The Congestion Approach to Rational Programming

EVAN H. GARDNER, Director of Economic Research, Pennsylvania Department of Highways

Conventional sufficiency ratings are subjective and arbitrary in the assigning of point values, and fail in the comparison of rural with urban facilities. A proposed priorities rating formula for the Commonwealth of Pennsylvania, based on rational sufficiencies, resolves most of these difficulties, and is arbitrary only in accepting desirable speeds as 50 mph (legal) in rural and 30 mph in urban areas.

The formula does not use safety as an independent factor, believing its containment in the structural and functional elements of rating to be a proper evaluation and not to be duplicated within a rating system. Non-uniformity of accident reporting, and non-separability of driver psychology from road characteristics as accident causation further determined this decision.
"Structural" and "functional" factors are evaluated in dates of retirement rather than points.

Date of structural obsolescence is found from the survivorship curves of the BPR Road Life Study, utilizing the area under the curves between 1959 and expiration to determine the average life of the unretired mileage of the applicable road surface. The date obtained is correctible by field observation of visible abnormal failures.

Functional obsolescence is determined by the calculated year in which forecasted demand volumes equal the capacity of the road section. Capacity of rural roads is computed by the method described in "Public Roads", June 1958, using Pennsylvania's 'policy" speeds. Comparable urban capacities were not available, necessitating a research study which found average capacities of city streets at a desired speed of 30 mph .

Because of deferred construction, a significant portion of mileage is currently operating above capacity. An additional technique to determine priority for these road segments calculates the total vehicle delay, using curves of the aforementioned method and the urban study to find average travel speeds for varying volumes of using traffic. All hourly volumes exceeding the hourly capacity volume are analyzed for vehicle-hour delays and accumulated.

Hourly percents of ADT's are necessary to the computations; which required the updating of records from Pennsylvania's 55 permanent count stations. Charts of these findings are contained in the paper.

A modified benefit-cost ratio is obtained by dividing total vehicle-hours delay cost (which represents a relative measure of benefit to be achieved by reconstruction) by the estimated cost of the improvement. This ratio indicates the congestion that can be alleviated per dollar expenditure.

Road sections are tabulated by years of obsolescence, and in descending values of this ratio, insuring that appropriations will be expended to alleviate the greatest amount of vehicle delay. The "needs" study by years is thus unfolded, and, balanced against appropriations, a construction program is established.

Mass data processing is obligatory to such a project, and compromises are obligatory to mass data processing. Available records must be used for expediency, and average conditions assumed generally. Periodic reruns for programs will use updated and amplified records, and indicated research will refine its methods.

THE SUFFICIENCY rating concept as evolved in 1947 (1) was probably the foremost achievement of a century in highway administration. It lifted highway evaluation from the realm of speculation to a position of factual analysis. Its acceptance among progressive organizations was immediate, but due to the great amount of data needed, its implementation was tardy. In fact the data collection seemed so insurmountable to
some organizations, that, at least until recently, they have continued their evaluation on an "I guess", speculative, basis.

Acceptance of the details of the original rating did not meet with unanimity. This was to be expected. Probably no group of highway engineers assembled would assign the same relative importance (point values) to the eleven roadway elements defined in the system, and to the three categories of consideration. Some users also disagreed with the placement of an element in an original category. The cutting and filling that followed the original theory is well documented (2). The disagreements are far from destructive, they are the constructive forces of revolutionary process. It is significant to note that later evolution has become increasingly aware of the category of functional sufficiency and has placed increasing importance upon it. The break-away trend of motor vehicle usage in the past decade has been compelling, and has forced the revision of values. In the opinion of the writer, the $\mathbf{3 0}$ points originally assigned to functional sufficiency in 1947, are obsolete in 1960.

An inherent difficulty of the point value system of sufficiency rating is the subjectiveness involved in the field rating. On a large highway system where it is not feasible for one rater to evaluate the entire system, there arises the human error. Even with one rater operation, is the writer's experience unusual that his assignment of values becomes biased with the increasing number of valuations? That at the start, road surfaces appear low in points, but as the number of low ratings accumulates in quantity, the rater arbitrarily feels that his previous rating of " 5 " should be " 7 " and he thereafter uses the rating of " 7 " without changing the previous " 5 's"?

A further difficulty the writer has experienced with conventional sufficiency ratings, is the inability to compare urban with rural highways. In an urbanized state, with the urban and rural interests in a continual condition of controversy, this problem attains high significance.

The formula described in this paper seeks to reconcile the difficulties of conventional sufficiency rating, and to extend the rating to a determination of priorities for programming improvements.

GENERAL REMARKS

The formula does not bring any originality into the field of highway administration, but it does combine and make a composite of techniques and methods not usually related to each other. It accepts the three conventional categories of sufficiency rating, namely structural, safety and functional. At the present time, no valid means of evaluating the safety category in Pennsylvania has been found which would not distort the over-all rating. Accident ratings as collected are not uniform nor complete, the responsibilities for reporting being scattered between local and state jurisdictions. Further there is no delineation in accident records to separate driver deficiencies from road deficiencies. And who has not been cognizant of the fact that the most hazardous road section is the most accident free section? Again, evaluations of structural and functional sufficiency in themselves rate safety, at least in part. In short, accounting for safety in this system has been relegated to later modifications of the system. The formula therefore confines its consideration to the categories of structural and functional sufficiency.

With many thousands of miles of highway to be analyzed, a rating system must be adaptable to mass data processing; is therefore subject to the use of averages; and cannot consider specifics. For example, in using capacity it cannot, at least at present, recognize that at Broad and Main Streets in Squeedunk Township there is a 20 percent left turn movement east bound to south bound. These inaccuracies in the "averaging" of parameters is believed to be small in percentage, and, within the programming by "years", will be negligible, except for very exceptional conditions.

The method determines the dates in years in which each road section will reach structural retirement and functional obsolescence respectively, and where these dates are significantly different, evaluates and selects the less costly to the road user of (a) continuing congestion compared to (b) increased annual cost by building additional capacity into the structure.

It is obvious that deferred construction and maintenance for years previous to the rating establishes a large percentage of roads having functional obsolescence dates prior to the rating year, and that, in the ultimate objective of programming, these roads will generally lie in the top bracket of priority. In Pennsylvania and probably other states, this percentage of roads can absorb all the legislative appropriations for many years to come.

