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By introducing modern methods of highway projec­
tion and the efficient use of topographic maps de­
veloped from photogrammetry, the location engineer 
can establish alignment and grades which complement 
the topography and eliminate nearly all of the unde­
sirable aspects of the older accepted methods of 
ground location. 

In order to project accurage highway alignment, 
a coordinate grid system must be established over 
the area through which the location is to pass. The 
final results of any line projected through this area 
will be no more accurate than the original control 
used to establish the grid system. 

The present paper is based on the assumption 
that the topographic map through which the highway 
alignment is to be projected is accurate both hori­
zontally and vertically, that pre-established hori­
zontal and vertical control points are in usable posi­
tions, and planimetric features are well defined. 

Simple and accurate methods of calculatii^ curve 
positions by coordinates, simple procedures for 
projecting centerline where grade or land use prob­
lems exist, the effective use of the spline, simpli­
fied use of spiral transitions and a simplified, ac-
captably accurate but approximate, method of intro­
ducing transitions between compound curves are 
discussed. 

Through intelligent use of the coordinate method 
of centerline projection, employing an accurate topo­
graphic manuscript, compiled by photogrammetric 
methods, better highway locations can be achieved 
along with a substantial savings in man-hours. 

ONE of the greatest factors contributing to the building of America was the original 
ilroad and highway location surveys through the wilderness and mountainous areas 
western United States. This stupendous achievement was performed under condi-
ms that would now discourage the most energetic of modern-day engineers. During 
few short years, the work was extended over half a continent, uncharted except for 
etches drawn by optimistic (and oftentime imaginative) explorers, mountain men, 
my scouts, and superstitious Indians. 
Thousands of miles of railroads and primitive highways were located by sheer deter-

ination, either on foot or on horseback, exploring the box canyons, river drainages, 
d game trails. From some high knoll or other vantage point, the pioneer locator 
luld determine a favorable position for his course to the next plateau and/or vantage 
int. These positions became the point of intersection between two straight lines 
idlng in the general direction of the setting sun or a distant peak. With simple 
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instruments he would scribe a curve of some known radius to ease the abrupt change 
in direction as he wandered through the natural valleys and mountain passes. Civili­
zation that followed with wagons and wood-burning locomotives became impatient to 
reach eternity and began to develop high-speed vehicles for transportation. The old 
roadways which had been developed through the sweat of the pioneer locator became 
obsolete. Enterprising emigrants began to construct heavy earth-moving equipment 
to level the hiUs and f i l l the ravines to accommodate their desire for high speeds and 
heavy loads. TaMi^ advantage of this new earth-moving equipment, the locator length 
ened the radii of his curves to give a smoother transition between his tangent sections, 
then relaxed, well satisfied with the results of his accomplishments. Today, as this 
modern earth-moving equipment is bit i i^ deeper into the hills and filling higher the 
valleys, some of the modern location ei^neers are still relaxed, standing on top of 
the knoll, admirii^ their newly established point of intersection between two tangents. 
Generally, because this point is on the crest of a hill , they will return to the design 
office and establish a grade intersection at the summit, usually from a standpoint of 
economics or habit. The present day driver, traveling the highways of the west, can 
most assuredly expect, as he reaches the crest of nearly every hill, that the road will 
change in direction both horizontally and vertically. Those with the clearest crystal 
ball and the best brakes will live the longest. 

By introducing modem methods for highway projection and the efficient use of 
topographic maps (developed from photogrammetry) the location engineer can establisl 
alignment and grades which complement the topography and eliminate nearly all of the 
undesirable aspects of the older accepted methods of making highway locations by 
surveys on the ground. The locator no longer has an excuse for beii^ unprepared at 
every change in top<^raphy. 

Photogrammetry is the tool which will provide the topographic map. The map in 
turn must be superimposed with planimetric control system. To effect this, a plane 
coordinate grid system over the area through which the location is to pass must be eS' 
tablished. The results of any highway centerline projected tiirough this area will be 
no more accurate than the original control used to establish the grid system. 

Through tiie intelligent use of the plane coordinate metiiod of centerline projection, 
employing an accurate topographic map manuscript, as compiled by photogrammetric 
methods, better highway locations can be achieved with substantial savings in man-
hours in preliminary engineerii^. Lasting dividends accrue through higher benefit-
cost ratios, etc., as compared to achievements by other methods. 

