Community Study of the Characteristics of Drivers and Driver Behavior Related to Accident Experience

C. E. BILLION, Bureau of Highway Planning
New York State Department of Public Works, Albany, N. Y.

This is a study of human characteristics and driver habits considered to be associated with motor vehicle accidents. The basic sample of Schenectady, N. Y. was established by visiting 1,567 households in that city during 1955. Of these, 810 were driver or interview households and the remaining 757 were no-interview households.

This study was conducted by the New York State Department of Public Works in cooperation with the Bureau of Public Roads. The New York State Department of Health collaborated in the study in the planning and interpretation of data phases.

For the collection of data, 526 male and 284 female drivers were interviewed using a schedule of 60 questions relating to personal, social, health and driving characterıstics, including miles drıven for a $21 / 2$-year period from January 1953 through June 1955. Accident records for the respondents covering this $2 \frac{1}{2}$-year period were searched from the files of the Motor Vehicle Bureau and evaluated by a panel of judges to determıne accident responsıbılity.

Data for each characteristic collected in the interview were tabulated by three groups of exposure-low, medium, and high-and each related to the drivers' accident status-no-accident, accident responsible, and accident not responsible-for the range of answers obtained.

The general hypothesis of the whole study is that drivers responsible for motor vehicle accidents have different personal, social, and drıving characteristics than drıvers who have not had accidents. Each characteristic of the respondent was put into the form of a specific null hypothesis and tested statistically.

To determine those attributes that may be causally associated with driver behavior, a factor test was applied to those variables for both male and female drivers that (a) were statistically significant on a 95 percent level, (b) were selected on a statistical judgment basis, and (c) were selected because of current interest in the variable.

To test the hypothesis that there is no difference between accident and no-accident drivers in the way they drive, 428 male and 122 female drivers were followed while drıving in Schenectady and their driver behavior was noted and rated on a scale to include speed, headway, lane markings, passing, traffic signals, stop signs, turning movements, yielding, and attentiveness. A scoring system was adopted to group the drivers according to their rated drıver behavior into categories of unsafe, predominately unsafe, neutral, predominately safe, and safe drivers. Accident records of the observed drivers for a $2 \frac{1}{2}$-year period, January 1953 through June 30, 1955, were searched and the data were tabulated by sex to show the relation between the five categories of drivers by the no-accident and accident drivers. The types of accidents were likewise grouped for examination. Composition of the sample, characteristics of drivers and cars driven with accident experience are also examined.
-THE RISK OF an automobile accident is accepted by most people as a part of their lives. Actually little serious thought is given to the hazards of automobile travel, perhaps because accidents have become a part of the present system of values.

In spite of the public's generally casual attitude toward this potential danger, the cost to society is such as to cause real concern among both governmental and private groups. One of the newest needs recognized is a scientific study of the drivers themselves. It was on this very note, in fact, that Dr. Detlev W. Bronk, President of the National Academy of Scrences, opened the 34th annual meeting of the Highway Research Board. Although the principles and methodology for this type of research are known by students of human behavior, the project reported here is virtually the first instance in which they have been utilized to examine the phenomena of driving and accidents.

This study was conducted in Schenectady, N. Y., by the New York State Department of Public Works in cooperation with the United States Bureau of Public Roads. The New York State Department of Health collaborated in planning the project and in the preliminary interpretation of the data.

The ground work for this research was based on a combination of data from three pılot studies and the knowledge of traffic engineers, social scientists, and epidemiologists. As a research project, it is unique in at least four respects. First, it is different because of its interdepartmental and interdisciplinary approach. Second, it is one of the first studies of accidents to go beyond a clinical examination of the drivers involved. It is based on a random sampling of all drivers in a community to determine whether drivers involved in accidents have different characteristics from those who have not been in accidents. Third, methods were developed and used for assessing the responsibility for accidents and for obtaining the number of miles drıven. This was defined as "exposure." Fourth, drivers were rated on their driving in terms of safe-unsafe behavior while they drove without knowing that they were being followed.

The findings reported are those considered to be most useful. Many more studies should be made of automobile drivers, their accident records, and other related factors. Data from such sources will build the store of knowledge necessary for a planning program of automobile accident prevention.

PART I. FIRST PHASE
 Determination of Data

General
Research in driver behavior and highway safety in the Schenectady project was handled in two phases. The principal phase was interviewing drivers in their homes. The second phase was observing motorists as they drove on the streets.

The primary purpose of each phase was to compare those drivers who had been involved in accidents with those who had not had accidents.

Fundamental to this endeavor were three earlier pilot studies on accidents, certain relevant literature, and the abilities of the members of the Interdepartmental Committee representing different disciplines and research experience.

Background

Prior to beginning the work in Schenectady, studies had been made in West Sand Lake (1), Oneonta (2), and Saratoga Springs (3), each in New York State, which demonstrated the feasıbılity of conducting research on a community basis using the interview and observation methods.

In the literature, there was no record of a study of motor vehicle accidents based on the community research method. According to Ross A. McFarland (4), who has compiled an extensive review of the literature on accidents, the range of work has been 'from opinion essays to critical theoretical discussions, from a simple counting of accidents to complex statistical analyses, and from everyday observation to controlled experiment."

The Committee set up the following criteria for selecting the communty to be studied:

1. Where accidents are recorded.
2. Where accidents are investigated.
3. Where the accident rate is normal or average.
4. Where the community is reasonably isolated.
5. Where there is a usual amount of through traffic.
6. Where there is a diversity of industries.
7. Where there are few suburbs.
8. Where there is a population over $25,000$.
9. Where there is a well-balanced traffic pattern.
10. A location easily accessible to Albany.

It was found that Schenectady fulfilled most of these requirements. In addition, the study was welcomed by the city officials.

INTERVIEWS WITH A SAMPLE OF DRIVERS

The Research Design

The Interdepartmental Committee met and determined the scope of the work, the definitions of terms and the procedures for finishing the work within a year. A statement incorporatıng their point of view, basic assumptions, dimensions of the project, and hypotheses to be tested were set forth in a research statement.

In their planning, the Committee made use of results from the Oneonta, Saratoga Springs and West Sand Lake pilot studies, as well as interviews with some West Sand Lake respondents. These data helped in defining "accident" as "a motor vehicle mishap occurring between January 1, 1953 and July 1, 1955 on file with the New York State Bureau of Motor Vehicles."

Another operational definition was "a driver is anyone 16 years of age or over who has operated a motor vehicle at any time from January 1, 1953 to the date of the interview."

Construction and Pretest of the Interview Schedule

Once the areas of investigation, hypotheses, definitions, and instruments were decided upon, questions were devised to secure the type of information desired. The questions (Appendix B) were formulated to test a specific hypothesis, to secure control data, and in a few instances, to provide a setting against which facts could be remembered. If no driver was present or if a driver was not to be interviewed in the household visited, the interview was terminated after asking the questions on the first two pages.

When drivers were interviewed, they were asked about the amount of time they spent motoring within the last three years and the mileages traveled in order to get their average monthly mileage. These questions were the first of seven separate sets of questions designed to learn how far people drove within a given period. The number of miles for such a time period was defined as the "exposure" of the driver.

The difficult questions of (a) present car speedometer readings, (b) past car speedometer readings, (c) 1955 mileage, (d) sample day driving, (e) 1954 estimation of mileage, (f) 1954 calculation of trips, and (g) 1953 estımation of mileage, were asked during the first half hour. The driver was then the freshest and the most interested in the difficult work of recalling the facts. Once the mileage data were secured, the hard part of the interview was finshed.

Once the schedule of questions was drafted and revised, a test of the wording and their sequence was made in actual interviews in order to retain material that worked best and discard all that did not contribute to the results. It was thought best not to confuse the work areas in Schenectady by any preliminary interviewing. Permission was therefore secured from the Mayor and Police Chief in the adjoining village of Scotia for conducting certain interviews there. Blocks and households were selected just as they would later be selected in Schenectady. In addition, to provide an opportunity to examine the schedule, this pretesting procedure enabled some interviewers to receive initial training. Results were tabulated and scrutinized before decisions were made as to what was feasible to include and what should be added for clarity and for securing information by which hypotheses could be tested. The questions included in the interview schedule, according to general areas, are shown in Table 1.

TABLE 1
THE QUESTIONS BY GENERAL AREAS INCLUDED IN THE INTERVIEW SCHEDULE (Schenectady Interview)

1. General Characteristics of Drivers
a. Sex
b. Age
c. Education
d. Marital status
e. Labor force
f. Weight
2. Exposure
a. Annual mileage for:

1-1953-using a combination of speedometer readings and estimated mleages.
2-1954-using a combination of speedometer readings, estimated and calculated mileages.
3-1955-6 months-using a combination of calculated and mileages recorded by diary.
3. Driving Experience
a. Years of driving experience
b. Motor vehicle accıdents January 1, 1953 to June 30, 1955 by type and accident responsibility
4. Speed
a. Speed on the open road
b. Opinion of whether a slow or fast drıver
c. Fastest ever driven on the open highway
5. Skill
a. Opinion of own driving skill
b. Drıving instructor
c. Number of times driver exam taken
6. Safety-mindedness
a. What is done to wake up when sleepy at the wheel
b. Whether or not they drive after drinking on occasion
7. Attitude on Traffic Regulations
a Enforcement of traffic laws
b. Behef about stop signs being generally observed
c Opinion on necessity of drivers coming to a full stop at a corner stop sign
8. Medical Aspects
a. Use of alcohol
b. Use of tobacco

1-smoke now
2 - how much
3-smoke while driving
c. State of health
(hayfever, asthma, diabetes, high blood pressure, stomach ulcer, arthritis, rheumatism or neuritis, limited use of either arm or leg, fainting spells or epilepsy, nervous or emotional illness, chronic condition or long drawn-out illness, and trouble hearing).
9. Social Stress
a. Share of worries the last three years

Table 1 (continued)
b. Use of driving to relieve tension
c. Affect on driving when angry
d. Affect on driving when sad or depressed
e. Relative nervousness
f. Trouble gettıng to sleep
g. Enjoy driving
h. How they feel when they drive
10. Social Characterıstics
a. Type of dwelling
b. Type of neighborhood
c. Economic level
d. Number of people in household
e. Occupation
11. General Opinions
a. Whether or not they think other drivers are courteous
b. Opınion of night drıving
c. Opinion about the size of route signs
d. Opinion of other peoples driving according to the way they feel
12. Other Characteristics
a. Wearing of glasses
b. Use of sunglasses while driving
c. Year of car driven most
d. Make of car driven most
e. Car breakdowns
f. Relative ease of finding their way on a strange road
g. Whether or not satisfied with appearance of car they drive
h. Satisfaction with mechanical performance and the way their car drives

Some 200 questions were used covering these areas.

APPLICATION OF DATA

Random Sample Selection in Schenectady

Before this study was undertaken, there was no information as to who, within any population area, drove or did not drive a car. In seeking to provide these data, a sample area of Schenectady was selected to which could be applied area probability techmques. This meant that city blocks were selected at random and people on those blocks were selected for contact by an unbiased procedure.

Chief reliance was placed on census block statistics. The outline of the selected block was drawn on $8 \frac{1}{2}$-by 11 -in. paper and put in a folder along with interview schedules and diary forms to make a working sheet for the interviewer. The interviewer's first step in the field was to ascertain the correctness of the boundaries before he drew in the number of households. Of the 873 blocks listed by the census, 14 densely-settled and 183 lightly-settled blocks formed the final sample. Distribution of these is shown in Figure 1.

In this work, a household was defined as a group of people sharing the same kitchen and other facilities.

At the start of the survey, one or two drivers were arbitrarily assigned to each fourth household (each sixth household for the dense blocks). An assignment of one meant that the oldest driver in the household was to be interviewed. Assignment of two meant an interview with the second oldest driver. In households having only one driver, but where a random start of two had been assigned, no driver was interviewed. In households with several drivers and a random start of one assigned, the first and

Figure 1. Schenectady, New York, by Wards and Blocks, 1950.
third oldest drivers were to be interviewed. With a random start of two, the second, fourth, and sixth oldest drivers were to be interviewed. The purpose of this procedure was to restrict the number of multiple-interviews in a given household in order to secure a wider spread of households, improve the pattern of sampling, and eliminate biases that might arise from people hearing a family member answering the samequestions he had been asked or would be asked.

People were revisited until contact was made. The prediction was borne out very early that the only feasible times for interviewing were evenings and weekends.

The Interviewing

Interviewers were trained by the Project Director, initially through a "guide" written for them, and then by supervised practical work.

Interviewing of Schenectady drivers began on August 8, 1955, and continued until January 30, 1956. Some 810 drivers were completely interviewed; 757 others were contacted at least once for basic household data.

Diary-Keeping and Follow-Up

At the close of the interview, the driver was asked if he would be willing to keep a daily record of all miles driven. Respondents were told that an account of their driving

Figure 2. Sex of drivers compared with exposure (miles driven) and accident status for the period from January l, 1953 through June 30, 1955.
would be collected at the end of each week for the four succeeding weeks. Most people readily agreed to do this and took the diary form, to which was attached a note from the Project Director thanking them for the interview, explaining something about the diary, and indicating where contact could be made with the project staff at City Hall. As the person finished four weeks, he was sent another thank-you letter from the Project Director for keeping the record.

A test was made to determine which of three follow-up methods brought the best cooperation and at the same time was most efficient to carry on. This was accomplished through three random subsamples of the blocks selected for interviews. In one subsample, everyone interviewed on the blocks chosen was sent a double, self-addressed postcard each week on which to copy the daily mileage from their diary before dropping it in the mail. Respondents in the second subsample were phoned each week and their mileages noted on their office copy directly. In the third subsample, drivers were visited each week in order that mileage could be copied on the office record directly at the doorstep. On October 26, 1955, an analysis was made of the three follow-up procedures in order to decide which should be carried on during the remainder of the study.

As a result of these analyses, the weekly follow-up for the remainder of the project was made by telephone, except for home visits to the approximately 10 percent who did not have phones.