An additional technique is therefore used to find the degree of congestion that has accrued to functionally obsolete highways. This is accomplished in terms of delay time measured with respect to desired travel time. The term "congestion delay" is used to symbolize this measurement.
"Congestion delay" can be re-defined by saying it is the amount of delay time accruing from the degree of functional obsolescence of a highway. Evaluated in dollars, it would represent the cost the road user is paying for the deficiency, and conversely the savings or benefit that would result from its correction. Knowing the cost of improving the roadway, a modified benefit-cost ratio exists, and if the greatest benefit is to be derived from the funds available, priority should be in descending values of this modified benefit-cost ratio.

As an illustration, suppose Road A has a benefit (congestion) of $\$ 300,000$, and would cost $\$ 500,000$ to improve; Road B has a benefit of $\$ 500,000$ and an improvement cost of $\$ 700,000$; while Road C has a benefit of $\$ 600,000$ and an improvement cost of $\$ 1,200,000$. If priority was determined on benefit (congestion) alone, Road \mathbf{C} would be constructed. But examination reveals that for the same expenditure, $\$ 1,200,000$, there will be $\$ 300,000$ plus $\$ 500,000$, or $\$ 800,000$ of benefits from constructing Roads A and B, as compared to $\$ 600,000$ of benefit from Road C. Some programming

Figure 1. Iife expectancy-bituminous penetration built 1944.

Table 1

TABLE 1 (contmued)
highway cost section road life studies average life data

Construction		$\begin{gathered} \text { Miles Remaining } \\ 1 / 1 / 53 \\ \hline \end{gathered}$	$\begin{gathered} \text { Type Curve } \\ \text { and } \\ \text { Average Lufe } \end{gathered}$	Construction		Miles Remaning 1/1/53	$\begin{gathered} \text { Type Curve } \\ \text { and } \\ \text { Average LLfe } \\ \hline \end{gathered}$		
Year	Mıles			Year	Miles				
Portland Cement Concrete				1019	1438	38	L3-217A		
1910 \& Pr	45	30	None 31 2A	1920	1771	09	L3-218A		
1911	41	00	S6-18 0A	1921	2978	287	R2-220		
1912	28	28	None 410 OA	1922	1235	165	S2-220		
1913	284	144	None 30 2A	1923	10.98	333	S2-250		
1914	236	2.15	None 39.5A	1924 1925	558 405	80	L5-230		
1915	367	15	R5-21 0A	1925	405	88	R3-225		
1916	955	. 73	R5-30 2A	1928	$\begin{array}{r}106 \\ \\ \\ \hline 25\end{array}$	93	None 25 0A		
1917	605 1380	23 543	L5-19 3A	1927 1929	$\begin{array}{r}.25 \\ \hline 14\end{array}$	25	None 26 OA		
1918	1380	543	None 238 A	1929 1930	1429 77	41	R5-14 ${ }_{\text {c }}$		
1919	5909	279	L3-20 3	1930	77 138	01	S6-17 1A		
1920	17990 59828	2834	S2-245	1931 1934	1.38 2.16	22 204			
1921 1922	59828 34490	169.21 123	S2-265	1938	1.16 22	204 21	S5- 23.0 R4- 23.0		
1922	34490 42758	123 170 174	S3 - 280 S3	1946-50	22	21	R4-23.0		
1924	41220	12134	S2-245	1950	156	156	S4-250		
1925	75057	29489	S1-250	Mixed Bituminous					
1926	48565	21649	S1-25.0						
1927	45174	30293	52-29.5	1925	370	00	S6-26 0A		
1928	40642	27880	S2-29.5	1927	24	24	S6-260		
1929	36731	28245	S3-28.5	1933	3154	26.47	R3-270		
1930	$\begin{array}{r}87899 \\ \hline 155\end{array}$	70828	83-285	1934	7347	5974	R4-22.5		
1931 1932	15515 7410	12594 6433	S3-27 53 3	1935 1936	8417 2547	${ }^{67} 04$	S2-240		
1933	17252	132.35	S1-285	1937	2502	2244 10.33	R3-24.5		
1934	121.33	11001	S2-310	1938	5329	5056	R4- 23.5		
1935	9575	8116	S2-260	1939	19.45	1783	R3- 23.5		
1936	11615	8985	S1-245	1940	4034	3584	S3-18.0		
1937	15042	118 989 98	S1-23.5	1941	7918	7644	R4-19.5		
1938 1939	11081 93 57	9807 81 81	$82-235$ $81-23$	1942 1943	2511 1067	20.03 98	S0 - 19.0		
1940	7519	6877	S2-22.5	1944	1067 401	973 401	S2-17.0		
1941	17491	17277	83-250	1945	754	754	S4-17.0		
1942	10369	10036	S2-245	1946	1916	1853	S2 - 15.0		
1943	7263	6063	S2-15.0	1947	30.74	2887	S1-15.0		
1944	2098	2088	S2-250	1948	5347	5388	S1-15.5		
1945	524 2700	450 2615	R1-19.5	1949	6300	6222	S1-16.5		
1947	27 6504	2615 6418	R3 - 170 $81-25.0$	1950 $1951-52$	5047 21063	4877	S0-15.0		
1948	12306		S 82	1951-52	21063	21063	S2-15.0		
1949-52	34055	34055	S3-250	Bituminous Penetration					
Brick or Block				1917	92	00	S6-70A		
1904 \& Pr	598	272	None 41 0A	1920	650	$\begin{array}{r}00 \\ 1 \\ \hline\end{array}$	R5- 7. 4A		
1905	25	25	Nout 49 0A	1922	412 1523	154 458	None 17 5A		
1906	86	37	14-36 2A	1923	377	${ }^{1} 54$	None 174A		
1907	4.06	34	L4-28 2 A	1924	6875	826	L0-13.5		
1908	974	06	\$2-24 3A	1925	7320	2730	R1-17.7A		
1909	543	02	S3-248A	1926	3987	1365	R3-23.3		
1910	667	03	L5-266A	1927	2262	15.12	R2-240A		
1911	541 844	00 00	L5-149A	1928	711	218	None 177 7A		
1913	1534	796	None, 33 4A	1930	192 676	500	S8- 110 A None 23		
1914	1195	100	R3-21 7A	1931	34. 89	2430			
1915	1087	200	L3-26 OA	1932	287	271	Rone 22 en		
1916	$8{ }^{33}$	514	None 348A	1934	348	323	None 20 OA		
$\begin{aligned} & 1917 \\ & 1918 \end{aligned}$	1097 292	00 08	$\mathbf{L 5}-194 \mathrm{~A}$	1940	704	704	S6-16.0		
		08	R2-18 6A						

formulas overlook this principle. Arranged in descending values of modified benefitcost ratio, the priority becomes