Without accurate ground control to insure proper orientation of a stereoscopic 
model in a plotter, it is impossible to secure maps to the accuracy required for loca­
tion and des^n of highways. Both horizontal and vertical controls are required in 
large-scale er^ineering mapping by photogrammetric methods. Control points should 
be well defined photographic images that are easily and accurately identified on the 
ground. Points of precise horizontal control should be appropriately preserved by 
station markers positioned near the center of the proposed location corridor. Center 
by each station marker there must be a photographic target of proper size and shapes 
before the mapping photography is taken. The interval between the photographic targ< 
ed station markers used for ground control should be such as to insure at least two 
targets per stereoscopic model, but the interval should not exceed 1,000 f t depending 
of course, on map scale. 

A traverse or triangulation net run th ro i^ all station markers centering photo­
graphic targets provides the horizontal control required for the mapping, and bench 
levels run through the same targets provide a very necessary portion of the vertical 
control through the center of the stereoscopic models. In addition to the vertical cor 
trol thus obtained through the center of each stereoscopic model, elevation of photo­
graphic image points easily identified on the groimd and lying near the comers of eac 
stereoscopic model are also required. Use of a 12-ft subtense bar in conjunction wit 
a precise theodolite has proven to be an accurate and efficient method for obtaining tl 
horizontal distances in the traverse as well as the elevations of the model comer pol 

Compilation of topographic maps by photogrammetric methods should be based on 
a system of plane rectangular coordinates. Wherever possible, this system should 
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)e tied to the state system established by the U. S. Coast and Geodetic Survey. The use 
>f plane coordinates increases precision and eliminates cumulative plotting errors, 
rargeted control points, for which plane coordinates are determined, may be accurately 
>lotted on the map manuscript on which a plane coordinate grid has been scribed. 
Positioned under the stereoscopic plotter, the model may then be oriented to these 
>lotted positions to obtain proper horizontal scale. 

The photogrammetrically compiled maps along with the photographs offer the design 
mgineer the topographic information he needs to accomplish the design. With the 
ermlnal controls for the proposed location already established, intermediate topo-
jraphlc controls may be easily determined, and the design completed with the usual con-
iideration given to earthwork quantities, minimum radius, maximum grade, exposure, 
and use, sight distances, rise and fall, ete. 

Where grade is the controUii^ factor, a grade contour may be sketohed on the map 
.s a guide to position in projecting the highway centerline on the maps. A grade con-
•ur may be developed by setting dividers to "walk down" the contours on a uniform 
rade. Where grade is not the controlling factor, the best alignment consistent with 
ost, exposure, and use is selected. A flexible spline is an ^cellent tool for estab-
ishing the preliminary alignment on the map. It will naturally assume the shape of 
ircular curves, spirals, and joinii^ tai^ents, and is easily position shifted as desired. 

After a preliminary centerline is established by the precedii^ methods, it may be 
enciled on the map. Further comparison of the horizontal alignment with a plotted 
rofile may reveal a desirable revision. Curve templates or a projectoscope are 
seful in determining the degree and approximate length of curves required. For an 
xact fi t of the spline or for passing through definite control positions, other methods 
re used. These are discussed later. For ease in staking flie designed centerline in 
le field, it is usually advantageous to change the originally measured total delta angle 
ufficientiy so that the length of curve is a multiple of 5 ft . Generally, the change re-
uired in the total delta angle to accomplish this is not a significant amount. Circular 
Lirves of full degree are also desirable when choice permits; otherwise circular curves 
E full degree plus nearest usable two-tenths of degree are used. As the circular curves 
nd spiral curves are selected, the stationir^ and plane coordinates of the TS, PI, and 
r are progressively computed for each curve system and these points are plotted on 
le map. For long curve systems, coordinate positions for about each 300 ft of arc 
iould be calculated and accurately plotted. Curve templates or beam compasses are 
3t reliable to establish long segments of the curves in exact position for later profile 
id cross-sectioning by photogrammetric methods. 

Alternate methods of using a protractor or tangent offset method to lay off the angles 
id scale the tangent distances in plotting highway alignment are deemed obsolete. With 
nprovements in construction methods and the availability of more accurate instruments 
ir field work, the need for increased accuracy as well as speed in projecting highway 
ignment must be recognized. In the author's opinion, the best method of highway pro-
ction that will enable the location engineer to keep pace with these increasing demands 
I to employ plane coordinates in plotting and computing the highway alignment. Plotting 
r plane coordinates is no cure-all or absolute solution to all the problems encountered 
T the location engineer. Their proper use, however, reduces the discrepancies be-
reen the projected alignment and field staking generally encountered with other methods 
projection. The plane coordinate method is adaptable to any topographic map re-

irdless of whether it is compiled from a ground survey or by photogrammetric meth-
Is. 
Details for implementing the procedure warrant a step-by-step review. The topo-