Accident Record Search and Evaluation

Motor vehicle accidents, for the purpose of this study, were limited to those reported to and filed by the Bureau of Motor Vehicles. By statute, this includes all accidents involving personal injury or property damage of $\$ 50$ or more.

Upon completion of their search the Bureau returned the index cards for each respondent, together with photostats of all corresponding accident reports. The photostats were then released for evaluation of accident responsibility.

A panel of 15 persons acted as judges for evaluating accident responsibılity. Among these were five engineers, five statisticians, and five others, including physicians, a public health nurse, a cultural anthropologist and an insurance evaluator. The 15 were divided into five teams of three members each by selecting at random one engineer, one statistician, and one of the others.

To remove bias in judging, photostatic copies of the accident records were identified
by number only. Name, age, sex, and color were obliterated. The records were divided into groups and each group sent to a team. If all three on a team assıgned responsibility to the same driver on a record, judging was complete, since this is a majority decision of five. If the agreement was not complete on a record, it was sent to two more evaluators. Responsibility for each accident was thus determined by majority decision of five.

Accident responsibility was defined as any percentage attributable to a driver. Drivers in the "accident-not-responsible" category thus were judged as having zero responsibility for the accidents.

Coding, Punching, and Tabulating Interview Data

Coding was done as a separate operation. Data from the schedules were punched into five Holerith cards and information about accidents was punched on the sixth card. These cards formed the basis for tabulation by use of IBM equipment.

TABLE 2
CONTACT WITH HOUSEHOLDS

Nature of Contact	No-Interview Contacts		Interview Contacts		Total Contacts	
	Number	Percent	Number	Percent	Number	Percent
Driver interviewed	-	-	810	99.9	810	51.7
Wrong random start	8	1. 1	-	-	8	0.5
No driver in household	341	45.0	-	-	341	21.8
Refusal: should be driver	18	2.4	-	-	18	1.1
Refusal: wrong random start or no driver	5	0.6	-	-	5	0.3
Refusal: household composition unknown	12	1.6	-	-	12	0.8
No contact could be made	87	11.5	-	-	87	5.6
No random start (start was 2 and only 1 driver)	276	36.5	-	-	276	17.6
Refusal: no random start driver in household	5	0.6	-	-	5	0.3
Interviewer failed to get interview	5	0.6	-	-	5	0.3
Totals	757	99.9	810	99.9	1,567	100.0

ANALYSIS OF DATA

Control Data

Control data are those which help form the background for evaluation of other findings in a study. Some of these can be indicated here.

A total of 1,567 contacts was made in Schenectady. These contacts made up the basic sample of the city. Of these, 810 were driver contacts. The remaining 757 were no-interview contacts. The latter group contained households in which no one had driven since January 1953, in which there was one driver but a random start of two, in which no complete contact could be made after one to six visits because of termination of the field work, and a very few in which the person refused to give more than a fragment of the information needed. Table 2 shows the nature of contacts with Schenectady households. Other analyses of the control data are shown in Appendix C.

Accident Evaluation
Of the 810 interviewed drivers, 119 were found to have been involved in motor ve-
hicle accidents. Among the 119,11 had had two and 2 had had three, making a total of 134 accident records on file with the Bureau of Motor Vehicles from January 1, 1953 through June 30, 1955. For comparative purposes, the average yearly accident rate for the sample was 0.066 , as compared to the statewide average yearly rate of 0.057 for the same period.

Responsibility for each of the 134 accidents was judged separately. In the tabulations, 691 drivers were classified as no-accident; 82, involved in 88 accidents, as accident responsible; and 37, involved in 46 accidents, as accident not-responsible. The number of accidents, is shown in Table 3 and judged accident responsibility.

TABLE 3
NUMBER OF ACCIDENTS BY TYPE AND JUDGED DRIVER RESPONSIBILITY

Driver Responsibility	Head On	Rear End	Angular	One Car	Pedestrian	Others	Total
Responsible	6	36	21	12	5	8	88
Not Responsible	2	18	5	16	2	3	46
Total	8	54	26	28	7	11	134
	106 drivers with one accident 11 drivers with two accident 2 drivers with three accidents $\overline{119}$ drıvers $=134$ accidents						

Data Arrangement by Exposure

A serial tabulation of mules driven during a $2 \frac{1}{2}-\mathrm{yr}$ period by 810 drivers showed the range to be from 0 to 161,000. For arrangement by exposure, the 810 drivers were simply divided into three groups of 270 each. For the first 270 respondents, the mileage driven ranged from 0 to 7,600. The second group of 270 drove from 7, 601 to 18,100 mi and was called the medium exposure group. The third group drove from 18, 101 to $161,000 \mathrm{mi}$ and was called the high exposure group.

TABLE 4
DRIVERS COMPARED BY EXPOSURE (MILES DRIVEN) AND ACCIDENT STATUS

Exposure Category	No Accident		Accident Responsible		Accident Not Responsible		Total	
Miles	Number Percent Number Percent Number Percent Number Percent							
Low								
0-7,600	243	90	21	8	6	2	270	100
Medium								
7, 601-18, 100	231	86	24	9	15	6	270	100
High								
18, 101-161, 000	217	80	37	14	16	6	270	100
Total	691	85	82	10	37	5	810	100

With respect to the accident status, it can be noted that 21 accident responsible drivers were in the low mileage category, 24 were in the medium, and 37 in the high group. Table 4 shows these comparisons in greater detail.

Machine tabulations and percentages were then run for each tabulation of the 60 variables under study. A sample of these first-run tabulations is shown in Table 5.
table 5
SAMPLE OF FIRST TABULATIONS RUN

Driver Behaylor and Highen gafety Rasorarob

Testing of Hypotheses

Committee Decisions. The committee suggested testing all hypotheses by controlling for exposure (miles driven) and accident status. This was accomplished for the 60 variables studied. Examination of these data led to recommendations for regrouping the responses in the individual tabulations. Of still greater importance, however, was the decision to segregate and analyze the data separately for the male and female drivers. This decision was based on a comparison of the accident status of the males and females, which showed a higher percentage of the males in the accident responsible and accident not-responsıble categories than the females for all exposure groups.

This comparison of the accident status of male and female respondents in the several exposure groups is depicted in Figure 2. Men were in higher proportion in the accident responsible and accident not-responsible categories than were women for low, meduum, and high exposure, and for all exposure considered together.

Approximately one out of every 5 male drivers was involved in an accident during the $2 \frac{1}{2}$-year period of investigation from January 1, 1953 through June 30, 1955 whereas only one out of every 13 female drivers was involved in an accident within the same

Figure 3. Scales for observing drivers in Schenectady.
period. Without taking exposure into account, statistical test showed that this difference is significant; on this basis the null hypothesis of no difference in accident status according to sex might be rejected at this point and further supports separate analysis of the characteristics of male and female drivers.

This hypothesis testing by inspection was subject to further study by tests for statistical signuficance before deciding whether or not to reject the general null hypothesis that drivers who are involved in accidents do not differ from those who are accident free.

Statistical Tests for Confidence Levels. Using the total figures (for all exposure groups) and based on the closeness of the actual frequency of the responses to that of the theoretical, inspection of the tabulated data revealed that the data for 28 of the 60 variables would yield no appreciable confidence levels. The general null hypothesis that drivers who are responsible for accidents do not differ from those who are not responsible for accidents or those who are accident free could not be rejected with respect to these 28 variables (Table 6).

	TABLE 6
	VARIABLES WHICH FROM INSPECTION OF DATA YIELDED
	NO APPRECIABLE CONFIDENCE LEVELS

As previously noted, a comparison of the accident status of the males and females showed a higher percentage of the males in the accident responsible and accident notresponsible categories than the females in all exposure groups. This relation was statistically significant at a 99 percent confidence level. As a result, the remaining 31 variables were examined by sex; otherwise, the sex factor may have masked or distorted the presence and influence of the other variables. Thus, for each of these

TABLE 7
CONFIDENCE LEVELS OF VARIABLES (DATA) TESTED FOR
"ALL EXPOSURE GROUPS" BY CHI-SQUARE METHOD

Table No. of Variable	Varıable	Confidence level	
		Males	Females
1	Size of household	0.63	0.62
2	Age of respondent	0.13	0.51
8	Number of times exam taken for first license	0.44	0.58
9	Highest grade or year completed in school	0.82	0.82
10	Present marital status	0.97	0.90
11	Present labor force status	0.53	0.89
14	Whether or not they enjoy driving	0.49	0.49
15	Their opinion of night driving	0.20	0.38
19	If driving relaxes one when disturbed about something with other people	0.19	0.46
22A	Their opinion of how nervous they are	0.04	0.45
22B	What is done to wake up when sleepy at the wheel	0.04	0.70
23	Their share of worries the last three years	0.01	0.10
24	Whether they smoke now and whether they have smoked in the last three years	0.40	0.79
25	How much they smoke now	0.07	0.42
26	Whether or not they smoke while driving	0.16	0.74
27	Whether or not they drink	0.35	0.70
28	Whether or not they drive after drinking on occasion	0.44	0.25
42	Whether or not they wear glasses	0.13	0.22
43	Whether or not they have been wearing sunglasses on sunny days.	0.53	0.65
44	Usual speed on the open road with no speed control signs	0.03	0.85
45	Whether or not they think other drivers are courteous	0.12	0.08
47	Opinion of whether a slow or fast driver	0.03	0.22
50	Their opinion about the necessity of drivers coming to a full stop at a corner stop sign	0.13	0.68
51	Their relative ease of finding their way on a strange road	0.99	0.42
52	Their opimons about the size of route signs	0.72	0.56
53	Fastest ever driven on the open highway	0.16	0.27
54	Number of times stopped along the road because of car breakdown since January, 1953	0.62	0.49
55	Opinion of whether or not traffic laws are enforced strictlv enough	0.46	0.81
56	Total family income for 1954	0.69	0.59
57	Type of dwelling of driver	0.94	0.05
58	Type of nexghborhood area driver's house is in	0.40	0.45

variables, the responses under the totals column (all exposure group) for each of the three categories of drivers (no-accident, accident and responsible, and accident notresponsible) by sex, were tested simultaneously by the chi-square method. A 95 percent confidence level was considered as statistically significant.

TABLE 8
VARIABLES SELECTED FOR FACTOR ANALYSIS FOR
MALE AND FEMALE DRIVERS, FIRST RUN ${ }^{\text {a }}$

Table No. of Variable	Varıable	Method of Selection	Selected for	
			Male	Female
1	Size of household	2	X	
9	Highest grade or year completed in school	2	X	X
10	Present marital status	1	X	
11	Present labor force status	2		X
23	Their share of worries in last 3 years	2	X	
24	Whether they smoke now and in past 3 years	3	X	X
25	How much they smoke now	3		X
27	Whether or not they drink	2	X	
25	Whether or not they drive after drinking	2	X	
42	Whether or not they wear glasses	2	X	
43	Whether or not they wear sunglasses on sunny days	2	X	X
44	Usual speed on the open road w/no speed control signs	2	X	
47	Opinion of whether a slow or fast driver	2		X
51	Their relative ease in finding their way on a strange road	1	X	X
55	Opinion of whether or not traffic laws are enforced strictly enough	2		X
59	Driving instructor when learning to drive	2	X	
Total			12	8

${ }^{\text {a }}$ All variables analyzed for totals; all exposure groups only

Table 7 indicates that for the male drivers the responses for only two of the varıables met the qualification for statistical signficance. None of the data for the female drivers reached the 95 percent confidence level for statistical significance.

Factor Analysis, First Run. In order to further interpret the data, it was appropriate to introduce a "factor analysis," which is used to determine the underlying influences on apparent differences in the various distributions of the data.

Variables by sex, as shown in Table 8, were selected for analysis in the first run, using one of the following three criteria:

1. A chi-square test of significance gave a confidence level of 95 percent or better.
2. Judgment wherein the various attributes were studied and, in general, selecting those with the largest diversion from expectation.
3. The current interest of the item.

It is to be noted that the data in the total or "all exposure" groups were used for this investigation. These results are not discussed here as they were exploratory in nature.

Factor Analysis, Second Run. The foregoing factor analysis was applied to all the drivers in the sample by sex. In order to consider the influence of exposure on the apparent differences in the various distributions of the data, 19 variables for the male and 17 variables for the female drivers (Table 9) were selected for a second-run factor analysis. The same method of selecting the variables for study was used as in the first-run analysis.

However, for analysis both the male and female drivers were divided into three

TABLE 9
VARIABLES SELECTED FOR FACTOR ANALYSIS FOR MALE AND FEMALE DRIVERS, SECOND RUN ${ }^{1}$

Table No. of Varıable	Varıable	Method of Selection	Selected for	
			Males	Females
1	Size of household	2	X	X^{2}
2	Age of respondent	3	X^{2}	X^{2}
4	Length of drıving experience	3	X^{2}	X^{2}
6	Year of vehicle driven most at present	3	X^{2}	X^{2}
7	Driving instructor when learning to drive	2	X	X^{2}
9	Highest grade or year completed in school	2	X	X
10	Present marital status	1	X	X^{2}
11	Present labor force status	2		X
15	Their opinion of nıght driving	3	X^{2}	X^{2}
23	Their share of worries last 3 years	2	\mathbf{X}	
24	Whether they smoke now and in past 3 years	3	X	X
25	How much they smoke now	3	X^{2}	\mathbf{X}
26	Whether or not they smoke while driving	g 3	X^{2}	
27	Whether or not they drink	2	\mathbf{X}	
28	Whether or not they drive after drinking	- 2	\mathbf{X}	
42	Whether or not they wear glasses	2	\mathbf{X}	
43	Whether or not they wear sunglasses on sunny davs	2	X	X
44	Usual speed on the open road w/no speed control signs	2	X	X^{2}
46	Opinion of driving skill	3	X	X
47	Opinion of whether a slow or fast driver	r 1		X
51	Their relative ease in finding their way on a strange road	1	X	X
55	Opinion of whether or not traffic laws are enforced strictly enough	2		X
Totals			19	17

${ }^{1}$ In addition to first run
${ }^{2}$ All variables analyzed by four exposure groups, low, medium, high and totals
nearly equal groups with totals, groups, and the corresponding accident involvement data, for the range of answers given for each variable, and were tabulated accordingly. In the first instance the multiple-accident drivers were excluded from the analysis, for which all drivers and all accidents were used as a base.

