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@ THE DETERMINATION of the conditions under which earth slopes will be
stable represents one of the most important applications of soil mechanics.
A number of useful methods for investigating this problem involve the
classical theories of Coulomb, Rankine, and Boussinesq. Other methods in-
volve trial and error analysis for determining the most critical location
of flat and curvilinear failure planes. This paper deals specifically
with the cylindrical fallure plane as spplied to the general solution of
the slope stability problem.

Analyses involving use of the cylindrical plane are based upon the
two-dimensional case (i) in which the failure surface is represented by
an arc of a circle (sometimes referred to as the Swedish Circle). The
ratio of resisting moment to driving moment (teken sbout the center of
the failure circle) or resisting force to driving force (taken along the
failure arc) is used as a basis for describing the relative stability of
the soil loading system for each specific failure surface. By successive
trials, the location of the weakest plane can be established, and its cor-
responding moment (or force) ratio serves as an indication of its factor
of safety. (This ratio is often used in various forms to represent the
factor of safety of the earth slope against sliding. Although there is a
great deal to be said aebout the definition of factor of safety (g), it is
not the purpose of this peper to rationalize the point. It is noted, how-
ever, that the equations presented herein may be used in expressing any
desired definition of factor of safety applied to the circular arc type
of stability analysis.) Inasmuch as there are an infinite number of trial
plenes available for any problem (Fig. 1), the complete solution is often
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Figure 1. Typical circular arc failure surfaces.
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tedious and time consuming. Where time limitations are imposed by design
schedules, it is often impossible to properly locate the most critical
failure plane. A number of attempts have been made to reduce the number
of trials required (2) and, in the case of homogeneous soils, trial was
eliminated (3). Unfortunately, the case of soil homogeneity is rarely if
ever encountered, and to date the general solution for heterogeneous soil
conditions defies simplification. The trial and error process 1s neces-
sary for the present; however, the electronic computer now makes & rig-
orous approach economically feasible.

One of the first papers on the subject of the use of electronic com-
puters for the solution of embankment stability was presented at the 37th
Annual Meeting of the Highway Research Board (4). Other papers have ap-
peared on the subject (2), particularly in Englend where the use of the
Deuce electronic digital computer is widespread. These papers are tech-
nically excellent but are oftentimes limited in scope to suit the immed-
jate needs of the users.

It is the purpose of this paper to present rigorous mathematical ex-
pressions which will permit direct application to computer programming as
well as to organized manual camputation for the determination of the weak-
est failure plane. Simplifying assumptions have been kept at a minimum to
fully utilize the accuracy potential of the high-speed computer. Basic
equations are presented for solution of the simple stability problem in-
volving a constant earth slope of homogeneous material founded on a strat-
ified subsoil. BSpecial cases are also investigated, involving irregular
or stratified slopes, the condition of toe failure, dam analysis, and re-
lated refinements demonstrating the flexibility of the derived expressions.
In some instances, simplifying assumptions are made; however, 1t is left
to the soils engineer to determine the suitability of the assumptions be-
fore attempting to use the equations for any specific problem. Specific
examples of the use of these equations in the solution of a typical road-
way embankment and an earth dam problem are presented in the Appendix.

The Appendix also contains the basic forms from which the equations pre-
sented in the text are derived.

GENERAL DERIVATION

The method of investigating the stability of earth slopes, involving
a multi-layer soil system, has generally been based upon the use of the
method of slices. This involves the determination of forces developed by
vertical segments of the soil system on corresponding incremental lengths
of arc along the assumed failure plane. The method developed herein does
not use the concept of slices but, instead, investigates the forces de-
veloped along the assumed failure plane due to the effect of each soil
stratum. This approach to the problem results in completely rigorous
mathematical expressions applicable to the general stability problem.

In deriving many of the equations presented, a coordinate system was
used to relate the geometry of the soil system with that of the failure
plane. The origin of this coordinate system is located at the toe of em-
bankment slope (Fig. 2). To simplify application to electronic computer
programming, the final form of the equations was often altered so that
dimensions may be used as positive numbers without regard to coordinates.
The term L (see "Glossary of Symbols"), which represents the horizontal
distance from the toe of slope to the vertical axis through the center of
the critical circle, is one of the few terms in the final equations that
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Figure 2. General earth slope problem.

are measured in accordance with the original coordinate system, and con-
sideration must be given to its algebraic sign. When the term L is meas-
ured toward the embankment, its value is negative, whereas when it is
measured away from the embankment, it is positive. When other exceptions
are made, they are indicated in the text.

The basic solution of the slope stability problem, as presented here-
in, applies to the case of a uniformly sloping embankment of homogeneous
material that is infinite in extent, situated on an unlimited number of
layers of subsoil materials, as shown in Figure 2, for which the follow-
ing simplifying assumptions are made:

1. The embankment is infinite in extent, has a uniform slope, and
is homogeneous in nature.

2. The live loading, including its dynamic effects, may be represent-
ed by a surcharge applied to the embankment.

3. The subsoil can be represented as homogeneous horizontal strata,
uniform in thickness.

4. The limits of the embankment slope, when projected downward onto
the arc of the trial circle, fall within strata having the same angle of
internal friction.

