Relationship of Accident Rate to Highway Shoulder Width

ERNEST T. PERKINS, Assistant Chief Engineer Connecticut State Highway Department

 \bullet IN any discussion of the value of highway shoulders, their width always becomes a factor. The width requirement may be dependent on the presence of obstructions at the outer edge of the shoulder, such as guardrails and guide posts.

There is available, in the form of new tabulating punch cards, a summary of accident data for each control section of the state-maintained highway system in Connecticut. These punch cards include data on length of section, annual average daily traffic volume and annual vehicle miles; number of accidents, fatal accidents, fatalities and injuries, and amount of property damage; pavement, shoulder and median width and type, highway type and system; and miscellaneous items. With such information on punch cards, it is possible to compile many different tabulations in an attempt to show what relationship, if any, exists between these different factors. Since the data for four years (1951-1954) were available and since most of Connecticut's highways have paved shoulders, it was felt that there was a sufficient sample to establish the relationship of accident rate to shoulder width.

The next problem was to sort the punch cards prior to making tabulation listings, and it was done in the following manner: (1) the rural and urban sections; (2) by highway type such as two-lane, four-lane contiguous, four-lane divided with no control of access, four-lane expressways with full control of access, etc.; (3) by pavement surface width; (4) by shoulder type (grass and paved); and (5) by shoulder width. Separation by pavement surface type was not found to be significant. The great bulk of two-lane ce-

Pavement surface width (ft)	Item	Paved shoulder width (feet)									Total or		
		0	1	2	3	4	5	6	7	8	9	10	average
14	No. of accidents Vehicle-miles ^a Avg daily traffic Accident rate b	1 0.002 200 500	0 0.011 700 0	4 0.023 400 170	39 0 181 500 220	122 0 706 1100 170	144 0 734 1500 200	196 0.593 1900 330	34 0.129 1200 260	22 0 075 1100 290	0	0	562 2.454 1200 230
16	No of accidents Vehicle-miles ^a Avg daily traffic Accident rate ^b	11 0 009 400 1200	2 0 023 600 90	17 0.074 500 230	43 0 232 700 190	116 0 396 1200 290	66 0 216 1200 310	55 0.183 1300 300	138 0. 501 3500 280	0	6 0 034 2100 180	0	454 1 668 1200 270
18	No of accidents Vehicle-miles ^a Avg daily traffic Accident rate ^b	13 0 022 400 590	23 0 097 600 240	43 0.166 600 260	254 1.009 1100 250	410 1 456 1500 280	455 1 818 2000 250	127 0.438 2300 290	52 0. 253 4000 210	0	0	0	1377 5 259 1500 260
20	No. of accidents Vehicle-miles ^a Avg daily traffic Accident rate ^b	34 0.141 900 240	86 0 328 800 260	196 0 977 1000 200	969 3.024 1500 320	2321 9.446 2500 250	3362 12 434 4000 270	438 1 754 3300 250	437 1 239 5700 350	140 0 612 4600 230	35 0.211 5300 170	0	8018 30. 166 2700 270
22	No. of accidents Vehicle-miles ^a Avg daily traffic Accident rate ^b	31 0.155 800 200	257 1.034 1400 250	753 2.944 1200 260	1536 5 927 1500 260	834 2.725 1600 310	194 0 901 3500 220	187 0 489 3200 380	144 0 523 2400 280	670 2 462 3800 270	85 0.449 6600 190	142 0 510 4500 280	4833 18.119 1700 260
24	No of accidents Vehicle-miles ^a Avg daily traffic Accident rate ^b	31 0 138 1100 220	107 0.368 1300 290	617 2 283 2100 270	397 0.999 3300 400	172 0 872 2300 200	0	0	52 0.173 5900 300	51 0. 263 5100 190	0	1 0. 042 4500 20	1428 5. 138 2300 280
Total or weighted average	No. of accidents Vehicle-miles ² Avg daily traffic Accident rate ^b	121 0.467 800 260	475 1 861 1100 260	1630 6.467 1300 250	3238 11 372 1400 280	3975 15.601 2000 250	4221 16.103 3300 260	1003 3.457 2600 290	857 2.818 3600 300	883 3.412 3800 260	126 0 694 5600 180	143 0 552 4500 260	16672 62. 804 2000 270

