950).

4. Engineering Soil Survey Mapping, Highway Research Board Bulletin No. 46 (1951).

5. Mapping and Subsurface Exploration for Engineering Purposes, Highway Research Board Bulletin No. 65 (1952).

6. Engineering Applications of Soil Surveying and Mapping, Highway Research Board Bulletin No. 83 (1953).

7. "The Use of Agricultural Soil Maps in Making Soil Surveys," L. D. Hicks. Engi-

neering Use of Agricultural Soil Maps, Highway Research Board Bulletin No. 22, October 1949, p. 108.

8. "Soil-Cement Test Data Correlation Affords Method of Quickly Determining Cement Factors for Sandy Soils," J. A. Leadabrand and L. T. Norling, presented at the 32nd Annual Meeting of the Highway Research Board, January 1953.

9. "Simplified Methods of Testing Soil-Cement," presented at the 34th Annual Meeting of the Highway Research Board, January 1955.

HRB.OR-39

,

THE NATIONAL ACADEMY OF SCIENCES—NATIONAL RESEARCH COUN-CIL is a private, nonprofit organization of scientists, dedicated to the furtherance of science and to its use for the general welfare. The ACADEMY itself was established in 1863 under a congressional charter signed by President Lincoln. Empowered to provide for all activities appropriate to academies of science, it was also required by its charter to act as an adviser to the federal government in scientific matters. This provision accounts for the close ties that have always existed between the ACADEMY and the government, although the ACADEMY is not a governmental agency.

The NATIONAL RESEARCH COUNCIL was established by the ACADEMY in 1916, at the request of President Wilson, to enable scientists generally to associate their efforts with those of the limited membership of the ACADEMY in service to the nation, to society, and to science at home and abroad. Members of the NATIONAL RESEARCH COUNCIL receive their appointments from the president of the ACADEMY. They include representatives nominated by the major scientific and technical societies, representatives of the federal government, and a number of members at large. In addition, several thousand scientists and engineers take part in the activities of the research council through membership on its various boards and committees.

Receiving funds from both public and private sources, by contribution, grant, or contract, the ACADEMY and its RESEARCH COUNCIL thus work to stimulate research and its applications, to survey the broad possibilities of science, to promote effective utilization of the scientific and technical resources of the country, to serve the government, and to further the general interests of science.

The HIGHWAY RESEARCH BOARD was organized November 11, 1920, as an agency of the Division of Engineering and Industrial Research, one of the eight functional divisions of the NATIONAL RESEARCH COUNCIL. The BOARD is a cooperative organization of the highway technologists of America operating under the auspices of the ACADEMY-COUNCIL and with the support of the several highway departments, the Bureau of Public Roads, and many other organizations interested in the development of highway transportation. The purposes of the BOARD are to encourage research and to provide a national clearinghouse and correlation service for research activities and information on highway administration and technology.