5. The stress distribution due to embankment loading is transmitted
only vertically.

Where it is desired to avold using these assumptions, supplementary math-
ematical expressions are presented in the section entitled "Special Cases."
(Expressions to correct for the first and third assumptions as applied to
embankments are found under the headings "Pore Pressure Distribution" and
"Dam Analysis"; the second assumption may be eliminated in accordance with
the explenation given under the heading "Concentrated Live and Dead Load."
Assumption 4 can be eliminated by the method described under the heading
"Shear Moments."” A system for reducing the error incurred by assumption 5
is discussed under the heading "Shear Strength with Earth Slope Stress
Distribution.™)
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Dead Load Moments

The dead load driving moment for a vertical embankment slope with the
slope corresponding to the vertical axis (axis through center of trial
circle) of the failure circle is expressed by Eq. 1, and the dead load
resisting moment is expressed by Eg. 2.

Due to the existence of a sloping embankment, and the fact that the
vertical axis of the failure circle may be located to either side of the
toe of slope, a correction must be applied to both the driving and resist-
ing moments. When the vertical axis falls outside of the embankment (L is
positive or zero), the correction expressed by Eq. 3 must be subtracted
from the driving moment. When the vertical axis passes through the em-
bankment slope (L is negative), the value obtained from Eq. 4 is to be
subtracted from the driving moment, and that obtained from Eq. 5 added to
the resisting moment.

Shear Moments

In non-cohesive materials, there is general sasgreement that shear
strength is adequately represented by the expression:

S =p tan ¢

where p 1s the intergrasnular pressure (total pressure minus pore pressure)
normal to the plane of failure, and ¢ is the angle of internal friction of
the material. However, the manner of treatment of shear strength applied

to cohesive materials is a point of controversy among engineers (7). For

cohesive soils, the expression most often given is similar to that for co-
hesionless soils, except for the addition of the term C, representing the

cohesion of the material. Thus, the shear strength of cohesive materials

may be represented as follows:

S=C+ptan ¢

This relationship indicates that the shear strength of any msterial can
be thought of as being represented by the addition of a constant (C) and
a variable (p tan ¢). Separste equations are derived representing the re-
sisting moment for each of these components and are referred to as moments
due to cohesion and friction, respectively. The resisting moment due to
cohesion is given in Eq. 6, and that due to friction is given in Egq. T.

Inasmuch as the derivation of Eg. 7 includes a constant embankment
load, the moment due to friction must be corrected for the effect of the
sloping embankment by subtracting the value obtained in Eq. 8.

This correction is proper if assumption No. 4 is correct. Where the
error involved in assumption No. %4 is not permissible, then a more exact
solution can be made by using Eg. 8 incrementally, using values of X1, and
L corresponding to the intersections of the various strata with the as-
sumed failure plane projected onto the embankment slope line. The appli-
cation of this refinement, it is believed, msy be necessary in a limited
number of cases.

Where the pore pressure effects are already included in the values of
C and ¢ used in Eq. 6 and Eq. 7, or where no pore pressure exists, no
further correction is necessary. However, where pore pressure has not
otherwise been taken into account, a further correction in shear strength
is necessary. Because of the method used in describing pore pressure, the
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subject of moments ascribed to those forces is handled under a separate
heading.

DERIVATTIONS—SPECTAIL CASES

The foregoing presentation permits the solution of most stability
problems involving simple slopes and loading configurations. However, in
order to analyze conditions which cannot be handled by the basic equations
the following special cases have been investigated: (a) concentrated live
and deed load, (b) non-uniform slope, (c) stratified slope, (d) finite
berm, (e) finite embankment, (f) dem analysis, (g) pore pressure distribu-
tion, (h) shear strength with stress distribution, and (i) toe failure in-
vestigation. Methods of handling these cases are developed and summarized
in the following paragraphs. This list of special cases is not to be con-
strued as being the only special cases possible but are presented to dem-
onstrate that the derived expressions and the approach used in their deri-
vations may be extended to include many special cases.

Concentrated Live and Dead load

The incorporation of loads concentrated on an earth embankment may
be desirable where heavy live loads are encountered and dynamic effects
become important. This type of loading is assumed to effect the driving
and resisting moments only, as their effects on shear strength and frie-
tion are assumed to be taken into account by distribution factors described
in the text. When the value of moment V is positive, the result is used
as a driving moment, and when negative, it is used as a resisting moment .

Concentrated load moment = V = Pr(1 + I) (L - Ep)

where Py, = Concentrated load;
Er, = Horizontal distance from toe of slope to
load Py, with its algebraic sign; and
I = Load increase factor due to dynamic effects.