Road B - 0.714
Road A - 0.600
Road C - 0.500
The complexity and mass of data to be handled for any but the smallest of highway systems, compels the use of electronic data processing. Any attempt to use manual processing would find the information obsolete before the program could be issued. It is therefore incumbent on the development of a formula to have that formula capable of being electronically processed. In the following discourse, the reader will quite often question the use of "averages," "short cuts" and items of a similar nature. The author hopes such questions can be answered as due to the characteristics of electronic data processing.

SUFFICIENCY RATING

Structural Retirement Date

The method seeks to determine the calendar year in which a roadway will require improvement, and ignores detail deficiencies which in reality are maintenance items or are factors modifying capacity. Hereafter, the term "structural retirement date" will be used.

The structural retirement date or structural (in) sufficiency of a roadway is its life expectancy as determined from the road life curves for Pennsylvania highway surfaces. These curves have been plotted from data collected by the Department of Highways as analyzed by the Bureau of Public Roads. Review of the referenced material (3) is suggested for any readers unfamiliar with the subject. Table 1 lists the types of paving by year of construction, and their survivorship curves. From reconstruction of the curves such as that shown in Figure 1 for bituminous penetration built in 1944, the average life expectancy remaining in service after 1959 may be determined by projecting the bisector of the 1959 ordinate horizontally to intersect the curve. The ordinate of the intersection is the year of the average remaining life, which in Figure 1 is $1962{ }^{1}{ }^{1}$

Typical of such a set of curves is the spread of remaining life, approximately ten years in the illustration. Although other factors are involved, it is believed that traffic volume and truck usage are overwhelming determinates of these spreads. Since no study was available to determine the factual relationship, an empirical set of factors was promulgated (4) as shown in Table 2. ${ }^{2}$

The structural retirement date of a specific section of highway, then, is the algebraic sum of (a) the year of average life expectancy and (b) the truck-volume correction in years.

This date of structural retirement is to be supplemented by a field examination. Only in cases of visible failure will the date be voided.

Stated in another way, the author con-

TABLE 2
TRUCK-VOLUME CORRECTIONS

	TRUCK-VOLUME CORRECTIONS	
Vehacles per Day	Commercial Vehicles (Percent)	Correction (Years)
$0-500$	10 or less	+4
$501-3000$	10 or less	+3
$501-3000$	More than 10	+2
$3001-5000$	10 or less	+1
$3001-5000$	More than 10	0
$5001-7500$	10 or less	-1
$5001-7500$	More than 10	-2
$7501-u p$	10 or less	-3
$7501-$ up	More tnan 10	-4

Digressing because of the mass data processing requirements, a saving of "machine" time was found by converting the average lives of the road surfaces into equations. For each type of surface, the date of retirement was plotted against the date of construction and the linear curve of best fit determined by the method of least squares. Figure 2 shows the plotting for cement concrete pavements and Figure 3 shows the composite curves.

Functional Obsolescence Date

In the concept of this paper, functional obsolescence is defined as the date when forecasted traffic volumes will equal the capacity of the highway section at desirable operating speeds. "Desirable operating speeds" are the policy, legal, or terrain speeds established.

Pennsylvania's legal speed limit of 50 mph thus becomes its "desirable operating

[^0]

Figure 2. Iffe expectancy-concrete pavement type 70.
speed, " except where the cost of mountainous or rolling construction dictates a lower speed, or where urban areas necessitate reduced speeds. For emphasis, the definition is restated: All highways should have a capacity, such that, at all times, vehicles will be able to operate at the legal rate of speed or at the maximum rate of speed which economics and terrain permit.

TABLE 3

Equivalent Volume VPH	Operating Speed MPH					
	Sight Distance \%					
	0	20	40	60	80	100
100	52.5	56	57.5	58	58.5	59
200	50.5	53	55.5	56.5	57	57.5
300	48	50.5	53	54.9	56	56.5
400	45	48.5	51	53	54	55
500	42.5	45.5	48	52.5	53	53.5
600	40	42.5	46	49	51	52.5
700	38	40	42.5	46.5	48.5	50
800	375	38.5	40	43	46.5	48.5
900	36.5	37.5	38	40	43.5	46
1,000	36	36	37.5	39	41.5	43
1,100	34	35	36	375	38.5	40
1, 200	33.5	34	345	35	36	37.5
1,300	32.5	33	33.5	33.5	34	34.5
1,400	32	32.5	32.5	33	33	33.5
1,500	-	-	-	-	-	-

For the purpose of this paper, the following policy levels, hereinafter designated as the "desirable operating speed" are used:

Rural, Flat Terrain - 50 mph
Rural, Rolling Terrain - 40 mph Rural, Mountainous Terrain - 35 mph Urban Streets - 30 mph
It follows then that "capacity" as used for definition, is the number of vehicles that the road section will pass at these desired operating speeds.

The research of Schwender, Normann and Granum (5) ${ }^{3}$ provide the means for determining this relationship for rural roads. Their curves (5) can be converted to provide the parameter. The ADT is obto provide the parameter. The ADT is obtained from "a 30th highest hourly volume during the year of 12 percent of the average
daily traffic." Table 3 has been developed from their curves for 60 mph Design Speed Highways, using miles per hour as the operating speeds, and vehicles per hour as volume (12 percent of ADT).

