Compaction Requirements for Flexible Pavements

C.R. FOSTER and R.G. AHLVIN, respectively, Coordinator of Research, National Bituminous Concrete Association, and Chief, Special Projects Section, Flexible Pavenent Branch, Soils Division, U.S. Army Engineer, Waterways Experiment Station; Vicksburg, Mississippi

> This paper presents the results of an analytical study made to develop criteria for determining the degree of compaction required at different depths in soils beneath flexible pavements to prevent consolidation of the soil under wheel loads and consequent deformation of the pavement.

Data obtained from observations of airfield pavements in actual service and from reports of accelerated traffic tests on carefully controlled test sections were tabulated, and from these tabulations correlations were developed between the compaction effort applied to flexible pavements by aircraft traffic and the densities resulting from this compaction effort at various depths.

The established CBR relations were used to integrate the effects of wheel load, tire pressure, assembly configuration, and depth below pavement surface into a compaction index, C_i , for purposes of this study. Correlations between C_i and the densities required to prevent further compaction are presented.

IN 1942, when the Corps of Engineers adopted the California Bearing Ratio method r use in designing flexible pavements for airfields, the CBR procedures specified boratory compaction of soil samples under a 2,000-psi static load. This compacn gives densities of the same order as those obtained by AASHO Method T99 for ndy and gravelly soils, but much higher densities for clayey soils. The CBR methalso specified a field compaction test using a tamper that imparted a compaction ort considerably greater than imparted by AASHO T99 compaction. Personnel of e Corps of Engineers and consultants to the Corps anticipated that higher densities uld be needed in soil components of airfield pavements than were produced by the SHO T99 compaction test, but did not consider the CBR procedures entirely suitle for this purpose. From laboratory tests performed in the Corps' Flexible Paveent Laboratory, Soils Division, at the Waterways Experiment Station, Vicksburg, ssissippi, it was determined that a modification of AASHO T99 would be better suitto the Corps' problems and would require less new test equipment. The Corps' den manual published in June 1942 specified a laboratory compaction test similar to SHO T99, but with modifications which increased the weight of the hammer from 5 10 lb, the height of fall from 12 to 18 in., and the number of layers compacted from These changes increased the compaction effort almost fivefold. o 5.

Also, based primarily on judgment of Corps personnel and consultants, compaction uirements were specified in 1942 as 95 percent of modified AASHO maximum density all base courses, subbases, and for the top 6 in. of subgrades. In most soils 95 pert of modified AASHO density is equal to or higher than 100 percent of AASHO T99 ximum density; therefore, these specifications represented a definite upgrading of npaction requirements from those used for highways, which were normally 95 pert of AASHO T99. Compaction of fill was specified to be 90 percent of modified SHO compaction, but no specifications were established for cut sections except in top 6 in.

In 1945, a study was made of the degrees of compaction existing in certain acceleri-traffic test sections. These studies showed a definite relation between degree of compaction, wheel load, and depth from the surface of the pavement to the layer being studied. It was assumed that if this density had been built into the structure during construction of the test sections, no appreciable densification would have occurred under traffic. As a result of these studies, the Corps has established in a sense, a "design" of the ultimate compaction necessary. For the "design," the compaction that wil be induced in each layer by the airplane traffic is determined, and this degree of compaction is required to be obtained during construction.

Unfortunately, the studies which led to these developments were documented only in letter reports between the Waterways Experiment Station and the Office, Chief of Engi neers, and thus the test data have not been generally available. However, in 1959, the Corps published a report (24) which contains all the data collected by the Corps on the subject. The authors of this paper were directly connected with the studies. This pa per summarizes data (24) and shows how the procedures developed by the Corps can b applied to civil airfields and highways.

Early Studies

Figure 1, taken from a 1945 unpublished letter report, shows plots of the degree of compaction that developed in several accelerated-traffic tests at various depths below

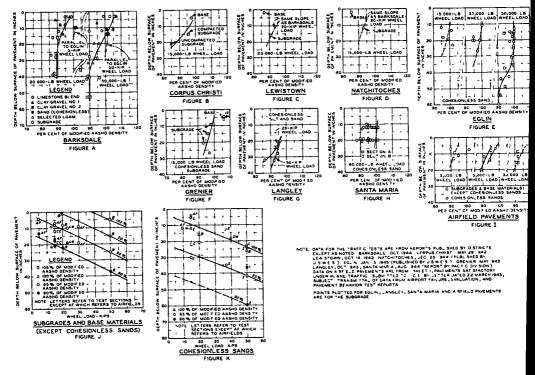
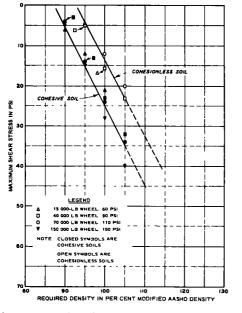
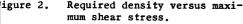




Figure 1. Compaction study data.

the pavement surface. It is apparent that the density developed by traffic decreased with depth in a logical manner when the densities were expressed as a percentage of the maximum densities obtained in the laboratory compaction test. This pattern appeared in all the accelerated-traffic tests (Fig. 1A-H) and in the airfield pavement u der actual traffic (Fig. 2). Another feature indicated by these results is that the col sionless sands appear to plot about 5 points higher (in percentage of compaction) tha the other soils. Figures 1J and 1K are summary plots obtained by reading the dept

at which 90, 95, 100, and 105 percent compaction were measured and plotting the depth against wheel load. The lines of equal percentage of compaction were fitted to the plotted points visually. These summary plots were used to establish the following compaction requirements which appeared in the Corps of Engineers' engineering design manual published in 1946.

Through the succeeding four years, personnel of the Flexible Pavement Laboratory were engaged in producing CBR versus thickness design curves for multiple-wheel gears and for higher tire pressures by theoretical resolution of the single-wheel curves. These same concepts were applied to the compaction requirements, and it was found that a definite relation existed between the required degree of compaction and the maximum shear stress (τ_{\max}) as computed by the theory of elasticity. Figure 2 shows the relation. In 1950, the relation shown in Figure 2 was used to translate the compaction requirements for single wheels (Table 1) into compaction requirements for a range of single, dual, and twin-tandem assemblies. Although tire pressure was not

idicated in the 1946 requirements, the tire pressures for the various loads were approxilately those shown in the legend of Figure 2, and these values were used for the translations. ranslations were produced for 100- and 200-psi tire pressures for single-wheel loads. For le dual and twin-tandem assemblies, the tire pressure was varied to give a contact area of 37 sq in. for each tire. Figure 3 shows the compaction requirements produced by theoret-

TABLE 1

	Belo % of	Depth in Inches Below Pavement Surface to Which Indicated % of Modified AASHO Density Should Extend										
	All Subgrad											
heel Load	Cohesionle	ess Sands	Cohesionl	ess Sands								
(lb)	100%	95%	100%	95%								
5,000	-	_	_	12								
15,000	-	12	12	$\bar{24}$								
40,000	12	18	24	36								
60,000	18	30	30	48								
.50, 000	30	54	48	78								

1946 COMPACTION REQUIREMENTS

Il resolution of the 1946 criteria. These requirements appeared in the Corps' engiering design manual in 1951.

In the period following 1951, it was necessary to produce plots such as those shown Figure 3 for many different gear loadings. In the course of this work, ample evince was found that the compaction that will be produced in a given layer by traffic is unction of the total load, arrangement of tires, tire pressure, number of repetitions, I depth to the given layer. Theoretically, the characteristics of the material between the surface and the given layer should also influence the compaction, but apparently the differences in the materials in the average flexible pavement are not enough to significantly influence compaction.

The determination of the exact relations between the compaction induced in the given layer and each of the variables listed above would require a multiplicity of carefully controlled test sections. A major discovery by personnel of the Flexible Pavement

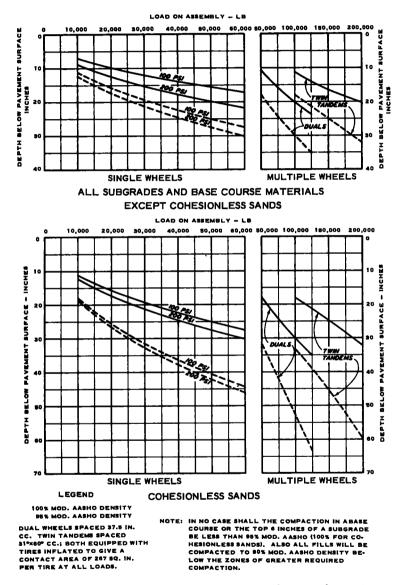


Figure 3. Subgrade and base course compaction requirements.

Laboratory was that the design CBR could be used as a compaction index to combine the parameters listed. In preparing compaction requirements for the various gear loads it was found that an almost constant relation exists between the degree of compaction required in a given layer by the Corps and the design CBR indicated by the Corps' CBR design curves for that layer. Table 2 illustrates the constancy of th relation. The values shown in Table 2 were obtained by selecting a range of loads

TABLE 2

REQUIRED CBR VALUES FOR VARIOUS WHEEL LOADS¹

	s	ingle Whe	els		Multiple	e Wheels	
	Wheel		Indicated	Assembly	CBR for	Assembly	CBR for
ASHO	Load		ressure	Load	Dual Wheel	Load	Twin-Tandem
ensity	(kips)	100 psi	200 psi	(kips)	Loads	(kips)	Wheel Loads
			(a)	Cohesionless	Sands		
00%	10	8.1	7.1	50	9.2	100	9.5
Mod.	20	8.1	7.2	75	8.6	125	8.9
	30	8.0	7.7	100	8.5	150	9.4
	40	8.0	7.5	125	8.5	175	8.9
	50	8.0	7.4	-	-	200	9.2
_	60	8.0	7.5	-	-	-	-
95%	10	3.7	3.3	50	4.1	100	4.7
Mod.	20	3.6	3.4	75	4.0	125	4.6
	30	3.6	3.3	100	3.7	150	4.5
	40	3.5	3.3	125	3.6	175	4.2
	50	3.6	3.3	-	-	200	4.1
	60	3.6	3.6	-	· -	-	_
			(b) Other Soil	S		
0%	10	15	13	50	16	100	16
Mod.	2 0	15.5	13.5	75	14.5	125	15
	30	16	14	100	15	150	15
	40	15.5	14	125	15	175	15.5
	50	16	13.5	-	-	200	16
	60	16	13.5	-	-	-	-
5%	10	8.1	7.1	50	9.2	100	9.5
Mod.	20	8.1	7.2	75	8.6	125	8.9
	30	8.0	7.7	100	8.5	150	9.4
	40	8.0	7.5	125	8.5	175	8.9
	50	8.0	7.4	-	-	200	9.2
	60	8.0	7.5	-	-	-	-
_							

verage CBR: (a) Cohesionless Sands, 100% Mod. AASHO Density = 8.3; 95% = 3.8; (b) her Soils, 100% Mod. AASHO Density = 15.0; 95% = 8.3.

d gear configurations, reading the depth at which 95 and 100 percent compaction uld be required from Figure 3, and then reading from the respective CBR curve the BR that would be required at that thickness. For example, Figure 3 indicates that rany material other than cohesionless sand, 100 percent compaction would be reired at a depth of 7 in. for a 10,000-lb, single-wheel load, 100-psi tire pressure. e Corps' CBR design curves (Fig. 2 of Appendix, (2)) indicate that a design CBR 15 would be required for the 10,000-lb wheel load at a depth of 7 in. The other ues shown in Table 2 were obtained in the same manner. This over-all factor ich combines the parameters of load, tire arrangement, tire pressure, number of betitions, and depth to the layer under consideration was labeled "Compaction Index," to avoid the confusion that would exist if the initials CBR were used. With this nbination factor the variables are reduced to two, percentage of compaction and npaction index, and all pertinent data can be plotted in one plot and brought to bear the problem even though the data from individual tests do not cover the full range the variables.