(B, + L)? € 2R(ag+H) - (dp+H)?

Although the above limiting equation is specifically for loads at the
top of the slope, a similar expression can be used for loads existing on
the original ground surface, by using the term H as the height of the
point of load application above the toe of slope.

Non-Uniform Slope

The condition of non-uniformity in the embankment slope may be repre-
sented as a condition of & stratified embankment. Thus, Eq. 1 can be ap-
plied to determine the driving moments. The correction for the driving
moments mey be obtained by extending Eq. 3, using the proper values of Xi,
and L for each stratum, as shown in Figure 3A:

e=n
R . Yn 3 3
Drive Correct = -
ion 2 : gi (Xe Le )
e=f+1

where the subscript e is used to denote embankment stratification. Where
the vertical axis passes through the embankment, then the lower limit

(£ + 1) in the expression will be changed accordingly, and a correction
to the resisting moment will be required. The identical expression to
that given above will apply to the resisting moment correction except
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Figure 3. (A) Irregular earth slope, exact method; (B) Irregular earth
slope, alternate method.
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that the upper limit n will be reduced to correspond with the limiting
stratum encountered. Further refinements may be required which may in-
volve the use of Bq. 4 and Eq. 5; however, such detail will very rarely
be required. (Xo and Lo take no sign.)

An alternate possibility for the correction of soil moments for a
non-uniform slope may be obtained by Eq. 9, which equation is derived in
accordance with Figure 3B. The derivation of this expression is based
upon the determination of the weighted average soil characteristics of
the area bounded by the embankment slope and the vertical axis. These
characteristics are defined by Equations 9A, 9B and 9C, representing ¥ A’
Ay and Lp, respectively. The result obtained by means of these expres-
sions represents the net driving moment correction due to the slope ir-
regularity, and so is exact only for the condition where the vertical
axis passes outside of the embankment. Where the vertical axis passes
through the embankment, the correction to the driving moment obtained by
Eq. 9 will be less than the actual, but this is offset by the fact that
no correction is made to the resisting moment. When Eq. 9 is negative,
its numerical value is added as a correction to the resisting moment. Al-
though the use of Eq. 9 may slightly alter the position of the critical
failure plane, its principal effect is in not presenting a true value of
total soil driving and resisting moments when the vertical axis of the
failure plane passes through the embankment.

The method of obtaining the shear moment under the general case ap-
plies, except that the number of strata is increased. The shear moment
correction as given in Eq. 8 must be altered by providing a summstion us-
ing sppropriate values of X, and Lg for the embankment stratification. It
is noted that in most cases, the embankment slope can be approximated by
an average value of b without causing an undue error in the shear moment,
which will then permit using Eq. 8 directly for correction putrposes with-
out sumation.

Stratified Slope

The discussion presented under the heading "Non-Uniform Slope" is
directly applicable to the stratified slope condition, except that density
is a variable with respect to the strata involved. Thus, the following
equation is subtracted from the driving moments in accordance with Fig-

ure 3A:

e=n

Drive Correction = E %5:: (X3 - 1e3)
e=f+1

The above equation may be applied to the determination of the resisting
moment in the same manner as described for the case of non-uniform slope.

The alternate possibility for moment correction, using Eq. 9 as de-
scribed for the non-uniform slope, holds here as well. However, in apply-
ing the alternate method to shear moment correction, the use of a weight-
ed average density factor leads to an error which will vary with the range
of density values involved; however, the error should generally be small.
The error in shear correction is due to the fact that the weighted density
average will vary with the value of L. Although refinements can be made
to reduce the error, such as relating L and Yp, it is not believed neces-
sary that this be done except where extreme accuracy is needed. Where
such accuracy is required, then the alternate method should not be used.
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Pinite Berm

Where a finite berm is used, Eg. 3 is directly applicable as a re-
sisting moment, and Eq. 8 is applicable as a shear moment. These equa-
tions represent the effect of trapezoidal earth forms and are therefore
applicable to a single or multiple finite berm configuration, where the
failure arc does not cut through the berm. The alternate possibility de-
scribed for determination of moments in the case of the non-uniform slope
applies. In the case of the finite berm, a restriction is placed upon the
radius of the failure plane, such that:

r »ér +hp)P+ (B - 1)
= 2(d¢ + hy)

where B is the horizontal distance from the toe of slope to the top of
berm, as shown in Figure k4.
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Figure 4. Finite embankment and berm.

Finite BEmbankment

The instance of the finite embankment is such that the following re-
lationship holds, as shown in Figure L:

(af + H)° + (L + bH + E)°
R < 5(ar + H)

where E is the embankment width. This application is important in the in-
vestigation of the stability of roadway embankments along a plane trans-
verse to its centerline.