[^1]TABLE 4
URBAN STREET CAPACITIES

$\begin{gathered} \text { Width } \\ \text { Curb-to-Curb } \\ \text { Ft } \\ \hline \end{gathered}$	Downtown Parking Permitted VPH	Other Parking Permitted VPH	$\begin{gathered} \text { Width } \\ \text { Curb-to-Curb } \\ \text { Ft } \\ \hline \end{gathered}$	Downtown Parking Permitted VPH	Other Parkıng Permitted VPH
30	246	246	66	414	533
32	250	257	68	430	552
34	253	268	70	445	571
36	257	278	72	461	593
38	261	289	74	477	615
40	265	300	76	492	638
42	272	318	78	508	660
44	279	336	80	524	683
46	286	354	82	543	706
48	293	372	84	562	729
50	300	390	86	581	753
52	314	408	88	601	776
54	328	425	90	620	800
56	341	443	92	640	826
58	355	460	94	661	851
60	369	478	96	682	769
62	384	496	98	703	903
64	389	515	100	723	928

As an example of the use of this table: find the capacity of a road at a desirable speed of 50 mph in rural flat terrain having a design speed of 60 mph and a $1,500 \mathrm{ft}$ sight distance of 60 percent.

Entering the table under the column for 60 percent sight distance, operating speeds of 52.5 mph and 49 mph are found to correspond with 500 vph and 600 vph , respectively. Interpolating, 50 mph capacity is found to be 572 vph .

No comparable data for relating volumes to operating speeds of urban streets could be found in the literature. It was therefore necessary to conduct a field study (6) to obtain this relationship. Table 4 is an adaptation from this study, showing the urban street capacities in vph at the desired operating speed of 30 mph for various street widths, curb to curb, parking permitted.

Figure 3. Composite life expectancy chart.

Future traffic volumes are forecasted from past experience in growth patterns. Pennsylvania maintains 55 permanent traffic count stations which supply the data for establishing growth factors in each of 67 counties. Short counts are made on a continuing program supplemented by special assignment counts.

The year of equality of traffic volume and road capacity (functional obsolescence date) is given by the formula ${ }^{4}$

$$
X=Y+\frac{\log C / V}{\log (1+e)}
$$

where

> X = equality year
$\mathrm{Y}=$ year of known ADT
C = capacity of road section
$\mathrm{V}=\mathrm{ADT}$ of the known year
$e=$ annual expansion factor for the region
Thus, if a road section of 5,000 ADT capacity had a traffic volume of 2,500 vehicles a day in 1956, and the annual expansion factor for the region was 0.05 , it would reach capacity in

$$
X=1956+\frac{\log \frac{5000}{2500}}{\log 1.5}
$$

$$
=1956+14.2=1970
$$

According to the writer's definition, the functional obsolescence for this road would therefore be 1970.

RECONCILIATION OF SUFFICIENCY DATES

Thus far, in this process of road evaluation, two critical years have been found. Most often, these dates will be separated; sometimes widely. A decision must be made on which date is to prevail. For example, suppose the roadsection is structurally retired in 1963, but will not be functionally obsolete until 1970. Should the road be resurfaced in 1963, and, assuming a $15-\mathrm{yr}$ life expectancy, suffer congestion between 1970 and 1978? Or should it be reconstructed in 1963, providing unneeded and wasted capacity from 1963 to 1970 ? Reversing the above dates, suppose the road will befunctionally obsolete in 1963 and structurally retired in 1970. Should the congestion be tolerated for seven more years, or should the road be reconstructed, losing seven years of its structural life?

[^2]${ }^{4}$ Expansion of traffic volumes is compounded as follows:

TABLE 5A
VEHICLE DELAY FACTOR

Desagn Speed 60 MPH				Desired Speed 50 MPH Design Speed 50 MPH							Desıred Speed 50 MPH		
Equivalent Volume (VPH)	Sight Distance \%						EquivalentVolume(VPH)	Sight Distance \%					
	0	20	40	60	80	100		0	20	40	60	80	100
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100	0.0004	0.0002	0.0000	0.0000	0.0000	0.0000
200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	200	. 0027	0.0008	0.0002	. 0000	0.0000	0.0000
300	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	300	. 0050	. 0028	. 0008	0.0004	0.0000	0.0000
400	. 0021	. 0005	0.0000	0.0000	0.0000	0.0000	400	. 0063	. 0038	. 0017	. 0008	0.0004	0.0004
500	. 0035	. 0019	. 0007	0.0000	0.0000	0.0000	500	. 0070	. 0050	. 0027	. 0011	. 0006	0.0004
600	. 0049	. 0035	. 0016	. 0003	0.0000	0.0000	600	. 0078	. 0056	. 0038	. 0022	. 0011	. 0008
700	. 0062	. 0049	. 0035	. 0014	. 0005	0.0000	700	. 0082	. 0066	. 0053	. 0036	. 0022	. 0013
800	. 0067	. 0059	. 0049	. 0032	. 0014	. 0005	800	. 0086	. 0070	. 0063	. 0044	. 0033	. 0022
900	. 0075	. 0067	. 0062	. 0049	. 0029	. 0016	900	. 0094	. 0082	. 0070	. 0056	. 0044	. 0033
1000	. 0079	. 0079	. 0067	. 0055	. 0040	. 0026	1000	. 0099	. 0086	. 0082	. 0063	. 0056	. 0047
1100	. 0093	. 0085	. 0079	. 0067	. 0059	. 0049	1100	. 0103	. 0094	. 0086	. 0078	. 0070	. 0063
1200	. 0098	. 0093	. 0089	. 0085	. 0079	. 0067	1200	. 0108	. 0103	. 0099	. 0086	. 0078	. 0074
1300	. 0107	. 0102	0098	. 0098	. 0093	. 0089	1300	. 0113	. 0108	. 0103	. 0099	. 0094	. 0090