Following this discovery, a review was made of all available data (4 - 25). Data re considered pertinent only where information was available on the density, depth,

TABLE 3

ACCELERATED TRAFFIC TEST COMPACTION RESULTS

- ____

						Per Cent		Depth		Per Cent		Depth		Per Cent	
Depth	Plas-	Per Cent Mod	Compac -	Depth from	Plas-	Mod	Compac-	from	Plas-	Mod	Compac-	from	Plas-	Mod	Compac-
from Surface	ticity	AASHO	tion	Surface	ticity		tion	Surface	ticity	AASHO	tion	Surface	ticity		tion
in.	Index	Density	Index*	1n.	Index	Density	Index	in.	Index	Density	Index	in.	Index	Density	Index
	Index	<u>Denor of</u>													
A. Source	of Data	Pavement Mix Desi		D. Source	of Data.	Investigation of	the Design	D. (Cont				D. (Conti		(0.000.1)	
		for Very Heavy Ge				and Control of A		Assem	bly Load: 37,0 bly Type Sing					60,000 lb Fwin, 37 in. c-c,	260-00-10
		Pilot Test Sectio	m (DRAFT),	Accomb	y Load.	Paving Mixtures, 15,000 1b	17 3-234	1	ory rype. and	gle, 100-psi t	-	Assetto		contact area	200-94-111
4	ly Load:	Jan 1957 240,000 1b			y Type:	Single, 50-psi t	ire pressure	1.5	7	93.0	98.0	1			<i>(</i>) •
	Ly Type	Twin tandem, space	ing					3.0	7 NP	98.0 99.0	63.0 63.0	3.0	777	87.0 89.0	61.0 61.0
10000000	-7 -72-	31 x 60 in., 267-		1.5	4	93.0 92.0	50.0 50.0	3.0	NP	93.0	45.0	3.0	NP	100.0	61.0
		contact area		3.0	7	98.0	30.0	2.0	NP	100.0	82.0	2.0	P	93.0	75.0
4.0	NP	104.7	81.0	3.0	ż	95.0	30.0	6.0	NP	102.0	39.0	2.0	P	94.0	75.0
10.5	NP	105.9	50.4	3.0	Ż	105.0	30.0	2.0	P	79-0	82.0	2.0	P	0.4و	75.0
14.5	NP	105.8	40.0	5.0	7	93.0	18.5	2.0	P	88.0	82.0	2.0	Р	83.0	75.0
35.0	28	92.0	13.8	3.0	NP	103.0	30.0	2.0	P	98.0	82.0	2.0	P 7	94.0	75.0 24.0
38.0	28	89.2	12.0	4.0	NP NP	98.0 96.0	24.0 15.0	2.0	P P	94.0 96.0	82.0 82.0	8.75	7	95.0 89.0	24.0
58.0	28	83.2	6.6 81.0	6.0 6.0	NP	97.0	15.0	7.25	7	91.0	32.5	9.5	4	79.0	21.0
4.0 8.0	NP NP	106.2 103.8	60.5	6.0	NP	97.0	15.0	8.0	7	89.0	30.0	8.75	NP	98.0	24.0
14.0	NP	104.1	40.5	6.0	NP	99.0	15.0	7.25	NP	101.0	32.5	8.75	NP	102.0	24.0
1410				6.0	NP	96.0	15.0	8.0	NP	101.0	30.0	8.75	NP	95.0	24.0
B. Source	of Data	Unpublished data	from	6.0	NP	96.0	15.0	8.0	NP	101.0	30.0 26.0	9.5	NP NP	97.0	21.0 19.0
		Columbus AFB tes	t section, 1958	0.8	NP	108.0	70.0 41.0	9.0	NP NP	91.0 101.0	20.0	10.5	NP	101.0	23.0
	ly Load	212,000 15	07 Ju	2.0	PH P	+ 94.0 95.0	41.0	7.5 8.5	NP	100.0	28.0	9.0	NP	101.0	23.0
Assemb	ly Type	Twin twin, 37-62		2.0	P	95.0	41.0	9.5	NP	102.0	24.0	9.0	NP	97.0	23.0
		267-sq-in. conta bicycle-type ges		2.0	P	98.0	41.0	6.5	P	95.0	35.5	10.0	NP	100.0	20.0
				6.5	7	93.0	14.0	13.0	28	91.0	17.0	11.0	NP	99.0	18.0
4.0	NP	105.0	83.0 44.0	6.5	NP	99.0	14.0	13.0	28	90.0	17.0	11.0	NP	99.0	18.0
12.0	NP NP	103.6 101.0	30.0	6.5	NP	93.0	14.0	13.0	28	98.0	17.0	4.9	NP 28	103.0	43.0 12.5
17.0 21.0	NP	104.8	23.0	6.5	NP	99.0 98.0	14.0 14.0	13.0	28	93.0 97.0	17.0 17.0	16.0	20	97.0 93.0	12.5
25.5	18	106.9	17.5	6.0	NP NP	100.0	15.0	13.0	28 28	90.0	17.0	16.0	28	95.0	12.5
31.5	P	101.7	13.5	7.0	NP	95.0	13.0	13.0	28	96.0	17.0	16.0	28	91.0	12.5
55				6.5	NP N	100.0	14.0	13.0	28	97.0	17.0	16.0	28	96.0	12.5
C. Source	of Data;	Investigation of	Effects of	6.5	NP	103.0	14.0	13.0	28	96.0	17.0	16.0	28	93.0	12.5
		Traffic With Hig		6.5	NP	102.0	14.0	11.0	28	82.0	20.0	16.0	28 28	88.0	12.5
		on Asphalt Pavem May 1950	ents, in S-Siz,	6.5	NP	100.0	14.0	11.0	28	91.0	20.0	16.0 16.0	20	96.0 96.0	12.5
Accomb	ly Load	30,000 15		6.5	NP	102.0	14.0 9.3	1				16.0	28	88.0	12.5
	ly Type:	Single, 200-psi	tire pressure	9.0	28 28	93.0 96.0	9.3	1				16.0	28	95.0	12.5
		100.3	12.5	9.0	20	95.0	9.3					16.0	28	96.0	12.5
16.0 12.0	23 23	99.3	19.0	9.0	28	94.0	9.3					16.0	28	93.0	12.5
12.0	23	98.1	19.0	9.0	28	95.0	9.3					16.0	28	92.0	12.5
12.0	23	98.2	19.0	9.0	28	96.0	9.3					16.0	28	92.0	12.5
12.0	23	97.4	19.0	9.0	28	94.0	9.3					16.2	28 28	95.0 96.0	12.3 18.0
12.0	23	97.0	19.0	9.0	28	94.0	9.3 9.3					11.0	28	93.0	18.0
Assemb	ly Load	120,000 1b		9.0	28 28	96.0 96.0	9.3						20	,,,,,,	
	ly Type.	Twin tandem, 31	x 60 in.	9.0	28	95.0	9.3	1							
13.0	23	99.0	22.5	9.0	28	94.0	9.3	1							
13.0	23	99.0	22,5	9.0	28	92.0	9-3	1							
13.0	23	100.5	22.5	9.0	28	95.0	9.3					1			
13.0	23	93.8	22.5	9.0	28	92.0	9.3								
12.0	23	95-3	25.0	9.0	28 28	96.0 94.0	9.3 7.0								
				11.0	28 28	95.0	7.0								
				11.0	28	95.0	7.0								
					20	,,,,,,						1			
								1							
								1							
				<u> </u>											

FIELD COMPACTION DATA FOR FLEXIBLE AIRFIELD PAVEMENTS

Depth		Per Cent		Depth		Per Cent	· · · · · · · · ·	Depth		Per Cent		T			
from	Plas-	Mod	Compac-	from	Plas-	Mod	Compac-	from	Plas-	Mod	Compac-	Depth from	Plas-	Per Cent Mod	0
Surface	ticity		tion	Surface	ticity	AASHO	tion	Surface	ticity		tion	Surface	ticit		Compac- tion
in	Index	Density	Index*	<u>in.</u>	Index	Density	Index	in.	Index	Density	Index	12.	Index		Index
A. Source	of Data	Condition Survey	. Report	D. Source	of Dete.	Condition Survey,	Bonowt	F. (Cont							
		No. 2, Pope Air		Di bource	or Data	No. 3, Lawson All	T Rorre Base	F. (Cont	inuea)			H. Source	e of Data	Airfield Pavemen	
		Fort Bragg, North				Fort Benning, Geo		21.0	NP	102.0	12.0			tion, Report No.	4, Davis-
		MP 4-3		Assembl	y Load	13,000 lb		33.0	NP	95.0	6.4			Monthan Air Fore Tuscon, Arizona,	Base,
Assembl		13,000 1b		Assembl	у Туре	Single, 100-psi t	tire pressure	14.5	NP	92.0	18.5	Ascom	bly Load	74,400 1b	1M 3-344
Assembl	y Type	Single, 100-psi	tire pressure	3.0	6	89.0	48.0	26.5	NP	95.0	8.8		bly Type.	Dual, 37 in. c-c	067
4.0	NP	95.0	37.0	3.0	ů	89.0	48.0	17.5	NP	89.0	15.0	Abotan	ory type.	contact area	, 201-sd-1u.
3.0	NP	93.0	48.0	3.0	MP MP	89.0	48.0	29.5	NP	90.0	7.5	1			
9.0	7	83.0	13.5	3.0	NP	89.0	48.0	8.0	NP	82.0	36.0	3.5	15 4	94.7	71.0
21.0	13	84.0	3.4	3.0	NP	90.0	48.0	20.0	NP	81.0	13.0	3.5		99.7	71.0
20.0	NP	85.0	3.8	3.0	NP	89.0	48.0	ш.0	NP	93.0	24.5	4.0	10 18	98.5	65.0
8.0	NP	81.0	15.0	3.0	NP	89.0	48.0	23.0	NP	91.0	11.0			97-3	65.0
				11.0	NP	89.0	9.75	14.0	NP	97.0	19.0	2.5	NP	97.9 98.4	85.0
B. Source	of Data.	Condition Survey	Report	11.0	NP	88.0	9.75	26.0	NP	94.0	9.0		NP 11		65.0
		No. 5, Eglin Air	Force Base,	12.0	NP	93.0	8.5	19.0	NP	95.0	13.5	3.5	20	100.7 86.3	71.0 22.5
		Valparaiso, Flor	da, MP 4-3	12.0	NP	92.0	8.5	31.0	NP	94.0	6.6	11.5	11	92.7	
Assembly		30,000 1b		10.0	NP	90.0	11.0	11.5	NP	98.0	23.0	12.0	17	92.2	22.5 21.0
Assembly	y Type.	Single, 100-psi 1	ire pressure	10.0	NP	85.0	11.0	23.5	NP	97.0	10.5	11.0	19	96.9	23.5
8.0	NP	101.5	27.0	12.0	NP	85.0	-8.5	19.0	NP	95.0	13.5	11.5	23	88.3	22 5
15.0	MP	96,9	11.5	1			-	31.0	NP	95.0	6.6	12.0	12	90.2	21.0
4.0	NP	97.2	52.0	E. Source	of Data	Condition Survey,	Report	17.0 29.0	NP NP	93.0	15.5	14.0	12	89.6	18.0
16.0	NP	94.9	10.5			No. 4, Ardmore Al	r Force Base.	17.0	NP	95.0 100.0	7.75	12.0	13	90.3	21.0
8.0	NP	98.2	27.0	1		Ardmore, Oklahoma	MP 4-3	29.0	NP	100.0	15.5	12.0	12	91.4	21.0
				Assembl		22,500 1b		14.5	NP	97.0	7.75	12.0	8	97.6	21.0
Assembly	y Load	96,000 15		Assembl	y Type:	Single, 100-psi t	ire pressure	26.5	NP	97.0	8.8	14.0	13	95.5	18.0
Assembly	у Туре	Dual, 37 in. c-c,	267-sq-in.	3.0	10	102.0	57.0	16.5	NP	98.0	16.0				
		contact area		3.0	6	98.0	57.0	28.5	NP	90.0	8.0	I. Source	e of Data	Flexible Pavemen	: Behavior
20.0	NP	102.7	16.6	16.0	11	92.0	8.5	12.0	NP	95.0	22.5			Studies, Interim	Report
15.0	NP	98.5	15.5 22.5	14.0	8	89.0	10.0	24.0	NP	94.0	10.0			No. 2	
24.0	MP	96.7	12.0					13.5	NP	101.0	20.0		ly Load	15,000 1b	
36.0	NP	92.0	6.8	F. Source	of Data.	Airfield Pavement	Evaluation,	25.5	NP	94.0	9.4	Assemb	oly Type	Single, 100-psi	ire pressure
5010		92.0	0.0			Report No. 6, Pal	m Beach In-								
C. Source of	of Data	Airfield Pavement	Evaluation.			ternational Airpo	rt, Florida,	G. Source	e of Data	Airfield Pavement	Evaluation,	15.0	NP	92.0	6.75
		Report No. 3, Boo		1		TM 3-344				Report No. 2, Shey	pard Air	15.0	NP	94.0	6.75 6.75
		field, Florida, 1	M 3-344	Assembly		79,000 lb				Force Base, Wichit	ta Falls,	15.0	NP	95.0	6.75
Assembly	Load ·	62,000 lb		Assembly	у Туре	Dual, 37 in. c-c,	267-sq-1n.			Texas, TM 3-344		15.0	7	94.0 86.0	6,75
Assembly	7 Type	Dual, 37 in. c-c,	360-sq-1n.			contact area			ly Load.	15,750 10		20.0	44	86.0	4.0
	-	contact area	-	3.0	NP	99.0	81.0	Assemb	ly Type	Single, 100-psi ti	re pressure	20.0	դդ	92.0	4.0
11.0	NP	96.0	17.8	3.0	NP	100.0	81.0	3.0	8	100.0	51.0	15.0	37	87.0	6.75
25.5	NP	96.0	6.8	7.0	NP	95.0	42.0	12.0	NP	87.0	9.8	15.0	11	84.0	6.75
10.5	NP	94.0	18.5	4.75	NP	93.0	60.0	3.0	NP	94.0	51.0	15.0	13	94.0	6.75
24.0	NP	84.0	7.5	2.0	NP	94.0	96.0	2.0	7	100.0	66.0	19.0	32	86.0	4.5
10.75	NP	91.0	18.1	4.5	NP	95.0	62.0	90	NP	89.0	14.5	12.0	13	92.0	2.5
10.0	NP	96.0	20.7	3-5	NP	98.0	75-0	2.5	NP	90.0	58.0	13.0	1 8	86.0	8.5
24.0	NP	91.0	7.5	3.0	NP	101.0	80.0	3.0	NP	97.0	51.0		1	75.0	5.5
11.0	NP	96.0	17.8	3.0	NP	103.0	80.0	20.0	7	79.0	4.3	13.0	6	94.0 94.0	8.5
24.0	NP	93.0	7.5	3.25	NP	104.0	78.0	14.5	11	94.0	7.4	1 -2.0	0	94.0	8.5
				4.0	NP	100.0	69.0	23.0	18	89.0	3.3	Assemb	ly Load:	16,000 15	
				6.0	NP	103.0	49.0	13.0	18	85.0	8.8				re pressure
				3.5	NP	99.0	75.0	15.0	28	89.0	7.0				-
				13.0	NP NP	89.0 92.0	21.0 20.0	2.5	NP	91.0	58.0	11.0	17	79.0	12.0
				13.5	NP	92.0	20.0	3.0	NP NP	87.0	51.0	11.0	16	91.0	12.0
				13.0	NP	92.0	21.0	12.0	NP 17	93.0	58.0	19.0	20	69.0	4.8
				13.0	NP	91.0	21.0	13.5	20	93.0	9.8 8.2	24.0	20	73.0	3.2
				11.5	NP	92.0	23.0	14.0	20	91.0		19.0	18	74.0	4.8
					RE.	92.0	23.0	14.0	11	93.0	7.7	24.0	18	72.0	3.2
				l								1			
				!			(Conti	nued)				1			
				I								1			
t ine comme	atton ind	lex is the design	The seline for t	he commond	(ma 1 and .	and double									<u> </u>