For the first 175 male drıvers (low exposure group) the mileage driven for the $2 \frac{1}{2}-$ year period ranged from 0 to 12,600. The medıum exposure group (176) drove from 12,601 to 22,900 miles and the high exposure group (175) drove from 22, 901 to 161,000 miles. Likewise, for the female drivers the first group (95), the second group (96), and third group (95), drove from 0 to 2, 700, 2, 701 to 8,500, and 8, 501 to 40,800 miles, respectively, during the $2 \frac{1}{2}$-year period.

Separate factor analyses were performed for each of these exposure groups and the total group for both male and female drivers. For the male drivers, 19 sets of intercorrelation were performed, intercorrelating each variable with the other 18, thus pro-
table 10
CHARACTERISTICS OF VARLABLES FOR MALE DRIVERS WHICH WERE UNDERLYING FACTORS IN THEIR ASSOCLATION WITH ACCIDENTS, BY EXPOSURE GROUPS - SCHENECTADY INTERVIEW

Variable for the male drivers	Exposure		Group	
	Low (2,800) ${ }^{\text {\% }}$	Medium (6,400)*	High (16, 200)*	Totals (8, 800)*
	Unfavorable	Characteristic	for those	
Size of household	---	--	---	- - -
Age of respondent	in middle age group	in muddle age group	un maddle age group	in middle age group
Length of driving experience	with 10 to 19 years of experience	----	----	----
Year of vehiele driven most at present	--- -	who drove older models than ' 53 and later models than ' 54	- .--	who drove older models than -53 and later models than '54
Driving unstructor when learning to drive	--- -	other than self	-.--	-
Highest grade or year completed in achool	who did not finish high school	---	who did not fmiah hugh school	who did not funsh high school
Present marital status		who were gungle	who were single	who were aingle
Objection to rught driving	other than who didn't object	other than who didn't object	other than who didn't object	other than who dudn't object
Their share of worries last 3 years	- - -	- - - -	-.--	- - - -
Whether they smoke now and in past 3 years	----	who smoked	who smoked	who smoked
How much they smoke now	---	----	---	----
Smoke whie driving	---	----	- - - -	- - - -
Whether or not they'drink	who drank ${ }^{\text {l }}$	-	who drank ${ }^{\text {d }}$	who drank
Drive after drinking	Who drove after drinkung ${ }^{\text {a }}$	--.	who drove after drinking	--
Wear glasses or not	who did not wear glasses	- - - -	who did not wear glasses:	----
Whether or not they wear sunglasses on sunny days	--- -	----	--- -	who usually wore sunglasses
Usual speed on the open road $w / n o$ speed control tigns	Who drove at speeds higher than $50 \mathrm{mph}^{1}$	who drove at speeds higher than 50 mph	who drove at speeds higher than $50 \mathrm{mph}^{1}$	
Option of driving skill	- - - -	who rated themselves as average		Who rated themselves as average
Their relative ease in findung their way on	who had no diffeculty		--- -	who had no difficulty
a strange road (EXPOSURE)	N \mathbf{A}	N A	N 4	-
	9 of 10 variables $=$ factors	8 of 19 variables = factors	9 of 19 variables $=$ factors	10 of 19 varsables $=$ factors
*Average miles driven per year for partod January 1, 1959 through June 30, 1955	${ }^{1}$ Three varmbies together (ty-mindedness)		

TABLE 11
CHARACTERISTICS OF VARIABLES FOR FEMALE DRIVERS WHICH WERE UNDERLYING FACTORS IN THEIR ASSOCLATION WITH ACCIDENTS FOR ALL EXPOSURE GROUPS - SCEENECTADY INTERVIEW

Variable for the famale drivers	Exposure		Group	
	Low (500)*	Medıum (2, 100)*	High (6,600)	Totals (3, 100)*
	Unfavorable	Characteristic	for thoge	
Size of household	whth 1 or 2 in household	---	with 1 or 2 in household	with 1 or 2 in household
Age of respondent	in younger \& older age groups	in younger e older age groups	in younger older age groups	In younger alder age groups
Length of driving experience				-
Year of vehicle driven most at present	--- -	who drove older models than '53	----	----
Driving instructor when learning to drive	-	--- -	--	who ware not taught by a relative
Highest grade or year completed in achool	who dad not finish high school	----	Who did not fuish iugh school	-
Present marital status	who were presently married	----	- - - -	-*- -
Present labor force atatus	-	who were housewives	who were housewnves	who were housewives
Objection to mught driving	--- -	-	---	other than who didn't object
Whether they smoke now and in past 3 years	---	----	Who did not smoke	who did not smoke
How much they smoke now			----	-
Whether or not they wear sumglasses on sunny days	who usually wore sunglasses	- - -	who usually wore sunglasses	who usually wore sunglasses
Usual speed on the open road w/no speed control sugns	----	-	- -	----
Opinion of driving skill	who rated themselves other than average ${ }^{\text {b }}$	- -	Who rated themselves other than average	who rated themselves other than average
Opinion of whether a alow or fast driver	other than alow drivers ${ }^{\text {a }}$	Other than slow drivers	other than slow drivers	-- -
Their relative ease in findung their way on a strange road	--- -	who had difficulty	who had difficulty	- -
Opmion of whether or not traffic laws are enforced strictly enough (EXPANSION)	- ${ }^{\text {N A - }}$		who said no	in higher exporure group
*Average miles driven per year for period January 1, 1953 through June 30, 1955	7 variables of $17=$ factors ${ }^{1}$ Two variables together	6 variables of $17=$ factors	10 variables of $17=$ factors	8 variables of $18=$ factors

ducing 702 indices of association with accident status. Similarly, for the female drivers 561 indices of association with accident status were produced.

Table 10 shows the characteristics of the variables for male drıvers which were underlying factors (unfavorable characteristics) in their association with accidents by exposure groups. Four variables did not give any evidence of being underlying factors associated with accident status. Being in the middle age group (30 to 49 years of age) and those who did object to night driving were unfavorable characteristics of male drivers in accident association fcr all exposure groups. In the examination of the totals group, exposure was not found as an underlying factor for male drivers in their association with accidents. Three of the factors appeared as unfavorable characteristics in but one exposure group, five appeared in two groups, five appeared in three groups, and two appeared in all four groups.

Table 11 shows the characteristics of the variables for female drıvers which were underlying factors (unfavorable characteristics) in their association with accidents by exposure groups. Three variables did not give any evidence of being underlying factors associated with accident status. Being in the younger (under 30 years of age) and the older (over 49 years of age) groups of female drivers were unfavorable characteristics in accident association for all exposure groups. In the examination of the total group, exposure in the average yearly range of from 2,000 to 16,000 miles for female drivers was found as an underlying factor in their association with accidents. Two of the factors appeared as unfavorable characteristics in but one exposure group, four appeared in two groups, five appeared in three groups, and one appeared in all four groups.

Table 12 shows the consensus of characteristics of variables for male and female drıvers which were underlying factors in their association with accidents, for all exposure groups. The basis for these factors was obtained from analyzing the data for male and female drivers in the four exposure groups and comparing results for consistency within the groups.

It appears that for the drivers studied, those with the following characteristics are more apt to be associated with accidents than those without:

MALE DRIVERS

1. Between 30 and 49 years of age
2. Who drive older models than ' 53 and later models than ' 54
3. Who did not finish high school
4. Who are single
5. Who do object to night driving
6. Who smoke
7. Who drink
8. Who drive after drinking
9. Who usually wear sunglasses while driving
10. Who drive at speeds greater than 50 mph
11. Who rate themselves as average drivers 10. In higher exposure group (over 2,000 mıles per year)

FEMALE DRIVERS

1. With one or two in household
2. Under 30 and over 49 years of age
3. Who did not finish high school
4. Who are housewnes
5. Who do not smoke
6. Who usually do not wear sunglasses while drıving
7. Who rate themselves as other than average drıvers
8. Who have difficulty in finding their way on strange roads
9. Who believe that traffic laws are not enforced strictly enough
10. Who have no trouble finding their way on strange roads
The balance of the variables selected for study did not give evidence of being underlying factors associated with accident status. However, it must be considered that, except for exposure for females, the variables when tested individually did not reach significance. Thus, these results could not be readily applied to any other group of drivers except the group studied, without additional investigation.

Analysis of Distribution of Answers. The distribution of the answers for each variable selected for factor analysis (Table 9) was examined to determine trends in the data. The detailed results of this study are shown in Appendix A.

PART II. DRIVER OBSERVATION OF A SAMPLE OF DRIVERS Determination of Data

The interdepartmental committee, in the initial planning for the study, decided to observe persons driving in Schenectady in order to test the hypothesis that there is no difference between accident and no-accident drıvers in the way they drive. This part of the research was considered important, as it is postulated that practice in ordinary driving may be related to what occurs in an emergency situation or accident.

The nature of this phase of the study made it necessary to construct, test, and standardize scales on which the different aspects of a person's driving could be recorded objectively and reduced to a score for comparative purposes. Because little has been done to relate ordinary drıving to other characteristics of persons, including their driving experience, accidents, personality, attitudes, and related information collected in the first past of this study, it was hoped that a method could be devised to either observe the persons interviewed or interview the drivers observed.

No practical method could be determined to observe persons driving subsequent to the interview and the time element of the project would not support the interview of persons after driver observation. Thus, it was decided that the scope of this phase of the study would be limited to relating observed driving characteristics to the subject's accident experience, as reported to the Motor Vehicle Bureau, for the period January 1, 1953, through June 30, 1955.

TABLE 12
CONSENSUS OF CHARACTERISTICS OF VARIABLES FOR MALE AND FEMALE DRIVERS WHICH WERE UNDERLYING FACTORS IN THEIR ASSOCIATION WITH ACCIDENTS FOR ALL EXPOSURE GROUPS - SCHENECTADY INTERVIEW

Variable for the drivers	Drivers	
	Male (8,600)*	Female (3,100)*
	Unfavorable characteristic for those	Unfavorable characteristic for those
Size of housenold	-----	with 1 or 2 in household
Age of respondent	in middle age group	in younger \& older age groups
Length of driving experience	-----	------
Year of vehicle driven most at present	who drove older models than ' 53 and later models than ' 54	who drove older models than' 53
Driving instructor when learning to drive		who were not taught by a relative
Highest grade or year completed in school	who did not fmish high school	who did not funsh high school
Present marital status	who were single	-----
Present labor force status	N \mathbf{A}	who were-housewives
Objection to mught driving	other than who didn't object	------
Their share of worries last 3 years	------	N A
Whether they smoke now and in past 3 years	who smoked	who did not smoke
How much they smoke now	------	-----
Smoke while driving	------	N A
Whether or not they drink	who drank ${ }^{1}$	N A
Drive after drinking	who drove after drinking'	N \mathbf{A}
Wear glasses or not		N \mathbf{A}
Whether or not they wear sunglasses on sunny days	who usually wore sunglasses	who usually did not wear sunglasses
Usual speed on the open road $w / n o$ speed control signs	who drove at speeds higher than $50 \mathrm{mph}^{4}$	who rated themaelves other than average
Opinion of driving skill	who rated themselves as average	who rated themselves other than average
Opinion of whether a slow or fast driver	N A	------
Their relative ease in finding their way on a strange road	who had no difficulty	-----
Opinion of whether or not traffic laws are enforced strictly enough (EXPOSURE)	N A - - -	in higher exposure group
*Average miles driven per year for period January 1, 1953 through June 30, 1955	12 of $\mathbf{2 0}$ variables $=$ factors ${ }^{1}$ Three variables together (safety-mudedness)	10 of 18 variables \boldsymbol{z} factors

Scales

A scale for recording the actions of drivers being observed was developed only after evaluation of the results of pretesting several types of forms. Figure 3 is a reproduction of a completed form with scales adopted for use.

Scales with two or three sections were designed to note safe and/or unsafe actions concerning speed characteristics, headway allowed, observations of lane markings, judgment used in passing, compliance with traffic signals, respect for stop signs, method of turning, willingness to yield rıght-of-way to others, attentiveness to driving, and the over-all impression of the driver's abllity. Also, selection of easily identified driver characteristics was listed, together with an outline description of both driver and car, including the car's registration plate number. Space was provided on the form for coding the recorded information.

Scoring System

A point scoring system using the ratio of safe to unsafe observations was adopted and applied to each scale individually, as follows:

Number of Points	Safe	Observations	
0	None	None	
1	None	3 or more	
2	None	1 or 2	
3	1	More than 1	
4	1	1	
5	More than 1	1	
6	1 or 2	None	
7	3 or more	None	

Number of Observations

It was originally planned to obtain a sample of seven different driver observations originating at each of 50 randomly selected intersections within the corporate limits of Schenectady. Provisions were made to extend this into February 1956, using eight different driver observations for a second sample of 32 inter sections. Figure 4 shows the intersections used in each selection. The number of drivers observed at each intersection was planned to be in proportion to the average traffic volume, during the hour of the day observed. No observations were to be made on Saturdays or Sundays and between the hours of 11:00 P. M. to 7:00 A. M.

Other Considerations

The techniques for the observations also included the following committee decisions:

1. Drivers to be followed and observed for a minimum of 1 mi and maximum of 2 mi .
2. One-half of the intersection samples each from inbound and outbound traffic.
3. Selection of cars passing intersections for observation in series of three (3rd, 6 th, or 9 th).
4. Indicate if driver was smoking or not.
5. Indicate if driver wore glasses.

APPLICATION OF DATA

A team for the observation of drivers consisted of a driver and an observer. Before operations started, a chart for control purposes listing the number of observations to be taken during the various time periods at each of the numbered intersections was prepared. The observations were checked off as they were completed.

In tailing cars, particular attention was given to maintaining a respectable distance between cars to prevent the observed driver from becoming aware of being followed. When it became apparent that the driver was aware of being followed, the observation was cancelled.