TABLE 5B
VEHCLE DELAY FACTOR

Design Speed 40 MPH			Desyred Speed 50 MPH				Design Speed 40 MPH				Desired Speed 45 MPH		
$\begin{gathered} \text { Equivalent } \\ \text { Volume } \\ \text { (VPH) } \\ \hline \end{gathered}$	Sight Distance \%						EquivalentVolume(VPH)	Sight Distance \%					
	0	20	40	60	80	100		0	20	40	60	80	100
100	0.0060	0.0053	0.0050	0.0050	0.0050	0.0050	100	0.0037	0.0030	0.0027	0.0027	0.0027	0.0027
200	0.0070	0.0080	0.0056	0.0053	0.0050	0.0050	200	0.0047	0.0037	0.0033	0.0030	0.0027	0.0027
300	0.0082	0.0063	0.0056	0.0056	0.0050	0.0050	300	0.0059	0.0040	0.0033	0.0033	0.0027	0.0027
400	0.0094	0.0067	0.0060	0.0056	0.0053	0.0050	400	0.0071	0.0044	0.0037	0.0033	0.0030	0.0027
500	0.0099	0.0070	0.0063	0.0060	0.0056	0.0050	500	0.0076	0.0047	0.0040	0.0037	0.0033	0.0027
600	0.0103	0.0077	0.0067	0.0060	0.0056	0.0053	600	0.0080	0.0054	0.0044	0.0037	0.0033	0.0030
700	0.0108	0.0086	0.0070	0.0063	0.0060	0.0056	700	0.0085	0.0063	0.0047	0.0040	0.0037	0.0033
800	0.0108	0.0094	0.0077	0.0067	0.0063	0.0060	800	0.0085	0.0073	0.0054	0.0044	0.0040	0.0037
900	0.0113	0.0098	0.0080	0.0074	0.0070	0.0063	900	0.0090	0.0076	0.0067	0.0051	0.0047	0.0040
1000	0.0118	0.0103	0.0094	0.0082	0.0070	0.0067	1000	0.0095	0.0080	0.0071	0.0059	0.0047	0.0044
1100	0.0118	0.0108	0.0099	0.0090	0.0082	0.0074	1100	0.0095	0.0085	0.0076	0.0067	0.0059	0.0051
1200	0.0118	0.0113	0.0108	0.103	0.0094	0.0090	1200	0.0095	0.0090	0.0085	0.0080	0.0071	0.0067
1300	0.0118	0.0113	0.0108	0.0103	0.0103	0.0098	1300	0.0095	0.0090	0.0085	0.0080	0.0080	0.0073

TABLE 5C
VEHICLE DELAY FACTOR

Deasgn Speed 50 MPH			Destred Speed 45 MPH				Design Speed 40 MPH			Desired Speed 45 MPH			
$\begin{aligned} & \text { Equivalent } \\ & \text { Volume } \\ & \text { (VPH) } \\ & \hline \end{aligned}$	Sight Distance \%						Equivalent Volume (VPH)	Sight Distance \%					
	0	20	40	60	80	100		0	20	40	60	80	100
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100	0.0037	0.0030	0.0027	0.0027	0.0027	0.0027
200	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	200	0.0047	0.0037	0.0033	0.0030	0.0027	0.0027
300	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	300	0.0059	0.0040	0.0033	0.0033	0.0027	0.0027
400	0.0041	0.0016	0.0000	0.0000	0.0000	0.0000	400	0.0071	0.0044	0.0037	0.0033	0.0030	0.0027
500	0.0048	0.0028	0.0005	0.0011	0.0000	0.0000	500	0.0076	0.0047	0.0040	0.0037	0.0033	0.0027
600	0.0056	0.0034	0.0016	0.0000	0.0000	0.0000	600	0.0080	0.0054	0.0044	0.0037	0.0033	0.0030
700	0.0060	0.0044	0.0032	0.0014	0.0000	0.0000	700	0.0085	0.0063	0.0047	0.0040	0.0037	0.0033
800	0.0064	0.0048	0.0041	0.0022	0.0011	0.0000	800	0.0085	0.0073	0.0054	0.0044	0.0040	0.0037
900	0.0072	0.0060	0.0048	0.0034	0.0022	0.0011	800	0.0090	0.0076	0.0067	0.0051	0.0047	0.0040
1000	0.0077	0.0064	0.0060	0.0041	0.0034	0.0025	1000	0.0095	0.0080	0.0071	0.0059	0.0047	0.0044
1100	0.0081	0.0072	0.0064	0.0056	0.0048	0.0041	1100	0.0095	0.0085	0.0076	0.0067	0.0059	0.0051
1200	0.0086	0.0081	0.0077	0.0064	0.0056	0.0052	1200	0.0095	0.0090	0.0085	0.0080	0.0071 0.0080	0.0067 0.0073
1300	0.0091	0.0086	0.0081	0.0077	0.0072	0.0068	1300	0.0095	0.0090	0.0085	0.0080	0.0080	0.0073

TABLE 5D
VEHICLE DELAY FACTOR

Design Speed 40 MPH			Desured Speed 40 MPH				Design Speed 35 MPH				Desired Speed 40 MPH		
Equivalent Volume (VPH)	Sight Distance \%						Equivalent Volume (VPH)	Sight Distance \%					
	0	20	40	60	80	100		0	20	40	60	80	100
100	0.0009	0.0002	0.0000	0.0000	0.0000	0.0000	100	0.0044	0.0044	0.0040	0.0040	0.0036	0.0036
200	0.0019	0.0009	0.0005	0.0002	0.0000	0.0000	200	0.0049	0.0044	0.0044	0.0040	0.0036	0.0036
300	0.0031	0.0012	0.0005	0.0005	0.0000	0.0000	300	0.0053	0.0049	0.0049	0.0044	0.0040	0.0036
400	0.0043	0.0016	0.0009	0.0005	0.0002	0.0000	400	0.0053	0.0049	0.0049	0.0044	0.0040	0.0036
500	0.0048	0.0019	0.0012	0.0009	0.0005	0.0000	500	0.0063	0.0053	0.0049	0.0044	0.0040	0.0040
600	0.0052	0.0026	0.0016	0.0009	0.0005	0.0002	600	0.0067	0.0058	0.0049	0.0044	0.0040	0.0040
700	0.0057	0.0035	0.0019	0.0012	0.0009	0.0005	700	0.0067	0.0058	0.0053	0.0044	0.0040	0.0040
800	0.0057	0.0043	0.0026	0.0017	0.0012	0.0009	800	0.0073	0.0058	0.0053	0.0044	0.0040	0.0040
900	0.0062	0.0048	0.0039	0.0023	0.0019	0.0012	900	0.0073	0.0063	0.0053	0.0049	0.0044	0.0044
1000	0.0067	0.0052	0.0043	0.0031	0.0019	0.0016	1000	0.0073	0.0063	0.0058	0.0053	0.0049	0.0044
1100	0.0067	0.0057	0.0048	0.0039	0.0031	0.0023	1100	0.0073	0.0063	0.0048	0.0053	0.0049	0.0049
1200	0.0067	0.0062	0.0057	0.0052	0.0043	0.0039	1200	0.0078	0.0067	0.0063	0.0053	0.0049	0.0049
1300	0.0067	0.0062	0.0052	0.0052	0.0052	0.0048	1300	0.0078	0.0087	0.0067	0.0063	0.0058	0.0058

The analysis to find which answer is more economical to the highway user is laborious. Carried out manually for 54,000 miles of highway, it would seem impractical. But with electronic data processing, it becomes a few hours of machine time.

