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In an attempt to f i l l gaps in the fundamental understanding of the 
behavior of continuously-reinforced concrete pavements, a num
ber of studies on various topics are presented. Most are presented 
from a theoretical analytical viewpoint; but some, which are not 
readily adaptable to analysis, are presented from an experimental 
viewpoint. Some of the topics studied are pavement thickness, 
differences in behavior of deformed bars and plain wire mesh, 
buckling tendencies, horizontal and vertical alignment changes, end 
anchorage, crack behavior under repeated loading, and reduced 
slab rigidity due to cracks. 

• ALTHOUGH continuously-reinforced highways pavements have been built in many 
states, the behavior of these pavements is s t i l l not fully understood. This is not to 
say, however, that the general behavior characteristics of why and how such a pave
ment functions under expansion and contraction are not known, for these facts have 
already been presented (1., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12). It is assumed that the 
general behavior of such pavements is already known, therefore only additional problems 
which heretofore have not been considered with any degree of thoroughness are discussed. 

Aspects of the continuously-reinforced design discussed in this paper are the follow
ing: 

1. Pavement thickness. 
2. Comparison of behavior between deformed bars and plain wire mesh: 

(a) Percent steel. 
(b) Crack width. 

3. Buckling tendency. 
4. Movement on horizontal curves. 
5. Movement on vertical curves. 
6. Terminal anchorage configuration studies: 

(a) Strength. 
(b) Uplift. 

7. Cracked slab behavior: 
(a) Reduced bendii^ rigidity. 
(b) Increases in crack width under repeated loading. 

Topics 1 through 5 are studied from a theoretical mathematical standpoint, which 
affords the advantage of generality but is, of course, limited by the validity of the 
initial assumptions made. General field observations have, however, shown the legit
imacy of most of these assumptions. 

Topics 6 and 7 are discussed through experimental laboratory data. An attempt is 
made in the discussion of these experimental tests to indicate the fundamental reasons 
and trends in such a way that reliable general conclusions may be obtained from them. 

PAVEMENT THICKNESS 
As shown by Vetter (13), the amount of reinforcing steel necessary in pavements is 

controlled by such changes in the pavement as shrinkage, moisture-induced swelling, 
and temperature. In contrast, the thickness of the pavement is controlled by the wheel 
loads. Westergaard's theories (14) are not entirely applicable in continuously-reinforced 
pavements, as such pavements have innumerable closely-spaced transverse cracks 
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requiring a new approach to analysis based on cracked-slab behavior, rather than on 
homogeneous behavior. 

Bending 

Consider a long slab of thickness t , of width 1, with transverse cracks closely 
spaced at a distance of b, which is assumed small in comparison with 1 (Fig. 1). In
asmuch as the concrete between cracks is st i l l essentially homogeneous, this portion 
of slab is extracted as a free body and used as the basis of analysis in accordance with 
Figure 2, in which 

Ki is the elastic subgrade modulus per width b; 
Ka is the elastic restraint modulus of the adjacent segments transferred by the 

longitudinal steel; and 
Ks is the aggregate interlock modulus (assumed linear); 

The differential equation of behavior of this slab segment is 

dx* 
+ K y (1) 

in which 
E^bt' 

~ir-
K = Ki + K2 + Ks 

(2) 

(3) 

= modulus of elasticity of concrete; 
and 

y = deflection. 

The wheel load is positioned al the end 
to produce the maximum bending moment. 
The weight of the slab is neglected. The 
solution to Eq. 1 is 

2P1 
K (sinh^ pi-sin*pi) 

sinhpl cosp cosh p (1-x) 

sinp Icoshp cos p (l-x)j 
in which 

K 
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If the concrete is not to crack in bending, from simple homogeneous beam theory: 

M 
max he (7) 

in which f^ is the allowable tensile stress of concrete. Thus, substituting for M.^^ 
and p , and solving for allowable thickness t based on bending: 

4.526 P' 

(f^)* b ' (Ki 

'* 11 
'• 5 
+ K2 +K3) 

(8) 

The subgrade modulus, K i , may be obtained from tests for small deflections. The 
aggregate interlock modulus may also be obtained from tests. Information on this value 
is lacking at present, but i t is assumed to be dependent on the crack width. For a con
servative analysis Ks may be neglected. The value of K2, the elastic restraint modulus, 
however, may be obtained semi-analjrtically in the following manner. 

Consider a long segmented strip of slab in the longitudinal direction, of thickness t 
and of unit width. Note that this strip is not homogeneous, as i t has transverse cracks. 
Extract this strip and consider i t as a free body, as in Figure 3. 

By inspection, the modulus K2 may be defined as 

(9) 

in which Q is any load and 8 is the deflection at the load Q. 
the differential equation 

for y at z = 0. Thus, 

in which 

dz* 
+ Kly = 0 

8q may be obtained from 

(10) 

K1 
K i 

b 
E^t^ 

12 d-i^") 

(11) 

(12) 

(13) 

(14) 

V- = Poisson's ratio for concrete; and 
E the reduced modulus of elasticity for cracked reinforced concrete (see section on, 
"Cracked Slab Behavior"). 

Therefore, upon substitution of these values 
2Ki 2K1 

' 4D_ ' 4bD_ 

(15) 



Shear 
For design use, a t r ia l value of pavement thickness t may be had from Eq. 8, derived 

on the basis of bending. The slab should also be checked for shear or diagonal tension. 
Considering the same slab segment as in Figure 1, the critical position of load P for 
shear is also at the edge. Figure 4 shows the action of the essential forces, neglecting 
bending stresses. 

From equilibrium of forces in the Y direction. 

