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To develop a better understanding of flexible pavement
behavior it is believed that components of the pavement
structure should be considered to be viscoelastic rather
than elastic materials. In this paper, a step in this
direction is taken by considering the asphalt concrete
surface course as a viscoelastic plate on an elastic
foundation.

Assumptions underlying existing stress and de-
formation analyses of pavements are examined. Rep-
resentations of the flexible pavement structure, im-
pressed wheel loads, and mechanical properties of as-
phalt concrete and base materials are discussed. Re-
cent results pointing toward the viscoelastic behavior
of asphaltic mixtures are presented, including effects
of strain rate and temperature.

Using a simplified viscoelastic model for the asphalt
concrete surface course, solutions for typical loading
problems are given.

@ THE THEORY of viscoelasticity is concerned with the behavior of materials which
exhibit time-dependent stress-strain characteristics. The principles of viscoelasticity
have been successfully used to explain the mechanical behavior of high polymers and
much basic work (_1_) has been developed in this area. In recent years the theory of
viscoelasticity has been employed to explain the mechanical behavior of asphalts

(2, 3, 4) and to a very limited degree the behavior of asphaltic mixtures (5, 6, 7) and
soils (8). Because these materials have time-dependent stress-strain characteristics
and because they comprise the flexible pavement section, it seems reasonable to analyze
the flexible pavement structure using viscoelastic principles. This type of analysis
should develop a better understanding of the behavior of flexible pavements, beyond that
developed using elastic concepts.

Although this type of theoretical analysis will not result in a simple, universally ap-
plicable design formula, it can form the basis for a better understanding of flexible
pavements subjected to loading conditions for which there is no precedent. For ex-
ample, doubt exists among some designers that flexible pavements can accommodate
heavy wheel loads and high tire pressures. If there existed a better understanding of
the mechanics of behavior of the materials comprising the flexible pavement system,
qualitative at least, then perhaps a definitive answer could be established.

It is hoped that this paper provides a step in this direction by illustrating some data
pointing to the viscoelastic behavior of asphaltic mixtures and by illustrating the solu-
tion of typical loading problems.

BRIEF REVIEW OF FLEXIBLE PAVEMENT ANALYSIS

An analysis of flexible pavements with the intent of establishing a rational design
procedure might include the following factors: (a) determination of mechanical pro-
perties of the components of the pavement system, (b) development of suitable methods



of stress and deformation analysis, (c) identification of space and time characteristics
of impressed loads and environmental conditions, and (d) establishment of appropriate
failure criteria.

Although all the above factors are interrelated, factors (a) and (b) are perhaps most
intimately connected. For example, the characteristic differences between the theories
of elasticity, plasticity and viscoelasticity arise from differences in choice of a law
relating stress and strain., To date most of the work related to the structural analysis
of flexible pavements has been concerned with elastic theory of material behavior.

This is not surprising because from a mathematical viewpoint this type of model of
the mechanical properties of real materials is the simplest. As pointed out elsewhere
in this paper, the inadequacy of the purely elastic model for asphalts and asphaltic
mixtures has been demonstrated.

From the standpoint of structural analysis the concentrated normal force or pressure
uniformly distributed over a circular area forms the simplest geometric idealization
of an actual wheel load. Other space distributions (ellipse, tandem loads, etc.) can be
included at the expense of computational effort. It appears, however, that little atten-
tion has been given to the effect of shear forces transmitted to the pavement surface,
an effect which would seem to be particularly important during starting and stopping
of vehicles. The effects of frequency and duration of load application as well as repe-
tition of load have infrequently been considered. These factors are particularly signi-
ficant for materials with frequency-dependent response mechanisms, such as asphaltic
mixtures. Finally, it may be noted that the magnification effect on stress and deforma-
tion produced by moving loads does not seem to be significant at present, although sub-
stantial increases in landing speeds of aircraft coupled with increased wheel loads and
pavement thicknesses could make this problem important. Accordingly, a quasi-static
treatment of stress and deformation analysis is possible.