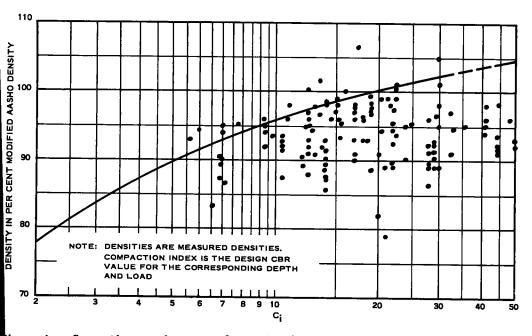
* Ine compaction index is the design CBR value for the corresponding load and depth.

TABLE 4 (Continued)

						Per Cent		Depth		Per Cent	<u></u>	Depth	· · · · · · · · · · · · · · · · · · ·	Per Cent	
Depth		Per Cent		Depth from	Plas-	Mod	Compac-	from	Plas-	Mod	Come.c-	from	Plas-	Mod	Compac-
from	Plas-	Mod	Compac- tion	Surface	ticity	AASHO	tion	Surface	ticity	AASHO	tion	Surface	ticity	OHBAA	tion
Surface	ticity		Index	in.	Index	Density	Index	in.	Index	Density	Index	in.	Index	Density	Index
<u>in.</u>	Index	Density	<u>Inner</u>									K. (Cont			
I. (Contin	nued)			J. (Contin	ued)			K. (Cont				•••••			_
	ly Load:	17,500 1b			NP	102.0	98.0	Facil		Taxiway 1		Field		Campbell Air For	rce Base
Assemb	ly Type:	Single, 100-pai	tire pressure	3.0 3.0	NP	98.0	98.0		bly Load	15,000 15		Facil	ibly Load	N-S runway 25,000 lb	
16.0	20	85.0	6.8	3.0	MP	99.0	98.0	Азвеш	bly Type·	Single, 100-pai		Asset	ibly Type:	Single, 100-psi	ti me
13.0	11	88.0	9.5	3.5	NP	99.0	90.0	4.5	3	104.0	34.0	Asset	Dig igpe.	pressure	
14.0	16	84.0	8.5	12.5	NP	0. بأو	22.5	14.5	7	94.0	7.0	<i>.</i>			
25.0	17	69.0	3.2	3.5	NP	98.0	90.0	19.5	39	86.0	4.25	6.25	NP	102.0	31.0
22.0	10	79.0	3.9	13.0	NP	93.0	21.4	24.0	39	85.0	3.0	14.25	20 20	87.0	11.0 4.6
25.0	15	78.0	3.2	18.5	NP	96.0	15.5	4.5	2	100.0	34.0	24.0 5-5	20 NP	79.0 101.0	35.0
				3.5	NP	110.0	90.0	14.5	8	91.0 84.0	7.0 4.25	14.5	20	90.0	10.6
Assemb	ly Load:	25,000 lb Single, 100-psi	time pressure	3.5	NP	93.0	90.0	19.5 24.0	38 38	82.0	3.0	24.0	20	83.0	4.6
Assemb	ly Type:			14.0	NP	100.0	20.0	24.0	30	UE . U	3.0	5.5	MP	103.0	35.0
15.0	20	87.0	10.0	21.0	MP	94.0	13.5 81.0	Facil	15.0	B-W runway		14.5	20	96.0	10.6
24.0	20	79.0	4.7	2.5	NP NP	109.0	55.0		ibly Load;	15,000 lb		24.0	20	95.0	4.6
15.0	20	90.0	10.0	4.5 14.0	NP NP	99.0	20.0		ably Type:	Single, 100-psi	tire pressure	5.5	NP	106.0	35.0
24.0	20	83.0	4.7 6.4	14.0	nP,	22.0	2010			102.0	34.0	14.5	20	87.0	10.6
20.0	9	83.0 85.0	4.0	V Course	of Deter	Field Moisture C	ontent In-	4.5	1	89.0	34.0	24.0	20	91.0	4.6
26.0	9	90.0	8.3	A. Source	OI DECE.	vestigation Unpu	blished Data		31	91.0	4.25	10.0	20	90.0	17.0
17.0	9	106.0	12.3	Field:		Ardmore Air Force		19.5 4.5	1	102.0	34.0	Faci	Lity:	NE-SW runway	
13.0 15.0	14		10.0	Facilit	.y.	NS runway		14.5	8	93.0	7.0		ably Load:	15,000 lb	
15.0	7	94.0 84.0	10.0	Assemb.	y Load:	22,000 15		19.5	53	99.0	4.25	Asse	ably Type	Single, 100-psi	tire
15.0	7	104.0	10.0	Assembl	Ly Type	Single, 100-psi	tire pressure	4.5	NP	108.0	34.0			pressure	
14.0	15	75.0	11.0					14.5	4	90.0	7.0	6.0	NP	99.0	25.0
15.0	- 5	75.0	10.0	5.5	10	102.0	33.0	19.5	38	94.0	4.25	15.5	15	88.0	6.4
-,				5.5	6	98.0 89.0	33.0 6.25								
J. Source	of Data:	Airfield Pavement		19.0	CL	09.0	0.27	Field		Berry Air Force	Ваве	Fiel		Clovis Air Fore	e Base
		Report No. 1, C	ampbell Air					Facil		West N-S runway		Faci	nbly Load	N-S runway 30.000 lb	
		Force Base, Ker	tucky, TM 3-344						mbly Load:	15,000 1b			ably Type	Single, 100-psi	+1
	ly Load:	140,000 1b Twin tandem, 31	x 60 in a-a	Field:		Bergstrom Air Fo	rce Base	5.5 14.5	2	102.0	27.5	Aspe	Tora inte	pressure	urre
Assemo	oly Type.	267-sq-in. cont		Facili		NW-SE runway			37	87.0	7.0		_	-	
		• -			Ly Load	15,000 lb Single, 100-psi		24.0	37	69.0	3.0	4.0	9	100.0	52.0 10.5
12.5	29	89.0	22.5	Assemb.	ly Type:		-	5.5	2	106.0 84.0	27.5	32.0	9	86.0	3.3
24.5	P	72.0	11.0	4.5	1	104.0	34.0	14.5	11	85.0	3.0	4.0	7	98.0	52.0
32.0	36 P*	91.0 88.0	7.75 5.6	4.5	1	101.0	34.0	5.5	12	108.0	27.5	16.0	9	103.0	10.5
40.0	P#	87.0	21.4	14.5	NP	92.0	7.0 4.25	14.5	20	82.0	7.0	33.0	é	84.0	3.0
13.0 25.0	P	80.0	10.8	19.5	երի թեր	86.0 85.0	3.0	24.0	20	89.0	3.0	4.0	7	98.0	52.0
11.5	P	89.0	24.0	24.0	44	101.0	34.0	5.5	2	109.0	27.5	16.0	ģ	76.0	10.5
23.5	P	84.0	11.7	4.5	NP 1	90.0	7.0	14.5	29	91.0	7.0	32.0	9	102.0	3.3
13.5	P	94.0	20.5	19.5	կի	86.0	4.25	24.0	29	90.0	3.0	Fiel	a	Davis Air Force	Base
25.5	P	82.0	10.6	24.0	հե	84.0	3.0						lity-	E-W runway	
13.5	P	90.0	20.5	4.5	1	104.0	34.0	Fiel		Blythe Air Force	Base		mbly Load.	65,000 to 75.00	0 15
25.5	P	83.0	10.6	14.5	NP	89.0	7.0		lity:	N-S runway			mbly Type:	Dual, 37 in. c-	
30.0	P	88.0 88.0	8.4	19.5	հեր	94.0	4.25	Asse	mbly Load;	25,000 15				sq-in. contact	area
42.0	P		5-3 9-2	24.0	հեր	94.0	3.0	4.5	NP	98.0	43.0	6.0	15	95.0	45.0
28.0	34 P	91.0 88.0	5.6	4.5	1	104.0	34.0	10.5	NP	88.0	16.0	14.0	20	86.0	18.5
40.0 10.5	26	92.0	25.5	14.5	NP	94.0	7.0 4.25	24.0	NP	82.0	4.6	23.0	20	92.0	10.25
22.5	20 P	88.0	12.2	19.5	իլեր Այներ	92.0 91.0	3.0	4.5	NP	101.0	43.0	6.0	4	100.0	45.0
31.5	18	91.0	7.9	24.0	44	104.0	34.0	10.5	NP	92.0 85.0	16.0 4.6	14.0	11	93.0	18.5
14.5	P	90.0	19.2	4.5	հե	94.0	4.25	24.0	NP NP	94.0	59.0	24.0	11	76.0	9.6
26.5	P	87.0	9.8	24.0	<u>у</u> т	94.0 86.0	3.0	3.0	NP NP	94.0 88.0	29.0	Pant	lity:	N-S runway	
30.0	P	95.0	8.4	4.5	ï	97.0	34.0	24.0	NP	86.0	4.6		mbly Load	65,000 to 75,00	ю 1ъ
42.0	P	90.0	5+3	14.5	NP	95.0	7.0	4.5	NP	103.0	43.0		mbly Type	Dual, 37 in. c-	
3.0	NP	89.0	98.0	19.5	<u>1</u> ,1	92.0	4.25	10.5	NP	92.0	16.0	1		sq-in. contact	area
3.5	NP	100.0	90.0	24.0	հեր	92.0	3.0	24.0	NP	92.0	4.6	6.5	10	- 99.0	42.5
14.0	NP	96.0	20.0	Į				4.5	NP	100.0	43.0	14.5	10	92.0	17.75
4.5	NP	105.0	55.0	1				10.5	NP	94.0	16.0	24.0	17	89.0	9.6
	_							24.0	NP	88.0	4.6		-1	-,	2.0
								in the second second				1			