P - b(Ki + K2 + K3)J y dx - b t f j (16) 

Thus, the allowable tension stress is controlled by 
X ^ P _ (Ki +K2 H-Ks) 
^ bt t J n 

The value of y may be had from Eq. 4 or from published curves and tables found in 
such texts as "Strength of Materials n , " by Timoshenko, or "Advanced Mechanics of 
Materials," by Seely and Smith, under the subject of beams on elastic foundations. 

Example 
As a numerical example of design, consider the following values: 

Eg = 3x10^ psi; f^ = 90 psi; b = 6 in. (assumed as tire contact length for limiting case); 
P = 12,000 lb; Ki = 10,000 psi; Ka = 1,000 psi; E^ = 4,000 psi; and v- = 0.225. 

Assuming a t r ia l t=6 i n . , K2 computed from Eq. 15 is 12,200 psi. t based on bending 
may then be computed from Eq. 8 as 6.07 in. 

The allowable tensile stress f̂ . is next checked from Eq. 17 to be 121 psi. Because 
this exceeds the allowable stress of 90 psi, the t r ia l thickness of 6.07 in. is too small. 
A revision based on Eq. 17 then increases the slab thickness to 6.7 in. 

In practice, this thickness would probably be evened off to 7 in. Several continuous 
pavements of 7-in. thickness have been built in Illinois and have performed well in five 
years of service (15). This example problem is not intended to be used as a design 
criterion, but is presented simply to show the use of the basic equations. 

This method of analysis for determining the pavement thickness thus provides a 
rational basis for determining the slab thickness. Certain refinements are s t i l l needed 
in the more complete understanding of the aggregate interlock force and reduced slab 
rigidity, both of which enter the slab thickness problem. 

COMPARISON OF BEHAVIOR 
BETWEEN DEFORMED BARS AND 

PLAIN WIRE MESH 
To simplify the comparison of deformed 

bars and plain wire mesh as much as pos- 1 ^ ^ ^ y f j K ^ ^ 
sible, only their behavior in connection with * S ^ l 
shrinkage of concrete is discussed. ' ^ t e - r o f e s ^ a >̂ =te -«sr 

The basic behavior of deformed bars 1 1 1 1 ^ n , ^ 
has been studied (13), so that only the ^ PoteM^a\ Crack 
behavior of plain welded wire mesh need [ } ^ ^ Combined Resisting Force 
be studied in this paper. However, to B r i^e 
assist in the comparison, a summary of I i 
Vetter's results is presented for deformed Y ''J ("̂ l + "̂ 2 + Kj)yd)i 
bars. o 

Figure k. Diagonal tension. 



Percent Steel for Deformed Bars 
Vetter (13) showed that when reinforced concrete cracks due to shrinkage, the 

shrinking concrete grips the steel by bond in an extended region near the cracks, causing 
the concrete to go into tension. The bond force is assumed uniform in the region of grip 
near the cracks and zero in the central region between cracks. Tests have shown this 
to be a valid assumption. This action causes the steel near the cracks to go into tension 
and causes the steel in the central region between cracks to go into compression. For 
comparison studies it is important to stress the fact that the concrete slips a little in 
the region of the bond; but since the bars are deformed, bond forces continue to be 
developed. 

Vetter found that for no shrinkage cracks to develop in reinforced concrete, the 
limiting value of the shrinkage coefficient z must be S|,/E , in which is the tensile 
strength of concrete. 

The limiting percentage of steel is found as 
S c 

in which 

p = ^ T r E - n i ^ 

A 
s area of steel 

(18) 

A area of concrete c 
Sg = Elastic limit of steel; 

Eg = Modulus of elasticity of steel; and 

n = E „ / E „ . s ' c 
The crack spacing L is found as 

in which 

(S' ? 
L = — - ^ — (19) 

n p' q u(z E^- S ^) 

1 = ^0 / As = ̂ S e T o f s t e e ^ ' " «̂ 

Percent Steel for Plain Welded Wire Mesh 
A complete understanding of the exact bond behavior of wire mesh is not yet known, 

but based on bond tests by Anderson (16), the following statements appear reasonable. 
The primary "bond" behavior is really an anchorage behavior, where instead of bond 
being distributed along the wire (as in the case of deformed bars), i t is concentrated at 
discrete anchorage points where the transverse wires intersect the longitudinal wires. 
An anchorage strength as strong as the strength of the main steel is achieved for trans
verse wire sizes not smaller than 4 or 5 wire sizes below that of the main wire size. 
This means that most of the force exerted on the longitudinal wire is transferred to the 
concrete through the f i rs t transverse wire intersection in the line of action of the force. 
Furthermore, it is believed that at this ultimate strength any small amount of adhesive 
bond existing between the concrete and the main wire between the anchorage points is 
broken by virtue of slip. 

Therefore, in the analysis to follow no distributed bond is considered, and all "bond" 
is assumed concentrated at the first transverse wire intersection nearest a crack in the 
concrete. Only shrinkage action is assumed to take place. Subgrade frictional forces 
are neglected, as the real movement of the concrete in contact with the subgrade is quite 
small. Tests by Friberg (1) have shown that a movement of about 0.1 in. is required 
before appreciable subgrade friction can develop. The analysis is also limited to the 
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central region of a continuously-reinforced pavement, where no over-all changes in 
length occur in the steel. 

Referring to Figure 5, m is an even integer, A is the area of steel, and A is the 
area of concrete. Under the initial assumption that the over-all steel length is unchanged, 

(m d) 
= 0 (20) 

This reduces to 
f= = m f' (21) 

in which f^ is the tensile stress of steel and f'g is the compressive stress of steel. 
Because the first transverse wire from the crack carries the anchorage force, between 
these terminal wires the compressive deformation of the steel must equal the net elon
gation of the concrete. 