In formulating a specific boundary value problem for analytical solution, various
levels of approach can be followed. The highest level (that is, fewest assumptions
made) involves the treatment of the pavement system as a multi-layer continuous solid.
This approach has been taken by Burmister (9), for example, in the case of an elastic
material. The computational difficulties associated with this approach are quite severe,
and it is difficult to obtain the effect of changes of various parameters of the system.

A second level of approach, first applied to pavement analysis by Westergaard, treats
the pavement as a plate on an elastic (set of independent springs) foundation. While
simplifying the mathematics considerably, this method suffers from the disadvantage
that stresses in the subgrade (elastic foundation) cannot be determined and further,
that transverse normal and shearing stresses in the plate cannot be determined.
Pickett (10) has extended Westergaard's work to permit determination of subgrade
stresses. This is done by replacing the set of independent elastic springs (or equiva-
lently, a dense liquid) by an elastic solid; however, the mathematics in this solution
is also rather involved. A further approach (11) retains the simplification of the dense
liquid subgrade but allows for the effect of transverse normal and shearing stresses.
Results show that this effect is singificant in the range for which the ratio of radius of
loaded area to pavement thickness unity.

It should be noted that each of the previously mentioned levels of approach has been
applied only in the case of elastic material properties. (A recent paper by Hoskins and
Lee (15) is an exception.) Extension of these results in part for application to visco-
elastic materials is possible through the use of a correspondence principle due to Lee
(12). Finally, it may be noted that the concept of the dense liquid subgrade has been
generalized by Reissner (1_3) to allow for differential shear stiffness in the subgrade,

a more realistic model than the independent spring idea. Some advantages of this ap-
proach for viscoelastic materials have been discussed by Pister and Williams (E).

While maximum stress or limiting strain (or deflection) theories of failure have fre-
quently been applied as design criteria for flexible pavements, it is believed that these
theories are inadequate for application to viscoelastic flexible pavements. A theory
incorporating environmental effects on material properties as well as rate and repetition
of loading and accumulation of deformation is needed. A preliminary step in this di-
rection, applied to the related problem of failure of high polymer solid propellants, has
been taken (16).



VISCOELASTIC BEHAVIOR OF ASPHALTIC MIXTURES

As stated previously, the theory of viscoelasticity is concerned with the relation
between stress as a function of time and strain as a function of time. To illustrate
this behavior conveniently, several mathematical models have been proposed. De-
pending on the imposed conditions of stress or strain and time, these models can be
related to the actual behavior of a particular material. Various models are discussed
in the following paragraphs. To illustrate their suitability to describe the behavior
of asphaltic mixtures, typical results of tests on a particular asphaltic mixture are

resented. Data for the components of this mixture have been described elsewhere
20) and are therefore not included in this paper.

Figure 1a shows a Maxwell element, incorporating in series a spring (representing
elastic behavior with a modulus E1) and 2 dashpot (representing viscous behavior with
a viscosity Mi).

This model represents a material which when subjected to stress, undergoes an
instantaneous elastic deformation together with deformation increasing with time. The
model can also be used to represent a material exhibiting relaxation of stress with time
when the material is held at constant deformation. This type of behavior is shown
in Figure 1b. When the model is quickly deformed to a strain €. and then constrained
so that €, remains constant, the stress will gradually relax with time. The differential
equation relating stress and strain for the Maxwell element is:

de = 1 1 do (1)

at "M otE da

in which o is the applied axial stress. For the condition described above, de 0 and
. : dt
the solution of the equation is

T =0, exp(-—].;‘::— t) (2)
in which 0o = initial stress for the material deformed to strain €; and
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Figure 1. Representing (&) Maxwell model, and (b) relaxation of stress with time for
simple Maxwell model.



o = stress at any time, t, during relaxation of stress at constant strain.
This equation indicates that the stress relaxes exponentially with time. The ratio %’—
has the dimensions of time and is called the relaxation time for the material, and
designated by the symbol, v. Thus the equation can be written:

0 =00 exp (-%) or o=E: € exp (--t.,—.) (2a)

It may be noted that T represents the time required for the initial stress to decrease

to the value %' . For asphaltic mixtures, there is evidence to show that a simple model
is not sufficient to describe the behavior in stress relaxation. It is necessary to couple
either a finite or an infinite number of Maxwell models in parallel. This type of model
(shown schematically in Figure 2) is called a generalized Maxwell model. If the num-
ber of elements is allowed to approach infinity, it may be assumed that the material

has a continuous distribution of relaxation time, that is, E is a continuous function of

T and the equation representing the relaxation of stress at constant strain becomes

<
c=e / E(r) exp(-£) dr @®)

1]
Data from a stress relaxation test on an asphaltic mixture are shown in Figure 3. The
general pattern of stress relaxation is an exponential decay with time. Thus, a Maxwell
type model would probably be suitable for conditions pertaining to stress relaxation
with time.

To illustrate behavior of an asphaltic mixture in creep and creep recovery, use
can be made of a Burgers' model (Fig. 4a). The Burgers' model has the advantage
that it displays under load, instantaneous elastic deformation, retarded elastic deforma-
tion and plastic or viscous deformation (Fig. 4b). Brown and Sparks (3) have found
that this type of model defines the behavior of certain paving asphalts in creep and creep
recovery experiments. In their work it was necessary to couple in series four Kelvin
elements (spring and dashpot in parallel) rather than the one shown in Figure 4a. A
similar type of model could be fitted to the data shown in Figure 5 for asphaltic mix-
tures in creep and creep recovery experiments.

The difficulty with application of the Burgers' model in this case, however, is that
the instantaneous elastic recovery in the specimens is different from the instantaneous
elastic deformation under load. Moreover, data for specimens subjected to various
amounts of creep (not included in this paper) exhibited different amounts of elastic
recovery. For the Burgers' model, the elastic recovery is the same regardless of
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Figure 2. Generalized Maxwell model.
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Figure 3. Stress relaxation with time—asphaltic mixture.

the time over which the specimen is allowed to deform under load. Hence it is believed
that a model similar to the Burgers' model but incorporating this variability of elastic
recovery with time would be more appropriate.

A model depicting such behavior is shown in Figure 6. It may be noted that this
model was also suggested by Kithn and Rigden (4) for asphalts. The behavior of this
model will be discussed in the section containing examples of stress analysis.

To illustrate that a generalized model can be used to represent the behavior of an
asphaltic mixture under load, data from a series of triaxial compression tests at dif-
ferent rates of loading and temperatures of test on the same mixtures (Figs. 8 and 5)
are shown in Figures 7 and 8. The technique for analysis and presentation is based
on the treatment developed by Smith (17).

For a generalized Maxwell model (Fig. 2) subjected to a constant rate of strain,



6
R, the relationship between stress, strain and time is

c=R[°iE(r) [1-e:q>(-f§—,)]dr (4)

Smith (17) has made use of the generalized Maxwell model in his studies of the visco-
elastic behavior of a high polymer, polyisobutylene, under a constant rate of elonga-
tion in simple tension. In his presentation Smith has rewritten the foregoing equation
into an equivalent form for more convenient analysis of the test data. The equivalent
equation is

%=L°1:¢(7)1-[1-exp(-ﬁ—,)]d InT (5)

in which
M(T) is a relaxation distribution function defined such that

M(T) d InTis the contribution to the instantaneous modulus of those elastic
mechanisms whose relaxation times lie between Int and InT+ d InT.

The advantage of this equation from an experimental standpoint is that o/R is a
function only of ¢/R and that data obtained at different strain rates should superpose to
give a single curve on 2 plot of log 0/R vs log €/R. That this occurs for an asphaltic
mix in triaxial compression is shown in Figure 7. Three curves representing three
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different temperatures are illustrated. The stress-strain data shown in the figure are
based on small deformations, up to approximately two percent strain.