It consists of determining the summation of the annual costs which will accrue from each alternative, and selection of the less costly.

Annual costs of construction are computed by conventional methods, allowing for overhead and maintenance and using average life expectancies of the road surfaces. The author prefers the useful life as being the sum of the lives of the original surface and one resurfacing, where the traffic volume expansion is not expected to greatly exceed the ultimate capacity. On high volume roads, the useful life is taken as that of the original surface. Because annual costs are peculiar to each particular state or jurisdiction, this paper will not present those found in Pennsylvania.

Annual costs of congestion delay are not so readily calculated. It will be necessary at this point to depart from the central theme to what must be an extensive description of computing congestion delay costs.

CONGESTION DELAY COST

Congestion Delay Time

It is axiomatic that vehicle operating speeds decrease as traffic volumes increase. The relationship has been established in varying degrees by many researchers (5, 6, 7, 8).

Since travel time is an inverse function of speed, a corollary of the axiom follows that travel time increases with increasing traffic volumes.

At some critical point in the relationship "congestion" is encountered. That critical point is the point at which actual operating speeds equal desired operating speeds. It is the point of "capacity" as defined above. If the actual operating speed falls below the capacity speed, "congestion delay" is encountered. From the research of Schwender, Normann and Granum (5), and of Coleman (6), come the tools for finding the delay for any degree of congestion measured in vehicle hours.

To demonstrate, assume the desired operating speed to be 40 mph on a $60-\mathrm{mph}$ design-speed rural highway, having a 40 percent sight distance. Table 3 shows that operating speeds drop to 40 mph at a volume of 800 vph . This is the capacity as defined. If the volume increases to $1,100 \mathrm{vph}$, the operating speed falls to 36 mph . At

Figure 4. Travel time-arterial two-way streets.
$40 \mathrm{mph}, 0.025 \mathrm{hr}$ will be required to travel one mile, and at 36 mph 0.028 hr is required. The difference of 0.003 hr to 1,100 vehicles amounts to 3.30 vehicle hours of congesting delay during that hour.

As a manual operation, such calculations would be prohibitive for a highway system of any great mileage. With electronic data-processing, however, it becomes feasible, and to save machine time, the calculation method is altered. The difference in travel time is the difference in the reciprocals of the speeds.

Expressed as an equation:
$\mathrm{D}=\frac{1}{\mathrm{AS}}-\frac{1}{\mathrm{DS}}$
where
D = delay in hours to one vehicle
AS = actual operating speed at the volume level
DS = desired operating speed
Tables can be prepared for D for each value of traffic volume and for each desired speed condition. Tables 5A through 5E are those applicable to Pennsylvania's requirements.

For example, an existing road has a $40-\mathrm{mph}$ design speed with 100 percent sight distance. What is the delay to $1,000 \mathrm{vph}$ if $50-\mathrm{mph}$ is the desired speed? Entering the table for $40-\mathrm{mph}$ design speed and $50-\mathrm{mph}$ desired operating speed, the delay is 0.0067 vph to one vehicle and $1,000 \times 0.0067=6.7$ hours total congestion delay time.

Correction Factors

It is to be noted that the left hand column of Tables 5 A through 5 E is titled "Equiv-

Figure 5. Travel time-arterial one-way streets.

Figure 6. Travel time-local two-way streets.

Figure 7A. Hourly volumes in percent of ADI primary rural.
lent Volume." So far the demonstration has been confined to "ideal" conditions: 12-ft lane width, level terrain, 5 percent commercial vehicles, etc., the "ideal"conditions stated in Schwender, Normann and Granum's paper (5). Any deviations from the ideal find their adjustment in terms of increases in numbers of vehicles that would be required on the "ideal" highway. The adjustments are treated at length in their paper and reiteration here is unnecessary. It should be noted, however, that the delay time from the tables accumulates to the actual number of using vehicles and not to the equivalent volume. Thus, if on other than an ideal facility, a volume of 500 vehicles has an equivalent volume of 700 vehicles, and a delay time of 0.002 hours is indicated, the total delay time is 500×0.002 hours and not 700×0.002 hours.

Congestion delay for urban streets is computed by using certain of the charts from Coleman's paper (6). The essential portions of these charts are reproduced here as Figures 4 through 6.

Figures 4 and 5 apply to state highways, Figure 6 is reproduced for the benefit of jurisdictions which may be concerned. In explanation of Coleman's charts, the parameter of equivalent hourly volume is the passenger car equivalent of the combination of passenger cars and commercial vehicles. The average practical capacity is that found in the Highway Capacity Manual (pp. 84, 86) as recently revised. (The revised charts are herewith reproduced as Figures 9 and 10). Selection of the percent of green time is at the decision of the individual user. Again, because of the mass data processing, a compromise between actual signal timing and average signal timing is mandatory. The author has assumed that the characteristics of a state highway are such that a 65 percent green time is not an unreasonable average. Average travel time in minutes is plotted as the abscissa.

Note that the curves are parabolic in form and that for an ordinate value, two travel times are possible. The upper value lies on the "saturation" portion of the curve re-
sulting from the well-established principle that any demand above possible capacity results in increased travel time for the using volume.

It is therefore prerequisite to using these charts to first determine whether the indicated volume-capacity ratio exceeds the curve reversal points, 1.068 in Figure 4 and 0.91 in Figure 5. (See Appendix A for treatment of values on the upper leg.) This is demonstrated as follows: It is desired to know the total delay time for a one-mile section of arterial street, two-way, parking permitted, having a curb-to-curb width of 60 ft when the volume is 700 vph , the percent commercial being such that the equivalent volume is 900 vph , using 65 percent green time.