Interna Link John Partice Link John Link															Per Cent	
n. Date D	Surface	ticits	AASHO	tion	Eurofa en	*10.5	MOL	Compac-	from	Plas-	Mod	Compac-	from	Plas-	Mod	Compac-
Normality Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>																
Assembly Date: 6/00 to 75,000 lb Facility Faci Facility Facility </td <td>K. (Contin</td> <td>nued)</td> <td></td> <td></td> <td>K. (Contin</td> <td>ued)</td> <td></td> <td></td> <td>K. (Contin</td> <td>nued)</td> <td></td> <td></td> <td>K. (Conti</td> <td>nued)</td> <td></td> <td></td>	K. (Contin	nued)			K. (Contin	ued)			K. (Contin	nued)			K. (Conti	nued)		
Assessity Dot: 60, 00, 00, 70, 00, 10, 1			Taxiway 4		Field		Dodge City Air Fo:	rce Base	Field		Gainesville Air Fo	orce Base	Facili	ty.	N-S runway	
Assembly Type: LameRb Type: Single, 10-pet tite pressure Assembly Type: Single, 10-pet tite pressure Assembly Type: Exiting: Docs Dick Type: Dick D			65,000 to 75,000	16			Taxiway 4A		Facilit		N-S runway		Assemb	ly Load		
6.5 10 97.0 10.5 10.5 10	Assemb:	ly Type.	Dual, 37 in. c-c,	267-sq-in.									Assemb	ly Type		tire
13.5 19 86.0 10.6 13.5 12 12.5 <th< td=""><td></td><td>_</td><td></td><td></td><td></td><td>у Туре∙</td><td></td><td>ire pressure</td><td>Assemb.</td><td>ly Type•</td><td>Single, 100-psi ti</td><td>re pressure</td><td></td><td></td><td></td><td></td></th<>		_				у Туре∙		ire pressure	Assemb.	ly Type•	Single, 100-psi ti	re pressure				
8.0 13 bl.0 9.6 25 25 25 13 15.5 23 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 23.5 15.5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.5</td><td></td><td></td><td>43-0</td><td></td><td>6</td><td></td><td></td></th<>									4.5			43-0		6		
Partitive Assembly Tope Turing - Figure The second and the second assembly Tope Turing - Partitive Topology Turing - Partitive Topology <thturing -<br="">Parting - Partitive Topology <thturing -<br="">Pa</thturing></thturing>			96.0		15.5	17			16.5					4		
Assembly Type 65,00 to T, 5000 lb assembly Type 65,00 to T, 5000 lb bit of the c, 807-eq. to bit of the c, 807-eq.	24.0	19	81.0	9.6	22.5	26	82.0		4.5	13				4		
Assembly Type Description Disc. 13.0					24.0	26	74.0		14.5	20				6		
Normality law Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>						12								4		±2•2
Constrained Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	Assemb]	ly Type∙		267-sq-in.		10			14.5							43.0
6.0 FP 100.0 14.0 14.0 Failing Failing </td <td></td> <td></td> <td>contact area</td> <td></td> <td></td> <td>32</td> <td></td> <td>3.0</td> <td>24.5</td> <td></td> <td></td> <td></td> <td></td> <td>ŭ</td> <td></td> <td></td>			contact area			32		3.0	24.5					ŭ		
9.0 25 85.0 9.6 <td></td> <td></td> <td></td> <td>45.0</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>77.0</td> <td>5.5</td>				45.0		2									77.0	5.5
Pressure Assembly Type: Continued Type: Top is a bit of the sembly Type: Type: Typ								Base				Base				
Assembly Tope: Bings (1) T		-	83.0	9.6												
Assembly Type: Dial, 71 in the end of regime transment 5.5 3 93.0 93																43.0
Accessibly Type Description 1.2 pp 37.0 2.6 1.3.5 3 2.6.0 1.0.5			65,000 to 75,000	15				-	I			-				
6.5 10 98.0 42.5 23.0 37 62.5 37 63.6 13 69.7 13.0 Pacility mate Pacility mate </td <td>Assembl</td> <td>Ly Type:</td> <td>Dual, 37 in. c-c,</td> <td>267-sq-in.</td> <td>5.5</td> <td></td> <td>93.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L 27.0</td> <td>MF</td> <td>0,.0</td> <td></td>	Assembl	Ly Type:	Dual, 37 in. c-c,	267 -sq-in .	5.5		93.0						L 27.0	MF	0,.0	
6.5 10 96.0 46.7 7.7 1.5 1.5 1.5 1.3 1.5										13			Facili	ty		
27.0 12 72.0 11.6 mp 86.0 3.6 11.5 13 19.0 10.0 11.5 13 19.0 10.0 <td>6.5</td> <td></td> <td></td> <td></td> <td>23.0</td> <td></td> <td></td> <td></td> <td></td> <td>13</td> <td></td> <td></td> <td>Assemb</td> <td>ly Load</td> <td>30,000 1b</td> <td></td>	6.5				23.0					13			Assemb	ly Load	30,000 1b	
Los Los Los Los Los Los Joint Description Special				17.75		כ		29.0					Assemb	ly Type		ire
Preclity Parity Land: Data: 97 10 10 - 0 7,000 1	23.0	12	76.0	10.25					24.0	13					pressure	
Assembly Type. Dukl. 37 th: 0-c, 267-sqln. contact area Assembly Type. 15.5 Dukl. 37 th: 0-c, 267-sqln. contact area Assembly Type. 12.5 Dukl. 37 th: 0-c, 267-sqln. contact area Assembly Type. 11.0 Dukl. 37 th: 0-c, 267-sqln. 21.5								2.0	1	-2		J		NP		47.0
contact area Assembly Type Biggle, 100-put tire pressure Assembly Tode. 15,000 ib 16,5 17,0 10,00 16,5 17,0 10,00 10,00 11,00 10,00 11,00 10,00 11,00 10,00 11,00 10,00 11,00 10,00 11,00 10,00 <			65,000 to 75,000	16								Base				
6.5 10 95.0 12.0 13.0 <t< td=""><td>Assembl</td><td>Ly Type.</td><td>Dual, 37 in. c-c,</td><td>267-sq-in.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5-5</td></t<>	Assembl	Ly Type.	Dual, 37 in. c-c,	267-sq-in.												5-5
16.5 12 20.0 12.5 12 10.0 10.0 10.0 10.0 10.0 10.0 24.0 2 84.0 5.5 28.0 12 77.0 9.6 22.0 21 66.0 5.5 4.5 HP 100.0 34.0 16.5 3 90.0 10.0 Assembly Type Daal, J T in: e-t, 267-sq-in. 21.0 21.0 89.0 12.0 11.5 HP 100.0 34.0 16.5 3 90.0 10.0 6.0 10.0 91.0 45.0 10.0 20.0 4.5 HP 100.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 10.0 20.0 20.0 20.0 20.0 20.0 20.0					Assembl	у Туре•	Single, 100-psi ti	lre pressure								
21.0 12 277.0 2.5 120 3 91.0 97.3 41.2 Nr 104.0 54.0 5.0 Nr 103.0 43.0 5.0 105.0 30.0 43.0 5.0 105.0 30.0 43.0 30.0 43.0 30.0 43.0 30.0 43.0 30.0 43.0 30.0 43.0 30.0 43.0 30.0 30.0 30.0 10.0 224.0 3 76.0 5.5 3 90.0 10.0 11.5 100.0 10.0 24.0 3 76.0 5.5 17.0 20.0 10.0 10.0 10.0 24.0 3 76.0 5.5 17.0 20.0 10.0 <					5.5			29.0	Assembl	ly Type	~	re pressure			81:0	
The lifty				15.0	13.0	3	97.0									
Pacifity: Taxing 9 3:2 P 94.0 29.0 4.5 P 96.0 34.0 24.0 34.0 24.0 34.0 24.0 34.0 <t< td=""><td>24.0</td><td>12</td><td>77.0</td><td>9.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td>103.0</td><td></td><td></td><td></td><td></td><td></td></t<>	24.0	12	77.0	9.6							103.0					
Assembly Type Dial, 37 in. c-c, 267-sq.in. contact area 21.0 21 89.0 4.3 4.5 BP 103.0 34.0 1.2.2 B3.0 10.0 10.0 6.0 10 9.1.0 45.0 14.5 3 92.0 80.0 13.5 BP 99.0 8.0 21.5 2 10.0 20.0 2 20.0 <td></td> <td></td> <td>Taxiway 9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.5</td>			Taxiway 9						4.5							5.5
Control Signed Field Signefield Signed Field Signed						21			1 12				4.5			
Contact area 14,5 3 92,0 8,0 10.0	Assembl	у Туре		267-sq-in.					13.5							
11.5 13 50.0 17.75 5.5 17 50.0 20.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>92.0</td><td></td><td></td><td></td><td><i>,,,,</i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td>0.0</td><td>24.0</td><td>2</td><td>77.0</td><td>5.5</td></th<>							92.0				<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0	24.0	2	77.0	5.5
26:0 13 20:0 11.17 12.5 14.5 3 80.0 29.0 Pacility.						15	85.0		Field,		Kirtland Air Force	Base	B	·	The set of	
Pacility- Assembly Load: W-SE runway (5, 000 to 75,000 lb Assembly Type: 21.5 (5) 21. (5) 88. (7.5) 9 101.0 (1.0) 29.0 (1.0) 4.0 (1.0) 5 106.0 (1.0) 38.3 (1.0) 13.5 (1.0) 13.5 (1.0) 11.0 (1.0) 13.5 (1.0) 11.0 (1.0) 13.5 (1.0) 11.0 (1.0) 13.5 (1.0) 11.0 (1.0) 13.0 (1.0) 4.0 (1.0) 5 (1.0) 13.5 (1.0) 11.0 (1.0) 13.0 (1.0) 13.0 (1.0)<	14.5	13			5.5		97.0									
Pacility- Assembly Load N-SE runway (5,000 to 75,000 lb Assembly Type) 21.5 (5,000 to 75,000 lb I3.5 21.5 (1.5,11 21.6 (0,000 lb) 4.1 (0,000 lb) Assembly Type: (0,000 lb) 106.0 (3,000 lb) 38.3 (1,000 lb) 13.5 (1,000 lb) 13.5 (1,000 lb) 13.5 (1,000 lb) 11.3 (1,000 lb) 13.5 (1,000 lb) 13	26.0	13	93.0	9.5			85.0									267-sa-
Assembly Ioad: 65,000 to 75,000 lb 13,5 1 95,00 4,0 5 106,0 38,3 13,5 4 91,0 19,0 Assembly Type. Dual, 37 in. c-c, 267-sq-in. 21.5 11 85,00 4,1 4,0 5 95,0 8,5 5,0 80* 96,0 15,5 91,0 16,5 16,5 10,0 8,3 14,0 80* 96,0 16,5 14,0 80 80,0 16,5 14,0 80,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 12,5 NP 94,0 20.5 5,0 80 96,0 15,7 11,9 91,0 11,3 4,0 3 10,0 12,5 NP 94,0 20.5 5,5 9 98,0 29,0 13,0 4 93,0 8.5 5,0 80 5,0 80,0 10,4 5,0 80,0 10,4 5,0 80,0 12,5 85,0 12,5 85,0 12,5 85,0 12,5 85,0 12,5 85,0 12,5 85,0 12,5 85,	Reci74+	· ·	W-SF minuar						Assembl	Ly Type:	Single, 100-psi ti	re pressure				
Assembly Type. Dail, 37 th c-c, 267-sqin. contact area 21.5 11 65.0 1.7.1 13.0 5 95.0 8.5.3 14.0 SC 96.0 15.0 14.5 12 91.0 17.75 11.5 11 91.0 13.0 6 94.0 86.5 14.0 SC 96.0 18.5 23.0 12 82.0 10.25 17.5 24 80.0 5.9 13.0 4 93.0 8.5 12.5 NP 94.0 20.5 14.5 8 96.0 17.75 11.5 11 94.0 11.3 4.0 3 106.0 36.5 12.5 NP 94.0 20.5 24.0 8 76.0 9.6 5.5 9 96.0 29.0 Assembly Load: 30,000 lb 12.5 SC-8M 97.0 55.0 24.0 8 76.0 9.6 5.5 9 96.0 29.0 13.3 5.0 3 99.0 43.				16						5			12.5) ,	01.0	19.0
contact area 55 9 102.0 29.0 4.0 4 102.0 38.3 14.0 50 60 18.5 14.5 12 91.0 17.75 11.5 11 91.0 11.3 4.0 3 106.0 38.3 14.0 85.0 50 <td< td=""><td></td><td></td><td>Dual, 37 in. c-c.</td><td>267-sq-in.</td><td></td><td></td><td>85.0</td><td></td><td>13.0</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Dual, 37 in. c-c.	267-sq-in.			85.0		13.0	5						
14.5 12 91.0 17.75 11.5 11 91.0 11.3 13.0 6 94.0 0.5 5.0 8C 96.0 55.0 23.0 12 82.0 10.25 17.75 24 80.0 5.9 13.0 4 93.0 8.5 12.5 NP 94.0 20.5 6.5 NP 102.0 42.5 5.5 9 96.0 29.0 13.0 4 93.0 8.5 12.5 NP 94.0 20.5 14.5 8 96.0 17.75 11.5 11 94.0 11.3 4.9 93.0 8.5 12.5 SC-8M 90.0 20.5 24.0 8 76.0 9.6 5.5 9 96.0 29.0 Assembly Toget: 81.8 10.0 12.5 SC-8M 97.0 55.0 24.0 NP 91.0 12.5 NP 90.0 13.3 5.0 SC-8M 92.0 20.5 5.0 Assembly Toge: ball, 37 in. c-c, 267-sq-in. 18.5 24 84.0 5.4 <td></td> <td> '</td> <td></td> <td>•</td> <td>55</td> <td>9</td> <td>102.0</td> <td>29.0</td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>SC</td> <td>86.0</td> <td>18.5</td>		'		•	55	9	102.0	29.0		4				SC	86.0	18.5
23.0 12 62.0 10.25 17.5 24 80.0 5.9 13.0 10.0 50.3 12.5 NP 94.0 20.0 8.5 6.5 NP 102.0 42.5 5.5 9 98.0 29.0 13.0 4 93.0 8.5 12.5 NP 90.0 25.0 10.5 10.5 10.4 93.0 8.5 12.5 NP 90.0 25.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 11.9 90.0 12.5 80.0 10.5 12.5 80.0 90.0 12.5 80.0 90.0 12.5 80.0 90.0 12.5 80.0 90.0 12.5 80.0 90.0 12.5 80.0 90.0 12.5 80.0 102.0 12.5 80.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.0 102.	14.5	12	91.0	17.75	11.5	ш	91.0	11.3				0.5	5.0			
6.5 NP 102.0 42.5 5.5 9 96.0 29.0 10.1 10.1 10.4 5.0 80.6 104.0 57.0 20.5 24.0 8 96.0 17.75 11.5 11 94.0 11.3 Assembly Load: 30,000 lb 12.5 85.6 BM 90.0 20.5 Pacility N-8 rummay 10.5 11 91.0 12.8 5.0 3 99.0 43.0 5.0 85.6 BM 90.0 20.5 Assembly Toxed: 5,000 to 75,000 lb 10.5 11 91.0 12.8 5.0 3 99.0 43.0 5.0 85.0 102.0 55.0 102.0 5.0 85.0 12.5 NP 90.0 12.5 85.0 102.0 55.0 12.5 NP 90.0 13.3 5.0 85.0 102.0 55.0 11.5 24.0 NP 84.0 5.0 13.5 NP 90.0 13.3 13.5 NP 90.0 13.3 13.5 NP 90.0 13.5 12.5 NP 94.0 19.0 <td< td=""><td>23.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td>8.5</td><td></td><td></td><td></td><td></td></td<>	23.0									5		8.5				
The clifty N-S runney 10.5 11 91.0 12.5 90.0 90.0 20.5 Assembly Load: 65,000 to 75,000 lb 10.5 11 91.0 12.8 5.0 3 99.0 43.0 5.0 80 103.0 55.0 Assembly Load: 65,000 to 75,000 lb 18.5 24 84.0 5.4 13.5 NP 90.0 13.3 5.0 80 103.0 55.0 Assembly Type: Dual, 37 in. c-c, 267-sq-in. 0.6 13.5 NP 90.0 13.3 5.0 80 103.0 55.0 6.0 11 98.0 45.0 18.5 24 84.0 5.4 13.5 NP 94.0 20.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 12.5 NP 94.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 5.5 13.5 NP 94.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 5.5 13.5 NP 94.0 19.0 24.0 13 95.0 9.6 9.6 8 86.0	6.5						98.0		1 23.00	-	2210	,				55.0
The clifty N-S runney 10.5 11 91.0 12.5 90.0 90.0 20.5 Assembly Load: 65,000 to 75,000 lb 10.5 11 91.0 12.8 5.0 3 99.0 43.0 5.0 80 103.0 55.0 Assembly Load: 65,000 to 75,000 lb 18.5 24 84.0 5.4 13.5 NP 90.0 13.3 5.0 80 103.0 55.0 Assembly Type: Dual, 37 in. c-c, 267-sq-in. 0.6 13.5 NP 90.0 13.3 5.0 80 103.0 55.0 6.0 11 98.0 45.0 18.5 24 84.0 5.4 13.5 NP 94.0 20.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 12.5 NP 94.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 5.5 13.5 NP 94.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 5.5 13.5 NP 94.0 19.0 24.0 13 95.0 9.6 9.6 8 86.0	14.5		98.0				94.0	11.3								20.5
Pacility: N-S runway 10.5 11 91.0 12.8 5.0 3 99.0 43.0 5.6 8C 102.0 55.0 Assembly Tode: 5,000 to 75,000 1b 18.5 24 84.0 5.4 13.5 NP 90.0 13.3 5.0 8C 102.0 55.0 Assembly Type: Dual, 37 in. c-c, 267-sq-in. contact area 18.5 24 84.0 5.4 13.5 NP 90.0 13.3 5.0 8C - 83.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0<	24.0	8	76.0	9.6			07.U 08.0	20.0				re pressure				20.5
Assembly Load: 65,000 to 75,000 lb 18.5 24 64.0 5.4 13.5 NP 90.0 13.3 5.0 S02-SM 103.0 55.0 Assembly Type, Dual, 37 in. c-c, 267-sq-in. 0 0.0 13.5 NP 90.0 13.3 5.0 S02-SM 103.0 55.0 25.0 25.0 25.0 20.0 13.3 12.5 NP 94.0 20.0 25.0 20.0 13.3 12.5 NP 94.0 25.0 25.0 20.0 13.3 13.5 NP 94.0 25.0 19.0 13.3 13.5 NP 94.0 19.0 19.0 13.3 13.5 NP 94.0 19.0 19.0 19.0 13.3 13.5 NP 94.0 19.0 19.0 19.0 13.3 13.5 NP 94.0 19.0 19.0 14.0 13.3 13.5 NP 94.0 19.0 19.0 14.0 13.3 13.5 NP 94.0 19.0 14.0 13.3 13.5 NP 13.3 13.5 NP 14.0 14.0 14.0 1						ú			5-0	2	90.0	13-0				
Assembly Type. Dual, 37 in. c-c, 267-sq-in. contact area contact area 26.0 mp 64.0 5.5 12.5 MP 94.0 20.5 25.0 6.0 11 98.0 k5.0 13.5 8 82.0 13.3 13.5 MP 94.0 19.0 55.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 12.5 MP 94.0 19.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 13.5 MP 94.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 12.5 MP 94.0 19.0 14.0 13 95.0 18.5 24.0 8 86.0 5.5 12.5 MP 94.0 19.0 14.0 13 95.0 9.6 9.6 5.6 94.0 19.0 14.0 13 95.0 9.6 9.6 5.6 10.0 18 10.0 18 10.0 18 13 95.0 9.6 9.6 9.6 5.6 10.0 18 10.0 18 10.0 18 14.5 8 99.0 59.0 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18 10.0 18	Assembl	y Load	65,000 to 75,000 1	15							90.0				103.0	55.0
6.0 11 98.0 45.0 13.5 8 B2.0 13.3 13.5 NP 94.0 19.0 19.0 14.0 13 95.0 18.5 24.0 8 B6.0 5.5 Facility: Taxiway 1 24.0 13 95.0 9.6 9.6 13.5 13.5 NP 94.0 19.0 13 95.0 9.6 9.6 24.0 8 86.0 5.5 Facility: Taxiway 1 Assembly Topel Top: Top: Top: Top: Top: Top: Top: 10.0 11.5 <	Assembl	y Type.		267-в <u>q</u> -in.	-				24.0	NP	84.0	5.5	12.5			20.5
14.0 13 95.0 9.6 24.0 13 95.0 9.6 24.0 13 95.0 9.6 (Continued) 24.6 8 86.0 5.5 Facility: Taxiway 1 Assembly Load: 75,000 lb Assembly Type. Dual, 37 in. c-c, 267-sq- in. contact area 4.5 NP 99.0 59.0			contact area							4	<u>9</u> 1.0					55.0
13 95.0 10.7 Facility: Taximay 1 24.0 13 95.0 9.6 Assembly Load: 75,000 lb Assembly Type: Dual, 37 in. c-c, 267-sq-in. contact area 1.5 8 99.0 59.0 (Continued) 4.5 NP 99.0 59.0 59.0									13.5	8	82.0		13.5	NP	94.0	19.0
Assembly Load: 75,000 lb Assembly Type. Dual, 37 in. c-c, 267-sq- in. contact area 4.5 8 (Continued) 4.5		13							24.0	8	86.0	5-5			Mowdrawy 1	
Assembly Type. Dual, 37 in. c-c, 267-sq- in. contact area 4,5 8 99.0 59.0 4.5 NP 99.0 59.0	24.0	13	95.0	9.6					1							
in. contact area 4.5 8 99.0 59.0 (Continued) 4.5 NP 99.0 59.0					1				1							. 267-59-
(Continued) 4.5 NP 99.0 59.0					4				1						in. contact area	
(Continued) 4.5 NP 99.0 59.0									1				1 1.5	A		
(Continued)					1			1	1 .				4.5			59.0
	A (Dece/ 01)			. 14-14	Ļ			(Cont	inued)				L			