To combine data obtained at various temperatures a reduced variable scheme pro-
posed by Ferry (18) can be used. This analysis (17) is based on the assumption that
all relaxation times have the same temperature dependence and that the modulus of each
spring in the model is proportional to the absolute temperature. Introducing these as-
sumptions Eq. 5 becomes
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Figure 5. Creep and creep recovery for asphaltic mixtures subjected to different mag-
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in which
To = reference temperature (25°C or
298°K in this case);

T =temperature of test; and
= ratio of relaxation time at
téemperature T to value at To.

This interpretation has been applied to
the data in Figure 7 and the resultant plot

—— is shown in Figure 8.
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Brodnyan (19) has used a similar tech-
nique to plot the dependence of shear modu-
lus of asphalt as a function of frequency.
The range in values of a, vs temperature tj
for a number of dlfferen’tr asphalts is shown K
in Figure 9. Also in the figure are plotted
the values of aT required to obtain the
curve shown in Figure 8 for the particular
mixture under investigation. It can be |::|
noted that the values fall within the band, s
indicating that the temperature dependence
of the viscoelastic characteristics of the
mixture is related to that of the asphalt—
a not unreasonable conclusion.

In general the data presented in this Fi 6. Model representing viscoelas-
section indicate that asphaltic mixtures tigur:ehavior of agpha.lt niﬁ extension.
are viscoelastic (at least for small de-
formations) and that to depict the visco-
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elastic behavior of an asphaltic mixture a complex type of model is probably required.

EXAMPLES OF STRUCTURAL ANALYSIS OF VISCOELASTIC PAVEMENTS

Two examples which provide qualitative insight into the behavior of flexible pave-
ments are discussed. It must be recognized that the selection of the model for repre-
senting the viscoelastic mechanical properties of the surface course as well as the
selection of the type of load has been dictated by the desire to present the results un-
encumbered by excessive mathematical argument. More realistic problems, for ex-
ample, distributed pressure on a viscoelastic plate, including effects of transverse
normal and shear stress, repeated loads, etc., and more realistic representations of
material properties are currently under study.

Viscoelastic Beam on an Elastic Foundation

The problem of an infinite beam resting on an elastic foundation and loaded with a
time-dependent load will serve to illustrate the effect of time and material properties
on the deflection in a viscoelastic beam (Fig. 10). Considering a beam of unit width,
subjected to a load q(x, t) per unit width, the Bernoulli-Euler equation for the elastic
beam deflection is

in which E is the elastic modulus of the beam, h the beam depth, w the transverse
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deflection, q the load intensity on the beam and k the subgrade modulus. In the case

of a viscoelastic beam, the modulus of elasticity must be replaced by the time-dependent
relation between stress and strain. For the present example a 3-element model,

Figure 10b (or Fig. 6 withMs = 0) exhibiting instantaneous elasticity, creep and re-
covery, has been selected. The stress-strain relation for this model can be written

[E1+1‘1 a%]o‘(t)= [E1E2 +M (E, + Ea) Sat-]i(t) (8)
8
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Figure 10. Schematic diagram of (a) viscoelastic beam on elastic foundation, and (b)
mechanical model of material.

In terms of differential operators Li (t), Le (t) Eq. 8 can be written

Liog=1g€ (8a)

By replacing the modulus of elasticity E in Eq. 7 by the ratio of the operators La/La,
with time dependence of w and q implied, an equation for the viscoelastic behavior of
the beam is obtained

3 4
L. —Llﬁl{g—g [w(x,t)]}+kw(x,t)=q(x,t) ©)
To this equation are added the boundary conditions
ow
w(tm t) == =0
’ ax tooy t