Cg(m d) 
= z(m d) 

Tgdn d) 
5~"E c c 

This reduces to 

Cs=As E g Z - p n T ^ 
Substituting Eq. 23 in Eq. 20 and reducing gives 

m(Eg z n f'c) 
or 

m = ITT 

(22) 

(23) 

(24) 

(25) 

where f'^. is the tensile stress in the concrete. 
An additional relationship may be obtained from equilibrium of forces at the anchorage: 

Transverse Wires 

I Crack / Longitudinal Wires ^ Crack 

Tension 
55 Forces s!=sd Steel 

Compression Force s mm Forces 

Tension Force Concrete 
Forces 

Figure 5. Wire mesh. 



or, in terms of stresses, 

Using Eq. 21, 

C s + T 3 = T ^ (28) 

f = _ _ £ _ £ _ (28) 

Equating Eqs. 24 and 28 and solving for m gives 
A s " ^ c - ^ ^ ' c A ^ - A s 

A E„ z - A„ n P, 
(29) 

s s - "s c 
Thus, A_ n f „ + A„ - A„ E„ z 

L = m d = % ^ L _ L _ , , l _ i _ d (30) 
Es z - Ag n 

Note that for no cracks to develop, L = » , so that the denominator of Eq. 30 equals 
zero; 

AgEgZ - Agnf'c = 0 (31) 
or 

^l im for no cracks = ̂ 'c^ ^c (^2) 
which is the same as Vetter (13) found for slabs reinforced with deformed bars. 

To obtain the minimum percentage of steel so that the tensile stress in the concrete 
wil l be at its l imit of S'̂ . and the tensile stress in the steel wiU be at its elastic l imit 
of S , set f' = S' and f- = S_ in Eqs. 25 and 28 and substitute Eq. 25 in Eq. 28: 

s c C S B g, 
^min = g , + z V - n S ' ^^^^ 

S D C 
The crack spacing for Pj^j^^ may be found from Eq. 25 to be 

L = d ( m + l ) = d (^^J_^s,^ + l ) (34) 
It should be noted that the equation for the minimum percentage of steel for slabs 
reinforced with wire mesh is the same as for slabs reinforced with deformed bars as 
found by Vetter (13). 

It may be of interest to point out in the analysis that the crack spacing L , and 
consequent steel stress, represent a limiting case on the conservative side. It is en 
tirely possible that through certain regularities or irregularities in the concrete, cracks 
may form at smaller distances than indicated by Eq. 30. Indeed, cracks could even 
form near every transverse wire. Assuming no adhesive bond of the plain wire in this 
case, the concrete wi l l merely crack at an interval d whenever z reaches S'̂ . / E^., and 
the steel stress and concrete stress wil l both be zero. It is thus seen from this dis
cussion that crack spacing and steel stresses may be predicted within maximum and 
minimum limits. 

Crack Width for Deformed Bars 
Under the operating assumptions established, it is seen that there is no distinction 

in behavior between deformed bars and wire mesh in regard to amount of steel. How
ever, there is a significant difference in crack spacing and crack width. Consider de
formed bars first . Vetter (13) showed the stress in the concrete to be as shown in 
Figure 6. He found the bond length to be ^ ,̂ 

- = <35) 



The crack width at the steel due to slippage of the concrete is thus 
.L 

W j = z L dL (36) 

where f^ is the tensile stress of the concrete. 
Integrating Eq. 36 and reducing gives 

f c 
W = z L -

Thus, for p 
min 

S' / A^S' \ 

(37) 

(38) 

To study the question of the variation of crack width at the steel and at the surface of 
the concrete, as shown in Figure 7, the following analysis is presented. 

If the longitudinal steel is considered to be close together, the concrete behavior may 
be considered as two-dimensional and the planar methods of the mathematical theory of 
elasticity may be used. Deduced from Figure 6, the shrinkage forces on the concrete 
are as shown in Figure 8. 

The Airy stress function for this case has been published by Winter (17). After a 
slight modification in the constant K̂ ^ to f i t the conditions of the present problem, this 
stress function is 

in which 

«!> = 

00 

2 
n = 1,2,3 

(A^ cosh a^ y + Bjj sinh Y + y cosh â^ y + 

D y sinh a y) cos a x 

-Kn 

B_ = Kn 

C_ = 2an 

D_ = 

^ 1 

cosh' b + 1 
aj^(sinh b + 22i^ b) 

2 S' 
c c 

" i n : — 
sin n i r 

o - _ 5 J L 
*n~2r-
sinh^ a ĵ b + (a^ b)' 

a ĵ" (sinh 2a„ b + 2a„ b) 
(42) 

(43) 

(44) 

(45) 

(39) 

(40) 

(41) 

W, 

C O N C R E T E 

D E F O R M E D B A R 

Figure 7- Crack shape. 
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found in the concrete from the established principles of elasticity. That is, the longi
tudinal stress <r X at any point in the concrete at coordinates x and y may be found by 

<rx=4li (46) 
y 

Thus, 00 

' = V . o ^ n *n """^^ *n y + ^n *n ^^'^ *n y + ^n ^ ^ + 2C„ a„ n = 1,2,3 
sinh a^ y + D̂ ^ â "̂ y sinh â ŷ + D̂ ^ â^ sinh a„ y + D„ â^ cosh â^ y) 

cos a.^ X (47) 

A study of Eq. 47 reveals that the stress near the surface of the concrete is less than 
that near the steel and also that the stress near the outside corners is very small. 