Procedure Particular to Items

Figure 3 shows the descriptions of the actions to be checked for each item of driver observation to be rated, thus simplifying the field work. Also, situations which the
driver was forced into by traffic conditions were not subiect to rating.

Motor Vehicle Bureau Accident Search

At the end of each day, the vehicle registration plate numbers, together with the observation numbers, were transferred from the observation forms to individual Motor Vehicle Bureau "Information Request" forms (Figure 5).

Thus, the owner of the car was identified and accident records from January 1, 1953, through June 30, 1955, secured. When the field description of the driver did not match the owner, a personal contact was made with the owner and the driver's identity secured.

Each item of driver observation was scored using the system described. The results of the scoring, the common items recorded on the observation forms, information from the listings of the accident file cards, and type of accidents, were coded and placed on the individual observation forms.

This coded information was transferred to punch cards, which formed the basis for the analysis of the data.

TABLE 13
DRIVERS OBSERVED IN SCHENECTADY COMPARED BY NUMBER OF PERSONS IN CAR INCLUDING DRIVERS

Number of Persons	Drivers, In Car	Percent Number	Average Total
Occupancy,			
Number			

TABLE 14
DRIVERS OBSERVED IN SCHENECTADY
COMPARED BY DAY OF WEEK OBSERVATIONS WERE MADE

Day of Week	Number	Percent
Monday	96	17
Tuesday	86	16
Wednesday	147	26
Thursday	130	24
Friday	91	17
Total	550	100

andilysis of data

Procedure

Tabulations were run from the cards for each common characteristic of the drivers and cars by no-accident and accident drivers. The data relating to the number and type of accidents were collated with the various groups of accident drivers for comparison.

The same procedure was used in tabulating information for the items of driver behavior observed, except that the drivers were classufied into five main groups according to the number of points used in scoring. For each item observed, those drivers with a score of 1 or 2 were grouped as unsafe; those with a score of 3, predominately unsafe; those with a score of 4, neutral; those with a score of 5 , predominately safe; and those with a score of 6 or 7, safe.

Composition of the Sample

A total of 591 drivers was observed. Of these, 41 were not used as it was not possible to determine who drove. The remaining 550 (428 males and 122 females) formed the sample studied.

For these drivers, the Bureau of Motor Vehicles provided records of 96 males having a total of 119 accidents and $18 \mathrm{fe}-$ males with a total of 19 accidents for the period of investigation.

Number of Persons in Car. Table 13 compares the drivers observed by number of persons in the car including driver. Fifty-five percent of the drivers were driving alone when observed, whereas, 29 percent had only one passenger. The average occupancy (1.6 per car) appears to be representative of a typical metropolitan area.

Day of Week. A comparison of observations by day of week (Table 14) indicates that a higher proportion of observations were made on Wednesday and Thursday than on the other days of the week. Thus, for these two days about 5 percent more drivers were

TABLE 15
DRIVERS COMPARED BY SEX AND ACCIDENT EXPPERIENCE

	112	wo-acemprs		Acturen								70tal	I IP x											
		Sumber	Puscent	Meruber	Pwerent	1 Aomident		2 Anolisempt		3 Aopldents			Hounan		Rears-mad		Anpular		Suxple cor		Padestacien		Othar	
	Mubur					Mamber	Persemt	Hambar	Paromet	Mumber	Paroent	Mumbar	Nambax	Paromet	Hember	Porome	Hember	Purcent	Demamar	Percount	Mrubior	Percent	namber	Pmiount
Hate	128	332	7	9	23	76	18	17	4	3	1	129	0	0	33	29	51	43	25	21	7	6	1	1
Frame	222	10\%	85	18	15	27	14	1	2	0	\bigcirc	29	1	5	3	16	23	58	3	26	1	5	0	0
412	530	436	79	114	21	93	17	18	3	3	1	138	1	1	38	27	62	45	23	20	8	6	1	1

observed than would have been expected if they were randomly distributed. This difference could be expected, because it was not required that the observers make an equal number of observations during each day of the week.

Characteristics of Drivers and Accident Experience

Sex. Table 15 shows the sample composition by sex and accident experience from January 1, 1953, through June 30, 1955. Males represented 78 percent of the observed drivers, with 23 percent (or 1 in 4) involved in accidents, and females 22 percent, with 15 percent (or 1 in 7) involved. More of the males (5 percent) than the females (1 percent) were involved in more than one accident.

Figure 4. Schenectady, New York, by Wards and Blocks, 1950.

Figure 5. Sample forms used for motor vehicle bureau searches.
More than 90 percent of all accidents (Table 15) were of rearend, angular or singlecar types, with one-half of these being angular. Although the females appeared to have a higher proportion of angular and smaller proportion of rearend and single-car accidents than did the males, the numbers are small and could be due entirely to chance.

Statistical Signifıcance of Data. Examination of the distribution of the no-accident and accident groups of male and female drıvers by (a) age, smoking while driving, and wearing of glasses; and (b) accident experience for cars by age and weight, indicated that there were no significant differences between these groupings.

Likewise, the results of chi-square significance tests indicated that the five-point scale did not discriminate, in any of the nine items of driver behavior observed, with significance between no-accident and accident drivers. No better results were obtained when the data were re-analyzed to determine if the frequency of the safe and unsafe observations for each item of driver behavior observed would discriminate among the groups of drivers.

Unsafe Driver Behavior Habits by Item

The five-point scale used for classifying drıver behavior was narrowed down to a
two-point scale for all drivers by placing all the unsafe, predominately unsafe, and neutral drivers into one group labeled "unsafe" and the balance into a "safe" group. The percentage of drivers guilty of unsafe actions, by rank for each item of driver behavior observed, is as follows:

Item of Driver Behavior	Unsafe Drivers, Percent
Stop sign	67
Yielding	36
Turning movement	35
Passing	19
Speed	17
Attentiveness	13
Lane markings	8
Headway	6

CONCLUSIONS—Phase II

From studies of driver behavior in Schenectady and related accident experience of the drivers as reported to the Bureau of Motor Vehicles, for the period January 1, 1953, through June 30, 1955, it may be concluded that:

1. Approximately one out of every four male drivers observed was involved in an accident, whereas only one out of every seven female drivers observed was involved in an accident during the same period. Without taking exposure into account, statistical test showed that this difference is highly indicative (confidence level 0.80) that female drivers are less likely to be involved in accidents than male.
2. There was no significant difference between:
(a) The frequency of accidents by type.
(b) Accident experience and either the age of the driver, or whether or not the driver was smoking or wearing glasses while driving.
(c) Accident experience and either the weight classification or age of cars driven.
(d) Accident and no-accident drivers in the way they drove.
3. The order of driver behavior habits by percentage of unsafe drivers was:
(a) At stop sign.
(h) Lane marking observance.
(b) Yielding practice.
(i) Headway.
(c) Turning movements.
(d) Passing maneuvers.
(e) Speed.
(f) Attentiveness.
(g) At traffic signal.

ACKNOWLEDGMENTS

The study reported herein was a joint effort by the New York State Departments of Public Works and Health and the U.S. Bureau of Public Roads. It was financed as part of the N. Y.S.D.P.W. cooperative highway planning and research program with the Bureau of Public Roads.

Representatives from the three agencies constituted an interdepartmental committee to plan and guide the work as it progressed. Actively participating in the 14 committee conferences and pre-testing of techniques were: for the Bureau of Public Roads, Charles W. Prisk and E. L. Paige; for the N. Y. State Department of Public Works, C. E. Billion, Jean K. Boek, Eugene C. Cross, Jr., and Marvın M. Schwartz; and for the Department of Health, Dr. William G. Beadenkopf, Dr. Walter E. Boek, Adele Polan and Arthur S. Kraus. The study was conducted under the general supervision of B. A. Lefeve, presently New York State's Deputy Chief Engineer for Highways, and Dr. Robert F. Korns, Assistant Commissioner for program development and evaluation, Department of Health.

The principal members of the Department of Public Works field staff for the project consisted of: C. E. Billon, supervisor; Jean K. Boek, field director; Eugene C. Cross, Jr. , project engineer; Marvin M. Schwartz, statistician; Edwin D. Lawson, and Phyllis P. Macauley, interviewers.

Technical advice and assistance were contributed by Dr. William G. Beadenkopf, Walter E. Boek, Adele Polan, and Arthur S. Kraus of the N. Y. State Health Department.

Grateful appreciation is expressed for the generous assistance given by Charles W. Prisk, Highway Transport Research Branch, Bureau of Public Roads.

Study data were punched on cards by Edwin F. Hanford and the tabulating machine staff in the Department of Public Works. Tabulations were handled by Andrew J. Pinkerton and his machine tabulation unit in the Health Department. Both men deserve particular credit for the painstaking care and accuracy with which they carried on these operations.

Special appreciation is due the following city officials of Schenectady and Scotia for the manner in which they received and helped the field staff: Archibald C. Wemple, former Mayor of Schenectady; Samuel Stratton, Mayor of Schenectady; Arthur Blessing, City Manager; William F. Brandt, Chief of Police Department; Dr. Malcolm A. Bouten, Commissioner of Health; Clarence C. Bailey, Traffic Engineer; William M. Turnbull, Mayor of Scotia; John Quinlan, Chief of Scotia Police Department.

Appreciation for help and assistance from many other Bureau of Public Roads, state and city officials, too numerous to mention, is acknowledged and finally particular thanks is due the 810 Schenectady drivers who gave their time and careful thought to the interviews and who for the most part were willing to keep diaries of the miles they drove each day. Another 757 householders kindly provided basic information by which the sample could be evaluated. The 550 persons who were observed as they drove also provided important data, although at the time it was unknown to them.

Appendix A-Comparison and Analysis of Data

 COMPARISON OF SELECTED DATA
Estimated vs Observed Speed

The respondents' answers to the question of usual speed on the open road with no speed control zones were tested by comparing their estimates of speed with actual observations. Figure 6 shows the comparison of actual speeds of passenger cars on a divided 4-lane high-speed interstate highway, a divided 4-lane intercity highway, and a 2-lane primary highway, respectively, near Schenectady with the estimates of the usual speed on the open road.

If the respondents were thinking about 2-lane highways when answering the question, their estimates appear to have been very accurate. However, if they were thinking about 4-lane divided highways, they were rather conservative, as the estimated speed accumulation curve is about 7 mph , or 15 percent lower than an average of the 4 -lane divided highway speed curves throughout the percentile range.

Night Drıving vs Wearing Sunglasses

The hypothesis that drivers who object to driving at night usually wear sunglasses on sunny days (weak eyesight), was tested by comparing the answers to the following questions:

1. Do you usually wear sunglasses when you drive on sunny days?
2. Do you object to night driving?

Table 16 shows that a greater proportion (60 percent) of the drivers who objected to night driving usually do not wear sunglasses, than those who usually wear sunglasses (40 percent). These data reached a 95 percent confidence level.

Age vs Objection to Night Driving
The age groups of drivers were compared with those who objected to night driving.

Figure 6. Comparison of speed accumulation curves for actual observations of cars with estimate of usual speed on the open road.

TABLE 16
NIGHT DRIVING VS WEARING OF SUNGLASSES WHILE DRIVING ON SUNNY DAYS

Night Driving	Sunglasses				Total	
	Usually Wear		Usually D	t We		
	No.	\%	No.	\%	No.	\%
Object	55	40	83	60	138	100
Don't Object	271	44	342	56	613	100
Total	326	43	425	57	$751{ }^{\text {a }}$	100
${ }^{\text {a Gave no specific answer. }}$						

Figure 7. Percent of drıvers who objected to night driving by age groups.
Table 17 shows the data broken down by age groups for those drivers who answered "yes" or "no" to the first question.

The youngest drivers (ages under 30) objected the least to nught driving. The drivers from 30 to 60 years of age objected slightly more than the youngest drivers and the drivers 60 years of age and over objected the most to night driving. It is interesting to note that there is practically no difference in objection to night driving among the drivers from 30 to 60 years of age (Figure 7). These data reached a 95 percent confidence level.

Trouble Getting to Sleep vs Getting Sleepy at the Wheel

The trouble drivers had getting to sleep was compared to those drivers who did and did not get sleepy at the wheel while driving by relating the answers to the following questions:

TABLE 17
OBJECTION TO NIGHT DRIVING BY AGE GROUPS

Age of Drıver	Object to Nıght Driving				Total	$\%$
	Yes	$\%$	No	$\%$		10
$16-20$	2	12	15	88	17	100
$20-29$	21	12	149	88	170	100
$30-39$	36	19	151	81	187	100
$40-49$	36	18	160	82	196	100
$50-59$	19	19	83	81	102	100
$60-69$	21	30	49	70	70	100
Over 69	7	41	10	59	17	100
Total	142	19	617	81	759^{a}	100
\mathbf{a}_{51} gave no answer.						

TABLE 18
TROUBLE GETTING TO SLEEP VS GETTING SLEEPY AT THE WHEEL WHILE DRIVING

Have Trouble Getting to Sleep	Yes	Get Sleepy While Driving			Total	\%
Yes	42	47	47	52	89	100
No	387	54	333	46	720	100
Total	429	53	380	47	$809{ }^{\text {a }}$	100
${ }^{\text {a One with no answer. }}$						

1. Do you have trouble getting to sleep?
2. What do you do to wake up when you get sleepy at the wheel?

Those drivers who mentioned specific techniques to wake themselves up at the wheel were considered as those who get sleepy while driving. Table 18 shows the data for the answers to the two questions.

From these data there does not appear to be any distinct relation between a person's ease of getting to sleep at nught and sleepiness while driving. This could be expected, as sleepiness while driving may be induced by causes other than physical and mental exhaustion and/or habit, such as the monotony experienced when driving fairly long distances on famıliar highways requiring little physical or mental activity.

ANALYSIS OF DISTRIBUTION OF ANSWERS

The purpose of this analysis is to detect trends in the distribution of the answers for the various variables studied. Even if not of sufficient weight to be considered statistically significant, trends from the average characteristics may be of importance in studying drivers.