Entering Figure 9 at $30 \mathrm{ft}(1 / 2$ of 60 ft), the approach traffic volume is read as $1,400 \mathrm{vph}$ green time; $1,400 \times 0.65$ gives 910 average practical capacity. Equivalent Hourly Volume \div Average Practical Capacity $=900 \div 910=0.99$ and this value lies on the lower leg of the curve. Entering Figure 4 with this ratio value, 3.74 min or 0.0623 hr is found to be the mean travel time and $0.0623 \times 700=43.6 \mathrm{hr}$ total congestion delay.

Accumulation

The above has treated the mechanics of determining the congestion delay for any single hour. For many highways and streets, congestion may occur during the evening peak, or during the morning peak, or both, and in some cases, during the full 24 hours of the day. Quite often analysts will fall into the error of limiting their considerations to peak hour volumes. If all highways were equal in their geometrics, the peak hour comparison of one highway with all other highways would be valid for a functional rating. But geometrics do vary. A 5, 000 ADT highway with 9 -ft lanes in mountainous terrain will certainly have congestion spread over a greater number of hours than a $5,000 \mathrm{ADT}$, $\mathbf{1 2 - f t ~ l a n e ~ h i g h w a y ~ o v e r ~ f l a t ~ t e r r a i n . ~ I n ~ t h e ~ f u n c t i o n a l ~ r a t i n g ~ p r o c e s s , ~ i t ~ i s ~ n e c e s s a r y ~}$

Figure 7B. Hourly volumes in percent of ADI secondary rural.
to accumulate the congestion delay over a $24-\mathrm{hr}$ period. To do so the hourly distribution of the annual average daily traffic must be known.

The data collected from Pennsylvania's permanent traffic counter stations is analyzed and tabulated in many different forms, one of which is the hourly distribution in percent of annual average daily traffic.

For the purpose at hand, data from these stations was grouped into four classifications, averaged, and plotted as the light lines in Figures 7A through 7D. The classifications are: (a) primary rural, (b) secondary rural, (c) recreational and (d) urban.

The heavy line on these charts rearranges the distribution into descending numerical values of the percent. To demonstrate the use of these charts, assume another example: An urban street has a capacity of 250 vph and a 5,000 ADT. During what hours of the day is it congested? From the previous discussion, it is known that congestion occurs in every hour that the volume exceeds 250 vph . Since the division line is $\frac{250}{5000}=5 \%$
a line is drawn across Figure 8 at 5 percent. All hours above this line are congestion delay hours, as shown by the cross hatching.

The convenience of the descending values of percent should now be evident. These values are entered into the computer as a table, and the computer need make only ten searches. Using a "clock" table, the computer would have to compare 24 values. Using a descending percent table the computer needs only to compare those values above the capacity equivalent. In many cases there will be no congestion, or a single hour of congestion, and the machine need make only one or two searches, respectively.

Annual Congestion Delay Cost

The total congestion delay hours having been accumulated for each hour of congestion delay, it is necessary to the author's method to translate it into yearly congestion delay

Figure 7C. Hourly volumes in percent of ADI recreational.
cost. This requires no stretch of the imagination, being the hourly cost of vehicle operation times daily congestion vehicle hours times 365 days.

Hourly cost of vehicle operation does require a stretch of the imagination. The pros and cons of its make-up have been debated in the market place many times in many years. The author makes no contribution to that literature. Suffice it to say that each jurisdiction should compute its own rate, and rest in the assurance that, for the immediate purpose, no serious error will be introduced, since here one highway is evaluated against another, and any error will be constant.

In fact, the cost of delay, except in the reconciliation of structural and functional dates, could be eliminated and the end result attained. The author.feels, however, that "dollars" are more meaningful to the administrator and the legislator than "congestion delay hours." Just as "125, 325 congestion delay hours" are more meaningful to the author than "16 points functional sufficiency."

RECONCILIATION OF SUFFICIENCY DATES - RESUMED

Returning to the central theme, the purpose was to determine the less costly to the road user of the alternates of: (a) reconstruction, thus, eliminating congestion delay, or (b) tolerating congestion for the remaining structural life of the facility. Annual costs of reconstruction have been briefly discussed.

The cost of alternate 2 may be found by computing the sum of the congestion delay cost for the number of years between the functional obsolescence date, and the structural retirement date, using expanded ADT's for each year and dividing by the number of years to find the average annual cost, to which is added annual maintenance and overhead. (A short cut is available by using the average ADT for the period of years. It is pointed out that such treatment could "lose" or gain clock hours of congestion delays. Compare Figure 8.) The author holds that interest is a proper charge to be

added to alternate 1 , since it represents an immediate investment which could be deferred.

The annual costs of the alternates can now be compared either in dollars or in ratio. If the cost of reconstruction is equal to or less than the cost of congestion delay, it is obvious that the facility should be reconstructed during the year of its functional obsolescence date. If the reconstruction cost is the greater, then the facility should be reconstructed during the year of its structural retirement date.

But certain qualifications for policy decision should be interposed at this point. Some allowance should be considered in the cost differential for the following facts:

1. Improved alignment and distance shortening has not been evaluated.
2. Comfort and safety are desirable assets.
3. Acquisition costs for additional right-of-way will probably be higher if deferred.

The author will not offer any dollar value for such differentials. It is a judgement factor for each jurisdiction, but, again for mass data processing, it should be expressed as a percentage.

The case of structural retirement being reached before functional obsolescence occurs is different only in that resurfacing of the facility on the structural retirement date is considered. If the resurfaced life extends beyond the functional obsolescence date, the annual costs of the projected congestion delay should be added to the annual cost of resurfacing and the total compared with the annual cost of immediate reconstruction. The reader will at this point detect other alternatives, including stage construction by widening, but it is not the purpose of this paper to explore too many facets of a many faceted subject.

A year of action has now been determined, and the cost of remedial treatment found.

PROGRAMMING

Needs Study
After the entire highway system has been evaluated by the foregoing operations, it

Figure 8. Congestion hours-urban street.
is possible (it may be practical in some cases) to make a "print out" tabulation showing the needed improvements by years and their costs. What better "needs" study is required, and what better picture can be presented of the financing required? And since the "solutions" are on tape or cards, the "print out" can be arranged and rearranged in many ways. A suggested way is in sequence of road route numbers, so that the administrator has immediately at hand the long range picture of any portion of any highway. Little imagination is needed to visualize the power of such a tool when the administrator is being approached by pressure groups.