With the exact stress distribution known, the increase in crack width at the surface 
over that at the steel may be found as: 

(48) W . = 2 [(W') - (W) y^l," 

Neglecting Poisson's ratio, 

(^')y=0 = Y - f \ ( ' ^ ) y = 0 * ^ (49> 

c 
After carrying out these operations, Wa from Eq. 48 becomes 

W , = ^ S (B„+^^^ ) s i n a „ l (51) 
c n = 1,2,3 n 

in which 

n = â * + 2 C„ a„ + D„ a„^ b + D„ a„) (sinh a„ b) + (A^ a '̂' + C„ a„^ b + D„a„) 

(cosh a.^ b) (52) 
Crack Width for Wire Mesh 

From Figure 5 it is clear that the crack width at the steel is 

Thus, for p^ .^ 

Wi = z d + j ^ = d(z + ^ g ) (53) 
s s s s 

Ss 
W i = d(z + - = r ^ ) (54) 

^s 
W2 for wire mesh may be computed from the same Eq. 48 as used for deformed bars 
in view of the fact that this value is generally very small in comparison with W i . 

Example 
For a comparative study of crack behavior with deformed bars and wire mesh, con

sider the following numerical values (reduced physical constants for concrete are used, 
inasmuch as shrinkage is assumed to take place before the concrete reaches its ful l strength 
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value): = 50,000 psi (assumed the same for bars and mesh); d = 20 i n . ; E^ = 30 
X 10* psi; z = 2 X 10"*; n = 10; E = 3 + 10* psi; S' = 100 psi; t = 8 i n . ; u = 400 psi; 
and A = 96 sq in. ^ ^ 

From Eq. 33 P^^^ is computed as 0.00182. It should be noted that this is the same 
for both bars and wires. Selecting No. 4 deformed bars at 13%-in. centers results in 
2 Q = 1.35 sq in. and Ag = 0.175 sq in. For the mesh, 6/0 longitudinal wires and I/O 
transverse wires are selected. 

From Vetter's equation (Eq. 19) L for deformed bars is computed as 5. 54 f t . From 
Eq. 38, Wi for deformed bars is computed as 0.0114 in. 

For wire mesh, L is computed from Eq. 34 as 18.4 ft and Wjfrom Eq. 54 as 0.0372 
in. It may be noted, however, that if the transverse wire spacing is assumed as 6 in. 
instead of 20 i n . , the crack width and spacing are about the same as for deformed bars, 

A comparison thus reveals that deformed bars tend to cause cracking at closer in
tervals, with less crack width resulting, and with the crack width being about propor
tional to the crack spacing. A narrow crack is desirable, as i t protects the steel better 
and provides better aggregate interlock. However, the crack spacing and crack opening 
may be directly controlled in mesh by adjusting the distance between transverse wires. 
Closer spacing of transverse wires means closer crack spacing and smaller crack 
openings. 

A numerical check of the value W2 shows this to be negligible (less than 0.001 in . ) , 
and it may thus for practical purposes be ignored. This example problem is not in
tended to be used as a design criterion, but is presented simply to show the use of the 
basic equations. 

BUCKLING TENDENCY 
The phenomenon of blow-ups, or buckling, is well known in standard concrete pave

ments. It is the purpose of this investigation, therefore, to determine under what con
ditions buckling may occur in continuously-reinforced pavements. The condition of 
buckling is shown in Figure 9, in which 

s = weight of slab per unit of surface; 
F = the incipient buckling force per unit of width; and 
M = the bending moment at x = 0 and x = 1. 

The differential equation of buckling behavior is 

dx^ Dj. 

where D .̂ is the reduced slab rigidity, defined by Eq. 14. From equilibrium, the 
bending moment at any distance, x, is 

M^ = F y - M + — - (56) 
Thus, 

dx» D^ D^ 2D^ 2D^ 

The general solution to Eq. 57 is 

y = A cos k x + B sink X + — + — + ^ 1 ^ _ /ggv 
k*D k*D 2 F D 2k*D * ' r r r r 



in which 

= (59) 

To evaluate the unknowns A, B, M, and 
F, four conditions are needed, as follows: 

^ ^ ^ ^ ^ ^ 
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F X 

(y)x = o = o (a) 

(b) 

^ =0 (c) 

^ =0 (d) 

Figure 9. Slab buckling. 

Boundary conditions (a) through (d) are then substituted in Eq. 58 or its first de
rivative. The following four equations are then obtained: 
From (a), 

A + ~ + — = 0 (60) 

From (b), 

From (c), 

A cos k 1 + B sink 1 + —— +-2 = 0 (61) 
k^D^ k*D^ 

B k + w l ^ 0 (62) 
2 k 'D^ 

From (d), , 
B k cos k 1 - A k sin k 1 - — = 0 (63) 

2k*Dj. 
To solve these four transcendental equations simultaneously to obtain k as a function of 
1, the first-several terms of the Maclauren series are substituted for the sine and cosine 
functions. 

sin k 1 = k 1 + (64) 
6 

k* 1* k* 1* 
cos k 1 = 1 - — — + — (65) 

2 24 
Upon the successive operations of substitution, simultaneous solution of the equations, 
and reduction, the following relation of k to 1 results: 

^ = y - (66) 
But from Eq. 59 

k*=Z = i ! _ (67) 

r 
The incipient buckling force is thus 

D_ I ' ' 

36 
F = - p - ^ (68) 



12 

It should be noted that the incipient buckling force calculated from Eq. 68 Is very 
nearly equal to Euler's classical critical buckling force for clamped ends and without 
any lateral force such as the slab weight, 

cr 

4ir*D. 

1' 
(69) 

If sufficient terms in the Maclauren expansion for the sine and cosine functions were 
taken, the incipient slab buckling force would be exactly equal to Euler's force. This 
thus indicates that the weight of the slab has no influence on the buckling force for the 
slab. Further proof of this is that the unit weight w cancels out in the preceding analysis. 