The above equation 1s based upon the assumption that the failure
circle does not intersect the far slope of the embankment. This assump-
tion is valid for the vast majority of slope stebility problems. Where
the engineer prefers to provide a more detailed analysis by investigating
circles which exceed the above limits for R, then the method of correc-
tion described in the Appendix under the heading "Investigation of Zoned
Dam" may be used.
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Dam Analysis

In order to apply these equations to the analysis of a dam, addition-
al equations must be derived to express the geometry where the failure
circle passes through the upstream face and also to account for the ex-
istence of & zoned (non-horizontally stratified) embankment.

Referring to Figure 5 for the variables, the distance above the toe
of slope that the trial circle will pass through any interior slope is
given by the following expressions (for a toe or deep circle):

-Ga + VGa2 + (be? + 1) (2Raf - Da® - ar°)
bgs + 1

a.ndDa=L+ma

hg =

(The values of hgy can be determined in accordance
with the coordinate system and therefore may be
applied to subsurface stratification as well as
earth slope stratification.)

The sbove equation is applied to determine the limiting points along the
failure arc corresponding to the boundary lines for each zone.

ba-l bg \
a
— L ha |
-l \ do-‘\ ho-[ a

Figure 5. General zoned embankment problem.

In order to provide for the moment of an interior zone as a correc-
tion with respect to the original mess of the dam as a homogeneous mate-
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rial, the following equation is used to correct the driving moment ob-
tained in using Eq. 1:

w. <Ya-Ya [(Da + bei)3 - (D + ba Ha)3
De =76 by

_(Da-1 + a1 H)3 - (Da-1 + ba-1 ha-1)3
bg-1
+ (R -dg)3 - (R - da-1)3 + 38° (da - da-l)]
where dg = bg + dr.

A description of the application of the above equations to the solu-
tion of a specific problem is given in the Appendix.

Pore Pressure Distribution

It is not possible to express the distribution of pore pressure by
mathematical symbols for application to all conditions, even where the
case of soll homogeneity is assumed. However, an expression can be giv-
en based upon the assumption that pore pressure at any point can be de-
scribed for a specific problem, if the position of that point is known
with respect to the geometry of the system. Inasmuch as the failure plane
is easily coordinated with respect to the toe of slope of the embankment,
it follows that if tabular values of pore pressure are available and also
coordinated with respect to the toe, that no rigorous mathematical expres-
sion is needed. Thus, if the pore pressure along the failure plane at a
height dg above the low point of the arc is known, and if this pressure
is constant for a distance Ad equal to (dg - da-li: then the smsller the
value of Ad, the greater the accuracy in the analysis of the effect of
pore pressure.

The problem thus resolves itself to the description of pore pressure
at point dg. From Figure 2 it is evident that the coordinate of any point
can be expressed with respect to the toe of slope as (dg - dr), (xg + L).
The latter designation is consistent with the definition that X, and L are
negative when measured toward the embankment. As stated previously, the
availability of a master tabulation of pore pressure related to the co-
ordinate system employed would be the most accurate approach to the prob-
lem feasible at this time. However, for application to electronic com-
puters where limited storage capacity is available, it is desirable to ap-
proximate the value of pore pressure by relating it to two independent
factors, as given in the following relation:

Uy = Qg + Fyf(h)

where f(h) represents a function of the overburden comstruction load. The
values of Qg and Fg are dependent only upon the geometry of the system,
where the term Fg is used to express the effect of the earth slope and Qg
is & term encompassing all other factors affecting pore pressure. Assum-
ing a uniform embankment height, the reduction in shear moment due to pore
pressure is expressed by Eq. 10. The existence of a sloping embankment
requires a reduction in the pore pressure. The latter correction requires
that Eq. 11 be added to the shear moment. Inasmuch as Eq. 11 is related
only to the earth slope, the Q factor is not involved in the expression.

In order to properly utilize Equations 10 and 11, it is necessary to
relate the value of pore pressure with the geometry of the soil system un-
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der investigation. The values of Qg and Fg are investigated for applica-
tion to soils draining vertically, horizontally and to a case involving
pressures in earth dams.

In the investigatlon of vertical draining subsoil, it is assumed
that the value of Q is zero within the limits of the embankment. From
the theory of consolidation, the pore pressure variation with depth is
parabolic; and to demonstrate the case, it is assumed that the ground
surface always permits free drainage. The value of F, can then be ex-
pressed as follows: ( ) 5

_ mdg - (m-1)d.
wrf ()]

for dg Ldr

vhere m is a constant varying from 1 to 2, depending upon whether the con-
dition is one of single drainage, double drainage, or an intermediate
drainage condition. The term M is a factor which represents the maximum
pore pressure effect of a unit embankment load. (This equation may be
altered to suit the condition where the upper stratum is not free drain-
ing, by substituting df - dg for da') Pore pressure effects beyond the
limits of the earth slope can be corrected by use of the Q-term.

Where only horizontal drainage is effective, the value of Fg would
be constant with depth, and Fy would equal M. Although Q is considered
as zero within the limite of the slope it may, nevertheless, be added
when there is superimposed pressure through other means, such as ground
water movement. Where both horizontal and vertical drainage occur, as
well as water flow, the various terms may be combined to express the de-
sired pore pressure distribution.