TABLE 1

ACCIDENT, MILEAGE AND TRAFFIC DATA AND ACCIDENT RATES BY VARIOUS PAVEMENT AND SHOULDER WIDTHS ON TWO-LANE CONNECTICUT HIGHWAYS (WITHOUT CONTROL OF ACCESS) FOR FOUR YEARS 1951-1954

a hundred millions

^b per hundred million vehicle-miles

ment concrete pavements are in the 20-ft pavement surface width group with shoulder widths of from 4 to 9 ft. The great majority of the other groups are made up of various black-top pavements. It is significant to note that all shoulders except grass shoulders are paved in Connecticut, and that the mileage of grass shoulders is small.

After running off a tabulation listing of all four years, it was found that sufficient samples for a variety of shoulder widths existed only in the rural, two-lane highway grouping. The size of the sample available for various combinations of pavement and shoulder widths is shown in Table 1. The first two values in each

TABLE	2
-------	---

ACCIDENTS, MILEAGE AND TRAFFIC DATA AND ACCIDENT RATES BY TOTAL SURFACE WIDTH ON TWO-LANE CONNECTICUT HIGHWAYS (WITHOUT CONTROL OF ACCESSI FOR FOUR YEARS 1951 THROUGH 1954

Total	Total	Total	Average	Accidents
surface	number	vehicle-miles	daily	per
width	of	(hundred	traffic	hundred million
(feet)	accidents	millions)	volume	vehicle-miles
14	1	0 002	200	500
16	11	0 020	500	550
18	19	0 068	400	280
20	113	0 493	600	230
22	325	1 587	900	200
24	998	4 288	1,200	230
26	2,501	8 601	1,400	290
28	5,018	19 786	2,000	250
30	4,880	17 172	3,100	280
32	856	3 780	3,100	230
34	630	1 762	4,600	360
36	284	1 135	3,300	250
38	757	2 846	4,000	270
40	136	0 712	6,000	190
42	142	0 510	4,500	280
44	1	0 042	4,500	20
Total or				
weighted average	16,672	63 804	2,000	270

block of the table are the total number of accidents and the total number of vehiclemiles, respectively. The accident rate per hundred million vehicle-miles has been computed and is shown as the fourth value in each block. The average daily traffic volume during the four-year period is also shown. It can be seen that this average volume generally increases with both the pavement and shoulder width, which is perhaps a reflection of design standards being related to the traffic volume over the past years.

Table 1 shows that there is no definite relationship of accident rates to shoulder widths. The accident rates vary (in the neighborhood of 270) and do not in any case follow a consistent trend. The same is true of the relationship of the accident rate to the pavement width.

To determine if some other relationship exists, Table 2 was prepared to show the relationship of the accident rate to the total surface width (pavement plus shoulders). The values in Table 2 are a summary of values in Table 1 but arranged in different order. Again, no significant trend or continuous relationship exists among those values which have a substantial amount of data.

It can be seen that while the average daily traffic volumes have a general relationship to the pavement, shoulder, and total surface widths, there is no relationship with the accident rate. Of course that rate is already related to the traffic volume.

In conclusion, this data shows no significant relationship between accident rate and shoulder width. Accident rates may be dependent on other factors, such as side friction, alignment, pavement condition or crown, or other factors not available in these records. More data on 8-, 9-, and 10-ft shoulders is necessary to find a trend. Further breakdown of the data only reduces the size of samples to the point of no significance. The records show that side friction is an important factor, since a definite relationship between accident rate and control of access has been established. Perhaps human behavior on highways overshadows all design factors.

It appears from this data that further analysis by type of accident would be necessary in an effort to establish optimum shoulder width solely from the standpoint of accidents. Shoulders may be partially justified by increased roadway capacity and mental ease for the driver, but those considerations have not been treated in these inconclusive statistics.