Procedure

The distribution of the answers for each variable selected for factor analysis (Table 9) was examined to determine the existence of trends in the data. The members of each sex were divided into low, medium, and high exposure groups so as to make each group equal in reliability.

Within each exposure group the respondents were categorized into three accident

SCHENECTADY DNTERVIEWED DRIVERS
Table A-4-1 Usual speed of male drivers on the open road with no speed control zones compared with exposure (miles driven) and accident status for the period from January 1, 1953 through June 30, 1955

Range of exposure - mules	0-13,085						13,107-22,879							
Average 2\% years exposure - miles	7,170						17,342							
Average yeariy exposure - miles	2,868						6,937							
CODE	Low							Medium						
	$\begin{gathered} \text { No } \\ \text { Accident } \end{gathered}$		Accident InvolvedResponsible Not Responsible				Total	Accident		Accident Involved				Total
	Obs'd	Expt'd	Obs'd	Expt'd	Obs'd	Expt'd		Obs'd	Expt'd	Obs'd	Expt'd	Obs'd	Expt'd	
1 Under 244 mph	3	3	0	0	0	0	3	0	0	0	0	0	0	0
2 24 5-374mph	4	4	1	1	0	0	5	1	1	0	0	0	0	1
3 37-5-42 4 mph	22	21	2	3	1	1	25	10	9	1	1	0	1	11
4 425-47 4mph	27	24	2	4	0	1	29	16	16	3	2	1	2	20
5 475-52 4 mph	63	68	12	10	6	3	81	60	61	8	8	8	7	76
6 52 5-57 4mph	20	18	1	3	1	1	22	19	19	2	3	3	2	24
7 57-5-62 4 mph	10	13	5	2	0	1	15	16	18	3	2	3	2	22
8625 mph and over	1	1	0	0	0	0	1	8	7	1	1	0	1	9
9 Not stated	5	4	0	1	0	0	5	1	1	0	0	0	0	1
Totals	155	156	23	24	8	7	186	131	132	18	17	15	15	164
Range of exposure - miles				22,021-1	161,644						0-161,6			
Average 2/\% years exposure - miles					312						21,431			
Average yearly exposure - milea					125						8,572			
					2gh						Total			
code			$\frac{\text { Acc }}{}$	$\begin{aligned} & \text { cadent In } \\ & \text { nsible } \end{aligned}$	$\frac{\text { nvolved }}{\text { Not Reb }}$	eponsible	Total	$\begin{gathered} \text { No } \\ \text { Accid } \end{gathered}$		$\begin{array}{r} \text { An } \\ \text { Responsi } \end{array}$	$\frac{\text { cccident }}{\text { Ible }}$	$\begin{aligned} & \text { Involved } \\ & \text { Not Reap } \\ & \hline \end{aligned}$	nsible	T otal
	Obs'd	Expt'd	Obs'd	Expt'd	Oba'd	Expt'd		Obs'd	Expt'd	Obs'd	Expt'd	Obs'd	xpt'd	
1 Under 244 mph	1	1	0	0	0	0	1	4	3	0	0	0	0	4
2 245-37 4mph	0	0	0	0	0	0	0	5	5	1	1	0	0	6
3 375-42 4 mph	10	θ	1	2	0	0	11	42	38	4	6	1	3	47
4 42 5-47 4mph	15	14	2	3	0	1	17	58	54	7	8	1	4	68
5 475-52 4mph	53	57	14	10	3	3	70	176	185	34	29	17	13	227
6 52 5-57 4mph	26	24	3	4	1	1	30	65	62	6	10	5	4	76
7 575-62 4 mph	27	27	4	5	2	1	33	53	57	12	9	5	4	70
8625 mph and over	10	10	1	2	1	0	12	19	18	2	3	1	1	22
9 Not atated	1	2	1	0	0	0	2	7	7	1	1	0	0	8
Totals	143	144	28	26	7	6	176	429	429	67	67	30	28	528

status groups for the period under study, as follows: (a) no accident, (b) accident responsible, and (c) accident not-responsible. Two sets of tables were compiled for each variable by sex.

The first set shows for each group the observed number of answers for each response and the mathematical expectation for each response, based on the assumption that the distributions for the three accident status groups are similar. Tables 19 and 20 illustrate this type of compilation. The "expected" number is required for the statistical test of significance (\mathbf{X}^{2}), and when used as a comparison with the actual frequency indicates relative divergence in the distribution.

The second set shows for each group the observed number of answers and the percent of total responses, for each response. Tables 21 and 22 illustrate this type of compilation.

Examination of the data shows that there are only 67 and 30 male and 15 and $17 \mathrm{fe}-$ male drivers, respectively, in the accident responsible and accident not-responsible groups. Moreover, they are distributed among three exposure groups. Analysis based on so few observations would be unrelable. Consequently, the following analysis is for male and female drivers simply by exposure, using the distribution of the total responses in each exposure group (Tables 21 and 22).

For the male drivers, the average yearly exposure for the low, medium, and high groups was approximately $2,900,6,900$ and $16,000 \mathrm{mi}$, respectively; for the female drivers they were approximately $1,400,3,500$ and $7,900 \mathrm{mi}$, respectively.

Tables 23, 24, and 25 are examples of further information developed from the study. Table 23 indicates the accident involvement rates for the various exposure groups. Al-
though the sample was small, definite trends in involvement and responsible involvement rates for both sexes indicate lower rates for the drivers in higher exposure groups.

In Table 24, 77 percent of the male drivers, who were "self-taught," were accidentfree as compared to 88 percent accident-free for those taught by parents.

Table 25 shows male drivers with accidents in the low, medium, and high exposure groups to be 18, 16, and 20 percent, respectively. The percentage of female drivers with accidents seems to increase with exposure, being 6 percent in the low, 9 percent in the medıum, and 14 percent in the high exposure group.

TRENDS FROM OTHER TABLES

Male Drivers

From tables not included with this paper, the following observations are made:

1. Size of household. No notable trend in size of household from one exposure group to another. The average size of household in all exposure groups was 3.
2. Age of respondent. In the low exposure group the average age was 45 ; in the medium group, 41; in the high group, 39.
3. Years of driving experience. The average member in the low group had 24 years of experience. In the medium group the average was 20 ; in the high, 24.
4. Year of car driven. In the low group the average car driven was a 1951 model. In the medium and high groups it was a 1952 model.

TABLE 20
SCHENECTADY INTERVIEWED DRIVERS
Table A-5-1 Usual speed of female drivers on the open road with no speed control zones compared with exposure (miles driven) and accident status for the period from January 1, 1953 through June 30, 1855

Range of exposure - miles	0-6,810						6,915-11,756							
Average $21 /$ years exposure - miles	3,777						8,685							
Average yearly exposure - miles	1,351						3,474							
CODE	Low						Medium							
	No Accident Involved						Total	$\begin{gathered} \text { No } \\ \text { Accident } \end{gathered}$		Accident Involved				Total
	Obs'd	Expl'd	Obs'd	Expt'd	Obs'd	Expt'd		Obs'd	Expt'd	Obs'd	Expt'd	Obs'd	Expt'd	
0 Do not drive on open road	7	7	0	0	0	0	7	1	1	0	0	0	0	1
1 Under 324 mph	5	6	1	0	0	0	6	0	0	0	0	0	0	0
2 32 5-37 4mph	7	7	0	0	0	0	7	0	0	0	0	0	0	0
9 37 5-42 4 mph	25	27	3	1	0	0	28	5	6	2	1	0	1	7
4 425-47 4 mph	40	39	1	2	0	0	41	5	4		0	0	0	5
5 475-52 4 mph	52	51	2	3	0	0	54	24	23	1	2	2	2	27
6 52 5-57 4 mph	10	10	1	1	0	0	11	5	6	1	1	1	1	7
7 575-62 4 mph	8	8	0	0	0	0	8	3	3	0	0	1	0	4
8625 mph \& over	2	2	0	0	0	0	2	0		0	0	0	0	0
9 Not stated	2	2	0	0	0	0	2	2	2	0	0	0	0	2
x Depends on road, not on speed	0	0	0	0	0	0	0	1	1		0	0	0	1
Totals	158	159	8	7	0	0	166	46	46	4	4	4	4	54
Range of exposure - miles				11,808-4	40,814						40,814			
Average 2\% years exposure - miles				19,8							7,647			
Average yearly exposure - miles				7,8	927						3, 059			
				Hig							Totals			
CODE			$\frac{\mathrm{A}}{\text { Respons }}$	$\begin{aligned} & \text { Accudent } \\ & \text { isible } \end{aligned}$	$\begin{aligned} & \text { Involved } \\ & \text { Not Reg } \end{aligned}$	d	Total	$\begin{array}{r} \text { No } \\ \text { Acc } 20 \end{array}$		$\frac{\mathrm{Ac}}{\mathrm{Respon}}$	$\begin{aligned} & \text { ccadent : } \\ & \text { asible } \end{aligned}$	$\frac{\text { Involved }}{\text { Not Res }}$	ponsiblo	atal
	Obs'd	Expt'd	Obs'd	Expt'd	Obs'd	Expt'd		Obs'd	Expt'd	Obs'd	Expt'd	Obs'd	Expt'd	
0 Do not drive on open road	0	0	0	0	0	0	0	8	7	0	0	0	0	8
1 Under 324 mph	0	0	0	0	0	0	0	5	6	1	0	0	0	6
2 32 5-37 4mph	0	0	0	0	0	0	0	7	6	0	0	0	0	7
3 37-5-42 4mph	4	4	0	0	0	0	4	34	36	5	2	0	1	39
4 42 5-47 4mph	6	5	0	0	0	0	6	51	48	1	3	0	1	52
5 57-5-52 4mph	27	27	2	1	1	1	30	103	102	5	6	3	3	111
6 52 5-57 4mph	0	9	0	0	1	0	10	24	26	2	1	2	1	28
7 575-62 4mph	12	12	1	1	0	1	13	23	23	1	1	1	1	55
8625 mph \& over	0	1	0	0	1	0	1	2	3	0	0	1	0	3
9 Not stated	0	0	0	0	0	0	0	4	4	0	0	0	0	4
X Depends on road, not on speed	0	0	0	0	0	0	0	1	1	0	0	0	0	1
Totals	58	58	3	2	3	2	84	262	262	15	13	7	7	284

TABLE 21
SCHENECTADY INTERVIEWED DRIVERS
Table A-6-I Usual speed of male drivers on the open road with no speed control zones compared with exposure (mules driven) and accident status for the perıd from January 1, 1953 through June 30, 1955

5. Instructor. There was a rather strong tendency for the high exposure group to reply "self" (49 percent vs 39 percent for an average of all).
6. Education. In the low and medium groups the average respondent had completed the 11th grade. The average male in the high exposure group graduated from high school.
7. Present marital status. Of all male drıvers, 75 percent replied "married". But those in the low exposure group were below this average (67 percent), whereas those in the medium group were relatively high (82 percent).
8. Opinion of night driving. There was a small downtrend as exposure increased in the frequency of the reply "I object because of lights" (19, 17, 11 percent), whereas for the response "don't object", the trend was up as exposure increased (64, 65, 73 percent).
9. Share of worries in past three years. There is no evidence that the responses given by the interviewees differ from group to group in any indicative fashion when small values are discounted.
10. Whether respondent smokes now or has in past three years. As exposure increases, there was a slightly decreasing tendency to reply "Have not smoked in past three years" (23, 17, 15 percent). However, the exposure groups separately do not vary much from the average for all males.
11. Amount of smoking. As exposure increased there was a decreasing tendency to answer "one pack of cigarettes per day" (38, 36, 33 percent).
12. Whether or not they smoke while drıving. As exposure increases, there was an upward trend for the response "yes" (47, 49, 62 percent). In the high exposure group, the response "yes" was given substantially higher than average (62 vs 53 percent). The

Table A-T-1 Usual speed of female drivers on the open road with no speed control zones compared with exposure (miles driven) and accident status for the period from January 1, 1953 through June 30, 1955

Range of exposure-miles		0-6,810							6, 915-11, 756									
Average $21 /$ years exposure-mıles	3,777								8,685									
Average yearly exposure-miles	1,351								3,474									
CODE	Low								Medium									
	$\begin{gathered} \text { No } \\ \text { Accident } \end{gathered}$		Accident Involved				Total		$\begin{gathered} \text { No } \\ \text { Accident } \end{gathered}$		Accident Involved				Total			
			Respon	able	Not Resp	sible			Respon	able	Not Res	onsib						
	Obs'd	8	Obs'd	5	Obs'd	1	Obs'd	1			Obs'd	1	Obs'd	\pm	Obs'd	\pm	Obs'd	1
0 Do not drive on open road	7	4	0	0	0	0	7	4	1	2	0	0	0	0	1	2		
1 Under 324 mph	5	3	1	13	0	0	6	4	0	0	0	0	0	0	0	0		
2 325-374mph	7	4	0	0	0	0	7	4	0	0	0	0	0	0	0	0		
3 37 5-42 4 mph	25	16	3	37	0	0	28	16	5	11	2	50	0	0	7	13		
4 42 5-47 4mph	40	28	1	13	0	0	41	25	5	11	0	0	0	0	5	9		
5 47 5-524mph	52	34	2	24	0	0	54	33	24	52	1	25	2	50	27	0		
6 525-57 4mph	10	6	1	13	0	0	11	7	5	11	1	25	1	25	7	3		
7 57 5-62 4 mph	8	5	0	0	0	0	8	5	3	7	0	0	1	25	4	7		
8625 mph \& over	2	1	0	0	0	0	2	1	0	0	0	0	0	0	0	0		
9 Not stated	2	1	0	0	0	0	2	1	2	4	0	0	0	0	2	4		
X Depends on road, not on	0	0	0	0	0	0	0	0	1	2	0	0	0	0	1	2		