There is, however, a very special and important limitation imposed on continuous 
pavements, not generally encountered in other buckling problems. This is the fact that 
the effective ends (where the assumed shapes as shown in Figure 9 meet the ground) are 
constrained against motion in the x direction by virtue of continuity. It is this fact that 
prevents actual uplift, despite the preceding analysis which indicates a possibility of 
incipient buckling. 

To visualize the mechanics of actual buckling, consider that there first exists a 
sufficient axial force on the slab such that the slab is in a state of incipient buckling, 
given in this case by Eq. 69. If the ends of the slab were free to move under this force, 
the slab would indeed buckle upward, as in normal buckling action. However, due to the 
restrained ends, as soon as the slab tends to uplift as shown in Figure 9, the true length 
of the slab changes from the flat length to the longer length along the curve. Because 
the force F is Imposed internally, as it would be by temperature or volume change in 
the concrete, this increase in length relieves that force. With F now decreased, the 
incipient buckling force is no longer materialized and the slab never actually uplifts. 

For external forces greater than F, the slab may theoretically uplift slightly; but 
the uplift occurs gradually and over a very long length, such that the uplift is not visu
ally observable. Furthermore, the uplift occurs gradually, and does not suddenly 
buckle. 

Field observations' have verified this conclusion. In all the continuously-reinforced 
pavements built in the United States, no visible buckling has ever been recorded or 
observed, even when expansive forces have been large enough to cause compression 
failure and spalling at the terminal ends of the pavement (18). 

MOVEMENT ON HORIZONTAL CURVES 
It is conceivable that a roadway may change in horizontal alignment around a curve 

when a continuous slab of steel and concrete contracts or expands. The tendency to 
shorten or lengthen may cause the pavement at a curve to move inward or outward In 
the radial direction. 

The simple calculation to follow establishes the conditions under which such move
ment would take place. It is the subgrade frictional drag which tends to prevent this 
radial movement. Consider a contraction tendency as shown in Figure 10. (E^ansion 

would lead to the same general conclusion.) 
The limiting subgrade drag force f per 

unit length of slab before appreciable radial 
movement may take place is K W, where | i 
is the coefficient of subgrade drag and W 
is the weight of pavement per unit length of 
slab. 

From equilibrium of forces in the T 
direction, 

Contraction Force 

Figure 10 . Horizontal curve. 

2 | i W R s l n a - 2 P sina= 0 (70) 
From which it is found that the minimum 
radius that a roadway should have to prevent 
horizontal alignment changes is 

' Confirmed in conversation with H. D. Cashell. 
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%mit " Tw" 
For cracked slabs, the limiting value of P may be taken as the total area of steel A' 
times the elastic limit of steel S . 
Thus, A'„S„ A„S, 

^limit 
s "s 
T V 

s s 
|t w 

(71) 

(72) 

in which A^ is the area of steel per unit width and w is the weight of slab per unit of 
surface. 

Considering a numerical example with Ag = 0.5 sq in. per ft, = 50,000 psi, w = 75 
psi, and |i, = 1.5, R ^ ^ Q J ^ is computed from Eq. 72 to be 222 ft. Inasmuch as this radius 
is well below the normal radius used in h^hway design, it may be generally concluded 
that horizontal movements at curves are not a problem. 

MOVEMENT ON VERTICAL CURVES 
There exists the possibility that a continuous pavement on a vertical curve at the crest 

of a hill could tend to uplift from its base if sufficient concrete swelling due to moisture 
penetration and high temperature were to take place. Likewise, at a vertical curve at 
the bottom of a hill a tendency to uplift would be present if sufficient concrete shrinkage 
and temperature contraction existed. To investigate these possibilities the following 
analysis is presented. 

Consider the contraction case shown in Figure 11 for a small ratio of h to a. Let 
A T be the total unrestrained contraction due to temperature and A S be the total un

restrained contraction due to shrinkage. Under the combined action of AT and AS the 
slab will tend to shorten and thus tend to lift off the ground. In doing this, there will 
be a force F induced throughout the slab caused by the weight of the slab. The exact 
"shape" of the slab would then be described by a catenary; however, to use a simpler 
(and almost exact) expression, the parabolic shape is assumed. Thus: 

F = w a W l + 4ir 
(73) 

This force F then causes the slab to stretch a total lei^h of F 1 / A E. 
When this stretch F 1 / A E equals AT + AS, the slab is recontacted with the base 

and the induced F thus vanishes. The resulting performance of the slab is as if it were 
simply straight and horizontal. 

The criteria of uplift may then be expressed by 

AT+AS > w a 1 
- A E " 1 + 4 P (74) 

For cracked slabs in tension, A may be taken as A„ and E may be taken as E . 
s s 

The behavior of a vertical curve in expansion at the crest of a hill is similar. It is 
only necessary to modify Eq. 74 by first considering AT as the total temperature expan
sion and A S as the total swelling expansion due to moisture and then, because the slab 
is in compression, all cracks in the concrete close up and 

E_ (75) 
s 

and E should be taken as E^. (This simply 
uses the transformed area properties of 
the concrete.) 

Example 
Consider the following values for con

traction: temperature drop = 80 F, 

Weight o( SI 

Figure 1 1 . Vertical curve. 
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coefficient of e^)ansion a= 0.0000075 per degree F, a 3,000 in. , h = 100in.. Eg = 
30 X 10 psi, w = 0.5 U) per in. (6-in. slab), = 0.0417 psi, and AS = 0. Thus, A T + 
A S may be computed to be 3.7 in . ; and 

wa 1 ^1 a 

is computed to be 109 in. if the steel is assumed to remain elastic 
thus obvious that there is no danger of uplift. 