aphic map should be compiled using a plane coordinate grid, preferably tied to the 
ate plane coordinate system. The size of the grid square depends on the scale of 
e map. On a map whose scale is 100 f t to 1 in. , it has been found in practice that a 
lO-ft interval is best but a 1,000-ft interval for each grid square may be used. The 
ane coordinate grid is constructed so that its line intersections will be at an even 
lO- or 1,000-ft interval designation. 
Once the approximate alignment has been adjusted to meet predetermined standards 
degree of curvature and rate of grade, it will be necessary to obtain two additional 
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elements of information. First, the plane coordinates at the point of beginning, secom 
ly, the bearing or azimuth of the tai^ent at the point of beginning. If the proposed pro­
ject is in the vicinity of triangulation stations established by the USC and GS, then the 
plane coordinates of the control points should properly be tied to the state system by 
traverse from the nearest triangulation station or by triangulation from two or more 
of such stations which are visible from the desired beginnii^ point of location survey. 
Should the beginning point and one of the horizontal control points coincide, fortunate 
situation directly establishes the coordinates for that point; if not, then these coordi­
nates can be determined by carefully scaling from the nearest grid intersection, be­
cause the control points when plotted were oriented to the coordinate grid. This is 
the only point to be occupied on the ground for which the position need ever be scaled 
on the projection for the purpose of entering the coordinate system in the alignment 
computations. Should it be necessary to assume an origin for project plane coordi­
nates, it would be well to assume an ordinate and abscissa sufficiently large to cover 
the entire length of the project and avoid negative figures. Plane coordinate values 
increase north and east, decrease south and west. In recording the plane coordinates 
and in usii^ bearings on maps and in computations, the north-south are written first 
and east-west second. 

To determine the bearii^ or azimuth of the beginning tangent, after the point of 
b^innii^ has been selected, extend the tangent a sufficient distance until i t crosses a 
plane coordinate grid line, preferably 1,000 to 2,000 ft or more beyond its beginning. 
Where the tangent crosses the grid line, determine the coordinates by scaling. Be­
cause the coordinates of the point of beginning are known and where the line crosses 
a grid line has been determined, the bearing can be determined by the difference in 
coordinates. For example, assume plane coordinates for the point of beginning are N 
10,000 and £ 10,000, and the coordinates at the grid line are determined to be N 11,0 
and E 10,277.30. By subtraction, the difference in N and E coordinates is determine* 
In this case the north coordinates have increased 1,000 f t and the east coordinates 
have increased 277.30 f t . The increase in east coordinates divided by the increase in 
north coordinates provides an arc tangent of 0.2773000. By inspection in seven place 
tables of natural trigonometric functions, it is determined that the bearing ai^le is 
15 deg 30 min. Inasmuch as the coordinates increased by north and east, the bearing 
of the beginning tangent will be N. 15 deg 30 min E. If azimuths from the south are 
to be used, add 180 deg to the bearing and drop the directional signs. Thus, this ex­
ample, the beginning azimuth becomes 195 deg 30 min. When using such azimuths, 
south is 00 deg or 360 deg. If the coordinates and azimuths are on the appropriate 
state grid, the location engineer has established a definite tie in the proposed alignme 
which can be used for future references (Fig. 1). 

The computations of plane coordinates for various curve points involves the trigone 
metric cosine and sine functions of the bearing or azimuth and the distance between 
points. Cosine times the distance will be the north or south displacement from the 
previous point. This displacement is generally referred to as latitude. Sine times th 
distance will be the east or west displacement. This displacement is generally refer: 
to as departure. The algebraic sign to be applied to the separate latitudes and depar­
tures is positive for north and east, negative for south and west. Summation of plane 
coordinates is determined from the last point and is a cumulative total. To illustrate 
the simplicity of this method, the plane coordinates for the various curves given in 
Table 1 have been computed and tabulated in Figure 2. Seven place natural trigonome 
trie functions are considered accurate enough because the sine and cosine do not chan 
rapidly between minutes. 

Although the plane coordinates for any point on each curve system can be computec 
this was done for only the TS, PI, and ST points. To determine the SC and CS points 
it is sufficienUy accurate to scale in these points by X and Y offsets from the plotted 
TS and ST. The X and Y offset distances can be computed from unit length values 
listed in appropriate columns of published spiral curve tables. Once these points ha\ 
been located, the curves are drawn. Because the control points of each curve systen 
of spiral-circular curve-spiral are plotted accurately, any one part of each curve sy 
tem could be drawn in error and not affect the alignment beyond the segment for whic 
the points are in error. 
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For curve data Mi Tah/e. / 

Figure 1. 