The conditions described above pertain to pore pressure below ground
level; however, a necessary consideration is that of analyzing a ccmbina-
tion of pore pressure distribudion in subsolls as well as slopes such as
earth dams. To demonstrate this application, it is assumed that the equi-
potential lines, as well as the phreatic line, can be described algebra-
ically, as in Figure 6.

Taking the toe of the slope to be the origin, the general equation
for the equipotential line can be expressed as:

Ye = f(xe) + ce
Using the approximation that the pore pressure between any vertical in-
crement at a specific horizontal distance from the toe of slope is con-
stant, a sufficiently large number of increments is arbitrarily estab-
lished to assure desired accuracy. For any increment or hypothetical
stratum located hy above or below the toe of slope the horizontal distance
from the toe to the intersection of this limit with the failure plane is:

xg =L - VR - (R-df - hg)2
(The sign in front of the radical is } for hg 30)

Since ye must equal hg on the equipotential line and xe must equal xg,
then ce must be:

Ce = ha - f(Xa)

Thus, the equation for the equipotential line passing through the fail-
ure plane at the height hy must be:
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Ye = £(xe) + hg - £(xa)
If the equation of the phreatic line can be expressed as:

yp = £xp) + cp
then the point on the phreatic line hy corresponding to hg on the failure
plane can be determined, and the pore pressure at height hg on the fail-
ure plane will be:

Qg = (hp-hy) Yy
with Qg assumed constant for that portion of the failure plane passing
through the stratum. When Q, is negative, then the phreatic line has been
exceeded and the pore pressure is zero.

Phreatic Line

F— yp=f(xp) tCp

Equipotential

Line "‘\

hp
hq
_/ ZOT A
dg Drainage
L Filter
a—
Flow Line
Xg

Lye = flxg) + Cg
Figure 6. Typical flow net for earth dam,

The foregoing method may be applied to any system of equipotential
and phreatic lines that can be expressed algebraically. Although most
theoretical cases involve equipotential lines of the type shown in Figure
6, for demonstration purposes, an application of this method to the draw-
down condition where the equipotential lines are vertical and the phreatic
line follows the downstream face of the dam, will produce the following
general expressions for toe failure investigations:

WIR2 - (R_dazz )

L
Q@ =Yu (T,' - hy - b
where L<~xg < bH

and
Qa = v, (H-hy)
where bH + E »-xgq2bH
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For the case where the failure circle intercepts the downstream slope,

Qe = Yy [(H'ha) + W]

where -x,>bH + E

downstream slope of dam
width of crest of dam

by
E

This method may be applied to many types of flow net conditions; however,
it is emphasized that each case must be investigated separately to deter-
mine that the use of algebraic representation of the equipotential and
phreatic lines will not result in undesirable error.

It is pointed out that the analysis of pore pressure may, in certain
locations along the failure plane, produce a negative net frictional mo-
ment. However, this error is inherent to the procedure used in the meth-
od of slices and is compensated in part by an excess shear resistance ef-
fected along other portions of the arc by the neglect of stress distribu-~
tion. In specific instances, it may be necessary to utilize stress dis-
tribution factors in the analysis. In such cases, where neutral stresses
are large, the effect of such stresses acting on the vertical sides of
hypothetical slices may be investigated analytically by using the pore
pressure designation described herein.

Shear Strength with Earth Slope Stress Distribution

There may be instances where assumption 5 is undesirable. In such
cases, it is necessary to tske into account the effect of stress distribu-
tion due to the earth slope. The approximations recommended in this so-
lution are similar to those discussed under the heading "Pore Pressure
Distribution."

Although the total stress may be described as the summation of fac-
tors as in the case of pore pressure, unlike pore pressure the total
stress at any point is not perpendicular to the plane of failure. It is
therefore necessary to treat each stress value as two components:

Py = Q@ + Fy(h)
Ph = % + Fh(h)

vhere Py and Pp represent the vertical and horizontal stress, respective-
ly, at any point in the subsoil due to the earth slope. The procedure
that may be followed is to determine the shear strength effects due to the
subsoil loading by means of Eg. 7, taking the summation to the ground line
(dp) rather than to the top of slope (d,).

The derivation of the equations for the effect of earth slope stress
distribution on the shear strength along the failure plane are not given
herein; however, the equation for the shear strength effect of the verti-
cal component P, is identical with that given in Eq. T applied so that
P, replaces the term Wy - Y5(R-dg). The equation for the shear moment
effect of the horizontal component P, is:

f1
n

a
a

N+

B, 2o (2. x, ;%)

5
=3
]
™

a=1
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The qualifications applied to the use of this method are similar to
those stated for pore pressure. Where the values of Q. , F,, Q,, and F
can be related algebraically with respect to the geometry of the soil sys-
tem, then simplifications in the use of electronic computers may be pos-
sible. However, it is left to the engineer to determine whether or not
the assumption of stress distribution is desirable as compared to the us-
ual assumption that such distribution is entirely vertical.

