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• THE DETERMINATION of the conditions under which earth slopes w i l l be 
stable represents one of the most important applications of s o i l mechanics. 
A nmber of useful methods for investigating t h i s problem involve the 
c l a s s i c a l theories of Coulomb, Rankine, and Boussinesq. Other methods I n 
volve t r i a l and error analysis for determining the most c r i t i c a l location 
of f l a t and c u r v i l i n e a r f a i l u r e planes. This paper deaJ-s s p e c i f i c a l l y 
with the c y l i n d r i c a l falliore plane as applied to the general solution of 
the slope s t a b i l i t y problem. 

Analyses involving use of the c y l i n d r i c a l plane are based upon the 
two-dimensional case ( l ) i n which the f a i l u r e surface i s represented by 
an arc of a c i r c l e (sometimes referred to as the Swedish C i r c l e ) . The 
r a t i o of r e s i s t i n g moment to driving moment (taken about the center of 
the fail-ure c i r c l e ) or r e s i s t i n g force to driving force (taken along the 
fa i l \ i r e arc) i s \ised as a basis for describing the r e l a t i v e s t a b i l i t y of 
the s o i l loading system for each s p e c i f i c f a i l u r e surface. By successive 
t r i a l s , the location of the weakest plane can be established, and i t s cor
responding moment (or force) r a t i o serves as an indication of i t s factor 
of safety. (This r a t i o i s often used i n various forms to represent the 
factor of safety of the earth slope against s l i d i n g . Although there i s a 
great deal to be sa i d about the de f i n i t i o n of factor of safety ( 2 ) , i t i s 
not the purpose of t h i s paper to r a t i o n a l i z e the point. I t i s noted, how
ever, that the equations presented herein may be used i n expressing any 
desired d e f i n i t i o n of factor of safety applied to the c i r c i i l a r arc type 
of s t a b i l i t y a n a l y s i s . ) Inasmuch as there are an i n f i n i t e number of t r i a l 
planes available for any problem (Fig. l ) , the complete solution i s often 
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tedious and time consimilng. Where time limitations are imposed by design 
schediiles, i t i s often impossible to properly locate the most c r i t i c a l 
f a i l u r e plane. A number of attempts have been made to reduce the number 
of t r i a l s required (2) and, i n the case of homogeneous s o i l s , t r i a l was 
eliminated ( 3 ) . Unfortunately, the case of s o i l homogeneity i s r a r e l y i f 
ever encountered, and to date the general solution for heterogeneous s o i l 
conditions defies s i m p l i f i c a t i o n . The t r i a l and error process i s neces
sary for the present; however, the electronic computer now makes a r i g 
orous approach economically f e a s i b l e . 

One of the f i r s t papers on the subject of the use of electronic com
puters for the solution of embankment s t a b i l i t y was presented at the 37th 
Annual Meeting of the Highway Research Board (k). Other papers have ap
peared on the subject (^), p a r t i c u l a r l y i n England where the use of the 
Deuce electronic d i g i t a l computer i s widespread. These papers are tech
n i c a l l y excellent but are oftentimes limited i n scope to s u i t the immed
ia t e needs of the users. 

I t i s the purpose of t h i s paper to present rigorous mathematical ex
pressions which w i l l permit d i r e c t application to computer programming as 
w e l l as to organized manual computation for the determination of the weak
est f a i l u r e plane. Simplifying assimptions have been kept at a minimimi to 
f u l l y u t i l i z e the accurax:y potential of the high-speed computer. Basic 
equations are presented for solution of the simple s t a b i l i t y problem i n 
volving a constant earth slope of homogeneous material foimded on a s t r a t 
i f i e d subsoil. Special cases are also investigated, involving i r r e g u l a r 
or s t r a t i f i e d slopes, the condition of toe f a i l u r e , dam an a l y s i s , and re
la t e d refinements demonstrating the f l e x i b i l i t y of the derived expressions. 
I n some Instances, simplifying assumptions are made; however, i t i s l e f t 
to the s o i l s engineer to determine the s u i t a b i l i t y of the assumptions be
fore attempting to use the equations for any s p e c i f i c problem. Specific 
examples of the use of these equations i n the solution of a t y p i c a l road
way embankment and an earth dam problem are presented i n the Appendix. 
The Appendix also contains the basic forms from which the equations pre
sented i n the text are derived. 

GENERAL DERIVATION 
The method of investigating the s t a b i l i t y of earth slopes, involving 

a multi-layer s o i l system, has generally been based upon the vise of the 
method of s l i c e s . This Involves the determination of forces developed by 
v e r t i c a l segments of the s o i l system on corresponding incremental lengths 
of arc along the assmed f a i l u r e plane. The method developed herein does 
not use the concept of s l i c e s but. Instead, investigates the forces de
veloped along the assmed f a i l u r e plane due to the e f f e c t of each s o i l 
stratum. This approach to the problem r e s u l t s i n completely rigorous 
mathematical expressions applicable to the general s t a b i l i t y problem. 

I n deriving many of the equations presented, a coordinate system was 
used to r e l a t e the geometry of the s o i l system with that of the f a i l \ i r e 
plane. The o r i g i n of t h i s coordinate system i s located at the toe of em
bankment slope ( F i g . 2 ) . To simplify application to electronic computer 
prograHBoing, the f i n a l form of the equations was often altered so that 
dimensions may be used as positive numbers without regard to coordinates. 
The term L (see "GlossEiry of Symbols"), which represents the horizontal 
distance from the toe of slope to the v e r t i c a l axis through the center of 
the c r i t i c a l c i r c l e , i s one of the few terms i n the f i n a l equations that 
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Figure 2 . General earth slope problem. 

are measured i n accordance with the o r i g i n a l coordinate system, and con
sideration mast be given to i t s algebraic sign. When the term L i s meas
ured toward the embaiikment, i t s value i s negative, whereas when i t i s 
measured away from the embankment, i t i s po s i t i v e . When other exceptions 
are made, they are indicated i n the text. 