TABLE 1 

urve 
Sta, at 

TS 

Total 
A 

o » 
s 

(ft) 

A 
Simple 

o t (ft) (ft) 

A 
Si)iral 

9465 
19+65 
27440 
40430 
48490 
56465 

53 12 
21 36 
31 00 
16 24 
15 00 
85 00 

459,75 
282.46 
497.54 
306.58 
351.54 

1151.35 

37 12 
9 36 

23 00 
8 24 
9 00 

75 00 

8 Rt. 
6 Lt, 
4 Rt. 
4 Lt. 
4Rt. 
5 Lt. 

465.00 
160.00 
575.00 
210.00 
300.00 

1500.00 

200 
200 
200 
200 
200 
200 

8 00 
6 00 

00 
00 
00 
00 

It Is the practice of a few engineers to vary the tangent distances between curves 
id the total delta angle to adjust the tangent distance and curve lengths to the nearest 
•ft interval. This practice enables the location engineer to control, to a certain de-
ree of accuracy, the field work by eliminating any odd parts of a foot in the chainii^ 
id parts of minutes in measuring angles. Even in mountainous terrain where distances 
:e frequently critical, this method of shifting the line has proved extremely satis-
ctory. Figure 2 has been computed in this manner. Figure 3 has been computed to 
low the comparative location of the respective curve points by coordinates, had not 
e tangent distances between curves and the total delta angles been varied to obtain 
e nearest 5-ft interval in distance. This example is introduced to lend credence to 
e author's theory that inasmuch as the coordinates are dependent on the functions of 
e bearings and distance, it does not affect the accuracy of the plane coordinate meth-
l in plotting to vary the distance and angles. 
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Figure 2. 

Another instance where the plane coordinate method is particularly useful is when 
the total delta angle exceeds 180°. In these computations it is necessary to compute 
the coordinates for the points through the curve; that is, TS, SC, radius point, CS 
and the ST. Inasmuch as the total delta exceeds 180°, the Ts distance will not inter­
sect. First the coordinates for the TS are computed; then on the same azimuth the 
coordinates for the SPI (Spiral Pi) are computed using the long tai^ent of the spiral. 
From this point the azimuth is changed in the appropriate direction by the amount of 
the spiral delta. The distance used will be the short tangent of the spiral. The coor­
dinates at this point define tiie SC. From the SC the azimuth of the radius is deter­
mined to be 90° to the short tangent. The radius of the circular curve times the cosi 
and sine functions of the azimuth establish the plane coordinates for the center of the 
curve. From the center point of the circular curve, the azimuth to the CS is changed 
by the amount the delta angle of that curve differs from 180°. If the angle exceeds 
180°, then the difference is added; if less than 180°, the difference is subtracted. 
After the azimuth of the radial line from the center point of the circular curve has 
been determined, then the plane coordinates for the CS are computed. From this poi 
the short tangent of the spiral will be at 90° to the radius. These coordinates will es 
tablish the SPI. The plane coordinates of the ST will be determined by computing the 
change in the azimuth from the delta ai^le of the spiral and multiplyii^ the loi^ tai^t 
of the spiral by the cosine and sine of that azimuth, and then a^ebraically adding the 
results to the N and E coordinates of the SPI. This plane coordinate method of com­
puting and plotting is useful for accurate positioning on the map of centerline in mour 



31 
U S D E P A R T M E N T OF COMMERCE 

BUREAU OP PUBLIC ROADS 
REGION NO 9 DENVER, COLO 

P R O J E C T U S D E P A R T M E N T OF COMMERCE 
BUREAU OP PUBLIC ROADS 
REGION NO 9 DENVER, COLO S T A T E 

U S D E P A R T M E N T OF COMMERCE 
BUREAU OP PUBLIC ROADS 
REGION NO 9 DENVER, COLO ComnLitatinn Nn DAA. 

L NE COORDINATES Traverse No Field Book No —Pfli to 
a FROM STATION 

Computed by rtm* 
—Pfli to 
a FROM STATION TO STATION Checked by nnt« 

s t a t i o n Anglo 6rid 
A z i m u t h 

Gr id 
B o o r i n g D is tance C o s i n e S ine L a 

N 
i tude 

s 
Departur 

E 
e Coord 1 Mtes 

PUB (M» m nnn nn 
X orE 

.9616105 .2672181, .028.1). +?=i7J.i; 
tt^QMaQQ 

10,257.1i5 
19^910. I160.O. .9616105 .2672181, +J,li l .fin +12 ^aflft 

PI i j , . ? i . t . "IlOlftt fit.. 
11.372.Uj 

SliS-liBi I160.5L .i6l6212 .9121218 .166.55 10.300.53 

ST 18.29. 11153d.69 10,809.91 
21iB»l,«i 111.6? .1616?l,p .9121718 . I ,7 . f i l 