Range of exposure-mules	11,808-40,814								0-40,814									
Average 2\% years exposura-miles	19,817								7,647									
Average yearly exposure-miles	7,927								3, 059									
CODE	High								Totals									
	No Accident		Accident Involved				Total		$\begin{gathered} \text { No } \\ \text { Accident } \\ \hline \end{gathered}$		Accident Involved				Total			
					R				Respon	ible	ot Resp	onsi						
	Obs'd	*	Obs'd	\pm	Obs'd	x	Obs'd	\%			Obs'd	8	Obs'd	\pm	Obs'd	\pm	Obs'd	\%
0 Do not drive on open road	0	0	0	0	0	0	0	0	8	3	0	0	0	0	8	3		
1 Under 324 mph	0	0	0	0	0	0	0	0	5	2	1	7	0	0	6	2		
2 32 5-37 4mph	0	0	0	0	0	0	0	0	7	3	0	0	0	0	7	2		
3 37-5-424mph	4	7	0	0	0	0	4	6	34	13	5	33	0	0	39	14		
4 42 5-47 4mph	6	10	0	0	0	0	6	9	51	19	1	7	0	0	52	18		
5 5 $475-524 \mathrm{mph}$	27	46	2	67	1	33	30	47	103	39	5	33	3	43	111	40		
$6525-574 \mathrm{mph}$	9	16	0	0	1	33	10	16	24	9	2	13	2	29	28	10		
7 57-5-62 4mph	12	21	1	33	0	0	13	20	23	9	1	7	1	14	25	9		
8625 arph \& over	0	0	0	0	1	33	1	2	2	1	0	0	1	14	3	1		
8 Not stated	0	0	0	0	0	0	0	0	4	2	0	0	0	0	4	1		
X Depends on road, not on apeed control	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0		
Totals	58	100	3	100	3	99	64	100	262	100	15	100	7	100	284	100		

medium group replied "only occasionally" with moderately higher than average frequency.
13. Whether or not they drink. In the medium group "yes" was given as a response somewhat less than average (27 vs 35 percent). "Sometimes" was stated somewhat higher than average (24 vs 18 percent), as was "moderately" (15 vs 9 percent). The reverse of these trends holds for both the high and low exposure groups.
14. Whether or not they drive after drinking on occasion. As exposure increased, there was a decided tendency to reply "yes" (26, 32, 40 percent). The response "yes" was given less than average in the low group (26 vs 33 percent), and higher than average (40 vs 33 percent), and higher than average (40 vs 33 percent) by the high group. In comparison with the over-all average for the answer "no", the low exposure group had a rather high frequency (30 vs 22 percent) and the high group was low (15 percent).
15. Whether or not they wear glasses. The response, "for reading but not driving", had a slight uptrend (10, 14, 15 percent) as exposure increased. The response "yes" was somewhat below average in the high exposure group (27 vs 34 percent).
16. Whether or not they wear sunglasses while drıving on sunny days. As exposure increased there was a fairly strong uptrend for the response "yes" (31, 38, 43 percent). "No" had a moderate downtrend (53, 47, 44 percent) as exposure increased.
17. Usual speed on the open road with no speed control zones. As exposure increased, there was a decreasing tendency for interviewees to answer "37. 5 to 42.4 " (13, 7, 6 percent). The same was true for the response " 42.5 to 47.4 " $(15,12,10$

TABLE 23
DRIVER ACCIDENT INVOLVEMENT RATES PER 100 MILLION VEHICLE-MILES BY SEX AND AMOUNT OF EXPOSURE

Sex	Male			Female		
Exposure group	Low	Medium	Hıgh	Low	Medium	High
Number of drıvers	186	164	176	166	54	64
Number of involvementsa						
Number of responsıble nvolvements	31	33	33	8	8	6
Average mıleage						
Involvement rate	23	18	26	8	4	3
Responsible involvement rate	2,170	17,342	40,312	3,777	8,685	19,817

${ }^{\text {a }}$ Study period January 1, 1953, through June 30, 1955.
percent). However, as exposure increased there was a small consistent upward tendency for interviewees to reply " 52.5 to 57.4 " (12, 15, 17 percent). There was a large increase as exposure increased for the reply " 57.5 to 62.4 " ($8,13,18$ percent). The reply " 62.5 mph and over" also increased with exposure, but a lesser degree (1 , 5 , 7 percent). By far the most frequent reply for all exposure groups was " 47.5 to $52.4^{\prime \prime}$, but in general the rate of speed increased with exposure.
18. Opinion of own driving skill. As exposure increased, the males showed an increasing tendency to reply "above average" (11, 15, 20 percent). Other trends and divergences from average were trivial.
19. Relatıve ease in finding their way on a strange road. As exposure increased, male interviewees had an increasing tendency to reply "easy" (40, 43, 51 percent). Other trends and divergences from average were negligible.

TABLE 24
PERCENT OF MALE DRIVERS WHO WERE ACCIDENT-FREE
BY TYPE OF DRIVING INSTRUCTOR

	Low		Medium		High		Total	
	Number of drivers	Percent accident free	Number of drivers	Percent accident free	Number of drivers	Percent accident free	Number of drivers	Percent accident free
Parent	30	90	30	87	27	89	87	88
Relative	30	93	25	80	21	81	76	86
Friend	41	85	40	80	32	84	113	83
Self	63	76	53	75	87	79	203	77
Other	22	77	16	81	9	67	47	77

TABLE 25
ACCIDENT EXPERIENCE OF DRIVERS SEPARATED EQUALLY BY EXPOSURE RANGES

Sex	Low mıleage$0-7,600$				Medium mileage$7,601-18,000$				Hıgh mileage 18,001-161,000			
	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { drivers } \end{aligned}$	Number accident free	$\begin{aligned} & \text { Percent } \\ & \text { no } \\ & \text { accident } \end{aligned}$	Percent accident	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { drivers } \end{array}$	Number accident free	Percent no accident	Percent accident	Number of drivers	Number accident free	Percent no accident	Percent accident
Male	90	74	82	18	194	162	84	16	242	193	80	20
Female	180	169	94	6	76	69	91	9	28	24	86	14
Total	270	243	90	10	270	231	88	14	270	217	80	20

Female Drivers

1. Size of household. The size of the average household was three for the low and medium group, but two for the high exposure group.
2. Age. In the low exposure group the average age of female drivers was 35. It was 37 for the medium group, and 36 for the high exposure group.
3. Years of experience. In the low exposure group, the average female driver had 5 years of driving experience. The average for the medium group was 13 years; for the high, 15 years. There is a strong tendency for females with relatively little experience to do relatively little driving.
4. Year of vehicle driven. The average age of vehicles driven was the same (4 years) for all three exposure groups.
5. Instructor. As exposure increased, there was a moderate downtrend in the frequency with which the females replied "commercial school" (11, 7, 0 percent). The medium exposure group, compared with females as a whole, had a high frequency for the response "parent" (22 vs 13 percent), and was low for the response "relative" (26 vs 36 percent).
6. Education. The medium exposure group of females responded "college graduate" somewhat above average (19 vs 12 percent), but the average female in all groups was a high school graduate.
7. Marital status. As exposure increased, there was a strong downtrend in the frequency of the reply "married" (72, 69, 50 percent). The frequency of the response "married" in the high exposure group was well below the average for all females (50 vs 67 percent).
8. Labor force status. As exposure increased, there was a considerable increase for the response "employed" (31, 35, 63 percent). Likewise, there was a strong downtrend for the reply "housewfe" ($60,59,27$ percent). The high group was much above average with respect to the response "employed" (63 vs 39 percent), and considerably below average for the response "housewife" (27 vs 52 percent).
9. Opinion of night driving. As exposure increased, the frequency of the response "don't object" sharply rose ($61,63,80$ percent). The occurrence of this response in the high group was relatively high in relation to that for all females (80 vs 66 percent).
10. Smoking now or in the past three years. No trends were found in the frequency of responses made, nor any but trivial divergences from average on the part of the various exposure groups.
11. Amount of smoking now. The responses to this question showed only slight trends and divergences from average. It may be noted that 51 percent of all females replied "I do not smoke now."
12. Wearing of sunglasses while driving on sunny days. The reply "no" was given decreasingly as the exposure increased, ($40,28,27$ percent). Those in the medium exposure group replied "yes" appreciably higher than average (61 vs 52 percent).
13. Usual speed on open road with no speed control zones. In all exposure groups, the speed group most often claimed was "47.5 to 52.4."
14. Opinion of drıving skall. As exposure increased there was a moderate increase in the frequency of the reply "experienced" (19, 30, 34 percent). The trend of decreasing responses of "average to fair" as exposure increased was quite strong (51, 48, 31 percent). In comparison to females as a whole, the high group had a high frequency for the reply "experienced" (34 vs 24 percent). However, the relative frequency in the high group for the "average to fair" response was very low (31 vs 46 percent).
15. Interviewees own opinion as to being slow or fast driver. As exposure increased there was a moderate consistent increase for the response "fast" (7, 9, 19 percent). The medium exposure group of females fell considerably below the average in the frequency with which they responded "slow" (13 vs 29 percent), but were somewhat above average for the reply "average" (69 vs 57 percent).
16. Relative ease of finding way on strange roads. As exposure increased there was a large increase in the frequency of the response "easy" (26, 33, 52 percent). But the trend of the reply "difficult" was large downward as exposure increased (49, 26, 22 percent). Compared to the average frequency, the high group had a large frequency for the reply "easy" (52 vs 33 percent), whereas the reply "difficult" was low (22 vs 38 percent).
17. Opinion as to whether traffic laws are enforced strictly enough. The response "no" was given somewhat below average by the female interviewees in the medium group (24 vs 32 percent), but above average in the high group (41 vs 32 percent).

Appendix B-Interview and Report Forms

NET YORK STATE
COOPMRATIE MESA: CII FRCJTCT
Driver Behevior and Highway Safety Research

Depertment of Public Works
Aurusi., 1955
Department of Health
Draft 5
Tnited States Bureau of Public Soeds
SA \#3

Schedule for Schenectedy Sample

Hello. My name is . . . I'm from the Deportment of Public Works which torether inth the Health Depertment is carrying on this special study. We are trying to learn more aboui people and their driving in order that better highueys can be plenned. Would you mind helping us by answering some questions related to your ariving:

First of oll, we need to lnow how many percons including yourself live in 15 \qquad your immediate household? \qquad
16 \qquad
What are their nomes? (Interviever: Fut answers on chart. After you get a list of names, checl: off male or female and ask for each person:)

When was......... born?
17 \qquad
For those 16 years of age and over: \qquad
Has.........ever driven a car or other motor vehiclo since Januery 1953?
19 \qquad
(Now number drivers from oldest to youngest. Nwnber one is oldect driver.)
Random stert for household \qquad
\qquad
21

(Interviever: If no one in the household has driven since January 1953, thenk them for the interview and leave. If respondent has not driven but others in 36 \qquad the household have, or if respondent drives but is not in the random stert, ask if it is possible to continue your visit with the driver selected by your 37 \qquad random stert: "In this study we need to talk with only a sample of drivers. I wonder if I might talk with.........? ${ }^{\text {n }}$

Wor inteoduction to randon start dxiver if you have not seen hin or her
Card I
beare.) is name is (liss, iro, inso) Im from the Departanch of Fublic Works, which togother with the Health Department \qquad is courying on a special study. Very littile is know about how nuch people drive. In order to plan highvars we need to obtain this irm 39
forration directly from people who do the driving.
40-47 \qquad
42
43
3
$41,-2,7$ \qquad
Whe land of a car or cara do you crive now?
Wat year was it made?
dee yos the owner? (A car owned by husbend is elso consiciered to
be onned by the wite. A family car is not omed by sons or douchters.)
What is the month and year you started driving this car(these cars)?
What was the speedoneter reading when you sterted driving it?
Wat is the speedcneter reading now?
what reicentage of that mileage did you drive?
$\frac{S R \text { Now }- \text { SR Bege } X \%}{\text { Honths Driven }}=A v_{0}$ vi $/ \mathrm{Mo}$,
How may caus and comeroial vehicies are omed altogether

in tise housshola now? \qquad

$\frac{\text { Cox }}{\text { Dutven }}$	Own		Date Sterted Driving		Speedometer Reading Beginning	$\begin{aligned} & \text { Speedomet.en } \\ & \text { Reading } \end{aligned}$Now	$\left[\begin{array}{c} \text { \% Driven } \\ \text { by } \\ \text { R. } \\ \text { Start } \end{array}\right.$
	Yes	iTo	lonth	Year			
Buack 1\%							
Cleveroter 29							
Chatem 19							
Venoto 19							
Docige 19							
Ford 19							
Hudson 19.							
Wesh 19							
Oksmobile 19							
Mraonth 19							
Pon*iac 19							
Sturebaker 19							
rruck or Conm. Vensile 19							
other--19							

Schenectady Schedule Card I
(Interviewer: We need a record of cars driven since January 1953. Repeat these questioni antil you can record all cars since then. Put all replies for cars prior to present on the chart below.)

What kind of car or cars did you drive before this one since the beginning of 1953?

48-49
50
51
52-55
56-57
58 \qquad
59-62
\square
63 . $64-65$

67-70 \qquad
71-72 \qquad
73
74-77
78
79
80
Card II
1
$2-5$
7-8 \qquad
10-13 \qquad
14-15 \qquad
17-20 \qquad
22-23
\qquad
25-28
29

Schenectady Sample
Did you drive yesterday
(I) Yes (2) No

Card II
Comant \qquad
(Write day of week:)

If No: When was the last tire you did any driving? \qquad
What day of the week was it?

33
\qquad
31 \qquad
32 \qquad

34 \qquad
35 \qquad
36 \qquad
37 \qquad
38 \qquad
39 \qquad
40 \qquad
42 \qquad
42 \qquad
43 \qquad
4 \qquad
4.5 \qquad
46
47

48 \qquad

What tine did you begin and end the first trip?
tre bestin: \qquad P.M. Tino cadeci: ___A.N. \qquad P.M.

Whet, route or street did you taleo for the first trip?

What the did you begin and end the socon? tip?
Card II
The begun: A.M \qquad Pol. Mie ended: \qquad ———P.

What route or street did you taise for the second trip? 50 51 $50 \ldots \ldots$ 53 54__ 55...........
$5 i$
\qquad

59
-...-.
60
(I-6n_
$63-65$ \qquad
$66-69$ \qquad

Wht twe did you begin and end the fourth trip?