* Classification given where Atterberg limits are unknown.


TABLE 4 (Continued)

Depth from Surface in.	Plas- ticit; Index		Compac- tion Index	Depth from Surface in.	Plas- ticity <u>Index</u>	Per Cent Mod AASHO Density	Compac- tion Index	Depth from Surface in.	Plas- ticity <u>Index</u>	Per Cent Mod AASHO Density	Compac- tion Index	Depth from Surface in.	Plas- ticity Index	Per Cent Mod AASHO Density	Compac- tion Index
K. (Contin				K. (Contin	ued)			K. (Contin	nued)			K. (Continu	æd)		
	ty. ly Load. ly Type	La Junta Air Force E-W runway 17,500 lb Single, 100-psi t:		6.5 14.0 18.5 24.0	6 18 17 17	103.0 88.0 92.0 83.0	33.0 12.6 8.4 5.5	Facilit Assembl Assembl 4.5	ly Load	NW-SE runway 15,000 lb Single, 100-psi tir 90.0	e pressure 34.0	Facility Assembly Assembly	Load: Type	N-S runway 15,000 to 25,000 l Single, 100-psi ti sure	re pres-
9.5 15.5 24.5 9.5	9 20 17 9	104.0 85.0 69.0 108.0	14.7 72 3.2 14.7	6.5 14.0 18.5 24.0	5 3 8 8	100.0 89.0 79.0 82.0	33.0 12.6 8.4 5.5	11.5 4.5 11.5	np Np Np	90.0 89.0 85.0	10.0 34.0 10.0	6.0 15.0 25.0	NP NP NP	91.0 99.0 90.0	31.7 10.0 4.3
9.5 15.5 24 5 7.0 14.0	20 17 14 10	85.0 84.0 100.0 91.0	7.2 3.2 22.0 8.5	Facilit Assembl Assembl	y Load: 30,	-SW runway ,000 lb ngle, 100-psi ti	re pressure	LdmeasA [Ly Load;	NE-SW runway 15,000 lb Single, 100-psi tin 89.0	e pressure 34.0	Facility Assembly Assembly	Ioad•	Taxiway 1 15,000 to 25,000 1 Single, 100-psi ti sure	
7.0 13.0 22.0 9 5	14 11 11 8	102 0 89.0 79.0 98.0	22.0 9.5 3.9 14.7	6.5 13.5 21.0 6.5	8 NP NP 6	100.0 98.0 89.0 96.0	33.0 13.3 5.9 33.0	4.5 11.5 Field. Facilit	NP	85.0 Pope Air Force Base NE-SW runway	10.0	7.0 12.5 22.0	NP NP NP	102.0 97.0 98.0	27 5 13.1 5.5
15.5 Facili	10	89.0 Taxiway 5 17,500 15	7.2	13.5 24.0 6.5 13.5	11 11 5 1	91.0 83.0 97.0 93.0	13.3 5.5 33.0 13.3	Assemb Assemb 6.5	ly Load.	15,000 lb Single, 100-psi tin 95.0 83.0	re pressure 22.5 10.0	Facilit Assembly Assembly	/ Load	Taxiway 2 15,000 to 25,000 1 Single, 100-ps1 ti sure	
Assemb 7.5 13.5 24.5	ly Type. 4 16 15	Single, 100-psi t 100.0 84.0 78.0	ire pressure 20.0 9.0 3.2	20.0 6.5 13.5	1 8 NP	99.0 99.0 95.0	7.4 33.0 13.3	11.5 21.0 5.5 10.5 20.0	7 NP NP	84.0 93.0 81.0 85.0	3.8 27.5 11.6 4.0	6.5 10.5 20.0 7.0	NP 6 6 NP	100.0 92.0 77.0 100.0	29.0 16.0 6.4 27.5
7.5 13.5 24.5	19 3 16 15	100.0 75.0 69.0	20.0 9.0 3.2	Field: Facilit Assembl Assembl	y. Ta: y Load 15	wson Air Force B xiway 6 5,000 lb ngle, 100-psi ti		Facili Assemb	ty Ly Load	NW-SE runway 15,000 to 25,000 11	b	11.0 21.0 Facilit	NP NP	109.0 99.0 Taxiway 5	15.1 5.9
	ly Load	Las Vegas Air For Taxiway 3 30,000 lb		4.5 12.0 14.0 4.5	3 1 1 3	84.0 86.0 75.0 88.0	34.0 9-5 7-5 34.0	5.5 15.5 23.0	NP NP NP	Single, 100-psi ti: 98.0 100.0 76.0	35.6 9.6 5.1	Assembl; Assembl;	y Load y Type	15,000 to 25,000 1 Single, 100-psi ti sure	lre pres-
7.0 15-5 24-0	oly Type. 6 16 16	Single, 100-psi t 100.0 82 0 73.0	30.0 11.0 5.5	12.5 14.0 Facilit	i 1	94.0 77.0 bciway 4	9.0 7.5	6.5 14.5 Facili	NP NP	92.0 98.0 NE-SW TURNAY	29.0 10.6	6.0 11.0 21.0	NP 16 16	91.0 91.0 81.0 Taxiway l	31.7 15.1 5.9
6.5 15.5 24.0	11 8 8	109.0 76.0 80.0	33.0 11.0 5.5	Аввель	y Load 15	5,000 1b ingle, 100-psi ti 87.0	ire pressure 27.5	Assemb	ly Load ly Type NP	15,000 to 25,000 l' Single, 100-psi ti 99.0	re pressure 27.5	Facilit Assembl Assembl	y Load,	15,000 to 25,000 l Single, 100-psi t: sure	
Assemb	oly Load bly Type.	N-S runway 30,000 lb Single, 100-psi t		12.5 5.5 13.5 23.0	20 5 20 20	75.0 87.0 89.0 89.0	9.0 27.5 8.0 3.2	16.0 25.0 7.5 13.5	np NP NP NP	105.0 96.0 95.0 105.0	9.1 4.3 25.0 12.0	6.5 15.5 25.0	NP NP NP	94.0 104.0 105.0	29.0 96 4.3
6.5 14.0 18.5 24.0 6.5	NP 26 17 17 8	103.0 91.0 75.0 79.0 100.0	33.0 12.6 8.4 5.5 33.0		Ly Load: 15	I-SW runway 5,000 lb ingle, 100-psi ta	re pressure	23.0 7.0 16.0 26.0	NP NP 12 12	94.0 94.0 89.0 88.0	5.0 27.5 9.1 4.0	Facilit Assembl Assembl	y Load	Taxiway 2 15,000 to 25,000 1 Single, 100-psi t: sure	
14.0 18.5 6.5 14.0	10 17 5 12	90.0 90.0 101.0 88.0	12.6 8.4 33.0 12.8	4.5 12.5 4.5 12.5	6 NP 11 NP	89.0 89.0 89.0 88.0	34.0 9.0 34.0 9.0		ty: ly Load. ly Type	N-S runway 15,000 to 25,000 l Single, 100-psi ti	re pressure	6.5 13.0 25.0	NP 18 18	98.0 98.0 88.0	29.0 10.0 4.3
14.0 18.5 6.5 14.0 18.5	17 5 17 17	91.0 101.0 88.0 85.0	8.4 33.0 12.8 8.4	4.5 12.5 4.5 13.5	NP NP NP NP	89.0 93.0 89.0 92.0	34.0 9.0 34.0 8.0	7.5 12.5 22.0	NP 12 12	96.0 91.0 85.0	25.0 13.1 5.5	Facilit Assembl Assembl	y Load	Taxiway 5 15,000 to 25,000 Single, 100-psi sure	
18.5 6.5 14.0 18.5	17 3 NP 8	100.0 89.0 86.0	33.0 12.6 8.4	1,1,1					ty: bly Load bly Type.	Taxiway 1 15,000 to 25,000 1 Single, 100-psi ti		6.0 14.0 7.0 13.5	NP NP NP	99.0 102.0 100.0 108.0	31.7 11.1 27.5 12.0