The basic solution of the slope s t a b i l i t y problem, as presented here
i n , applies to the case of a uniformly sloping embankment of homogeneous 
material that i s i n f i n i t e i n extent, situated on an unlimited number of 
layers of subsoil materials, as shown i n Figure 2 , for which the follow
ing simplifying assumptions are made: 

1. The embaiikment i s i n f i n i t e i n extent, has a unlfom slope, and 
i s homogeneous i n nature. 

2. The l i v e loading, inclioding i t s dynamic e f f e c t s , may be represent
ed by a surcharge applied to the embankment. 

3. The subsoil can be represented as homogeneous horizontal s t r a t a , 
uniform i n thickness. 

k. The l i m i t s of the embankment slope, when projected downward onto 
the arc of the t r i a l c i r c l e , f a l l within s t r a t a having the same angle of 
In t e r n a l f r i c t i o n . 

5. The str e s s d i s t r i b u t i o n due to embankment loading i s transmitted 
only v e r t i c a l l y . 
Where i t i s desired to avoid using these assmptlons, supplementary math
ematical expressions are presented i n the section e n t i t l e d "Special Cases." 
(Expressions to correct for the f i r s t and t h i r d assumptions as applied to 
embankments are found xmder the headings "Pore Pressure Distribution" and 
"Dam Analysis"; the second assmptlon may be eliminated i n accordance with 
the explanation given under the heading "Concentrated Live and Dead Load." 
Assumption k can be eliminated by the method described under the heading 
"Shear Moments." A system for reducing the error incitrred by assumption 5 
i s discussed under the heading "Shear Strength with Earth Slope Stress 
Distribution.") 
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Dead Load Moments 
The dead load driving moment for a v e r t i c a l embankment slope with the 

slope corresponding to the v e r t i c a l axis (axis through center of t r i a l 
c i r c l e ) of the f a i l u r e c i r c l e i s expressed by Eq. 1, and the dead, load 
r e s i s t i n g moment i s expressed by Eq. 2. 

Due to the existence of a sloping embaiikment, and the f a c t that the 
v e r t i c a l axis of the f a i l u r e c i r c l e may be located to either side of the 
toe of slope, a correction must be applied to both the driving and r e s i s t 
ing moments. When the v e r t i c a l axis f a l l s outside of the embankment ( L i s 
positive or zero), the correction expressed by Eq. 3 must be subtracted 
from the driving moment. When the v e r t i c a l axis passes through the em
bankment slope ( L i s negative), the value obtained from Eq. k i s to be 
subtracted from the driving moment, and that obtained from Eq. 5 added to 
the r e s i s t i n g moment. 

Shear Moments 
I n non-cohesive materials, there i s general agreement that shear 

strength i s adequately represented by the expression: 
S = p tan ^ 

where p i s the intergranular pressure ( t o t a l pressure minus pore pressure) 
normal to the plane of f a i l u r e , and ^ i s the angle of in t e r n a l f r i c t i o n of 
the material. However, the manner of treatment of shear strength applied 
to cohesive materials i s a point of controversy among engineers ( 7 ) . For 
cohesive s o i l s , the expression most often given i s slmilax to that for co-
hesionless s o i l s , except for the addition of the term C, representing the 
cohesion of the material. Thus, the shear strength of cohesive materials 
may be represented as follows: 

S = C + p tan ^ 
This relationship indicates that the shear strength of any material can 
be thought of as being represented by the addition of a constant (C) and 
a variable (p tan ^ ) . Separate eqxiations are derived representing the re
s i s t i n g moment for each of these components and are referred to as moments 
due to cohesion and f r i c t i o n , respectively. The r e s i s t i n g moment due to 
cohesion i s given i n Eq. 6, and that dixe to f r i c t i o n i s given i n Eq. 7. 

Inasmuch as the derivation of Eq. 7 includes a constant embankment 
load, the moment due to f r i c t i o n must be corrected for the e f f e c t of the 
sloping embankment by subtracting the value obtained i n Eq. 8. 

This correction i s proper i f assmption No. h ±s correct. Where the 
error involved i n assvmiption No. h ±s not permissible, then a more exact 
solution can be made by using Eq. 8 incrementally, using VEilues of and 
L corresponding to the Intersections of the various s t r a t a with the as-
simied f a i l u r e plane projected onto the embankment slope l i n e . The appl i 
cation of t h i s refinement, i t i s believed, may be necessary i n a limited 
number of cases. 

Where the pore pressure e f f e c t s are already included i n the values of 
C and <̂  used i n Eq. 6 and Eq. 7, or where no pore pressure e x i s t s , no 
further correction i s necessary. However, where pore pressure has not 
otherwise been taken into account, a further correction i n shear strength 
i s necessary. Because of the method used i n describing pore pressure, the 



h3 

subject of moments ascrl"bed to those forces i s handled under a separate 
heading. 

DERIVATIONS—SPECIAL CASES 
The foregoing presentation permits the solution of most s t a b i l i t y 

problems involving simple slopes and loading configurations. However, i n 
order to analyze conditions which cannot "be handled by the basic equations 
the following sp e c i a l cases have been Investigated: (a) concentrated l i v e 
and dead load, (b) non-unlfoim slope, (c) s t r a t i f i e d slope, (d) f i n i t e 
berm, (e) f i n i t e embankment, ( f ) dam ana l y s i s , (g) pore pressure d i s t r i b u 
t i o n , (h) shear strength with s t r e s s d i s t r i b u t i o n , and ( l ) toe f a i l i i r e i n 
vestigation. Methods of handling these cases are developed and summarized 
In the following paragraphs. This l i s t of sp e c i a l cases i s not to be con
strued as being the only s p e c i a l cases possible but are presented to dem
onstrate that the derived expressions and the approach used i n t h e i r d e r i 
vations may be extended to include many sp e c i a l cases. 

Concentrated Live and Dead Load 
The Incorporation of loads concentrated on an earth embankment may 

be desirable where heavy l i v e loads are encountered and dynamic effects 
become important. This type of loading i s assumed to e f f e c t the driving 
and r e s i s t i n g moments only, as t h e i r e f f e c t s on shear strength and f r i c 
t i o n are assmed to be taken into account by dis t r i b u t i o n factors described 
i n the t e x t . When the value of moment V i s p o s i t i v e , the r e s u l t i s used 
as a driving moment, and when negative, i t i s used as a r e s i s t i n g moment. 