A comparative check on expansion for a temperature rise of 80 F, AS 
all other values as for contraction, shows AT + AS = 3.7 in. and 

From Eq. 74 it is 

0, and with 

w a 

s E V ^ s 

1 + 4h^ = 7.2 in. 

It should be noted that, due to the added action of the concrete, the deformation caused 
by the force F in compression is less than for tension. Nevertheless, from Eq. 74 it 
is clear that no uplift will take place in either case. 

TERMINAL ANCHORAGE CONFIGURATION STUDIES 
In the construction of existing continuously-reinforced roads, various types of end 

joints have been tried. Some consist only of standard filler strips as used in normal 
construction, whereas others are more elaborate, employing such joints as bridge-type 
expansion joints. Most of these have eventually proven unsatisfactory under service 
conditions; terminal movements of as much as 4 in. have been observed, resulting in 
damage to the pavement in the vicinity of the joint. .As a possible alternate solution to 
these troublesome ends, it is suggested that the ends may be anchored instead of al
lowed to undulate. Several experimental anchors are being planned for a section of 
continuously-reinforced pavement to be built in southern Virginia. To study this prob
lem a pilot model study was initiated by the Virginia Council of Highway Investigation and 
Research to determine the best anchorage configuration. 

The test bed was dry sand, 2 ft by 14 ft upon which a wooden board (to which anchors 
were fastened) was placed as shown in Figure 12. The scale factor was 1/24 ft so that 

Spring Scale 

Whee 

Anchor Vertical Dial Gage 

Horizontal Dial Gage 

Test Board 

Figure 12. Test bed and apparatus. 
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the 12-in. by 12-ft board represented the terminal portion of road 24 ft wide and 288 ft 
long. It was not Intended that this pilot study simulate the actual forces and movements 
at the end of a real slab; it was intended only to offer a qualitative comparison of an
chorage resistances. OB. continuously-reinforced pavements only the last 300 ft or so 
have been found to move, therefore it is this portion which must be anchored. The an-
chor^e configurations tested are those shown in Figure 13. 

These shapes were varied in size, depth, and spacing, to observe relationships. The 
horizontal strength of this type of anchorage depends on the shape of the failure surface 
developed. Consider the action of an anchor such as shown in Figure 13a. 

It \p seen from Figure 14 that, due to the vertical restraining forces exerted by the 
slab on the soil acting as a surcharge, the failure surface Is spread out and thus becomes 
more effective than if such vertical forces were not present. This vertical restraint can 
be attributed to a number of factors. Including the weight of the slab, the bending re
sistance of the slab, the weight of the anchor, and the vertical friction of the anchor. 
Thus, the greater these factors, the greater Is the maximum horizontal force P. 

It may also be observed from Figure 14 that when the vertical anchor wall moves, 
it will displace the soil vertically, even allowing for consolidation. Thus, some uplift 
tendency can be expected. The more the failure surface is spread out due to the sur
charge, the less will be the uplift. For a rough approximation in the limiting case of 
no surcharge, the vertical movement is about the same as the horizontal movement. 
With surcharge, the vertical movement is much less. The pilot tests have verified this. 

Although load-versus-horlzontal and vertical movement curves were obtained on aU 
tests, it is felt that because these values were based only on a model study, their 
quantitative values are not as important as their relative values. Therefore, only a few 
sample curves are shown in Figure 15. 

The Important conclusions drawn from these tests may be summarized as follows: 
Strength 

Consider first a comparison of configurations a, b, and c (Figure 18), which are 
categorized as single solid anchorages. Taking a as a reference, it is found that due 
to the added confining action on soil by the side walls of the anchor, extra strength may 
be attained for the same projected area. Shape b is 14 percent stronger than a and shape 
c is 55 percent stronger than a. Shape f is also a single anchor, but consists of sepa
rated anchors. This shape produces the same strength as shape a for the same depth of 
embedment, despite the fact that the projected area Is only 39 percent that of a. This 
may be accounted for in view of what happens to the failure surface as described in 
Figure 14. For a straight solid anchor such as a, the failure surface is essentially 
two-dimensional; but for an anchor such as in g, the soil flows not only in the direction 
of pull, but also transversely, creating a much larger three-dimensional failure surface. 
This thus results in the pile shapes having a much larger resistance than indicated mere
ly by their projected area. 

A second comparison may be made on the basis of depth of anchorage. For a given 
anchorage shape such as a the strength appears to vary linearly with depth, within the 
range of depths tested. 

A third comparison may be made on 
multiple anchorages as in shapes d, e,and g. 

a b c 

Restraining Forces On Soil 

"1 r 
- t - t - t - t - t - t - t - ( t t - t - t -

"IJ r i r Soil - J Appl ied Force 
Movement On Soil 

I 
I T Failure Surface 

Figure 13 . Anchorage configurations. Figure l ^ . Fsdlure surface. 
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A series of tests run on shape d with the spacing varying between anchors shows, as 
might be expected, that if the anchors are too close there is interference of action be
tween the two and the full strength of both of them cannot be realized. It was found that 
for a scale-model distance of 48 in, , or a prototjrpe distance of 96 ft, the interference 
vanishes, and the full strength of each may be attained. The model depth for this test 
was 2 in. , representing a prototype depth of 4 ft. 

The over-all best performance in strength was attained by configuration g, which 
consists of a series of separated piles. For the same number and size of piles as 
f, g produced a strength 71 percent greater than f or a. 

Uplift 
As previously discussed, the problem of uplift is associated with strength. Two 

important conclusions seem to stand out after consideration of the test results. The 
first is that a distributed multiple anchorage, such as e or g, produces less uplift than 
a sii^le large anchorage such as a, b, or c. This is understandable, as the load is 
more distributed and also the bending resistance of the pavement at interior positions 
is greater than at the end, allowing less vertical movement. 