Toe Failure Investigation

Where it is desired to investigate specifically for toe failure, as
shown in Figure 7, the depth dp to which the critical circle will pene-

Alternate slope location for
given value of R 7/ AN /

I A — z |

‘df L<O L>0 ]df

Figure 7. General toe failure problem.

trate the subsoil is not constant; therefore, the value of 4 for each
stratum will vary with the location of the center of rotation. However,
the height h of the top of each stratum above the toe of the slope is
constant, as the stratification is assumed to be horizontal. To find d
for any stratum, df must be added to h. The value of dp for each circle
is obtained as follows:

dp =R - VR2 - IP
Thus, the value of d for any stratum becomes:
dy = hg + 4p
Using the appropriate values of d, Equations 1 through 11 may be

used as previously described, applying the proper driving moment correc-
tions.

LIMITATTONS

The mathematical expressions presented are limited by the assumptions
mede in their derivation. Where such assumptions are not permissible, they
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may be eliminated, or the associated inaccuracies reduced, by procedures
outlined in the text. The assumption that is the most cumbersome to elim-
inate is that dealing with the horizontal stratification of the subsoil.
However, suitable expressions may be obtained in a manner similar to that
used for non-horizontal stratification in embankments.

The most difficult assumption to deal with is that concerning the
representation of distributed pressure (excess hydrostatic as well as in-
tergranular) where the theory can at best be presented as an approxima-
tion of the truth. Where such distribution can be expressed algebraical-
ly, the assumption that such pressures are constant within each stratum
is a desirable postulate. If greater accuracy is desired, the number of
strata may be increased to any practical limit. Due to the many complex-
ities involved in theoretically analyzing pressure distribution, there
is no certainty that the approach described herein is actually a limita-
tion.
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APPLICATIONS

The expressions presented herein are believed to be the most general
possible for application to the solution of the problem of embankment sta-
bility by the circular arc method of analysis. These equations are now
being programmed to permit the use of Bendix G-15D electronic computer in
this work.

It is estimated that for a ten-layer system, under the most adverse
conditions as concerns the number of variables, it would require no more
than five minutes to investigate any one circle location for a program
set up on the interpretation system. With a reduction in variables and
number of layers, the machine time would be reduced proportionately. It
is expected that those who are familiar with computer operations will be
able to find many simplifying methods in applying the equations presented.

Charts and curves, based upon these equations, are now being pre-
pared, using parametric values of the variables assuming a circular fail-
ure plane having a unit radius. These will permit rapid solution of the
stability problem where electronic computers are not available.

These equations cannot be used to replace the judgment of the soils
engineer, as such judgment is required in properly interpreting the nature
of the problem, the physical characteristics of the subsoil and embankment
materials involved, as well as to decide upon the applicability of the
circle arc failure plane. Although these equations are presented for a
specific type of failure plane, the method of analysis by investigating
the effect of each stratum is applicable to any type of assumed failure
surface.
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GLOSSARY OF SYMBOLS

Stratum and zone designation subscript;

Weighted area for correction of driving mcoments;

Horizontal distance for unit rise of earth slope (positive
when sloping upward and away from the toe of slope); as sub-
script, represents downstream face of dam;

Horizontal distance from toe of slope to top of berm; as sub-
script, refers to berm;

Constant; as subscript, denotes correction;

Cohesion;

Height of top of stratum above low point of failure circle on
driving side of arc; as subscript, refers to dam;

(I*Ma)i

Fmbankment stratification subscript;

Embankment width (finite case), or crest width (dems);
Horizontsal distance from toe of slope to concentrated load
(with sign);

Ioad distribution factor due to earth slope;

Subscript denotes stratum at toe of slope, or friction;
Denotes algebraic function;

baDa-(R-dr);

Height of earth slope;

Stratum thickness, in earth slope; as subscript, refers to
horizontal component;

Ioad increase factor due to dynamic effects;

Horizontal distance from toe of slope to vertical axis of
trial circle;

Seme as L, except measured from intersection of bottom of
stratum e and earth slopeline;

Moment arm, measured horizontally to toe of slope;

Constant denoting drainage condition in subsoil;

Maximum pore pressure effect of unit load;

Driving moment, dead and live load;

Driving moment correction;

Frictional moment;

Moment reduction due to pore pressure;

Correction in moment reduction due to pore pressure;
Resisting moment, dead load;

Resisting moment correction;

Moment due to shear;

Shear moment correction;

Subscript designation for uppermost stratum;

Intergranular pressure; subscript, designating phreatic line;
Distributed pressure;

Concentrated load;

Load distribution factor;

Radius of trial cirecle;

Shear strength in subsoll stratum;

Pore pressure;

As subscript, vertical component;