					10.16	Mod	Compac-	from	Plas-	Mod		Depth		Per Cent	
Surface	ticit		tion	Surface	ticit	y AASHO	tion	Surface	ticity		Compac- tion	from Surface	Plas- ticit		Compan-
<u>in.</u>	Index	<u>Density</u>	Index	<u>in.</u>	Index	<u>Density</u>	Index	in.	Index	Density	Index	in.	Inde		tion Index
K. (Contin	(beun			K. (Continue										WELLBICY	<u>IIslex</u>
				N. (CONCINUE	ea)			K. (Continu	ued)			K. (Contin	ued)		
Field ·		Pueblo Air Force Be	se	Field:		Santa Fe Air Force	Rese	Field:	-	beppard Air Force	B	Field:			
Facili		E-W runway		Facility		N-S runway	2000	Facility	V: 10	E-SW runway	Dene	Field: Facility		West Palm Beach A NW-SE runway	ir Force Base
Assemb	Ly Load	30,000 15		Assembly	Load:	15,000 15			y Load: 1			Assembly		35,000 to 95,000	15
	Ly Type:	Single, 100-psi tin	re pressure	Assembly	Type:	Single, 100-psi ti	re pressure	Assembly	y Type: S	ingle, 100-psi ti	re pressure	Assembly		Dual, 37 in. c-c,	267-sq-in.
4.5	3	102.0	47.0	4.5	12	101.0	34.0	5.5	. 8	100.0	27.5	1		contact area	
13.5	24	92.0	13.3	12.5	10		9.0	12.5	NP	87.0	9.0	5.5	NP	99.0	63.0
24.0 4.5	24 3	85.0	, 5+5	4.5	11		34.0	20.5	7	79.0	3.8	23.5	NP		12.1
13.5	20	99.0 94.0	47.0	12.5	10		9.0		-			33.0	NP		7.6
24.0	20	87.0	13.3	4.5	12 17		34.0	Facility		W runway					
4.5	-4	98.0	47.0	L	11	02.0	9.0	Assembly	Load: 1	5,000 15		Assembly	Type:	Dual, 44 in. c,	630-sq-iz.
13.5	20	89.0	13.3	Field:		Sewart Air Force B	laco			ingle, 100-psi ti	re pressure			contact area	
24.0	20	88.0	5.5	Facility		N-S runway	A.D.C.	5.0	NP 1	94.0	31.0	5.5 16.5	NP	100.0	41.0
.4.5	20	95.0	47.0	Assembly	Load:	25,000 15		17.0	п	94.0	5.5	16.5	NP	92.0	14.0
13.5 24.0	20	82.0 93.0	13.3	Assembly	Туре	Single, 100-psi ti	re pressure	Facility		E-SW runway		26.5	NP		8.5
4.5	20	102.0	5-5 47.0	18.5	29	93.0	7.3		Load 15			9.5 20.0	NP NP		24.8 11.8
13.5	20	88.0	13.3	24.0	29 24	91.0	4.6			ingle, 100-psi ti:	TE 1019881179	29.5	NP		7.4
24.0	20	92.0	5.5	17.5	24	90.0	8.0	4.5	7	100.0	34.0	6.0	NP	92.0	37.0
				24.0 14.5	24 30	98.0 86.0	4.6	11.5	NP	89.0	10.0	12.0	NP	82.0	19.0
Facilit		Taxiway 6		24.0	30	94.0	10.6 4.6			0,10	10.0	20.0	NP	85.9	11.8
Assembl	y Load y Type:	30,000 1b Single, 100-psi tir		24.0	29	83.0	4.6	Facility		-S runway		Facility		* *	
			•	17.5	33 33 43	89.0	8.0		r Losd. 15			Assembly		N-S runway 35,000 to 95,000 1	176
7.5 14.5	2	100.0	27.9	24.0	33	98.0	4.6	Assembly	/Type. Si	ingle, 100-psi ti	re pressure	Assembly		Dual, 44 in. c-c.	
24.0	9	89.0 84.0	12.0	17.5	43	83.0	8.0	5.0	NP	90.0	31.0		~3P~	contact area	0)0-84-181
7.5	9	97.0	5.5 27.9	24.0	43	72.0	4.6	16.5	18	85.0	5.8	4.5	NP	94.0	48.5
14.5	18	89.0	12.0	Facility		Apron		5.5	NP 28	97.0	27.5	13.5	NP	94.0	17.8
24.0	18	86.0	5.5			45,000 15		17.5	20	89.0	5.2	23.0	NP	93.0 96.5	10.0
				Assembly	Туре,	Dual, 28 in. c-c, :	226-sq-in.	Facility	т. Та	axiway 5		-			
Field · Facilit		Rocky Ford Air Fore	e Base			contact area	•		Load, 15	5,000 15		Facility		E-W runway	
Assembl		E-W runway 16.000 lb		5.5	NP	101.0	33.6			ingle, 100-psi tin	e pressure	Assembly Assembly	Load	35,000 to 95,000 1 Dual, 44 in. c-c.	b (ac -
Assembl		Single, 100-psi tir		21.5	41	88.0	7.5	5.0	NP	91.0	31.0	Assembly	Type	contact area	630-sq-1n.
5.0	NP	94.0	-	29.0	41	90.0	4.8	14.5	17	93.0	7.0				
11.0	17	79.0	31.5 11 3	5.5 21.5	NP 34	94.0	33.6	24.0	17	82.0	3.0	7.0	NP NP	94.0 96.0	33.8
19.0	20	69.0	4.8	31.0	34	85.0 84.0	7-5					26.0	NP	99.0	13.5 8.6
24.0	20	73.0	3.0	5210		04.0	4-3	Facility	': NW 'Lond 15	-SE runway		6.0	NP	98.0	37.0
5.0	5	97.0	31.5	Facility		NW-SE runway		Assembly	Turne 91	lngle, 100-psi tin		21.5	NP	94.0	10.8
11.0	17	75.0	ц.з	Assembly	Load.	45,000 15		-			-	31.0	NP	98.9	7.0
19.0 24.0	20 20	71.0	4.8	Assembly 7	Cype.	Dual, 28 in. c-c, 2	226-sq-in.	5.5	NP 34	87.0 91.0	27.5 6.0	14.0	NP NP	98.0	17.0
5.0	NP	79.0 101.0	3.0 31.5			contact area		10.0	34	91.0	6.0	23.5	NP	102.7	9.6
11.0	17	83.0	11.3	5.5	NP	97.0	33.6	Facility	: E-'	W runway		Facility		Taxiway A3	
19.0	20	77.0	4.8	18.5	46	90.0	9.0		Load: 15	5,000 15		Assembly		35,000 to 95,000 1	Ъ
24.0	20	76.0	3.0	28.0 5-5	46 NP	90.0	5.1	Assembly	Type: Si	ingle, 100-psi tir	e pressure	Assembly	Type :	Dual, 44 in. c-c,	630-sq-1n.
5.0 11.0	NP	93.0	31.5	22.5	NP 50	104.0	33.6 7.0	5.0	NP	93.0	31.0			contact area	•
19.0	16 18	91.0 74.0	11.3	28.0	50	92.0	5.1	16.5	30	93.0	5.8	5.5	NP	101.0	41.0
24.0	18	72.0	4.0			,=	<i></i>					21.5	NP	94.0	10.8
5.0	NP	99.0	31.5	Facility		New taxiway		Field.	So	outh Plains Air Fo	rce Base	31.0	NP	99.8	7.0
11.0	16	91.0	11.3	Assembly 1	oad:	45,000 10		Facility Assembly		SE runway		Facility			
19.0	18	74.0	4.8	Assembly '	ype.	Dual, 28 in. c-c, 2 contact area	226-sq-in.	Assembly		.ngle, 100-psi tir	9 179561179			Taxiway A4 35,000 to 95,000 1	h
24.0 5.0	18 NP	73.0	3.0					4.0			•	Assembly	Type	Dual, 44 in. c-c,	630-sa-in.
11.0	NP 16	100.0 80.0	31.5 11.3	5.0	NP	107.0	36.6	12.0	13	92.0 92.0	35.0		-32-	contact area	-l- pd-rus
19.0	18	70.0	4.8	21.5 30.0	31 31	90.0 87.0	7.5	4.0	3	102.0	35-0	5.5	NP	103.0	41.0
24.0	18	74.0	3.0	5.0	NP	108.0	4.5 36.6	12.0	12	98.0	9.0	22.5	NP	93.0	10.0
				20.0	36	91.0	8.25	4.0	NP	105.0	35.0	29.0	NP	99.8	7.6
				30.0	36	96 0	4.5	12.0	13	95.0	9.0				
				L			4-5(Cont	inued)							

TABLE 4 (Continued)

Depth		Per Cent		Depth		Per Cent		Depth		Per Cent		Depth		Per Cent	
from Surface	Ples- ticit	Nod	Compac- tion	from Surface	Plas- ticity	Mod. AASHO	Compac- tion	from Surface	Plas- ticity	Mod. AASHO	Compac- tion	from Surface	Plas- ticity	bolt DHB.' a	Compac- tion
in.	Index		Index	in.	Index	Density	Index	<u>1n.</u>	Index	Density	Index	<u>in.</u>	Index	Density	Index
K. (Conti	nued)			K. (Conti	imued)			K. (Conti	mued)			K. (Conti	nued)		
Facili	ty:	Taxiway A3	_	Facili	ty: Apr	on C 000 to 95,000	15	Field: Facili		a Air Force Bas iway 7	Be	15.5 24.0	NP NP	103.0 89.0	11.0 5-5
	ly Load: ly Type:		ь 630-sq-in.	Assemi	ly Type: Dua	1, 44 in. c-c,	630-sq-in.	Assent	Ly Load: 30,	000 11		6.5 16.5	MP	100.0	33.0
		contact area	41.0	14.5	eon BCP	tact area 94.0	16.5	8.0 12.5	NP NP	105.0	25.8 14.5	24.0	NP NP	95.0 89.0	10.0 5.5
5.5 19.0	NP NP	104.0 99.0	12.2	24.0	HP .	99.2	9.5	24.0	NP	97.0	5.5	7.0 16.5	NP NP	98.0 93.0	30.0 10.0
29.0	MP	106.5	7.6	16.0 25.5	302 702	100.0 99.2	15.0 8.9	5.5 12.5	NP NP	104.0 97.0	5.5 38.7 14.5	24.0	NP	93.0 89.0	5.5
Facil:	ity: bly Load.	NE-SW runway 35,000 to 95,000 1	ъ	Field	. Voc	dward Air Ford	e Base	17.0	NP	94.0	9.6				
Assem	bly Type	Dual, 44 in. c-c,	630-sq-in.	Facil:		dway 3		Facili	ty N-R	runway					
4 6	NP	contact area 100.0	35.0	Assem	bly Type: Sir	gle, 100-psi t	ire pressure	Assemi	ly Lond: 30,	000 15					
6.5 8.5	NP	103.0	27.5	5.5 14.5	NP NP	91.0 88.0	35.5 10.6	6.5	ny rype; sin, RP	gle, 100-psi t: 104.0	ire pressure 33.0				
17.0 26.5	NP NP	97.0 102.7	8.5	24.0	9	85.0	4.6	15.5	NP	99.0	11.0	1			
Facil	lty	Taxiway Al		5.5 14.5	ь NP	95.0 88.0	35.0 10.6	24.0 6.5	NP NP	93.0 103.0	5.5 33.0 12.0				
	bly Type:		630-sq-in.	19.5 24.0	9 9	92.0 87.0	6.7 4.6	14.5 18.0	NP NP	99.0 101.0	8.8				
6.0	NP	contact area 99.0	37.0	1	-			5.0	NP NP	100.0 96.0	43.0 13.3				
18.0	NP	97.0	13.3 7.8					13.5 24.0 6.0	NP NP	96.0 103.0	5.5 35.7				
28.5	NP	95.2	γ.ο					0.0	ME	10310	37.1				
				1											
								1							
				1								1			

igure 4. Compaction requirements of cohesive (plastic) soils for flexible airfield pavements, Table 1 data.

nd plasticity of the soil, and on the load, tire arrangement, tire pressure, and volume traffic. Table 3 summarizes the data from certain carefully controlled test sections; ese were considered of primary reliability. Table 4 summarizes data from airfields, hich were considered of secondary reliability.