The second conclusion is that there is less uplift for the deeper anchors. This is 
also understandable, as a deeper anchor has more weight and more side frictional 
surface. Incidental to side friction, it was also found that the pile-shaped anchor f 
produced less uplift than a solid shape like a. This is partly explained by side friction 
and partly by the fact that the failure surface is three-dimensional, spreading the dis
placed soil over a larger area. 

A comparison of uplift values, again taking shape a as a reference, shows that the 
uplift in a is 40 percent of the magnitude of the horizontal movement, whereas the uplift 

100 r 

VERTICAL MOVEMENT AT END (g) 

HORIZONTAL MOVEMENT AT END (g) 

VERTICAL MOVEMENT AT END ( a ) 

HORIZONTAL MOVEMENT AT END (a ) 
N 30 

o o d 
HORIZONTAL OR VERTICAL MOVEMENT - INCHES 

31a 
Figure 15 . Load-Movement curves for anchorage configuration as in Figure (12 A) and 

(12 g) ( V Model Depth). 
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in g is only 11 percent of the horizontal 
movement just prior to failure (see Fig. No. 4 Deformed Steel Bar 
15). In addition, the absolute vertical ^ 1 
movement in g for corresponding loads is " "^^"^ 
only about 25 percent of that for a, which 
shows the over-all superiority of g. 

Therefore, as a general conclusion of 
comparison, it appears that a pile con
figuration such as Figure 12 g is the best 
for both maximum strength and minimum p specUnen. 
uplift. 

Under actual field conditions it is be
lieved that this shape could be quite economical if a truck-mounted earth augur bored 
holes into which a preassembled reinforcing steel cage could be placed. The holes could 
be monolithically filled with concrete at the same time the pavement is poured. A pre
liminary design indicates that about 10 such piles, 18 in. in diameter and 8 ft deep, 
could resist the terminal forces imposed by a continuously-reinforced pavement in either 
expansion or contraction. 

When the full-scale anchorages are constructed on the proposed highway in southern 
Virginia, additional field observations will be taken on the horizontal and vertical move
ments, together with any other unusual cracking or behavior. More conclusive reports 
may be expected at that time. 

CRACKED SLAB BEHAVIOR 
As indicated earlier, in connection with the pavement thickness analysis and buckling 

analysis, there is need for information on the reduced bending rigidity of the slab in the 
loi^itudinal direction due to transverse cracking. To this end a pilot test program was 
conducted to obtain a behavioral trend. 

Twenty test specimens (Fig. 16) were cast of concrete. After 28 days of moist cur
ing, a concrete cylinder strength of 2,500 psi was reached. Each specimen was then 
artificially cracked by a pull on the steel bar sufficient to cause the concrete to crack 
transversely at various crack widths from 0.010 to 0.193 in. Several specimens were 
left uncracked to serve as a standard for comparison. The crack widths were measured 
with a calibrated microscope micrometer. 

The specimens were then loaded transversely as beams, such as to cause a bending 
moment at the cracks of 1,440 in. -lb. This is within the standard allowable limit for 
normal concrete beams. Load-center deflection readings were then taken for the first, 
10th, and 20th loadii^ cycles. The load-deflection readings were not changed from the 
10th to the 20th cycle. 

Reduced Bending Rigidity 
Figure 17 shows several tsrpical load-deflection curves obtained. Note that these 

curves may be characterized in two stages. The small loads from 0 to about 350 lb are 
characterized by the fact that in this stage it is the flexing of the steel bar that is pri
marily controlling the bending of the beam, as the crack is still essentially open (see 
Fig. 18a). This is naturally a relatively weak phase. The second stage is that beyond 
350 lb, where the concrete in compression acts in conjunction with the bending and axial 
tension in the steel, as shown in Figure 18b. This, or course, accounts for the rapid 
rise in strength as shown in Figure 17. 

Based on the center deflection at the working load, a comparison of flexural rigidity 
may be made from the known elastic relation of load to deflection for a beam. The 
flexural rigidity is defined as EI , the modulus of elasticity times the effective moment 
of inertia. As used in the pavement thickness studies, the reduced rigidity is called D ,̂. 

The plot of percentage of full uncracked rigidity and crack width is shown in Figure 
19. Note that the flexural rigidity drops off rapidly with even small crack widths. Slabs 
with cracks of 0.20 in. have a rigidity of only 1 percent of that of an uncracked slab. 
The question of reduced rigidity as a function of crack spacing was not studied in this 
experiment. 
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Increase in Crack Width Under Repeated Loading 
Field observations (12) of pavements in existence for many years have disclosed that 

lanes with more traffic have wider cracks than lanes with less traffic. This is clearly 
indicative of a condition resulting from repeated vehicular load, causing the cracks to 
flex back and forth under the bending moment imposed by the moving loads. 
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Figure 18 . Crack behavior 

The same beam specimens and same 
apparatus set up to study crack width were 
used to determine the behavioral trend with 
repeated loadings. The loads were cycled 
from 0 to the full working load and back to 
0 again. Average crack widths were taken 
after the 10th and 20th cycles. Only a 
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slight increase was noticed in the 20th 
cycle over the 10th cycle, so the results 
reported in Figure 20 are for 10 cycles. 
Note that although large percentage in
creases occur for small crack widths, 
this in reality still represents a very 
small real width of crack, because the 
percentage is based on an initially small 
value. 

The increase in crack width under re
peated loads is perhaps explained by a 
certain crushing and agitation of the 
cracked surfaces in the repeated flexing 
contact and recontact. For large cracks, 
this contact is confined to an area very 
near the surface, as shown in Figure 18b; 
in narrow cracks, the contact area is much 
greater. Because in this experiment only 
average crack widths were measured, the 
larger cracks did not reflect as much 
change as the smaller cracks. 