Concentrated load moment = V = P L ( 1 + I ) ( L - E^) 
where P L = Concentrated load; 

E L = Horizontal distance from toe of slope to 
load P L , with i t s algebraic sign; and 

I = Load increase factor due to dynamic e f f e c t s . 
( E L + L)2 ̂  2R(df+H) - (df+H)2 

Although the above l i m i t i n g equation i s s p e c i f i c a l l y for loads at the 
top of the slope, a s i m i l a r expression can be used for loads e x i s t i n g on 
the o r i g i n a l groimd surface, by using the term H as the height of the 
point of load application above the toe of slope. 

Non-Uniform Slope 
The condition of non-uniformity i n the embankment slope may be repre

sented as a condition of a s t r a t i f i e d embankment. Thus, Eq. 1 can be ap
p l i e d to determine the driving moments. The correction for the driving 
moments may be obtained by extending Eq. 3 , using the proper values of X L 
and L for each stratum, as shown i n Figure 3 A : 

e=si V Q Q 
Drive Correction = ^ ^ (Xg^ - Lg^) 

e=f+l 
where the subscript e i s used to denote embankment s t r a t i f i c a t i o n . Where 
the v e r t i c a l axis passes through the embankment, then the lower l i m i t 
( f + 1 ) i n the expression w i l l be changed accordingly, and a correction 
to the r e s i s t i n g moment w i l l be required. The i d e n t i c a l expression to 
that given above w i l l apply to the r e s i s t i n g moment correction except 
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Figure 3. ( A ) I r r e g u l a r earth slope, exact method; ( B ) . Irregular earth 
slope, alternate method. 
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that the upper l i m i t n w i l l "be reduced to correspond with the l i m i t i n g 
stratum encountered. Fxirther refinements may "be required which may i n 
volve the use of Eq.. k and Eq. 5; however, such d e t a i l w i l l very r a r e l y 
he required. (Xg and take no sign.) 

An alternate p o s s i b i l i t y for the correction of s o i l moments for a 
non-uniform slope may he obtained by Eq. which equation I s derived i n 
accordance with Figure 3B. The derivation of t h i s expression i s based 
upon the determination of the weighted average s o i l c h a r a c t e r i s t i c s of 
the area bovinded by the embankment slope and the v e r t i c a l a x i s . These 
c h a r a c t e r i s t i c s are defined by Equations 9A, 9B and 9C, representing V^, 
Av and L A, respectively. The r e s u l t obtained by means of these expres
sions represents the net driving moment correction due to the slope i r 
regularity, and so i s exact only for the condition where the v e r t i c a l 
axis passes outside of the embankment. Where the vertica l , axis passes 
through the embankment, the correction to the driving moment obtained by 
Eq. 9 w i l l be l e s s than the a c t i i a l , but t h i s i s offset by the f a c t that 
no correction i s made to the r e s i s t i n g moment. When Eq. 9 i s negative, 
i t s numerical value i s added as a correction to the r e s i s t i n g moment. A l 
though the use of Eq. 9 may s l i g h t l y a l t e r the position of the c r i t i c a l 
f a i l u r e plane, i t s p r i n c i p a l e f f e c t i s i n not presenting a true value of 
t o t a l s o i l driving and r e s i s t i n g moments when the v e r t i c a l axis of the 
f a l l i j r e plane passes throiogh the embankment. 

The method of obtaining the shear moment under the general case ap
p l i e s , except that the number of s t r a t a i s Increased. The shear moment 
correction as given i n Eq. 8 must be altered by providing a summation us
ing appropriate values of Xg and for the embankment s t r a t i f i c a t i o n . I t 
i s noted that i n most cases, the embankment slope can be approximated by 
an average value of b without causing an undue error i n the shear moment, 
which w i l l then permit using Eq. 8 d i r e c t l y for correction puJrposes with
out summation. 

S t r a t i f i e d Slope 
The discussion presented under the heading "Non-Uniform Slope" I s 

d i r e c t l y applicable to the s t r a t i f i e d slope condition, except that density 
i s a variable with respect to the s t r a t a Involved. Thus, the following 
equation i s subtracted from the driving moments i n accordance with F i g 
ure 3A: 

Drive Correction = ^ ^ (X^^ - ) 
e=f+l 

The above equation may be applied to the determination of the r e s i s t i n g 
moment i n the same manner as described for the case of non-unifom slope. 

The alternate p o s s i b i l i t y for moment correction, using Eq. 9 as de
scribed for the non-mlfom slope, holds here as w e l l . However, i n apply
ing the alternate method to shear moment correction, the use of a weight
ed average density factor leads to an error which w i l l vary with the range 
of density VEilties involved; however, the error should generally be small. 
The error i n shear correction i s due to the f a c t that the weighted density 
average w i l l vary with the value of L. Although refinements can be made 
to reduce the error, such as r e l a t i n g L and 'YA* i s not believed neces
sary that t h i s be done except where extreme accT;iracy i s needed. Where 
such accuracy i s required, then the alternate method should not be used. 
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F i n i t e Bena 
Where a f i n i t e bem I s used, Eq. 3 I s d i r e c t l y applicable as a re

s i s t i n g moment, and Eq.. 8 i s appllcalDle as a shear moment. These equa
tions represent the e f f e c t of trapezoidal earth forms and are therefore 
applicable to a single or multiple f i n i t e berm configuration, where the 
f a i l u r e arc does not cut through the berm. The alternate p o s s i b i l i t y de
scribed for determination of moments In the case of the non-uniform slope 
applies. I n the case of the f i n i t e berm, a r e s t r i c t i o n i s placed upon the 
radius of the f a i l u r e plane, such that: 

(df + h s r + (B - L) 
2(df + hs) 

where B i s the horizontal distance from the toe of slope to the top of 
berm, as shown i n Figure k. 

Figure k. F i n i t e embaiikment and berm. 