J l 19.61.1 
11 iflA 12 

2i,a°i,a. 2ai.flfl .161621,2 .9121211 • i m .91 *7f\7. Hn 10-^32.70 

PI 22.1,3.1 1 219121 L t . 
ll .6d8.25 11.195.50 

227°1A' 281.88 .678^871 .7311.199 .191.2; 
ST 2S.ao. 

n •i7i n • 
227° l i i 221.21 .6785,171 .711,5109 .1,^.11 + i w . n " • ' 

! • 27.1.1.1, 1 12.029.67 U 565 06 
227916. t96.61. .6785071 .7.51,5199 + l l7 .m +V1I1.7Q 

PI XJOKI Bt . 
258912. 1196.61, .20U,9^.1 . ,738671, .101.56 

±£f mo-00 Ilf929-B'i 

l; 17.11,. 
12.h63..ili 17 rv\ 

258912. 311.72 .201U,961 .973i671, . 61,.16 •307.10 
t ill 

Tal i0 .2 ' . l , 
i2.523.l1O 12,723.10 

258°12. . 2 a j , /61 .J7,.I67), . 6?.»1 
PI Ii3.1?.d 1 1602SI I t , 12,Wb.26 13 O2I1 01 

21il°IJ,. 107.1,1 .1,715759 .Hrtn75io .U,5.W •?7n.7A 
^ J'tWl.ii. 

I2.7I1O.3& 13 2J)I 77 
2Ll»l,J,. -l,71"go . 11(175 «1 •110 15 *221.'^'i j j . g y g . f f 

I»1..1.92.1 I 12,860.20 11 16 72 
2I'1°1, . lh2.66 .1,7157W1 .n.,n7i,in *ih7.m -LJl--0.<6 

PI b2.1ili.d lb°Ol,' Rt. l j .O27 . J l 
.22^1.509 .971>.7S3 . Hn.t.1 13.027.33 

31 ' i , . f l i . 7 13.107.7li 111 17n A,i 

T« ^ 6 7 . f 
2?6»iia. 71.50 .2231TO .9715789 . 16.79 • TI .W 

—iu.na.au 

2«9 | , ^ , U51. i1 .2J.<l5no .,711,7,10 •?f t i 11, 
11.12J..',1 Ui.2l,p.?>; 

PI 63.21.C 85°06' L t . 

171°li2. 111.3.21 .9895258 .11,1,3562 .111,1.11, — H | . 3.17.87 
Ii7 

I ' ^ r^ ' rO^ 

ST 7V.6J. 7 l i i . 529.01 

Figure 3. 

l j . l 9 . i . 5 Z 

talnous country where large delta angles are sometimes necessary. To illustrate the 
computations of plane coordinates to be used, assume total delta = 212°2A', Dp = 18° 
Rt, Ls = 200', l^iral delta = 18°, Lg = 980.00'. From published tables, obtain the 
radius = 318.31', Long tangent = 134.03', Siort tangent = 67.30'. Again the work 
sheet is tabulated as in the precedii^ examples. For computations, see work sheet 
[Fig. 4). 

%ould i t be necessary to chaise a section of the centerline after i t has been plotted, 
t is not necessary to run the entire line again, only that section that will be affected 
n the change. Select a curve point that will not be affected in the change and use its 
)lane coordinates as the coordinates for the point of beginning. For plane coordinates 
it the point where the line change ends, select coordinates of the center of the next 
succeeding circular curve. To determine the delta angle for the final curve system, it 
s only necessary to obtain the differences in the azimuth. Because the plane coor-
linates of the center of the last circular curve on the line change have been computed 
ind the plane coordinates of the center of the circular curve ahead are known, the 
lifference in these coordinates is ascertained—and this information is sufficient to 
iet off a triangle which can be solved by the Law of Sines. By subtracting the Tg dis-
ance from the respective sides of the triangle, the length of the tai^ent between curve 
loints is determined. This is one occasion where the delta angle and the tangent dis-
ance cannot be adjusted to the nearest 5-ft interval without affecting the entire line 
head. To account for the difference in stationing, an eqtiation is used at tiie point where 
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Figure U. 

the line change ends. To illustrate this solution, assiime curve systems 2, 3, and 4 i i 
Figure 2 are replaced with one curve system. Here the coordinates for the point of 
beginning on the line change will be those at the ST at 18430 and the coordinates to be 
used on the existing line ahead will be at the ST at 46+40. The total delta will be the 
difference between the back azimuth, 248042', and the forward azimuth 241°42', or 
7°00'. Because the forward azimuth is less than the back azimuth, the curve will be 
to the left. The following curve data wiU be used: total delta=7O00', Tg=a75,25', 
Delta circular curve=3O00', Dc=2O00'Lt., L(.=150', Lg=200', Spiraldelta=2°00'. This 
curve revision is given in Figure 5 in the same manner as the previous examples. 