Unless the highway department has always had adequate funds at hand so that there are no deferred projects, it will be found that the "needs" in 1960 far exceed even the most optimistic estimates of income. It will be impossible to do the "needs" listed for 1960 , perhaps even in 1961 or 1962. It will be necessary to give a priority rating to the 1960 list of projects, and probably 1961's list and even 1962 's list. A further technique is necessary, which the author designates as the "modified benefit-cost ratio." In practice, it would be calculated at the same time as the foregoing.

Modified Benefit-Cost Ratio

In conventional analyses of "benefit costs", the predominant amount of "benefit" arises from improved travel time over the congested travel time on the existing facility. Other benefits are relatively constant per unit length of a project. The analyses assume that the congestion delay will be relieved and thus become a benefit. This paper makes the same assumption, and contends that congestion delay is a valid basis of rating one existing highway against another. The total vehicle delay cost previously

Figure 9. Intersection capacities of two-way streets fixed time signals.

Figure 10. Intersection capacities of one-way streets fixed time signals.
computed can now be termed "modified benefit", the word "modified" being used to avoid confusion, and the term "modified benefit-cost ratio" being used to retain the well-known concept of benefit-cost analyses. The construction cost will also have been computed during the foregoing operations. Modified benefits divided by the cost gives the modified benefit-cost ratio. Examination of the parameter shows that per dollar of cost, "X" dollars worth of congestion will be relieved.

Priority, then, is positioned in the order of descending values of the modified benefit-cost ratio, insuring that the greatest amount of congestion will be relieved with the funds available.

Program

The "print-out" will now have arranged the "needs" within calendar years, and will have arranged priority within'those years. If Federal Aid systems and other systems require separate treatment, or if geographic-politico distribution must be a part of programming, the "print-out" can handle these details.

Establishment of present and long range programs is then only a matter of what appropriations are available or forecasted for each year, and striking off the sub-total equal thereto in the construction cost column. It is recommended that a contingency fund be inserted in each year's program, to provide for both normal cost contingencies, and for the insertion of emergency projects: bridge collapses, the traffic changes from a new industrial plant, a depression of tax revenues, etc.

It would seem that such a program would be valid for 4 years, firm. A "rerun", however, should be made at two- or three-year intervals withup-dated information, in order that location studies and design drawings will lead the future construction years.

POST PROGRAMMING ANALYSIS

The method proposed does not obviate economic analysis of the programmed improvement. It is incumbent upon the planner, knowing an improvement is to be made, to ask the questions, "should this be on existing alignment?" or "is this commensurate with the network?" or the many questions that should be asked and solved before the new facility is constructed.

REFERENCES

1. Farrell, Fred B., "Conducting Long Range Highway Needs Studies." Public Roads, Vol. 25, No. 6 (Dec. 1948).
2. "Highway Sufficiency Ratings." HRB Bull. 53, Pub. 228.
3. Winfrey, Robley and Farrell, Fred B., "Life Characteristics of Surfaces Constructed on Primary Rural Highways." HRB Proc. (1940).
4. Credit for this and other suggestions is extended to Robley Winfrey, Bureau of Public Roads.
5. Schwender, Harry E., Normann, O.K., and Granum, James O., "New Methods of Capacity Determination for Rural Roads in Mountainous Terrain." HRB Bull. 167 (1957).
6. Coleman, Robt. B., "A Study of Urban Travel Times in Pennsylvania Cities." Pennsylvania Department of Highways (1959).
7. "Highway Capacity Manual." Bureau of Public Roads.
8. Normann, O.K., "The Influence of Alignment on Operating Characteristics." HRB Proc. (1943).

Appendix A

TREATMENT OF VOLUMES EXCEEDING THE SATURATION

It is readily seen from Figure 4 and from the examples worked in the text, that the delay can be determined for volumes up to the volume of saturation. The literature is silent as to the parameters that determine the travel time beyond the saturation point. If in the preceding example the actual volume was 900 and the equivalent volume was $1,100 \mathrm{vph}$, the ratio value becomes 1.21 . It is known that the saturation point has been passed, and that volume has decreased and travel time has increased. But to what point on the curve?

The author advances the theory that the demand volume of $1,100 \mathrm{vph}$ is measured around the saturation point and back on the horizontal scale, and that the ordinate to the saturation curve denotes the saturated travel time for the saturated volume. Further, the difference between $1,100 \mathrm{vph}$ and the saturation volume is carried over and added to the succeeding clock hour volume.

Applying this theory to the problem solution, the point of saturation for the stated condition occurs at

$$
Y=1.07=\frac{\text { Equivalent Hourly Volume }}{910}
$$

Solving

Equivalent Hourly Volume $=974$ vehicles.
The excess of 1,100-974 or 126, measured backwards on the scale becomes 974 126 or 848 . With this new equivalent volume

$$
Y=\frac{848}{910}=0.93
$$

read'on the saturation curve, giving a travel time of 5.76 minutes. However, this delay applies to $\frac{848 \times 900}{1100}=694$ actual vehicles. Then delay time is $\frac{5.76 \times 694}{60}=$ 60.62 vehicle hours and $900-694=306$ actual vehicles are added to the succeeding hours volume.

It is intended to field check this theory. Meanwhile the above solution will satisfy the requirements of the problem, since these extremes are those road sections requiring the highest priority of construction. For relative positioning, the solution will be valid.

[^0]: ${ }^{1}$ Bisecting the area under the curve is the accurate method. The method shown is within tolerable error.
 ${ }^{2}$ A research project is intended to compare actual retirement with the empirical, to accurately determine the relationship between the three factors.

[^1]: The reference omitted shoulder width correction factors, which are: $0 \mathrm{ft}, 90$ percent;
 $2 \mathrm{ft}, 97$ percent; $4 \mathrm{ft}, 100$ percent; and 6 ft or more, 107 percent.

[^2]: $$
 \begin{aligned}
 & C=V(1+e)^{X-Y} \\
 & \frac{C}{V}=(1+e)^{X-Y}
 \end{aligned}
 $$

 $$
 \log \frac{C}{V}=(X-Y) \log (1+e)
 $$

 $$
 X-Y=\frac{\log \frac{C}{V}}{\log (1+e)}
 $$

 $$
 X=Y+\frac{\log \frac{C}{V}}{\log (1+e)}
 $$