F i n i t e Embankment 
The instance of the f i n i t e embaiikment i s such that the following re

lationship holds, as shown i n Figtire k: 

(df + H)^ + (L + bH + E ) ^ 
2(df + H) R ^• 

where E i s the embankment width. This application I s Important i n the i n 
vestigation of the s t a b i l i t y of roadway embankments along a plane trans
verse to i t s centerline. 

The above equation i s based upon the assmption that the f a i l u r e 
c i r c l e does not i n t e r s e c t the f a r slope of the embarJsment. This assump
t i o n i s v a l i d for the vast majority of slope s t a b i l i t y problems. VJhere 
the engineer prefers to provide a more detailed analysis by investigating 
c i r c l e s which exceed the above l i m i t s for R, then the method of correc
t i o n described i n the i ^ e n d i x imder the heading "Investigation of Zoned 
Dam" may be used. 
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Dam Analysis 
I n order to apply these equations to the analysis of a dam, addition

a l equations must be derived to express the geometry where the f a i l u r e 
c i r c l e passes through the upstream face and also to account for the ex
istence of a zoned (non-horlzontally s t r a t i f i e d ) emhankment. 

Referring to Figure 5 for the variables, the distance above the toe 
of slope that the t r i a l c i r c l e w i l l pass throi;igh any i n t e r i o r slope i s 
given by the following expressions (for a toe or deep c i r c l e ) : 

_ -Ga + VGa^ + (ba^ + l ) (2Rdf - Da^ - df^) ha = 

where GQ = bgDa -
and Da = L + ma 
(The values of hg 

^ a ^ + 
(R - df) 

can be detemined i n accordance 
with the coordinate system and therefore may be 
applied to subsurface s t r a t i f i c a t i o n as w e l l as 
earth slope s t r a t i f i c a t i o n . ) 

The above equation i s applied to determine the l i m i t i n g points along the 
f a i l u r e arc corresponding to the boundary l i n e s for each zone. 

Figure 5« General zoned embankment problem. 

In order to provide for the moment of an i n t e r i o r zone as a correc
t i o n with respect to the o r i g i n a l mass of the dam as a homogeneous mate-
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r i a l , the following equation i s used to correct the driving moment ob
tained i n using Eq. 1: 

M - - [(Da + baJl)3 - (Da + ba Ha)3 
Mdc - — T - ^ 

(Da-l + ba-1 H)3 - (Da-1 + ba-1 ha-l)3 
ba_i 

+ (R - da)3 - (R - da-l)3 + 3R^ (da - da-l) 
where da = ba + df 

A description of the application of the above equations to the solu
t i o n of a s p e c i f i c problem i s given i n the Appendix. 

Pore Pressure Distribution 
I t i s not possible to express the d i s t r i b u t i o n of pore pressure by 

mathematical symbols for application to a l l conditions, even where the 
case of s o i l homogeneity I s assumed. However, an expression can be giv
en based upon the assumption that pore pressure at any point can be de
scribed for a s p e c i f i c problem. I f the position of that point I s known 
with respect to the geometry of the system. Inasmuch as the f a i l u r e plane 
i s e a s i l y coordinated with respect to the toe of slope of the embankment. 
I t follows that i f tabular values of pore pressure are available and also 
coordinated with respect to the toe, that no rigorous mathematical expres
sion i s needed. Thus, I f the pore pressure along the f a i l u r e plane at a 
height da above the low point of the arc I s known, and I f t h i s pressiare 
i s constant for a distance Ad equal to (da - d a _ i ) , then the smaller the 
value of Ad, the greater the accuracy i n the analysis of the e f f e c t of 
pore pressure. 

The problem thus resolves I t s e l f to the description of pore pressure 
at point da- From Figure 2 i t I s evident that the coordinate of any point 
can be expressed with respect to the toe of slope as (da - d f ) , (xa + L ) . 
The l a t t e r designation I s consistent with the d e f i n i t i o n that Xg_ and L are 
negative when measxired toward the embankment. As stated previously, the 
a v a i l a b i l i t y of a master tabulation of pore pressure related to the co
ordinate system employed would be the most accurate approach to the prob
lem f e a s i b l e at t h i s time. However, for application to electronic com
puters where limited storage capacity i s available, i t i s desirable to ap
proximate the value of pore pressiare by r e l a t i n g i t to two independent 
fact o r s , as given i n the following r e l a t i o n : 

Ua = Qa + Faf(H) 

where f ( h ) represents a function of the overbiirden construction load. The 
values of Qa and Fa are dependent only upon the geometry of the system, 
where the term Fa I s used to express the e f f e c t of the earth slope and 
i s a term encompassing a l l other factors affecting pore pressure. Assum
ing a uniform embankment height, the reduction i n shear moment due to pore 
pressxire i s expressed by Eq. 10. The existence of a sloping embankment 
requires a reduction i n the pore pressure. The l a t t e r correction requires 
that Eq. 11 be added to the shear moment. Inasmuch as Eq. 11 i s related 
only to the earth slope, the Q factor i s not involved I n the expression. 

I n order to properly u t i l i z e Equations 10 and 11, I t i s necessary to 
r e l a t e the value of pore pressure with the geometry of the s o i l system un-
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der investigation. The valxies of Qa and Fa are Investigated for applica
t i o n to s o i l s draining v e r t i c a l l y , horizontally and to a case Involving 
pressures i n earth dams. 

In the investigation of v e r t i c a l draining subsoil, i t i s assumed 
that the value of Q i s zero within the l i m i t s of the embankment. From 
the theory of consolidation, the pore pressiare v a r i a t i o n with depth i s 
parabolic; and to demonstrate the case, i t i s assumed that the ground 
surface always permits free drainage. The value of F^ can then be ex
pressed as follows: 

Fa=M^l-^"'^^-^(°'-^)'^f J ' 

for da^df 
where m i s a constant varying from 1 to 2, depending upon whether the con
dit i o n i s one of single drainage, double drainage, or an intemedlate 
drainage condition. The term M i s a factor which represents the maximum 
pore pressure e f f e c t of a unit embankment load. (This equation may be 
altered to s u i t the condition where the upper stratum i s not free drain
ing, by substituting df - da for dĝ .) Pore pressure e f f e c t s beyond the 
l i m i t s of the earth slope can be corrected by use of the Q-term. 