Preparing the centerline for plotting by plane coordinates affords definite ties to be 
computed in the office for use by the field survey crew. Because both the basic hori­
zontal control stations and the centerline alignment are based on the same plane coor­
dinate system, i t is an easy computation to determine the distance and azimuth from 
various points along the line to the nearest horizontal control point. 

Figure 1 was plotted to show the alignment illustrated by Figure 2. It will be noted 
that the topography has been deleted due to the scale of the drawing. The plane coor­
dinate grid has been laid off on a 1,000-ft interval in both directions. 

From these previous examples, it can readily be seen that, by using the plane coor 
dinate method of plotting the desired alignment, the location engineer has eliminated 
most of the element of chance and has changed i t to an element of choice. 

For elevations and distances determined during the location survey staking of the 
highway on the ground to agree with elevations and distances obtained from the map 
projection, the map plotted and designed centerline must be staked on the ground in 
the same position in which it is projected on the map manuscript. This required dup­
lication durii^ the line staking operations of the accuracy accomplished in establishing 
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Figure 5. 

he original basic control. With precise instruments and trained personnel, such ac-
luracy in the line staking can be satisfactorily obtained. 

Even when plane coordinates are used for the alignment projection on the map, re­
sults will still be disappointing if the entire centerline is not accurately plotted point by 
>oint for each contiguous segment. Small plotting errors will not be noticeable in easy 
opography, but on steep side hills and other mountainous topography, plotting errors 
i?ill cause considerable difference in elevation between map and ground positions, 
rhere are several factors contributing to plotting errors. Circular curve templates 
ire not always accurately cut on uniform curvature or to the specified scale. But, 
thanging radius curves used to sketch spiral transitions do not reflect the true posi-
ion of such line segments. Manuscripts on unstable material that is affected by moist-
ire and temperature, use of inaccurate scales, and the projection of alignment on map 
irints which are definitely out of scale also contribute to inaccuracies in position of 
he plotted line. Moreover, circular curves drawn with a beam or other compass will 
le displaced laterally in some segments because of a warp of the map manuscript (or the 
irinted copy if used instead) during design. In overlooking, in not realizing, or in ig-
oring such causes, photogrammetry has often been blamed unjustifiably for errors 
?hich were introduced elsewhere. 

Although many field tables have standardized the symbols for terms used in spiral 
urve transitions and circular curves, engineers still find that when referring to cer-
lin curve components, they are speaking in terms not familiar to persons using other 
ibles. Without a thorough understanding of the actual curve problems, one may find 
imself solving a problem by equation substitution to determine a value that is obvious 
t first glance. An engineer with a good working knowledge of highway alignment 
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projection will refer to tables of functions to reduce the time of calculations and not 
for equations which will provide an answer by correct substitution and solution through 
the indicated steps. Some examples which are accurate within reasonable limits are, 
as follows: 

1. The deflection angle for a circular curve in minutes is 0.3' per foot per degree 
of curve. The Delta or central ai^le is twice the deflection angle. 

2. The spiral delta angle is equivalent to the deflection angle for the particular 
curve computed for the length of the spiral. 

3. Transition spiral curves change in curvature at uniform rate throughout. 
This is sometimes referred to as a rate of change or a deflection factor. This rate 

of change is determined by the degree of curve in degrees divided by the length in 100-
ft stations of the spiral curve. Because the spiral curve deflection varies approximate 
ly as the square of the distance, the deflection from the beginning of the transition may 
be determined in minutes by multiplying 10 by the rate of change in curvature per 100-
f t station by the distance squared; each station or 100 f t is used as a unit distance of 
one in computii^ the square. 