The data from Table 3 are plotted as diagrams of percent compaction versus comction index in Figures 4 and 5. Since tolerable amounts of settlement from compacon have not been established, the points shown in Figures 4 and 5 cannot be separated to "acceptable" and "nonacceptable" categories with a dividing line drawn between em. The points in Figures 4 and 5 that plot toward the lower densities (for a given mpaction index) represent cases where the amount of densification that occurred was nall. This could easily be due to a low volume of traffic or a moisture content conderably dry (or wet) of optimum. The points that plot toward the higher densities, wever, represent those cases where the volume of traffic was high and the moisture nditions were proper for compaction to occur. A limiting line, set high enough so at all points would fall below it, would be a completely safe limit; however, due to e inaccuracies involved in density sampling and in determining the proper reference nsity (modified AASHO), it is felt that such a limiting line would be unduly conservae. Also, some of the points lying in high positions may be due to unusually high denies developed during construction, or to naturally high densities, rather than to traf-

. The lines shown in Figures 4 and 5 are intended to exclude the majority of the ints. The shape of the curves was influenced to some degree by the pattern of deny-depth-load relations which was in use prior to the time this study was made. In Figure 4, which treats cohesive soils, the material strength requirements and sultant normal design practices affect the values at high compaction indexes. Load-s applied to a test section or airfield that would plot in the high C_i range would proper failure unless the materials involved had unusually high strengths (CBR values). hesive materials at or near optimum moisture content do not normally have these usually high strengths, but may have them at moisture contents well below optimum. ollows that the data which were obtained for cohesive materials at high values of C_i id not have been in the proper moisture condition to give maximum compaction.

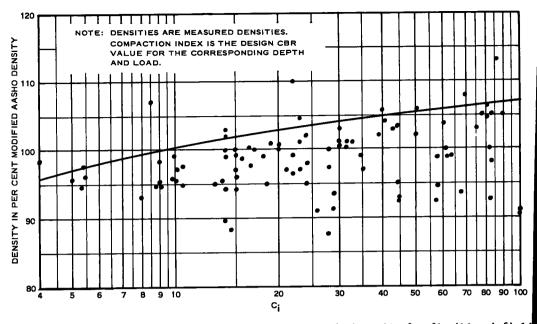


Figure 5. Compaction requirements of cohesionless (NP) soils for flexible airfield pavements, Table 1 data.

Therefore, data above a C_i of 50 have not been plotted, and some of the points immediately below a C_i of 50 must remain in question.

Figures 6 and 7 are plots of percent compaction versus compaction index for all th

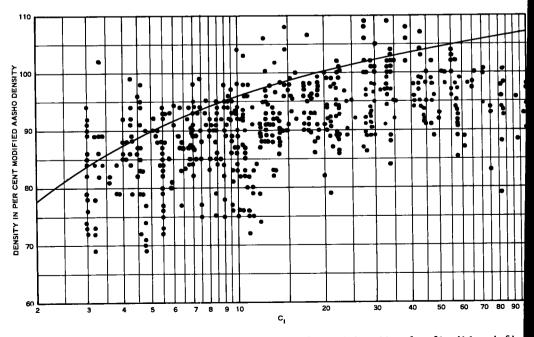


Figure 6. Compaction requirements of cohesive (plastic) soils for flexible airfie pavements, all data.

Figure 7. Compaction requirements of cohesionless (NP) soils for flexible airfield pavements, all data.

The curves on these figures are the same as those shown in Figures 4 and 5. lata. While at first glance it may appear that Figures 6 and 7 are an unrelated scatter of oints, the plots have meaning if it is accepted that the required degree of compaction ecreases with decreasing compaction index. On this basis the uppermost points in he right-hand portion in Figures 6 and 7 (the high C_i range) are considered to have reulted from compaction by aircraft traffic. On the other hand, densities indicated by he uppermost points to the left were not necessarily the result of compaction by airraft traffic. For instance, 90 to 95 percent of modified AASHO maximum compaction s commonly required throughout fill sections, with 95 to 100 percent required in the p 6 in. of the subgrade. Also it is possible in some cases for cut sections to be at igher densities than those that will be produced by aircraft using the overlying paveent. For these reasons, less importance should be attached to the high plotted points the left-hand portions of Figures 6 and 7. The absence of points indicating high denties in the very high C_i range in Figure 6 is due to the inability of cohesive materials exhibit these unusually high strengths at optimum moisture contents, as discussed reviously.

It was first thought that soil type as expressed by the plasticity index (PI) would be sufficiently critical parameter that it might be treated in a number of ranges, such

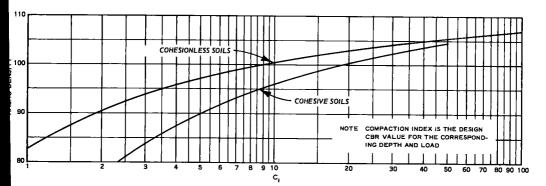


Figure 8. Compaction requirements for flexible airfield pavements.

TABLE 5

Material	Percentage Compaction
	Materials with Design CBR Values of 20 and Above
Base courses	Maximum that can be obtained, generally in excess of 100% of modified AASHO maximum and never less than 100%.
Subbases and subgrades	100% of modified AASHO maximum except where it is known that a higher density can be obtained practicably, in which case the higher density should be required.
	Materials with Design CBR Values Below 20
Select material and subgrades in fills	As shown below except that in no case will cohesionless fill be placed at less than 95% nor cohesive fill at less than 90%.
Subgrade in cuts	Subgrade in cuts must have natural densities equal to or greater than the values listed below. Where such is not the case, the subgrade must (a) be compacted from the surface to meet the tabulated densities, (b) be removed and replaced, in which case the requirements given above for fills apply, or (c) be covered with sufficient select material subbase and base so that the uncompacted subgrade is at a depth where the in-place densities are satisfactory.

Depth of Compaction for Select Materials and Subgrades

	····		Depth	of Compacti	on in Feet fo	r Per Cent Mo	dified AASHO	Compaction	Shown	
				ss Materials		•	Col	hesive Mater		
Type of Assembly	Gear Load, kip	100	95	_90	85	100	95	90	85	80
Heavy Load Pavements Twin assembly, 37-in. spacing, 267-sq-in. contact area	50 100 150	2 3 4	3-1/2 5-1/2 6-1/2	5-1/2 7-1/2 9-1/2	7 10 12	1 2 2-1/2	2 3 4	3 4-1/2 5-1/2	4 5-1/2 7	5 7 8-1/2
Twin-twin assembly, 37-62-37-in. spacing, 267-sq-in. contact area	160 240 320	3-1/2 4-1/2 5-1/2	6 8 9	9 11 13	11-1/2 15 	2 2-1/2 3	3 4-1/2 5-1/2	5 6 7 - 1/2	6-1/2 8 9-1/2	8 10 12
Light Load Pavements Single wheel, 100-sq-in. contact area	10 20 25 30	1 1-1/2 1-1/2 1-1/2	1-1/2 2 2-1/2 2-1/2	2 3 3-1/2 3-1/2	2-1/2 3-1/2 4 4-1/2	1/2 1 1 1	1 1-1/2 1-1/2 1-1/2	1 2 2 2	1-1/2 2 2-1/2 2-1/2	2 2-1/2 3 3-1/2
<u>Miscellaneous</u> Single wheel, 100-psi tire inflation	10 30 50 70	1 1-1/2 2 2-1/2	1-1/2 2-1/2 3-1/2 4	.2 3-1/2 4-1/2 5-1/2	2-1/2 4-1/2 6 7	1/2 1 1-1/2	1 1-1/2 2 2-1/2	1 2 2-1/2 3	1-1/2 2-1/2 3-1/2 4	2 3 4 5

16

as nonplastic, 0-5 PI, 5-10 PI, 10-25 PI, etc. On analysis, however, it was found that distinctions could not be made between the various ranges of plasticity, and that only the separation into cohesive and cohesionless (plasticity index zero or NP) was warranted. This finding was partly due to the small differences between ranges and partly to the data being insuficient to establish such small differences.

The percent compaction versus comaction index curves (shown for both soil ypes in Fig. 8) are the basis of the comaction requirements shown in Table 5. hese are the requirements contained in he current (Aug. 1958) Corps of Engieers' design manual for pavement areas ubject to normal traffic distribution. The ompaction indexes from Figure 8 were sed with the respective CBR design curve determine the depth to which the various egrees of compaction should be specified or subgrades with design CBR values less an 20. The depths are rounded off to e nearest half foot. As in previous isies of the manual, the minimum compacon requirements for fills are specified 95 percent for cohesionless materials

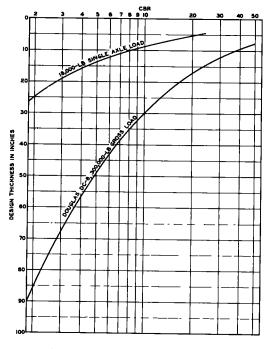
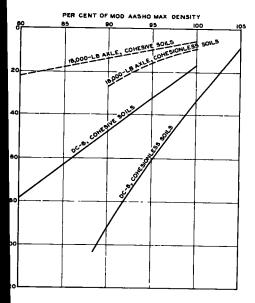



Figure 9. CBR design curves.

d 90 percent for other soils. These are relatively moderate compaction requirements. he values shown in Table 5 for 80 and 85 percent compaction are intended for use in eluating the adequacy of the natural density in cut sections. Where the natural density less than the requirements, the soil must be compacted to the required density by lling from the surface of the cut (not effective unless the moisture content at the time

ure 10. Example of density requirements.

of rolling is proper) or by removal and replacement in lifts.

As shown in Figure 8, indicated percentage of compaction for a compaction index of 20 and above (design CBR of 20 and above) is in excess of 100 percent. Compaction requirements for materials with design CBR values in excess of 20 (base courses, subbases, and high-strength subgrades) are given in Table 5 in a narrative form, rather than as a table, to emphasize the necessity for high degrees of compaction for these materials.

The compaction requirements indicated by the compaction index apply only to the problem of densification by traffic. The problem of the consolidation produced in subgrades and foundations by high fills is a soil mechanics problem.

Application to Civil Airfields and Highways

Figure 8 can be used to establish compaction requirements for civil airfields and for highways when CBR design curves are available. The procedures are illustrated by the following examples. Figure 9 shows CBR design curves for an 18,000-lb, single-axle load (from Fig. IV-2, very heavy traffic class, (3)), and for a Douglas DC-8 plane at 300,000 lb (from Fig. 4, (1)). The compaction index in Table 6 was read from Figure 8, and the corresponding thickness from Figure 9. For example, the compaction index for 95 percent of modified AASHO maximum density from Figure 3 is 3.5 for cohesionless soils and 8.6 for other soils. The compaction index is converted directly to design CBR (compaction index of 3.5, design CBR of 3.5) and the thicknesses read from the proper curve in Figure 9. For example for the 18,000-lb axle load, the thicknesses indicated from Figure 9 are 17 in. for cohesionless soils and 10 in. for other soils.