Whet roube on street did you talce for the fourth irip?

What time did you begin and end the fifth trip?
Time begun: \qquad A. M° \qquad P.M. Time ended: \qquad
\qquad P.M.

That route or street did you take for the firtir trip?
\qquad
\qquad
\qquad

What time did you begin and end the sixth trip?
Time begun: \qquad A.M. \qquad P.M. Time ended : \qquad A.1. \qquad P.M. What route or street did you take for the sixth trip?
\qquad
\qquad
\qquad

Tho wes your instructor when you were lecuning to drive?
70
(1) Friend \qquad (2) Parent \qquad (3) Relativo \qquad (4) Self
(5) IIigh School \qquad (6) Commercial School \qquad

Owhor
 \qquad

for mary times did you take the exam for your first license?
71
(I) Once
(2) Twice
(3) Three Times
(0) Never took one \qquad Other. \qquad

What is the highest grade or year in school that you completed? \qquad
What is your present marital status?(1)Single___(2)Married__O_ Other___
\qquad
Have you ever been widowed, separated, or divorced? (1)Yes \qquad (2)No \qquad 74 \qquad
If yes: which of these was it? (3)Widowed \qquad (4) Separated \qquad (5)Divorced \qquad

What kind of work do ou do? Housework Other \qquad 75 \qquad
specify
Are you employed at present?
(1)Yes \qquad (2)Housework \qquad (3)Retired \qquad (4)Too ill. to work \qquad
(5)Temporary layoff \qquad Other \qquad 76 \qquad If employed: Where do you work?
(I) G. I. \qquad Other \qquad 77 \qquad specily

If retired, ill, or temporary layoff: Where did you work?
(1) G.E._ Other 78 \qquad
Now thinking back from January through June of this year, what kind of work did you do during that period?
(1)Same as nom \qquad Other
specify
Where did you live then? (1)Here \qquad Other \qquad Street and City
Street and City
\qquad
Did you drive back and forth to work during the first half of this year?
Card III
(1) Yes \qquad (2)No \qquad Other \qquad 1
If yes: How many miles was it each day?
specify
\qquad How many days a week did you drive? \qquad $6 \quad 3$ How many weeks in the six months period did you drive back and forth to work? \qquad
\qquad
If reply is "all weeks", ask: Was any vacation or other time taken during this period? (1)Yes (2) No \qquad Other

8 \qquad specify

If yes: How many weeks? \qquad
Editing

Did you drive as part of your job from January through June of this year?
Card III
(1) Yes \qquad (2) No \qquad Other
\qquad If Yes: How many miles did you travel each week on the job? \qquad
\qquad
How many weeks did you drive on the job for the six months? \qquad
(Editing (Calculetion: Files/week X Weeks/6 mos. $=$ ilics on the Job) 13-16

Did you drive on any vacations or long trips up throurh June?
(1) Yee \qquad (2) NO \qquad Other \qquad

If Yes: How meny miles did you drive?
(Write out places traveled to end nuber of times only if miles unnow.)

17-20
(Gaiting \quad (Galculation: Fles TripX No. Of trips Elies on Vacation)
Did you drive on weekend or day trips up through June?
(I) Yes \qquad (2) No \qquad Other \qquad
If Yes: On hov mary trips did you drive? \qquad Where did you go:
(Interviewer: List places on the chart. Only if places are unlenorm to you or unlikely to be on a map, shovid you ask for the mileace. other mileaces can be secured by piottinc on 2 mep during editing.)

$21-24$ \qquad
(Bditine

Did you drive for evening trips or visiting during the first six months of this year?
(1)Yes \qquad (2) No \qquad Other \qquad
If yes: How many trips a month did you average? \qquad
$25-28$ \qquad
How many miles did you average on each trip? \qquad
$\begin{gathered}\text { Editing } \\ \text { Calculation }\end{gathered}=\left\{\begin{array}{lllll}\text { Trips/month } & X & X & \text { Average miles/trip } & \text { Tutal for evening }\end{array}\right\}$

Did you drive for shopping or other purposes during the first half of $\mathbf{1 9 5 5}$
(1)Yes \qquad (2)No \qquad Other \qquad specify

If yes: How many trips a week did you average? \qquad
How many miles did you average for each tripi \qquad
Is there any sther driving you have done from January through June that I have missed?
(1)Yes
(2) No \qquad Other \qquad
If yes: About how many miles would this be? \qquad
(Interviewer: Calculate these miles in with miles driven for shopping and other purposes.

For the purrnses or this study we need to know how rany miles you
Card III drove altogether in 1954 : \qquad
Nov, going back to the whole year of 1954, where did you live during that year?
(I) Hore \qquad Other \qquad 40 \qquad
Where did you work that year? (1) Same as now \qquad Other \qquad 42 specify

Did you drive back and forth to work during 1954?
(1) Yes \qquad (2) No \qquad Other \qquad
If Yes: Hou many miles was it each day? \qquad
How rany days a veek did you drive? \qquad
How many weels in the 12 month period did you drive back and forth to uork? \qquad
If reply is "all weels" ask: Was any vacation or other time taken during his period?
(1)Yes \qquad (2) MO \qquad Other \qquad
(Editing (Calculation:

Did you drive as part of your jor during 1954?
(1)Yes
(2) No \qquad Other \qquad

If Yes: How many miles did you travel each week on the job? \qquad
How many weeks did you drive this during 1954? \qquad

47-51

Did you drive on any vacations or long trips that year?
(I) Yes
(2) No \qquad Other \qquad

If Yes: How many miles did you drive on vecation. (Wite out places
Card III traveled to and number of times only if miles unlmown by by respondent。)

Dostination		lilleage

(Calting
(Culation:
Viles/trip No. of trips = Mles on Vacation)
52-56 \qquad
Did you drive on weelead or day trips any time during the jear?
(1) Yas \qquad (2) 1 O \qquad other \qquad specify

If Yes: On how many trips did you drive? \qquad
Where did you co?
(Interviewer: List places on tho chart. Only if places are uninom or unlikely to be on a map, chould yo ask for the milcage. Other mileages can bo secured bü plotting or a map curjes editing.)

Desination	lileage	Munber of times
-		

Did you drive for shoppines or other purposes during 1954 ?
(1) Yes \qquad (2) NO \qquad Other \qquad

If Yes: How many trips a weel did you average? \qquad
How many miles did you average for each trip? \qquad
Was there any driving you did during 1954 that we may have missed?
(1) Yes \qquad (2) No \qquad Other \qquad

If Yes: How many miles was this? \qquad 67-70 \qquad
$($ Editing
(Calculation: Trips/week X Ijles/tripX $52+$ other miles $\left.-\begin{array}{l}\text { Total for } \\ \text { other purposes }\end{array}\right)$

Interviewer Calculation Sumary for 1954

Type of Travel	Schedule page	Miles
To and fron worle	11	
On the job	11	
Vacations and long trips	12	
Weelrend and day trips	12	
Evening and visiting	12	
Shopping and other purposes	13	
Total Calculated	11	
Totel Estinated		

71-75 \qquad
$76-80$ \qquad

We need just a little more information on your driving in 1953.
First of all, where did you live from January to Decem'er of that year?
(1)Here___(2)Other \qquad
1 \qquad
2-5
4
$6 \quad 4$
7

Where did you work in $1953 ?$ (1)Same as now Other
8 \qquad
speciry
Did you drive back and forth to work during that yeari
(1)Yes \qquad (2) No \qquad other \qquad specify

Did you take vacation or other long trips that yeari
(1)Yes
(2)No \qquad Other \qquad
How much more or how much less did you drive in 1953 than in 1954%
(1)Sane
(2)More
(3)Less Other \qquad

specify			
Editing Calculation :	1954	miles	9-13
	1953	miles	

Now (Mir.. Mrs., Miss.....), most people's driving is affected by the way they feel. What are your feelings when you take the wheel to drive?

14-15 \qquad

In general, do you enjoy driving or noti
16 \qquad
(1)Enjoy \qquad (2)Don't enjoy \qquad Comment \qquad specily

Do you object to äriving at night or not?
(1) Object \qquad (2) Don't object \qquad Coment specify

17

Are you satisfied or dissatisfied with the rechanical performance and the way your car drives?
(1) Satisfied
(2) Dissatisfied
Comment
specify

18

Why do you feel this way?

Are you satisfied or dissatisfied with the appearance of the car you drive?
(1)Satisfied
(2) Dissatisfied
Comment \qquad

21 \qquad

What are your reasons?
22,23 \qquad

We would like to learn more about how people drive under different conditions. Do you think that most people vary their driving acm cording to the way they feel?
(ㄱ)Yes
(2) No \qquad Corment \qquad 24,25 \qquad

When you are disturbed about something with other people, does it relax you to drive?
(1) Yes
(2) NO
Comment
26

Can you tell me how your driving is affected when you are angry?
27,28

Can you tell me hov your driving is affected when you are sad or depressed? 29,30 \qquad

What do you do to wake yourself up when you get sleepy at the wheel? 31,32 \qquad

Do you consider yourself more nervous, less nervous, or about as nervous as 33 other people?
(1) More \qquad (2) Same \qquad (3) Less \qquad Comment \qquad

During the last three years have you had more or less than your usual share of worries?

34 \qquad
(1) Mere \qquad (2) Sane \qquad (3) Less \qquad Coment \qquad

Do you smoke?
(1) Yes \qquad No Corment
35 \qquad

In Yes: How mich do you smoke? \qquad 36,37 \qquad Do you smoke while you are driving?
(1) Yes
(2)No \qquad Other. \qquad 38 \qquad
specily

If No: Have you smoked in the last three years?
Yes___ No \qquad Comment \qquad
Do you drink?
39
9 \qquad
(1)Yes \qquad (2) No \qquad Comrent \qquad
If Yes: Are there occasions when you drive after having a drink?
(1) Yos
(2) INO \qquad Corment \qquad
\qquad

The Heal th Department is interested in learnint more about the general
Gard IV heal.th of the people in the survey.

Pirst of all, how tall are you? \qquad 41
How much do you wetrh? \qquad
(Bditing: Age of respondent fron page 2 \qquad

Are you tronhled with:	Yes	No	If yes: Does this interfere with your normal routine? Yes No
Hay fever			
Asthre.			
Diabetes			
High Elood Pressume			
Stomech U.Leer			
Arthritis, rheuntis", or neuritis			
Jinited use of cithor your arms on iegs			
Fainting sxalis or ertiopst			.

Geve you eroz hed any hervous or emotionel illness?
50 \qquad
(1) Ves \qquad (己) 110 \qquad Comaent \qquad

Have you ever had ony other chronic condition or long drammout illness?
51 \qquad
(i) Yes__..... (2)To \qquad Corrent \qquad
specify

Do you have twowle hearing?
(1) Yes \qquad (2) No

52 \qquad

Gomaent \qquad

Do you have troubie getting to sleep?

Do you usually wear sunglasses when you drive on sunny days?
(1)Yes \qquad (2)NO Conment 55

What is your usual speed on the open road where there are no speed control zones?

How courteous do you think other drivers are? 57-58
\qquad

Would you say you ore a slow or a fast driveri (1)Slow (2)Fast Comment

Along the highodays there are usually warning signs pointing out special conditions, dangers, or places where caution is called for.

Do you think that most people notice these signs as they are driving?
(1)Yes
(2)No Comment \qquad 61 specify

Do you belỉeve stop signs arc generally oisserved?
(1) Ios \qquad (2) No \qquad Comment \qquad 62 \qquad

Do you believe that it is necessary for drivers to come to a full stop at a corner stop sign they know when no one is in sight?
(1) Yes
(2) No

Comment
63 specify

Would you say i+, inas easy or difficult to find your way on strange roads?
(1)Easy \qquad (2) Difficult \qquad Corr ent \qquad 64 \qquad

In your opinion are route signs too small, about right, or too large?
(1) TOO $5.2 \square 1$ \qquad (2) About rijint \qquad (3) Too large___

65

Corrent \qquad
What is the fastest you hnve cver äriven on the open lighway?
56 \qquad

Iave you ever been irvoived in a motor vehicle accident, large or snall?
(1) Yes
(2) ! 10 \qquad Corment \qquad 67 \qquad
If Yes: :Vere you driving?
(1) Yes \qquad (No) \qquad Comment \qquad
How many have you had since you've been driving? \qquad 68

Did any happen to you since January, 1953:
(I)Yes \qquad (2) No \qquad Corment \qquad

If Yes: How many were there?

If had any accident since January, 1953: Now for the first one that happened to you:

Where did you have the accident? \qquad 70 \qquad
City and State
$71-72$
What was the approximate date? \qquad
\qquad

About what time did it occur? \qquad A. M. \qquad P. M \qquad
Was this with another car, object, or pedestrian?
(1)Another car \qquad (2)An object \qquad
(3 Pedestrian_
(4)None of these \qquad

Other \qquad 74 \qquad

specify

Was anyone injured? (J)Yes \qquad (2)No \qquad Other \qquad 75 \qquad

What was the total damage in terms of money to your car in the accident? 76-78 \qquad \$

If. another cir involved: That was the total danage to the other car in terms of money?
If an object involved: What were the damages to the object? $\$$
79 \qquad
Was this accident reported to the Bureau of Motor Vehicles?
(1)Yes \qquad (2)10 \qquad Other \qquad 80 Card V

Now for the socond accident.
Where did you have the aceident?

What was the aporimete date?

8-9 \qquad

What time did i.t oceur? \qquad A. Mo_{0} \qquad P. M. 10 \qquad
Was this with another car, object, or pedestrian?
(1)Another car
(2)An object
(3) Pedestrian
(4)None of these
(5) Other. \qquad
\qquad

Was anyone injuredi (1) Yes \qquad (2) No \qquad Other \qquad 12 \qquad

What was the total damage in terms of money to your car in the accident?

$\$$
 If another car involved: What was the total damage to the other car in terms of money? \$
 \qquad
 If an soject involved: What were the damages to the object? $\$$

13-15

Was this accident reported to the Bureau of Motor Vehicles?
(1)Yes \qquad (2) No \qquad other \qquad 16
\qquad

Now for the third accident.