Concentrated load moment;

Sumation of unit loads above a given strabtum;

Horizontal distance from toe of slope in coordinate system;
Horizontal distance from vertical axis to intersection of top
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of stratum with the failure arc or earth slope line;

Xy, = Horizontal distance from vertical axis to top of slope;
y = Ordinate location of point within coordinate system;

Y = (R-d); density of stratum;

YA = Average density of total stratified slope;

¢ = Angle of internal friction;
Ad The incremental vertical distance between strata; and
' = As superscript, represents dimensions taken with respect to
strata to the side of the vertical axis away from the toe of
slope.
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APPENDIX
Mathematical Expressions for the Circular Arc Method of
Stability Analysis
INVESTIGATION OF FIVE-LAYER SOIL SYSTEM WITH BERM

To demonstrate the application of the equations presented it is as-
sumed that it is desired to check the stability of the proposed embankment
construction shown in Figure 8. An infinite embankment is assumed where

Initial Center

lo-dg _,_\:}“'% (dg -ds)
[

T s, Cs(ds‘dc,\ T 6:Ce
04:94:C4 H
ds U3.93.C3 e
Ty 05, Cp . ds dg
T € %

Figure 8. Typical 5-layer soil system stability problem.

the slope is 1/b, with four subsoil strata and one embankment stratum.
Assuming that a berm may be required for stability purposes, a fictitious
stratum is added, such that d) = dg initially. The expression for the
driving moment Mp is obtained by méans of Eq. 1. The driving moment needs
to be corrected by subtracting Mp., using Eq. 3 or Eq. 4 whichever is ap-
plicable.

Due to the constant thickness of each strata, the resisting moment is
equal to the driving moment less the driving moment of the embankment,
such that:

Mg = Mp -Z—s[R2 (46 - &5) - (R - d5)3 - (R - d6)3]

This is corrected by adding Mp, as given in Eq. 5, when L is negative.

Discounting the effect of the embankment, the shear moments on either
side of the vertical axis of the trial circle are equal. Thus, using Eqg.
6 and Eq. 7 to take care of maments on both sides of the vertical axis,
the desired shear moment is obtained.
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The values of Wj through W) used in Eq. 7 are as follows:
W1 =Yoh2 + ¥Y3h3 + Y)hy,
Wp =7Y3h3 + Yy hy
W3 = Yyhy
Wy =0 (initially)

To the above determined shear moment must be added the shear moment
effect of the embankment, given by the following expression:

Y6 (dg - d5) %S
: 2 ) z 1 tan g [XaYa - Xa-1¥s-1 +
8 =

2 [tan-1 %8 _ tan-1 Za=l
Yq Ya-1

plus the values obtained from Eq. 6 and Eq. 7 for a = 6.

Due to the sloping embankment, Eq. 8 is used to obtain the shear
moment correction Mgc, which is to be subtracted from the shear moment
effect of the embankment.

Having obtained the necessary general equations and using a suitable
definition for the factor of safety, a program can be set up for solution
by electronic computer. Although a program is now being set up to in-
vestigate a more genersl case of soil stratification, its application to
this would be approximately as described hereinafter.

Inasmuch as the problem is to investigate an infinite earth slope,
the program will start at the minimum radius for the deepest stratum to
be investigated:

R = dg

having its center located at:
b
L=-5 (4 - d5)

(Equations are available that will permit a more desirable starting point;
however, the use of such equations is left to the individual.) After this
initial computation, the value of R will be varied in increments, and L
maintained as a constant, and the factor of safety (ratio of resisting mo-
ments to driving moments) determined for each successive position. When
a point is reached where the factor of safety at one location is greater
than the preceding, the computer is returned to the previous location,

R held constant and L is varied incrementally away from the slope, until
the factor of safety increases, at which point the machine will revert
back to the lower value. This cycle is repeated automatically, with the
computer searching until the location of the minimum safety factor is de-
termined.

Using the critical center so determined, the computer will automat-
ically progress to the higher subsoil layers. The investigation will be
continued until the factor of safety at a shallower stratum increases, at
which point the machine reverts back to the lower depth.

Should the minimum factor of safety result in a value less than that
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desired, then ds, which initially was set equal to dj, is set to incremen-
tally increase by any desired value AhB. The value of L will automatical-
ly be increased by the value b Ahp, and the value of Wj through Wi is in-
creased by the value YShB.

Such trials can be investigated for the established critical failure
plane and the berm height determined when the desired factor of safety is

obtained. If necessary, the entire problem, including the berm, can be
checked by returning the machine to any desired value of R and L.

Where desired, instead of investigating for a suitable berm height,
the problem may be set up to determine the minimum slope for a specific

factor of safety.
INVESTIGATION OF ZONED DAM

A typical zoned earth dam section on an impermeable base is shown in
Figure 9. The required investigation is based on a toe circle analysis.

{_

o

~

-

Figure 9. Typical zoned dam stability problem.