Where only horizontal drainage i s e f f e c t i v e , the value of Fg would 
be constant with depth, and Fa would equal M. Although Q i s considered 
as zero within the l i m i t s of the slope i t may, nevertheless, be added 
when there i s superimposed pressure thro\;igh other means, such as ground 
water movement. Where both horizontal and v e r t i c a l drainage occur, as 
w e l l as water flow, the various terms may be combined to express the de
s i r e d pore pressure d i s t r i b u t i o n . 

The conditions described above pertain to pore pressure below ground 
l e v e l ; however, a necessary consideration i s that of analyzing a combina
tio n of pore pressure dlstribudion i n subsoils as w e l l as slopes such as 
earth dams. To demonstrate t h i s application, i t i s assianed that the equl-
potentlal l i n e s , as w e l l as the phreatic l i n e , can be described eilgebra-
I c a l l y , as i n Figure 6. 

Talcing the toe of the slope to be the origin, the general equation 
for the equipotential l i n e can be expressed as: 

ye = f(xg) + Cg 
Using the approximation that the pore pressure between any v e r t i c a l I n 
crement at a s p e c i f i c horizontal distance from the toe of slope i s con
stant, a s u f f i c i e n t l y large number of Increments i s a r b i t r a r i l y estab
l i s h e d to assure desired accuracy. For any Increment or hypothetical 
stratum located ha above or below the toe of slope the horizontal distance 
from the toe to the intersection of t h i s l i m i t with the f a i l u r e plane i s : 

xa = L - VR2 - (R-df - ha)2 
(The sign i n front of the r a d i c a l i s t for hg^^O). 

Since yg must equal ha on the equipotential l i n e and Xg must equal Xa, 
then Cg must be: 

Cg = ha - f ( x a ) 
Thus, the equation for the equipotential l i n e passing through the f a i l 
ure plane at the height ha must be: 
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ye = f ( x e ) + ha - f ( x a ) 

I f the equation of the phreatic l i n e can be expressed as; 
yp = f(xp) + Cp 

then the point on the phreatic l i n e hp corresponding to ha on the f a i l u r e 
plane can be determined, and the pore pressure at height ha on the f a i l 
ure plane w i l l be: 

Qa = (hp-ha) 
with Qĝ  assumed constant for that portion of the f a i l u r e plane passing 
through the s t r a t m . When Qg_ i s negative, then the phreatic l i n e has been 
exceeded and the pore pressure i s zero. 

Equipotential 
Line 

Phreatic Line 
yp=f(Xp) t Cp 

Drainage 
Filter 

Flow Line 

Ye = ^^^e^ * «e 

Figure 6. Typical flow net for earth dam. 

The foregoing method may be applied to any system of equipotential 
and phreatic l i n e s that can be expressed alge b r a i c a l l y . Although most 
th e o r e t i c a l cases involve equipotential l i n e s of the type shown i n Figure 
6, for demonstration purposes, an application of t h i s method to the draw
down condition where the equipotential l i n e s are v e r t i c a l and the phreatic 
l i n e follows the downstream face of the dam, w i l l produce the following 
general expressions for toe f a i l \ i r e investigations: 

h„ V R 2 - (R-da)g 
b ) 

where L<- •Xa < bH 
and 

Qa = t v (H-ha) 
where bH + E>-Xa>l3H 
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For the case where the f a i l u r e c i r c l e intercepts the downstream slope, 

Qa = ̂ w [(H-lia) -

where -Xa.>bH + E 
b^ = downstream slope of dam 
E = width of cre s t of dam 

This method may be applied to many types of flow net conditions; however, 
i t i s emphasized that each case must be investigated separately to deter
mine that the use of algebraic representation of the equipotentlal and 
phreatic l i n e s w i l l not r e s i i l t i n undesirable error. 

I t i s pointed out that the analysis of pore press\are may, i n certain 
locations along the faili:ire plane, produce a negative net f r l c t i o n a l mo
ment. However, t h i s error i s inherent to the procedure used In the meth
od of s l i c e s and i s compensated i n part by an excess shear resistance ef
fected along other portions of the arc by the neglect of str e s s d i s t r i b u 
t i o n . I n s p e c i f i c instances, i t may be necessary to u t i l i z e s t r e s s d i s 
t r i b u t i o n factors i n the anal y s i s . I n such cases, where neutral stresses 
are large, the e f f e c t of such s t r e s s e s acting on the v e r t i c a l sides of 
hypothetical s l i c e s may be investigated a n a l y t i c a l l y by using the pore 
pressiire designation described herein. 

Shear Strength with Earth Slope Stress Distribution 
There may be instances where assumption 5 i s undesirable. I n such 

cases, i t i s necessary to take into account the ef f e c t of st r e s s d i s t r i b u 
t i o n due to the earth slope. The approximations recommended i n t h i s so
lut i o n are si m i l a r to those discussed under the heading "Pore Pressure 
Distribution." 

Although the total, s t r e s s may be described as the summation of fa c 
tors as i n the case of pore pressure, unlike pore pressure the t o t a l 
s t r e s s at any point i s not perpendicular to the plane of f a i l u r e . I t i s 
therefore necessary to t r e a t each s t r e s s value as two components: 

Pv = + Fv(h) 
Ph = Qh + Fh(h) 

where Py and Ph represent the v e r t i c a l and horizontal s t r e s s , respective
l y , at any point i n the subsoil due to the earth slope. The procedure 
that may be followed i s to determine the shear strength e f f e c t s due to the 
subsoil loading by means of Eq. T, taking the summation to the ground l i n e 
(dp) rather than to the top of slope ( d ^ ) . 