Load repetition was not carried out far 
enough in this pilot study to cause fatigue 
failure. It is expected that fatigue failure 
would occur rapidly in the steel in the 
large crack widths for at least three rea
sons, as follows: 

1. Large bending stresses occur in 
the steel bar itself, as discussed in 
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connection with Figure 18. 
2. The large crack results in the loss 

of aggregate interlock of the concrete, in
ducing high shear stresses in the steel. 

3. Large cracks expose the steel to 
corrosion deterioration, which accelerates 
failure by fatigue. 

These three reasons combine to cause 
early failure by fatigue. It is no surprise, 
therefore, that in all work in these tests 
and in this whole report, narrow crack 
widths are indeed the desirable object for 
the successful performance of a continu
ously-reinforced concrete pavement. 

Because of the preliminary nature of this 
series of tests, coupled with the importance 
of information on repeated loads, it is highly 
desirable that additional test programs be 
conducted where the specimens are sub
jected to repeated loadings of many thousands 
of cycles. From several tests run inci
dental to the ones described, where the 
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loading was repeated 100 times, it appears that the crack width continues to enlarge. 
Repeated loading of many thousands of times on various strength concretes and various 
crack widths would thus reveal a more comprehensive behavior pattern. 
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VEDAT YERLICI, Asst. Professor of Civil Engineering, Lehigh University, Bethlehem, 
Pa. — This paper contributes much to further understanding and knowledge of continu-
ously-reinforced concrete highway pavements, and helps to clear up some doubtful 
points, such as buckling tendency and movement on horizontal and vertical curves. In 
certain respects it also raises questions. 
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Under the section on "Pavement Thickness" the slab Is analyzed as a transverse 
beam between cracks. At the cracks the restraint Is assumed to consist only of the 
upward reactions (shears) caused by the "elastic restraint of the adjacent segments trans
ferred by the longitudinal steel" and by the "aggregate Interlock". It would appear that 
the action of the cracked slab as abeam is somewhat questionable. If there is aggregate 
Interlock at the crack there should also be twisting moments, which will reduce the de
flections. Also, because there is considerable longitudinal steel, although not at the 
bottom of the slab, there also will be longitudinal moments. With all of these boundary 
conditions Ignored, it is doubtful if this analysis fits the actual conditions better than the 
Westergaard theories, which do not assume cracks. Also, in the given differential 
equation of the beam on elastic foundations the aggregate Interlock and the elastic restrain 
modulus are taken proportional to deflection. It is doubtful if these factors Increase 
linearly with deflection; in the case of aggregate interlock even the reverse might be true. 

If there is to be a rigorous mathematical analysis of the pavement, a section between 
cracks must be assumed partially restrained by shears, by longitudinal and torsional 
(twisting) moments at the cracked end, and free at the sides, and it should be analyzed 
as a plate over an elastic foundation. As this solution will be too complicated and time 
consuming, probably the whole pavement may be analyzed as an infinite or semi-infinite 
orthotropic plate strip on elastic foundation. In this analysis the effect of transverse 
cracks may be taken care of by assuming a reduced longitudinal rigidity for the pave
ment. On the other hand, it must be remembered that the item under consideration is 
a continuous, cracked, reinforced concrete slab resting on soil and that it Is subjected 
to dynamic concentrated loads. The magnitudes of crack spacing and Impact cannot be 
determined with certainty, and the modulus of elasticity, moment of inertia of rein
forced concrete, and foundation modulus of any subbase, are not reliable factors. 
Therefore, at Its best, this sort of analysis, based on such doubtful assumptions, can
not be much more than a help for a qualitative understanding of pavement behavior. 

In comparli^ the behavior between the slabs reinforced with deformed bars and plain 
wire mesh, to simplify the matter, only the behavior In connection with shrinkage of 
concrete is discussed. When concrete is at the state of shrinking, its tensile and bond 
strengths are not fully developed and most probably the steel caimot restrain much of 
the contraction of concrete because of considerable slippage due to weakness of bond. 
At this stage the cracks will form mostly due to poor strength of concrete and frlctional 
resistance between the subgrade and the pavement. Later, as the concrete cures, the 
influence of reinforcement as a crack former increases to be the major effect. Also, 
mechanical anchorages, such as the transverse bars of the wire mesh, may have an 
altogether different Influence on the uncured concrete pavement than on the cured one. 
Hence, a study of the reinforcement Influence that does not Include the temperature 
effects on the cured pavement may give an Incomplete picture and probably should not 
be generalized. 

Anchorii^ the ends of the pavement, if it could be done cheaply, is a most con
structive Idea. It should present no problem when the slab Is contracting, because the 
anchorage must only be stronger than the yield strength of steel; but the problem will 
get more complicated when the pavement expands, because of the high strength of 
concrete in compression. Thought also must be given to the possible plastic deforma
tion, and creep, of the soil around the anchorages, because it may in time destroy the 
fixing effect of the anchors altogether. 
WILLIAM ZUK, Closure — Most of Mr. Yerllcl's comments are well considered and 
correct from a rigorous point of view, so that there is little to refute from this stand
point. "However, he, as well as others, undoubtedly is aware that the simplifications 
and approach used were Instituted not out of Ignorance of the factors he mentioned, but 
in order to achieve a simplified workable design solution to some of the problems 
encountered in continuously-reinforced pavements. Some rational method of design Is 
needed to replace the "rule of thumb" method now used. 

Theoretical, laboratory, and field studies on various controversial phases of this 
subject are still being continued and it is hoped that eventually answers satisfactory to 
everyone will be found. 