For simplicity, it is assumed that ¥, = Y3 and that the trial circle
intersects the upstream face of the dam, at a point hy located by the equa-
tion given under the heading "Derivations—Special Cases: Dam Analysis."
The analysis proceeds as it would for a homogeneous embankment. To de-
termine the driving moment, Eq. 1 and Eq. 3 are used from dp to (7 + df).
By repeating the use of these equations from h3 to H a correction for the
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effect of water may be obtained, using (Yd - Yw) in place of ¥,. No cor-
rection is needed for the interior zone as Yo = Y3. (When L is positive,
no moment correction is made for subsoil moments. )

The frictional resistance is then determined by means of Eq. 7, as-
suming a constant friction angle ¢35 for the entire length of arc and go-
ing in one step from dr to (H + dr). The frictional correction for the
downstream slope is made by means of Eq. 8, by going from L to (L + bH).
The frictional correction for the water on the upstream slope is made by
going from (h3 + dg) to (H + dp) in Eq. 7, and then from (D3 + b3h3) to
(D3 + b3H) in"Eq. 8, with b3 taking its algebraic sign.

Knowing the values of hj and ho (equation for hg, given under the
heading "Derivations—Special Cases: Dam Analysis"), from Eq. 7 an approx-
imate intergranular pressure correction is obtained by replacing Y, tan
bg with (Yg tan ¢g - Yo tan ¢.), where Wo = (Yg -¥o) (H - hp).

The shear resistance due to cohesion is obtained by means of Eq. 6,
using the value of 53 from de to (" + df) and then correcting for the up-
stream water by going from (h3 + dp) to (H + df). The correction for the
central core is obtained by using (S, - Sd) in place of Sy in Eq. 6 and
going from (h; + df) to (ho + dp).

If h were found to be greater than H, the circle arc would not in-
tersect the dam backslope and the correction for water would be omitted
from the analysis.

The effect of pore pressure is the remaining factor to be established,

and this is done as in the case of the embankment analysis, by assuming as
many horizontal layers as is desirsble and applying Eq. 10 and Eq. 11.

The equations may be used in a similar manner for other configura-
tions of dams and for deep-seated failures in dams as well.
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Figure 10. Driving and resisting moments.
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Figure 12. Shear moment due to cohesion.
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d=i
a=f
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an
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Figure 13. ©Shear moment due to friction.
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XL Xy
Eq8  Mg® .f'crn(dn—deez- Xt tan ¢dy- [ 0,.(%‘—)«]22-# tan @ dy
° L

Figure 14. Correction in shear moment due to friction.
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Figure 15. Driving moment correction—alternate method.
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Eq10  Mp: [ RaR" tan dg de+ [ FhR% tan dade
Oq- G-

R a4 Xa
where 6g= tan Yo

Figure 16. Shear moment reduction due to pore pressure.
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Figure 17. Correction for shear moment reduction due to pore pressure.
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Tabulation of Equations

M, = Z l‘ée[sk‘ (da - dan) + (R-da)’ - (R-da-o’]

ars|

a=f

Mg = Z %[3‘?2(&;- dy ) + (R-dy)° - (R-d;_\)g]
a=|
M, = %"; (x2-1?) Eq 4 MDC=¥_; X3
Mge = -g% L3
q=+‘l
o L X X
M, = R* Cq (tan™' 22 - 4gn”! Xa-t
: QZ. a (fan™" X et )
c:F'
a=n
Mg = ton ¢q [Wo-Xa(R-du\:l[Xan‘Xa_Nq.l + R*(tan” Xe —tan! &.")]
o 2 Ya Yo-l
a=f'

+ - Yo tan ¢a [RZ(XQ - Xq_O"g(Xé - X:_|)]

a={
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Tabulation of Equations (Continued)

xz
Eq.8 Mg = _g'; tan ¢, (Xf VR®-X? +XLRz+an"-J——szx‘z-)+;_'L+onbl\‘(|a2-xﬂa
- 2 2 -} L2 _ x =
30 tang, (PVREL + R*H a5 ) - Ssang R 1)

Eq. 9 Mpe= Ay (LaLla) + 4 W HL?

Eq. 9A ¥, = Yo hx + Yyhy +¥; he + ete.

hx + hy + hz + ete.

EqQB Aw=yxAx+¥yAy +szz +ete.

¥x AxLlx + YyAy Ly + Yz AzLz + ete

.9C =
Ea. 9 La YxAx + ¥y Ay + ¥  Az+ efe.

¢I=~rI
*

a=n
- Xa < x -
o] = R? E Pa t+an' 2o -4 a-1
Eq. 1 MP L a un(‘)c( an Ya an Yo-l)

— R"F.X +dn¢. -\ 'xE ." 2 g2 -L’ L2 _ , 242
Eq ” Mpc— —'L—(X\j'qn R’_X’L.‘- R‘XL l..z 'f‘on R‘-L" R 'L)
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