The derivation of the eq\iations for the eff e c t of earth slope s t r e s s 
d i s t r i b u t i o n on the shear strength along the f a i l u r e plane are not given 
herein; however, the equation for the shear strength e f f e c t of the v e r t i 
c a l component P^ i s i d e n t i c a l with that given i n Eq. 7 applied so that 
P^ replaces the term Wg, - Va(^"'ia)' equation for the shear moment 
eff e c t of the horizontal component P^ i s : 

a + n' 
Mfh = 2 ' P h ^ ^ ( X a ^ - X a - l ^ ) 

a = 1 
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The qviallflcatlons applied to the use of t h i s method are similar to 

those stated for pore pressure. Where the values of Q̂ , F^, \ , and Fj^ 
can be related a l g e b r a i c a l l y with respect to the geometry of tlie s o i l sys
tem, then s i m p l i f i c a t i o n s i n the use of electronic computers may be pos
s i b l e . However, i t i s l e f t to the engineer to determine whether or not 
the assumption of s t r e s s d i s t r i b u t i o n i s desirable as compared to the us
ua l assumption that such d i s t r i b u t i o n i s e n t i r e l y v e r t i c a l . 

Toe F a i l u r e Investigation 
Where i t i s desired to investigate s p e c i f i c a l l y for toe f a i l u r e , as 

shown i n Figiire 7, the depth dp to which the c r i t i c a l c i r c l e w i l l pene-

Alternate slope location for 

given value of R 

Figure 7. General toe f a i l u r e problem. 

t r a t e the subsoil i s not constant; therefore, the value of d for each 
stratum w i l l vary with the location of the center of rotation. However, 
the height h of the top of each stratum above the toe of the slope i s 
constant, as the s t r a t i f i c a t i o n i s assmed to be horizontal. To f i n d d 
for any stratum, df must be added to h. The vaJLue of df f o r each c i r c l e 
i s obtained as follows: 

df = R - -^R2 - iP 
Thus, the value of d for any stratum becomes: 

da = ha + df 
Using the appropriate values of d. Equations 1 through 11 may be 

used as previously described, applying the proper driving moment correc
tions . 

LIMITATIONS 
The mathematical expressions presented are limited by the assumptions 

made i n t h e i r derivation. Where such assmptions are not permissible, they 
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may be eliminated, or the associated Inaccuracies reduced, by procedures 
outlined I n the text. The assumption that I s the most cumbersome to elim
inate i s that dealing with the horizontal s t r a t i f i c a t i o n of the subsoil. 
However, suitable expressions may be obtained I n a manner similar to that 
used for non-horizontal s t r a t i f i c a t i o n i n embankments. 

The most d i f f i c u l t assumption to deal with I s that concerning the 
representation of distributed pressure (excess hydrostatic as w e l l as i n -
tergranular) where the theory can at best be presented as an approxima
t i o n of the t r u t h . Where such d i s t r i b u t i o n can be expressed al g e b r a i c a l 
l y , the assumption that such pressures are constant within each stratum 
i s a desirable postulate. I f greater acciiracy i s desired, the nmber of 
s t r a t a may be increased to any p r a c t i c a l l i m i t . Due to the many complex
i t i e s involved i n t h e o r e t i c a l l y analyzing pressure d i s t r i b u t i o n , there 
i s no certainty that the approach described herein I s actually a l i m i t a 
t i o n . 
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APPLICATIONS 
The expressions presented herein are believed to be the most general 

possible for application to the solution of the problem of embankment s t a 
b i l i t y by the c i r c u l a r arc method of a n a l y s i s . These equations are now 
being programmed to permit the use of Bendix G-I5D electronic computer i n 
t h i s work. 

I t i s estimated that for a ten-layer system, under the most adverse 
conditions as concerns the number of var i a b l e s , i t would require no more 
than f i v e minutes to investigate any one c i r c l e location for a program 
set up on the interpretation system. With a reduction i n variables and 
number of l a y e r s , the machine time would be reduced proportionately. I t 
i s expected that those who are f a m i l i a r with computer operations w i l l be 
able to f i n d many simplifying methods i n applying the equations presented. 

Charts and curves, based upon these equations, are now being pre
pared, using parametric values of the variables assuming a c i r c u l a r f a i l -
voce plane having a unit radius. These w i l l permit rapid solution of the 
s t a b i l i t y problem where electronic computers are not available. 

These equations cannot be used to replace the judgment of the s o i l s 
engineer, as such Judgment I s required In properly interpreting the nature 
of the problem, the physical c h a r a c t e r i s t i c s of the subsoil and embankment 
materials involved, as w e l l as to decide upon the a p p l i c a b i l i t y of the 
c i r c l e arc f a i l u r e plane. Although these equations are presented for a 
s p e c i f i c type of f a i l u r e plane, the method of analysis by investigating 
the e f f e c t of each stratum i s applicable to any type of assumed f a i l u r e 
surface. 
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G L O S S A R Y O F SYMBOIS 

a = Stratijm and zone designation subscript; 
Aw = Weighted area f o r correction of driving moments; 
b = Horizontal distance for \init r i s e of earth slope (positive 

when sloping upward and away from the toe of slope); as sub
s c r i p t , represents downstream face of dam; 

B = Horizontal distance from toe of slope to top of berm; as sub
s c r i p t , r efers to berm; 

c = Constant; as subscript, denotes correction; 
C = Cohesion; 
d = Height of top of stratum above low point of f a i l u r e c i r c l e on 

driving side of arc; as subscript, r e f e r s to dam; 
Da = (iHMa); 
e = Qnbankment s t r a t i f i c a t i o n subscript; 
E = aobahkment width ( f i n i t e case), or cre s t width (dams); 

E L = Horizontal distance from toe of slope to concentrated load 
(with sign); 

F = Load di s t r i b u t i o n factor due to earth slope; 
f = Subscript denotes s t r a t m at toe of slope, or f r i c t i o n ; 

f ( ) = Denotes algebraic fimction; 
Ga = baDa-(R-df); 
H = Height of eajrth slope; 
h = Stratum thickness, i n earth slope; as subscript, r e f e r s to 

horizontal component; 
I = Load increase factor due to dynamic e f f e c t s ; 
L = Horizontal distance from toe of slope to v e r t i c a l axis of 

t r i a l c i r c l e ; 
= Same as L, except measured from intersection of bottom of 

stratum e and earth slopeline; 
^A X y z ~ Moment arm, measured horizontally to toe of slope; 