There are times when i t is desirable to compound curves to better fi t the ground, 
drainage, and land use. Such compounds should always be connected by a spiral curve 
transition. To avoid an unsightiy "broken back" curve, it may be necessary to combini 
a 2-deg curve with a 4-deg curve. For simplicity, assume the transition will be made 
in 200 f t . Some texts will provide satisfactory equations for solution of this problem. 
By substituting appropriate values in the equations, the problem may be solved. Actual 
ly the spiral delta of the transition curve, in this instance, is the sum of the degrees o: 
the two combinii^ curves or 6 deg. Should a 400-ft transition curve be selected, the 
spiral delta is 12 deg. The difference in curvature between the circular curves beii^ 
joined by the spiral curve is 2 deg. This means that the curvature is changed pro­
portionately throi^hout the length of the spiral curve from 2 to 4 deg or vice versa, 
depending on the direction in which the change is being made to sharp or less sharp 
curvature. Returning to the original selection of a 200-ft spiral curve for transition 
between a 2-deg curve and a 4-deg curve, it is observed that the degree of curvature 
must increase 1 deg for each 100-ft station of transition. For the 400-ft transition, 
the degree of curvature would only be increased 30 min for each 100-ft station. The 
rate of change would be equivalent to the difference in degree of the circular curves 
divided by the length in 100-ft stations of the spiral curve. Thus, for the 200-ft tran­
sition, the rate of change would be 4 deg minus the 2 deg divided by 2 stations which is 
a rate of change of 1 deg per 100-ft station. For the 400-ft transition, the rate of 
change would be 0.5 deg per 100-ft station. The angle of deflection to be turned from 
the CS of the 2-deg curve to establish the SC of the 4-deg curve would be the normal 
deflection for a 2-deg curve plus the rate of change for the distance of the transition. 
In the instance of the 200-ft transition, the deflection angle would be 1 deg plus 10(1) 
(2)̂  or 40 min. The deflection ai^le would be 2^40'. From the SC of the 4-deg curve, 
the deflection ai^le would be 4 deg minus 40 min or 3°20'. The sum of these angles 
wUl equal the spiral delta ai^le of 6 deg. 

This explanation allows the use of an approximate calculation for plotting the short 
and long tangent of the spiral transition between two curves. There are some well-wr 
ten text books on the market which provide an accurate solution. This method used 
for plotting and not field staking, however, is usually accurate to 0,10 f t unless the 
length and rate of change of the transition curve between circular curves is quite pro­
nounced. The spiral delta and the two deflection angles are known. In 200 ft, a tran­
sition has been made between a 2- and 4-deg curve. The average degree of curvature 
is 3, By the law of signs, there is an oblique triangle with three known angles. If the 
long chord is known, the two tai^ent lengths can be calculated. For an approximate 
solution, solve the long chord for a 3-deg curve with an arc length of 200 f t using the 
equation C + 2R Sine^. This provides the base of the triangle. Using the known angl 
the solution of the other two sides is elementary (Fig, 6). 

The distances of Ti and T2 are calculated at approximately 111.20 f t and 88.98 ft, 
respectively (Fig, 6). 
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Use IZ of 3" 
E<iuiV9knf spin/ A - 2 
C = Sf h - f 
C = Z(J909.86) S/n 3' 

S/h Z'4o' . sin 6' 
72 m.9t 

= (f99.9i)'(046S2S^) 

Ti = #5 .98 

O. /O4-SZ0S 
7/ - 2(? 

Figure 6. 

Compare this approximation by solving the same problem using a method outlined in 
fi text regarding a particular set of field tables: 

Given: Di = 2° Ri = 2864.789 
Da =4°R = 1432.39 

200 Equivalent Spiral Angle = § 5 5 Lg (4°-2°) = 2° 

S = offset of the circular curves which is essential for insertion of the spiral curve. 
S in feet is the function for offset from tables of a unit length spiral multiplied by 

the spiral length. In this case S = 0.00291 x 200 = 0.5820 

= | g 0 x 2 ° = 2 ° , A . =200 X 4° = 4° 200 =" ' =200 
AB = Rb Exsec Ag - R Exsec Aj - (offset.) 

= (1432.39)(0.0024419) - (2864.79)(0.0006095) - 0.5820 
AB = 1.169663 or 1.1697 

AI = 1.1697 X ^ ° ? ^ ° 
Sin (2° + 4°) 

= 11.163 
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Ti = 2864.79 x Tan 2° + AI 
2864. 79 (0.0349208) + 11.163 = 111.203 or 111. 20 

BI = 1.1697 -^osZi = 11.183 
Sin 6° 

T2 = 1432.39 (Tan 4°)= BI 
1432.39 (0.0699268)- 11.183 = 88.979 or 88.98 

It appears from the preceding solution that a considerable amount of time was con­
sumed in solving a problem that is more easily computed by the first approximate meth 
od. Approximate methods should never be used except when the difference in degree ol 
circular curves between which the spiral curve is to serve as transition is small. 

For an exact computation of a description of a centerline projected on a map with thi 
spline line or to pass a circular curve through given points, a more accurate method oi 
solution is offered. Where the spline line passes through points to which the centerline 
must be held, mark off stations along the arc through which the arc maintains uniform 
curvature. Mark the beginning station point No. 1 and the ending point No. 2. Move 
ahead to the next point along the spline to be held and mark stations along this arc in 
the same manner. These will be noted as points No. 3 and 4. Scale the coordinate 
positions at points No. 1 and No. 2. Scale the chord distance between these points and 
the mid-ordinate. Use the same procedure between points No. 3 and No. 4. 