Further, the beam is assumed to be at rest at t =0. The solution of the differential
equation subject to the prescribed boundary and initial conditions can be brought about
through the use of repeated Laplace and Fourier Cosine Transforms. The details will
not be recorded inasmuch as the procedure is not novel. However, it may be noted

that in performing the inverse transformations to recover the time and space dependence
of w, it is more convenient to perform the Laplace inversion before the Fourier inver-
sion. The final result for the deflection due to a concentrated load applied at t =0 and
held constant is

1

ﬁ)} w(x,:tF) =./°‘°°{[1"%F "1_+l;1z—4'] exp [_ (iilzlf) ] % + 1+1nz‘ }cos[(%l.)?xz]dz (10)
g

in which
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is the ratio of the long-time and short-time elastic moduli of the material in bending

and T = 2:—‘1 is the relaxation time of the material under static loading.

The center deflection as a function of time for two values of the ratio of long-time

and short-time elastic moduli, n =% , ﬁ was obtained by numerical integration.

The results are shown in Figure 11. It will be noted that elastic deflection of a
beam with elastic modulus Eg is reached instantaneously. The beam then deforms

viscoelastically attaining asymptotically the deflection of a beam with elastic modulus
Ex.

Repeated Load on an Unconfined Compression Cylinder

As a final example of deformation analysis of viscoelastic materials, the repeated
compressive loading of an unconfined cylinder (Fig. 12b) is discussed. The nature
of the loading (Fig. 12a) is that of a series of load pulses. The axial stress and strain,
using the model discussed in the previous example, are related by Eq. 8. It develops
in this application that it is convenient to define the relaxation time on the basis of the
combined elastic modulus of the two springs rather than for E, only as before. Accord-
ingly, with

where the bracketed expression is the compliance of the two springs in parallel, the
above equation is

[& +@]ot- €+ B[ L 4 2] (11)
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Figure 11. Center deflection vs +time for viscoelastic beam on elastic foundation.
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The solution of this differential equation for one cycle of loading and recovery (Figs.
12a and 12¢) can be conveniently discussed in four steps as follows:
Referring to Figure 12c:

1. Segment a b, instantaneous elastic response at t =0, with

«(0) =E1‘-,|‘- Ea

2. Segment b ¢, viscoelastic strain at constant stress, O<i<ts, with

gy {1 +E [1- o0 1]}

3. Segment c d, instantaneous elastic response at t = to on unloading, with change
in strainA €(to) where

- { _b
Acltd) =575 e (%)
4. Segment d e, strain recovery at zero stress, to<it<t,, with
t

1-*

bo)

cW=% [1-em 8] ex (-

jpeated
elope of

depends
*, the
tation
2 of the
, if

: values

Page 12, in the line

Page 13, beginning-

"in strain A€ where

4, Segment de,

Using the value
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Figure 13. Axial strain vs time—repeated load on unconfined compression cylinder.

the possibility of accumulative buildup of strain occurs (Figs. 12c and 13). It may be
noted that the addition of a dashpot in series with the present model (Fig. 6) would con-
tribute a permanent deformation proportional to the total number of load repetitions.
This model may possibly be suitable for determining the permanent deformation de-
veloped in flexible pavements subjected to repeated applications of load. Results of
this ty;(:e ;or triaxial compression repeated load tests are presented by Monismith and
Secor (20).

Finally, it must be emphasized that more elaborate models must be used for an-
alysis of the behavior of materials subjected to loads with differing frequency distribu~
tions. For example, to compare the effects of two different rates of load repetition,
two sets of viscoelastic coefficients, each appropriate to one frequency must be em-
ployed.

SUMMARY

In this paper limitations imposed by purely elastic analysis of flexible pavements
are reviewed. The importance of inclusion of time-dependent material properties and
loading conditions in formulating a rational method of pavement design is emphasized.
Some experimental data illustrating the viscoelastic behavior of asphaltic mixtures un-
der various types of loading are presented. Representation of viscoelastic material
properties by means of mechanical models is discussed and several typical models
are shown. Two simple examples illustrating effects of time-dependent loading and
material properties on the formulation and solution of viscoelastic boundary value prob-
lems are presented.
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