* ' 'm = Constant denoting drainage condition i n subsoil; 
M = Maximum pore pressure e f f e c t of unit load; 

Mj) = Driving moment, dead and l i v e load; 
M])g = Driving moment correction; 
Mf = Frl c t i o n E i l moment; 
Mp = Moment reduction due to pore pressure; 
Mpc = Correction i n moment reduction diie to pore pressure; 

MR = Resisting moment, dead load; 
MRC = Resisting moment correction; 
Mg = Moment due to shear; 
Msc = Shear moment correction; 

n = Subscript designation f o r uppermost stratum; 
p = Intergranular pressure; subscript, designating phreatic l i n e ; 
P = Distributed pressure; 

P L = Concentrated load; 
Q = Load d i s t r i b u t i o n factor; 
R = Radius of t r i a l c i r c l e ; 
S = Shear strength i n subsoil stratimi; 
U = Pore pressure; 
V = As subscript, v e r t i c a l component; 
V = Concentrated load moment; 
Wa = Summation of unit loads above a given stratum; 
X = Horizontal distance from toe of slope i n coordinate systm; 
X = Horizontal distance from v e r t i c a l axis to intersection of top 
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of stratum with the f a i l u r e arc or earth slope l i n e ; 

X L = Horizontal distance from v e r t i c a l axis to top of slope; 
y = Ordinate location of point within coordinate system; 
Y = (R-d); density of stratum; 

•YA = Average density of t o t a l s t r a t i f i e d slope; 
^ = Angle of i n t e r n a l f r i c t i o n ; 

Ad The Incremental v e r t i c a l distance between s t r a t a ; and 
' = As superscript, represents dimensions taken with respect to 

s t r a t a to the side of the v e r t i c a l axis away from the toe of 
slope. 
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APPENDIX 
Mathematical Expressions for the Circular Arc Method of 

Stability Analysis 
INVESTIGATION OF FIVE-LAYER SOIL SYSTEM WITH BERM 

To demonstrate the application of the equations presented i t I s as
sumed that I t i s desired to check the s t a b i l i t y of the proposed embankment 
construction shown i n Flg\ire 8. An i n f i n i t e embankment i s assumed where 

Initial Cen+er 

d 

^3 

Figure 8. Typical ̂ -layer s o i l system s t a b i l i t y problem. 

the slope i s l/b, with four subsoil s t r a t a and one embankment s t r a t m . 
Assuming that a berm may be required for s t a b i l i t y piirposes, a f i c t i t i o u s 
stratum i s added, such that dj^ = dc i n i t i a l l y . The expression for the 
driving moment MD i s obtained by means of Eq. 1. The driving moment needs 
to be corrected by subtracting Mjĵ ,, using Eq. 3 or Eq. k whichever i s ap
plic a b l e . 

Due to the constant thickness of each s t r a t a , the r e s i s t i n g moment i s 
equal to the driving moment l e s s the driving moment of the embankment, 
such that: 

MR = MD 
(R - dq)3 - (R 

This i s corrected by adding Mĵ .̂ as given i n Eq. 5, when L i s negative. 
Discounting the eff e c t of the embankment, the shear moments on either 

side of the v e r t i c a l axis of the t r i a l c i r c l e are equal. Thus, using Eq. 
6 and Eq. 7 to take care of moments on both sides of the v e r t i c a l a x i s , 
the desired shear moment i s obtained. 

56 
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The values of Ŵ  through Wl̂. used i n Eq. 7 are as follows: 
wi = Yaha + -Yshs + y^h^ 
Wg = "Y3h3 + -Vî hî  
W3 = \hl^, 
% = 0 ( i n i t i a l l y ) 

To the above determined shear moment must be added the shear moment 
effe c t of the embankment, given by the following expression: 

a = 5 
£ 1 — 1 , 

plus the values obtained from Eq. 6 and Eq. 7 for a = 6. 
Due to the sloping embankment, Eq. 8 i s used to obtain the shear 

moment correction Vlsci which i s to be subtracted from the shear moment 
effe c t of the embankment. 

Having obtained the necessary general equations and using a suitable 
d e f i n i t i o n for the factor of safety, a program can be set up for solution 
by electronic computer. Although a program i s now being set up to i n 
vestigate a more general case of s o i l s t r a t i f i c a t i o n , i t s application to 
t h i s would be approximately as described hereinafter. 

Inasmuch as the problem i s to Investigate an i n f i n i t e earth slope, 
the program w i l l s t a r t at the minimum radius for the deepest stratum to 
be investigated: 

R = d6 

having i t s center located at: 

L = - I (dg - d5) 
(Equations are available that w i l l permit a more desirable starting point; 
however, the use of such equations i s l e f t to the indiv l d i i a l . ) After t h i s 
i n i t i a l computation, the value of R w i l l be varied i n increments, and L 
maintained as a constant, and the factor of safety ( r a t i o of r e s i s t i n g mo
ments to driving moments) determined for each successive position. When 
a point i s reached where the factor of safety at one location i s greater 
than the preceding, the computer i s returned to the previous location, 
R held constant and L i s varied incrementally away from the slope, u n t i l 
the factor of safety increases, at which point the machine w i l l revert 
back to the lower value. This cycle i s repeated automatically, with the 
computer searching u n t i l the location of the minimi mi safety factor i s de
termined. 

Using the c r i t i c a l center so determined, the computer w i l l automat
i c a l l y progress to the higher subsoil l a y e r s . The Investigation w i l l be 
continued u n t i l the factor of safety at a shallower stratum Increases, at 
which point the machine reverts back to the lower depth. 

Should the minimum factor of safety r e s u l t i n a value l e s s than that 
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desired, then d^, which i n i t i a l l y was set equal to dl).. I s set to Incremen
t a l l y Increase by any desired value Ahg. The value of L w i l l automatical
l y be increased by the value b Ahg, and the value of Wi through Wlj. i s I n 
creased by the value "Y^hg. 