	Coh	esionless Soils ¹			ohesive Soils	
Compac- tion, %	Compaction Index	Thickness (in 18,000-lb Axle	n.) DC-8	Compaction Index	Thickness (i 18,000-lb Axle	n.) DC-(
105	42		9	_	_	-
100	9	10	32	19	6	17
95	3.5	17	61	8.6	10	33
90	1.8	27	92	5.0	14	49
85	_	-	-	3.2	18	63
80	-	-	-	2.4	22	79

TABLE 6

 $1_{\rm PI} = 0.$

Figure 10 is a plot of the percent compaction versus depth given in Table 6. Norm ly, the curves in Figure 10 would be used to establish a step-pattern of compaction re quirements. For example, for the 18,000-lb axle load, 95 percent of modified AASH maximum density would be required to a depth of 14 in. from the finished surface of t pavement, and 90 percent to a depth of 18 in., in cohesive soils. In cohesionless soil 100 percent of modified AASHO maximum density would be required to a depth of 15 in from the finished surface of the pavement, 95 percent to a depth of 27 in. The depth would probably be shifted an inch or two to coincide with a lift. Also, 95 percent wou probably be specified for all cohesionless fills, and 90 percent for other fills.

SUMMARY

The design CBR, termed the "Compaction Index," C_i , provides a means of combining into a single parameter the variables of load, tire arrangement, tire pressure, volume of traffic, and depth from the surface to the layer being studied. The relation developed by the Corps of Engineers Flexible Pavement Laboratory, between compaction index and the required percentage of modified AASHO maximum density are presented. These relations can be used to develop compaction requirements for civil ai field and highway loadings. Examples of the procedures are given.

REFERENCES

- Asphalt Institute, "Thickness Design, Asphalt Pavement Structures for Streets a Highways." 4th ed., College Park, Md. (June 1959).
- Foster, C.R., and Ahlvin, R.G., "Notes on the Corps of Engineers CBR Design Procedures." HRB Bull. 210 (1959).
- Mellinger, F. M., Ahlvin, R. G., and Carlton, P. F., "Pavement Design for Con mercial Jet Aircraft." Proc., ASCE, Paper 2016, AT 2 (May 1959).
- 4. U.S. Army Engineer District, Mobile, CE, "Accelerated Traffic Tests, Eglin Field, Florida." Vicksburg, Miss. (Jan. 1945).
- 5. U.S. Army Engineer District, Sacramento, CE, and O.J. Porter and Co., Consulting Engineers, "Accelerated Traffic Test at Stockton Airfield, Stock

ton, California (Stockton Test No. 2)." Sacramento, Calif. (May 1948).

- U.S. Army Engineer Waterways Experiment Station, CE, "Certain Requirements for Flexible Pavement Design for B-29 Planes." Vicksburg, Miss. (Aug. 1945).
- U.S. Army Engineer Waterways Experiment Station, CE, "Flexible Pavement Behavior Studies." Interim Report No. 2 (unnumbered), Vicksburg, Miss. (May 1947).
- U.S. Army Engineer Waterways Experiment Station, CE, "Investigation of the Design and Control of Asphalt Paving Mixtures." Tech. Memo. No. 3-254, Vicksburg, Miss. (May 1948).
- U.S. Army Engineer Waterways Experiment Station, CE, "Investigation of Effects of Traffic with High-Pressure Tires on Asphalt Pavements." Tech. Memo. No. 3-312, Vicksburg, Miss. (May 1950).
- U.S. Army Engineer Waterways Experiment Station, CE, "Design of Flexible Airfield Pavements for Multiple-Wheel Landing Gear Assemblies; Test Section with Lean Clay Subgrade." Tech. Memo. No. 3-349, Report No. 1, Vicksburg, Miss. (Sept. 1952).
- U.S. Army Engineer Waterways Experiment Station, CE, "Condition Survey, Pope Air Force Base, Fort Bragg, North Carolina." Miscel. Paper No. 4-3, Report No. 2, Vicksburg, Miss. (Oct. 1952).
- U.S. Army Engineer Waterways Experiment Station, CE, "Condition Survey, Lawson Air Force Base, Fort Benning, Georgia." Miscel. Paper No. 4-3, Report No. 3, Vicksburg, Miss. (Nov. 1952).
- U.S. Army Engineer Waterways Experiment Station, CE, "Airfield Pavement Evaluation, Campbell Air Force Base, Kentucky." Tech. Memo. No. 3-344, Report No. 1, Vicksburg, Miss. (Jan. 1953).
- U.S. Army Engineer Waterways Experiment Station, CE, "Condition Survey, Ardmore Air Force Base, Ardmore, Oklahoma." Miscel. Paper No. 4-3, Report No. 4, Vicksburg, Miss. (March 1953).
- U.S. Army Engineer Waterways Experiment Station, CE, "Condition Survey, Eglin Air Force Base, Valparaiso, Florida." Miscel. Paper No. 4-3, Report No. 5, Vicksburg, Miss. (June 1953).
- U.S. Army Engineer Waterways Experiment Station, CE, "Airfield Pavement Evaluation, Palm Beach International Airport, Florida." Tech. Memo. No. 3-344, Report No. 6, Vicksburg, Miss. (Oct. 1953).
- 7. U.S. Army Engineer Waterways Experiment Station, CE, "Tar-Rubber Test Section at Waterways Experiment Station; Design and Construction of Test Section." Tech. Memo. No. 3-372, Report No. 1, Vicksburg, Miss. (Nov. 1953).
- . U.S. Army Engineer Waterways Experiment Station, CE, "Airfield Pavement Evaluation, Sheppard Air Force Base, Wichita Falls, Texas." Tech. Memo. No. 3-344, Report No. 2, Vicksburg, Miss. (Dec. 1953).
- . U.S. Army Engineer Waterways Experiment Station, CE, "Airfield Pavement Evaluation, Boca Raton Airfield, Florida." Tech. Memo. No. 3-344, Report No. 3, Vicksburg, Miss. (Dec. 1953).
- . U.S. Army Engineer Waterways Experiment Station, CE, "Airfield Pavement Evaluation, Davis-Monthan Air Force Base, Tucson, Arizona." Tech. Memo. No. 3-344, Report No. 4, Vicksburg, Miss. (Dec. 1953).
- . U.S. Army Engineer Waterways Experiment Station, CE, "Design of Upper Base Courses for High-Pressure Tires; Base Course Requirements as Related to Contact Pressures." Tech. Memo. No. 3-373, Report No. 1, Vicksburg, Miss. (Dec. 1953).
- U.S. Army Engineer Waterways Experiment Station, CE, Unpublished tables from the Field Moisture Content Investigation: "Summary of Results of Soil Tests and Observations of Pavement Behavior."
 - U.S. Army Engineer Waterways Experiment Station, CE, "Pavement Mix Design Study for Very Heavy Gear Loads, Pilot Test Section." Unpublished draft (Jan. 1957).
- U.S. Army Engineer Waterways Experiment Station, CE, "Compaction Require-

ments for Soil Components of Flexible Airfield Pavements." Tech. Report No. 3-529, Vicksburg, Miss. (Nov. 1959).

25. U.S. Army Engineer Waterways Experiment Station, CE, "Proof-Test Section, Columbus Air Force Base, Structural Investigation of Pavements." Tech. Report No. 3-533, Vicksburg, Miss. (Dec. 1959).

Discussion

EDWARD A. ABDUN-NUR, <u>Consulting Engineer</u>, <u>Denver</u>, <u>Colorado</u>—In developing design compaction requirements from the actual observations on compaction of the various layers in airfields subjected to actual and to accelerated traffic, the authors have given the profession a very realistic approach to design criteria—badly needed in this field. They are to be highly commended for such a fine piece of work.

Figures 4 and 5 are most interesting in that they form the basis of the relationship between compaction requirements and compaction index, from which the requirements at different depths for different wheel loads, arrangements and tire pressures are later derived. Figures 6 and 7 are still more interesting in that they contain a much larger population, even though part of it may not be as reliable as that in Figures 4 and 5. These figures represent, in essence, the basic data from which all the final relationships and conclusions in the paper are drawn.

The authors have very carefully and capably given various reasons and explanations for the scatter of the data exhibited in these figures. Additional reasons and explanations that have also been factors in this scatter, can no doubt be enumerated. Howeve irrespective of any reasons and explanations, this scatter must be accepted as a norm physical picture of any universe being studied. The very orderliness that the authors have implied must exist in the data, and which their explanations tried to justify, simp does not exist in nature or on any project.

With this in mind, the writer questions plotting the curves in these figures at what appears to be the 85 to 95 percentile of the universe. The effect of using such a high level for a basis of design is to inject a factor of safety that is not needed and that will unjustifiably increase the cost of facilities designed to such standards. If to this is added the fact that such levels obtained from 85 or 95 percentile points are further used as minima, then the additional factors of safety interjected by this mechanis lose their practical justification.

It seems to the writer that a realistic approach would be to fit a curve around the average or mean of the data. This automatically allows for the scatter which is bound to result in the compaction on any construction job. If the ultra-conservative curves shown in these figures and the resulting increased cost are justified by other consider ations, then at least, the average requirement of compaction should be used instead o the minimum.

Control of compaction in a universe to a definite minimum is unrealistic, impracti cal, and nearly impossible of attainment on a construction project. The reasons for this have been developed by the writer for portland cement concrete in a paper deliver ed at the 1961 Convention of the American Concrete Institute. They are just as applicable to soils, base courses, and bituminous concrete, except that the variations are of a different magnitude in each case. Control by maintaining an average compaction requirement that will assure a predetermined probability that no more than a predete mined percentage of the universe will fall below a given design figure is much more practical, represents the actual physical conditions on the job more realistically, and is obtainable. Such an approach has been used by the writer for several years, and h been recommended recently for compaction, as a result of the AASHO Road Test by W.N. Carey, Jr., J.F. Shook, and J.F. Reynolds in a paper presented at the 1960 Annual Meeting of the American Society for Testing Materials.

If such an average requirement is tied to the uniformity of a given contractor oper ation, a motivation can result that will improve the uniformity of the work far beyond that obtained by any degree of inspection. W. H. CAMPEN, <u>Manager</u>, <u>Omaha Testing Laboratories</u>—Apparently the densities which are sufficient to produce required CBR values in subgrades, subbases and bases are not high enough to prevent further densification in the field by loaded tires. The authors therefore are proposing a method whereby the necessary degree of density can be specified for various depths of the layered systems under different wheel loads and tire pressures.

Based on the usual relationship between density and CBR the procedure recommended will result in higher values of CBR. Theoretically the thicknesses should therefore be reduced. Has this point been given consideration?

The writer notices also that the sandy or cohesionless subbases attain much higher densities, in respect to designed densities, than other types of subbases. In the writer's opinion the results are to be expected because it is well known now that the impact method used in the laboratory in making the moisture-density test gives low results on cohesionless materials. A comparison of the results obtained with the impact method with those obtained by the inundation-vibration method on ordinary sand may show the former to be only 92 of the latter.

C. R. FOSTER and R. G. AHLVIN, <u>Closure</u>—The authors agree that Mr. Abdun-Nur's proposal to use statistical quality control methods in the control of compaction is a good one. The Waterways Experiment Station has made limited use of such methods in research work involving repetitive density sampling. The Corps of Engineers, however, s not geared to use of such methods in connection with specification compliance deterninations, and it will be some time before adequate service test trials and education f field personnel will permit their use.

In regard to the analysis in the paper being discussed, it is doubtful that the methods Ir. Abdun-Nur proposes should be applied. As Mr. Abdun-Nur points out, scatter is ound to occur in the compaction on any construction job. The data being analyzed, owever, are for a multitude of jobs and not just one. Essentially, each plotted point n the figures to which Mr. Abdun-Nur refers (4-7), represents a separate job and herefore a separate universe in regard to the type of control proposed. An attempt to pply the same methods to the universe of universes represented by the data involves random treatment of unknowns and uncontrolled variables of such magnitude that the ariability is greater than the significant range in parameters. Also, such an attempt ould result in an average which would apply to a collection of subsequent constructions uch that half of these constructions would be satisfactory with a degree of conservatism anging upward from none, whereas the other would be unsatisfactory, ranging from lightly to greatly unsatisfactory.

Although the authors do not believe the methods proposed by Mr. Abdun-Nur apply to eir analysis, this in no way detracts from the merits of the methods, and one cannot il to recognize their advantages in regard to construction control.

Mr. Campen's question hews directly to the practical aspects of the interrelation of rength (CBR) and density, and reflects his intimate knowledge of the subject. A degn CBR value must be determined for each material used in a pavement structure, d design values necessarily depend on the density to be attained. It is, or has been, mmon practice to select design values from laboratory CBR test results based on a ven percentage of a standard density—frequently 90 or 95 percent of modified AASHO aximum density. Mr. Campen points out that where a higher density is required, a gher design CBR value may be selected.

Corps of Engineers' procedures specify a determination and plotting of CBR test re-Its for a range of moisture contents, densities, and compactive efforts from which sign CBR values are selected. Plots of data of this type permit selection of CBR dem values for any pertinent values of moisture content and density.

The authors are glad to have Mr. Campen's comment on the agreement of his experice with theirs in regard to the ready attainment of higher densities in cohesionless iterials.