Where did you have the accident? \qquad 17 \qquad

What was the approximate date? \qquad 18-19 \qquad

About what time did it occur? \qquad A. Mo P. Mo

20 \qquad
Was this vith another sar, objecto or pedestrian?
(1)Another car
(2)An object \qquad
(3)Pedestrian
(4)None of these \qquad
(5) Other \qquad

Was anyone irfured? (i)Yes \qquad (2)No Other. \qquad
21 \qquad 22_

What was the total danage in terms of money to your car in the accident?
$\$$ \qquad
If another car irmolved: What was the total damage to the other car in
terms of money? $\$$
If an object involved: What were the damages to the object? $\$$
Was this accident reported to the Bureau of Motor Vehicles?
(1)Yes \qquad (2) No \qquad Other: \qquad 26 \qquad

How many times since January, 1953 have you had to stop along the road because your car or other vehicle you were driving broke down or would not run right?
íl)Once \qquad (2)Twice \qquad (3)Three times \qquad (4)Four times \qquad

Add comments \qquad 27 \qquad

Do you think trafかic laws are enforced strictly enough?
(1) Yes \qquad (2) No \qquad Comment \qquad specify
\qquad
\qquad
Why do you think so?
\qquad

Let's see, I have one more question. In order to malse sone comparisons of the people who are intorvieved, we need to know the approximate anount of the incore of everyone in your househola put altogether. Would you mirm looking at this cerd and telling me the letter next to the figure that represents what your forily incone was for 1954 ?
(01.) A

(07) G__
(08) H_{2}
(09) I \qquad
(10) J_
(11) K \qquad
(06) F \qquad
(12) L \qquad
(13) M
(14) N \qquad
(15) 0 \qquad
(16) \qquad
(17) Q__

31-32 \qquad

Thanl: you very much for giving us this information. Your answers will be kept confidential with no one secing them other then a few of us doing the research. Are there any questions you would like to ask: about the study?

One of the nost important pieces of information needed in planning highways is how many miles people drive. Asjde fron very crude estimates based on amount of gasoline used, we have almost no good basis to go on. For this reason we wonder if we could ask your help in having snmp firtiher accounts of the miles you drive in the months to core. We would like to have you, especially, do this because you are part of a sample of Schenectady citizens. I will be a very valuable contribution to our nation's road building progrem.

NOIT TC INTVRVIEIJRR: Complete this section imediatcly after you
Card V leave the house.

Schedule No.
A. Rate the house the family lived in by choci-ing one of these desoriptive phrases:

Large houses in good condition 03
Large houses in mediwn condition: medium-sized houses in good condition. \qquad
Lerge houscs in bad condition 09

Mediumisized houses in rédiun condition; apartments in regular apartment a iz buildings.

Small houses in grod condition; srall houses in medium condition; dwallings over stores.

Hediur-sized houses in bad condition; small houses in bad condition. \square
All houscs in very ?ad condition; dwellings in structures not originally \qquad 21 intended for hones.

33-34
B. Rate tho area the family's house was in by checking one of these descriptive phrases:

Very exclusive; Gold Coast. \propto

The bettor suburbs and apartment house areas, houses with spacious yards. \qquad
Above ajerage; areas all residential, larger than average space around \qquad 06 houses; apartrent arcas in good condition.
Average; residential neighborhoods, no deterioration in the area.
Below eroraco; arca not quite holding its orm, begimning to 10 deteriorate, business ontering.

Lou, considerably deteriorated, run-dorm and semi-sluma
Very low; slum.
35-36 \qquad
Give your overall impression of the fanily, house, and furnichinge, by checl:ing the place on the scale that corresponds to your judrment.

37 \qquad

Respondent rating:

\qquad

Appendix C-Control Data

Control data are those which help form the background for evaluation of other findings in a study. Some of these can be indicated here before other results are given.

The 1,567 households visited in Schenectady formed the basic sample of the city. Of these, 810 were driver or interview households. The remaining 757 were called no-interview households because the only information secured was household composition. This group contained households in which no one had driven since January 1953, in which there was one driver but a random start of two, in which no complete contact could be made after one to six visits because of the termination of the field work, and in which the person refused to give any more than a fragment of the information needed (see Table 2).

Fewer than 19 percent of the people who would not completely answer the questions were important to the study, because of these only 1.1 percent were drivers who should have been contacted and 0.8 percent were in households in which the presence or absence of drivers was unknown.

Household composition was examined in several ways. As shown in Table 26, the number of people in most households was five or fewer, with about one-half having two or three members. Interviewed households tended to be larger, which is expected, since the random start of two for one-half of all households visited meant at least two members had to be of driving age, which put many one-person and one-driver households on the no-interview side. Table 27 shows that more than one-half of all households had no members under 16 years, with the higher proportion being in no-interview households.

Table 28 shows that more than one-half of all households had two members 16 years of age and over, who were therefore potential drivers.

In Table 29, two-thirds of all households were found to have one male adult member. Interview households were characterized by a higher proportion of male adult members and a lower proportion of no adult males than were no-interview households. Table 30 indicates somewhat greater similarity between the two types of households in total number of female adults.

Of all the sample households, about one-third contaned one driver, less than onethird had two drıvers, about 7 percent had three to five drivers, and about one-fourth had no drivers (Table 31).

Almost six out of ten sample households had a male driver and three out of ten had no male drivers. In contrast to these data (Table 32), Table 33 shows that more than three out of ten households had female drivers and less than six out of ten had no female drivers.

Other aspects of contacts made with households are instructive in terms of the interview methodology. With respect to the random start, the expected distribution was for one-half of the households to be one's and for the remaining to be two's. Table 34 shows that this was followed quite closely, with 51.6 percent of the households having a random start of one, which meant the oldest driver had to be interviewed, and 47.7 percent had a two, which meant an interview with the second oldest driver only.

In the training of interviewers, the importance was stressed of repeat visits to households until the necessary information was secured and in mastering good approach techniques. Table 35 shows that most people were interviewed in one or two visits, but that the number of visits required in some households was more than 10 . This emphasis on securing everyone in the sample was partly responsible for the extremely low refusal rate in this work. This should be a basic consideration in any sample, as it had been demonstrated that distinct distortions in findings occur where the refusal rate is high or where volunteers are relied on to give data.

Time of day of final contact is of interest because, as expected, drivers had to be interviewed in the evenings. The distribution in Table 36 shows that more than six out of ten were interviewed after 4:00 P. M. Fewer no-interview households were completed during this time, as the composition information needed could be secured from anyone who answered rather than only the driver.

The dav of week of final contact (Table 37) was fairly even for everyone visited. The smaller number on Sundays reflects the customary expectation of a rest day on the part of interviewers as well as respondents. These weekly figures are resolved by months in Table 38.

TABLE 26
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF PERSONS IN HOUSEHOLD

No. in Household	No-Interview Households		Interview Households		Total	
	No.	\%	No.	\%	No.	\%
1	152	20.0	30	3.7	182	116
2	232	306	219	27.0	451	28.8
3	120	159	202	250	322	205
4	80	10.6	183	22.6	263	168
5	43	5.7	115	14.2	158	101
6	20	26	43	53	63	40
7	5	07	10	12	15	10
8	3	04	3	04	6	04
9	1	01	2	0.2	3	02
10	47	6.2	2	02	49	3.1
11	--		1	0.1	1	0.1
Unknown	54	7.1	---		54	34
Total	757	100.1	810	99.9	1,567	1000

TABLE 28
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF HOUSEHOLD MEMBERS 16 YEARS OF AGE AND OVER

No. 16 yr or over	No-Interview Households		Interview Households		Total	
	No	\%	No	\%	No	\%
1	176	232	37	4.6	213	13.6
2	363	480	506	625	869	555
3	80	106	168	207	248	158
4	24	32	70	86	94	60
5	6	08	19	23	25	16
6	2	03	6	07	8	0.5
7			1	0.1	1	0.1
0	45	59	---		45	29
10 or more	---	---	1	01	1	0.1
Unknown	61	81	2	0.2	63	40
Total	757	1001	810	998	1,567	1001

TABLE 30
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF FEMALE HOUSEHOLD MEMBERS 16 YEARS OF AGE AND OVER

No of Females 16 yrs or over	No-Interview Households		Interview Households		Total	
	No	\%	No	\%	No	\%
1	480	634	588	72.6	1,068	68.2
2	91	120	157	19.4	248	158
3	16	21	32	40	48	31
4	2	03	4	0.5	6	0.4
0	106	140	27	3.3	133	85
10or more	---	---	1	01	1	0.1
DK	62	8.2	1	01	63	40
Total	757	1000	810	1000	1,567	1001

TABLE 27
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF HOUSEHOLD MEMBERS 15 YEARS OF AGE AND UNDER

$\begin{aligned} & \text { No } 15 \mathrm{yr} . \\ & \text { or } \\ & \text { Under } \end{aligned}$	No-Interview Households		Interview Households		Total	
	No	\%	No.	\%	No	\%
1	88	116	157	194	245	156
2	73	96	137	169	210	134
3	36	4.8	73	90	109	70
4	13	17	26	32	39	2.5
5	3	0.4	1	0.1	4	0.3
6	---	---	2	0.3	2	01
7	---	---	1	01	1	01
0	483	638	411	50.8	'894	57.0
Unknown	60	7.9	2	0.3	62	4.0
10 or more	1	01			---	
Total	757	99.9	810	100.1	1,566	100.0

TABLE 29
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF MALE HOUSEHOLD MEMBERS 16 YEARS OF AGE AND OVER

| No. of
 Males
 16 yrs.
 or over | No-Interview
 Households | | Interview
 Households | Total | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

TABLE 31
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF DRIVERS IN HOUSEHOLD

No Drıvers	No-Interview Households		Inter view Households		Total	
	No	\%	No	\%	No	\%
1	293	38. 7	249	307	542	346
2	23	3.0	463	57.2	486	310
3	---	-0.	73	90	73	4.7
4	5	07	18	2.2	23	1.5
5	1	0.1	7	0.9	8	0.5
None	383	50.0	---	---	383	244
DK	52	6.9	-~-	---	52	3.3
Total	757	99.4	810	100.0	1,567	100.0

TABLE 32
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF MALE DRIVERS IN HOUSEHOLDS

$\begin{gathered} \text { No } \\ \text { Male } \\ \text { Drivers } \end{gathered}$	No-Interview Households		Interview Households		Totals	
	No	\%	No	\%	No	\%
1	271	358	650	802	921	588
2	5	07	85	105	90	57
3	3	04	15	18	18	11
4	---	---	2	02	2	01
5	---	---	3	04	3	02
0	427	56.4	55	68	482	308
DK	51	67	---		51	33
Total	757	1000	810	999	1,567	1000

TABLE 34
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY RANDOM START IN HOUSEHOLD

No Random Starts	No-Interview Households			Interview Households			Totals		
	No	\%	\%	No	\%		No		\%
1	262	34	6	548	67	4	808	51	6
2	483	63	8	264	32	6	747	47	7
Unknown	12	1	6	---			12		7
Total	757	100	0	810	100	0	1, 567	100	0

TABLE 36
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TIME OF DAY OF FINAL CONTACT

HourofContact	No-Interview Households			Interview Households			Total		
	No	\%	6	No		\%	No		\%
8-11 59 AM	27	3	6	22		7	49		1
12-3:59 PM	251	33	2	194	24	0	445	28	4
4-7 59 PM	320	42	3	416	51	4	736	47	0
8-11 59 PM	83	11	0	84	10	4	167	10	7
8-11 $59 \mathrm{PM}^{2}$	62	8	2	91	11	2	153		8
No Answer	14	1	8	3		4	17	1	1
Total	757	100	1	810	100	1	1,567	100	1

TABLE 33
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY TOTAL NUMBER OF FEMALE DRIVERS IN HOUSEHOLD

No Female Drivers	No-Interview Households		Interview Households		Totals	
	No	\%	No	\%	No	\%
1	61	81	485	600	546	348
2	5	07	54	67	59	38
3	1	01	6	07	7	05
None	609	804	265	327	874	558
DK	81	107	---	---	81	52
Total	757	1000	810	1001	1,567	100. 1

TABLE 35
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY ACTUAL NUMBER OF VISITS MADE

No of Day Visits	No-Interview Households		Interview Households		Total	
	No	\%	No	\%	No	\%
1	414	547	304	375	718	458
2	151	199	241	298	392	250
3	69	91	127	157	196	125
4	44	58	56	69	100	64
5	17	22	38	47	55	35
6	25	33	19	23	44	28
7	8	10	10	12	18	11
8	12	16	7	09	19	12
9	8	10	2	0.3	10	06
10 or more	9	12	6	07	15	10
Total	757	998	810	1000	1,567	999

TABLE 37
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS COMPARED BY DAY OF WEEK OF FINAL CONTACT

Dayof Week	No-Interview Households		Interview Households			Total	
	No	\%	No	q	\%	No	\%
Sunday	24	3.2	24	2	9	48	3
Monday	122	161	132	16	3	254	16
Tuesday	124	16.4	130	16	0	254	16
Wednesday	129	170	151	18	-	280	179
Thursday	98	129	108	13	3	206	13
Friday	142	187	151	18	6	293	187
Saturday	112	148	113	13	9	225	143
No answer	3	0.4	1	0	1	4	02
Total	757	995	810	99	7	1,567	99

TABLE 38
NO-INTERVIEW AND INTERVIEW HOUSEHOLDS
COMPARED BY MONTH OF FINAL CONTACT

Month	No-Interview Households				Interview Households	Total	
	No	\%		No	\%	No	\%
January	101	13	3	75	93	176	112
August	141	18	6	162	199	303	193
September	78	10	3	59	7.3	136	87
October	98	12	9	123	150	221	141
November	124	16	3	182	225	306	19.5
December	214	28	2	208	257	422	269
No answer	1	0	1	1	01	2	01
Total	757	99	7	810	99.8	1,567	99.8