For symbols use: 
R = radius 
M = mid-ordinate 
C = chord 
S = shift in feet 
Use Di and Da in degrees 
Lg = lei^th of spiral in stations 
„ M C* 11459.156 
^ = T - ' 8M °c = M = ^ 

4M 

As an example, let the chord between points No. 1 and No. 2 of the first circular 
curve be 495 ft and M 18.5 f t . 

1^ •̂  ̂ y| |^= 1665 + for trial only 

Dc = J i459J56_ =3 44O+ use 3.6 or R = 1591.549 
18.5 + (495)? 

Moreover, the scaled difference in the north coordinates is 169.5 and the east coor 
dinates difference is 465.5, the actual length of the long chord will calculate to be 
495.40 and the bearing of the chord will be N 69059'32" E; then 

S ^ - f = - ^ = l l l o o =0-lSS«3444 

Sin | - =8°57'13" 

Vsing the bearing of the chord N69°59'32"E 

Less 4 - 8°5r i3" 
^ N6lO02'19"E 

Plus 90° 89059'6ff' 
Bearing to curve center from point No. 1 S28057'41"E 
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Adding in the same manner from Point No. 2, the bearing to center is S llO03'15" E. 

This same procedure is used to determine the degree of curve, mid-ordinate, chord, 
and bearing of radial lines to the center of the next curve from points No. 3 and 4. With 
this information, calculate the plane coordinate of the center of circular curve No. 1 
find circular curve No. 2, 

(1) Use the difference in plane coordinates of the separate positions of the respective 
centers of curves 1 and 2. 

(2) Compute from their plane coordinates, the length of line and bearii^ between the 
respective centers. 

(3) Subtract the length of line between centers, as computed in step 2, from the dif­
ference in radii of the circular curves to be joined by the spiral curve. The result 
equals the shift "S" provided by the spline. 

(4) Compute the length of spiral for trial only. 

=* Anmrnrrnrt S = feet shift, in ft s ^0.0727(Di-I>.J Di and = degrees 
Lg = 100-ft stations 

(5) Suppose S = 1.0, then 

=^0.0121 iL-i.S) = 4 ^ = 4.15 station 

(6) Select length of spiral to attain even deflection factor =.2_i2. = minutes per foot? 
Ls 

Example: deflection factor = ̂ '^^'i^'^ = 4^ when Di = 3.6° and Dz = 2.8° 
Use a length (in stations) that is divisible into (D1-D2) the quotient of which is divisiblf 

nto Di and D2 separately if possible. In this instance, use 4.0 stations. 
(7) Compute spiral joining circular curves 1 and 2. 

K = rate of change in degrees per 100-ft station 

K = = ̂ =0 .20 per 100-ft station 

Lgi = -gi- = ^ = 18.0 stations = 1800 ft 

Lgb = = §7! = 14 stations = 1400 ft 

Ls = Lsi-l'SB = 4 stations or 400-ft spiral 
(8) Compute functions of spiral between circular curve. 

A _ LsiDi _ 1800 X 3.6 _ ,0 .0 
= T 0 0 - = 200—= ^2-* 

A Lsb Dz 1400 X 2.8 ,Q „O 
^ * = ^ 0 0 " = - T 0 0 = 1®-̂  

As =(Asi- Aa,) =12.8° 
*Xi = 1800 X 0.9684924 X2 = 1400 x 0.9883610 
Yi = 1800 X 0.1842337 Y2 = 1400 x 0.1130786 
Qi = 1800 X 0.4947175 Q2 = 1400 x 0.4980560 
Pi = 1800 X 0.0465893 Pi: = 1400 x 0.0283882 
Ui = 1800 x 0.6781866 \h = 1400 x 0.6707995 
Vi = 1800 X 0.3438307 V2 = 1400 x 0.3370936 

'Functions taken from "Circular Curve and Unit Length Sp ira l Tables," by Wil l iaj i T . 
^ o r . Bureau of Public Roads. 
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Tgi = short tangent of spiral between two circular curves. 
T^ = loi^ tai^ent of spiral between two circular curves. 
Tgi = (Yi - Y2) Cos Aa, - (Xi - Xa) Sin A a = Vi - ^n^ ' s ^^ 

T (Xi - X2) Sin A s i - (Yi - Y2) Cos Asi (Ui - UajSinAsi „ 
» " Sin As ~ Sin As ' " 

By taking advantage of the use of coordinates in projecting highway alignment, solu­
tions to problems are easily solved and provide the engineer with complete control of 
the alignment position. 