Such t r i a l s can be investigated for the established c r i t i c a l f a i l u r e 
plane and the berm height determined when the desired factor of safety I s 
obtained. I f necessary, the entire problem. Including the berm, can be 
checked by returning the machine to any desired value of R and L. 

Where desired, instead of investigating for a suitable berm height, 
the problem may be set up to determine the minimum slope for a s p e c i f i c 
factor of safety. 

INVESTIGATION OF ZONED DAM 
A t y p i c a l zoned earth dam section on an Impermeable base i s shown i n 

Flgiore 9. The required investigation i s based on a toe c i r c l e a n alysis. 

Figure 9» Typical zoned dam s t a b i l i t y problem. 

For s i m p l i c i t y , i t i s assumed that 'Yg = 'Ŷ  and. that the t r i a l c i r c l e 
i n t e r s e c t s the upstream face of the dam, at a point h^ located by the equa
tio n given under the heading " D e r i v a t i o n s — S p e c i a l Cases: Dam Analysis." 
The analysis proceeds as i t wo\ild for a homogeneous embankment. To de
termine the driving moment, Eq. 1 and Eq. 3 are used from d^ to (H + d f ) . 
By repeating the use of these equations from h3 to H a correction for the 
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effect of water may be obtained, using ('Ŷ  - 7^) i n place of y^^. No cor
rection i s needed for the i n t e r i o r zone as Yc = "^d.- (When L i s positive, 
no moment correction i s made for subsoil moments.) 

The f r i c t i o n a l resistance i s then determined by means of Eq. 7, as
suming a constant f r i c t i o n angle for the entire length of arc and go
ing i n one step from df to (H + d f T h e f r i c t i o n a l correction for the 
downstream slope i s made by means of Eq. 8, by going from L to (L + bH). 
The f r i c t i o n a l correction for the water on the upstream slope i s made by 
going from (h^ + df.) to (H + dj.) i n Eq. 7, and then from (D^ + 123113) to 
(D3 + b3H) i n Eq. o, with b3 taking i t s algebraic sign. 

Knowing the values of h^ and h2 (equation for ha, given under the 
heading "D e r i v a t i o n s — S p e c i a l Cases: Dam A n a l y s i s " ) , from Eq. 7 an approx
imate intergranular pressure correction i s obtained by replacing Tfg, tan 

with ("Ŷ  tan <|.̂  - -Yc tan 4,3), where = (Ya -^c) (H - ha). 
The shear resistance due to cohesion i s obtained by means of Eq. 6, 

using the value of from df to (H + d^) and then correcting for the up
stream water by going from (hg + df) to (H + d f ) . The correction for the 
central core i s obtained by using (Sc - S^) i n place of Sa_ i n Eq. 6 and 
going from (h^^ + df) to (h2 + d f ) . 

I f h3 were found to be greater than H, the c i r c l e arc would not i n 
t e r s e c t the dam backslope and the correction for water would be omitted 
from the ana l y s i s . 

The e f f e c t of pore pressure i s the remaining factor to be established, 
and t h i s i s done as i n the case of the embankment ana l y s i s , by assuming as 
many horizontal layers as i s desirable and applying Eq. 10 and Eq. 11. 

The equations may be used i n a si m i l a r manner for other configura
tions of dams and for deep-seated f a i l u r e s i n dams as w e l l . 
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Stratum a 

equation of Arc X ^ + Y ^ ' B ^ 

X--g- -dy =ria 

Figure 10. Driving and r e s i s t i n g moments. 
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eq.3 

e q 4 

—dr 

Xi-b(dn-df)*L 

Subtract from Drive Moments 

•̂ '•z ''^ b 2 3 Gb 
3 ^ 

Subtract from Drive Moments 

•̂ Dc "n b 2 3 6b 

Add to iSes\st)n^ Moment 

L<0 

Flgiire 11. Correction i n moment-drive and resistance. 
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-^^^ / \ / \ 
d' 1 > ^ 

'ei Ca \ 
da da 

Luhare 'S'̂ j - B 

Figiire 12. Shear mcanent due to cohesion. 
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a-f + 

e-q. 7 Mp - Jjya - TSa (B-dfl)] tan J Ydx 

Q'T) 
+ y~^q tan 4>Q J Y^dx 

a-1 

Luhere Wa'-^'ffa+i (da»|-da) 

Figure 13. Shear moment due to f r i c t i o n . 
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1 dx 
1 

m ^ 
\ 1 
\ ! 
L ! -t—1 I • 1 

\ 1 
\ ! 
L ! -t—1 I • 1 b(d„-<lf) 

e-q. S Mfc' J^n (dn-df)^!^^")? tan <l> dx - J ^rf-^->ll2*-X^ tan • dx 

Figure 1̂4-. Correction i n shear moment due to f r i c t i o n . 
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e*2 

Eq.9A ?fA = i l i 2 ^eKe 

esx 

Figure 15. Driving moment c o r r e c t i o n — a l t e r n a t e method. 
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No Pore 
Pressure in 
Embankment 

'a- f>a+FaTfn{dn-<«f| 

_0« , 0a 
e-q. 10 Mp = J Pa B tan <t>a de *j Ra ̂  tan <J>a de 

Luhere eb= tan'' 4 ^ 

Figure l 6 . Shear moment reduction due to pore pressure. 

XL=L+b(dn-df) 

e e 
E-q. H Mpc=/RI?^tan<t>,de-rF}'l2^an<l>de 

o o 

Figure I7. Correction for shear moment reduction due to pore pressure. 
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Eq. I = ^ [ S R ' ('̂ a - d c i ) + (R- d a f " (R-dd-lT 
a-1 

E q 2 M, 
a=f' , 

6b 

a=-f + 
Ms = 

Y a - i ^ 

E q 7 

+ 

Q=l 

a = r> 
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Tabulat ion of Equat ions (Continued) 

E q. 9B Aw = A X + i'y Ay + Jf̂ z. A » + a+c. 

C L = Vx Ax * Vy Ay Ly + X,: A^Lg gtc 

* 
a-n 
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