

HIGHWAY RESEARCH BOARD

Bulletin 290

Developments in Salvaging Old Pavements by Resurfacing

1961

E7
28
290

National Academy of Sciences—

National Research Council

HIGHWAY RESEARCH BOARD

Officers and Members of the Executive Committee

1961

OFFICERS

W. A. BUGGE, *Chairman*

R. R. BARTLESMAYER, *First Vice Chairman*

C. D. CURTISS, *Second Vice Chairman*

FRED BURGGRAF, *Director*

ELMER M. WARD, *Assistant Director*

Executive Committee

REX M. WHITTON, *Federal Highway Administrator, Bureau of Public Roads (ex officio)*

A. E. JOHNSON, *Executive Secretary, American Association of State Highway Officials (ex officio)*

LOUIS JORDAN, *Executive Secretary, Division of Engineering and Industrial Research, National Research Council (ex officio)*

HARMER E. DAVIS, *Director, Institute of Transportation and Traffic Engineering, University of California (ex officio, Past Chairman 1959)*

PYKE JOHNSON, *Consultant, Automotive Safety Foundation (ex officio, Past Chairman 1960)*

R. R. BARTLESMAYER, *Chief Highway Engineer, Illinois Division of Highways*

E. W. BAUMAN, *Director, National Slag Association, Washington, D. C.*

W. A. BUGGE, *Director of Highways, Washington State Highway Commission*

MASON A. BUTCHER, *County Manager, Montgomery County, Md.*

C. D. CURTISS, *Special Assistant to the Executive Vice President, American Road Builders' Association*

DUKE W. DUNBAR, *Attorney General of Colorado*

H. S. FAIRBANK, *Consultant, Baltimore, Md.*

MICHAEL FERENCE, JR., *Executive Director, Scientific Laboratory, Ford Motor Company.*

D. C. GREER, *State Highway Engineer, Texas State Highway Department.*

BURTON W. MARSH, *Director, Traffic Engineering and Safety Department, American Automobile Association*

J. B. McMORRAN, *Superintendent of Public Works, New York State Department of Public Works, Albany*

CLIFFORD F. RASSWEILER, *Vice-President, Johns-Manville Corp., New York, N. Y.*

GLENN C. RICHARDS, *Commissioner, Detroit Department of Public Works*

C. H. SCHOLER, *Applied Mechanics Department, Kansas State University*

WILBUR S. SMITH, *Wilbur Smith and Associates, New Haven, Conn.*

K. B. WOODS, *Head, School of Civil Engineering, and Director, Joint Highway Research Project, Purdue University*

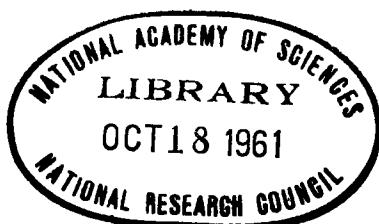
Editorial Staff

FRED BURGGRAF

ELMER M. WARD

HERBERT P. ORLAND

2101 Constitution Avenue


Washington 25, D. C.

V. R.C. HIGHWAY RESEARCH BOARD
" Bulletin 290

*Developments in Salvaging
Old Pavements by Resurfacing*

1961

Presented at the
40th ANNUAL MEETING
January 9-13, 1961

National Academy of Sciences—
National Research Council
Washington, D.C.
1961

TE7
N28
no. 290

Department of Maintenance

**H. E. Diers, Chairman
Engineer of Maintenance
Illinois Division of Highways, Springfield**

COMMITTEE ON SALVAGING OLD PAVEMENTS BY RESURFACING

**Vernon G. Gould, Chairman
Assistant Construction Engineer
Iowa State Highway Commission, Ames**

**Leslie B. Crowley, Senior Consultant (HQ-USAF), Directorate of Civil
Engineering DCS/Operations, Dept. of the Air Force, Washington, D.C.**

**T. V. Fahnestock, Bituminous Engineer, North Carolina State Highway
Commission, Raleigh**

**Fred W. Kimble, Flexible Pavements Engineer, Ohio Department of
Highways, Columbus**

**Henry J. Lichtenfeld, Federal Aviation Agency, Airports Div., (FM 425),
Washington, D.C.**

**Thomas H. F. Norris, Engineer of Construction, Illinois Division of
Highways, Springfield**

**John L. Palmer, Chief, Maintenance Branch, Bureau of Public Roads,
Washington, D.C.**

**John B. Purinton, Jr., U.S. Air Force, McLean Gardens, Washington,
D.C.**

**John L. Stackhouse, Maintenance Engineer, Washington Department of
Highways, Olympia**

**Egona Tons, Assistant Director, Joint Highway Research Project,
Massachusetts Institute of Technology, Cambridge**

W. G. Westall, Portland Cement Association, Chicago, Illinois

**Dillard Woodson, The Asphalt Institute, University of Maryland,
College Park**

Contents

SUMMARIZED COMMITTEE REPORT 1948-1960: SALVAGING OLD PAVEMENTS BY RESURFACING

Vernon G. Gould	1
Appendix	8
Discussion: William G. Westall	10

FIVE-YEAR PERFORMANCE OF WELDED WIRE FABRIC IN BITUMINOUS RESURFACING

Egons Tons, Alexander J. Bone, and Vincent J. Roggeveen.....	15
Appendix	38

EFFECT OF PAVEMENT BREAKER ROLLING ON CRACK REFLECTANCE IN BITUMINOUS OVERLAYS

Paul G. Velz	39
Discussion: J. L. Stackhouse	50

Summarized Committee Report 1948-1960: Salvaging Old Pavements by Resurfacing

VERNON G. GOULD, Assistant Construction Engineer, Iowa State Highway Commission,
Ames

Recognizing that the salvage of old pavements was a national problem, the Highway Research Board, through its Department of Maintenance, organized a committee in 1948 to assemble and disseminate information relative to prevailing practices to those agencies concerned with such work.

The first phase of committee study was to assemble information regarding practices in design and construction currently in vogue from 1948 through 1951, and was terminated with the publication of HRB Bulletin 47.

The scope of committee activity was then expanded to keep abreast of new developments in practices, methods and technique in the salvage of both rigid- and flexible-type pavements. To this end, the committee has encouraged the presentation of papers covering experimental work and new methods and means to improve the performance of salvaged pavements, and has published replies to questionnaires dealing with specific aspects of such work.

This paper covers briefly what are considered to be the most significant studies and experimental work, completed or in progress by research agencies of highway departments and educational institutions, as reported to the Highway Research Board.

BY 1947 it was recognized that the salvage of old pavements was a national problem, and in January 1948 the Highway Research Board took action to assemble and disseminate information relative to prevailing practices to those agencies and individuals concerned with such work.

A committee was organized under the Highway Research Board, Department of Maintenance, to "provide information that may be used by cities, counties, states or individuals in the salvage of old pavements by application of a resurfacing treatment." The committee was designated "Project Committee No. 4, Salvaging Old Pavements by Resurfacing."

During the period from January 1948 to January 1952, the committee functioned under the chairmanship of Robert H. Tittle, Engineer of Construction, Illinois Division Highways. Committee membership included individuals from the Portland Cement Association, the Asphalt Institute, the petroleum industries, educational institutions and highway departments.

The author of this paper was not a member of the committee during this period and detailed activities are not available to him. However, it is known that a survey was conducted to assemble information as to current practices in pavement salvage during this period.

Activities of the original committee were concluded with the publication of HRB Bulletin 47 and the committee was inactivated in January 1952. Bulletin 47 contained

information assembled by the committee relative to (1) economics of resurfacing, (2) study of existing pavements both portland cement and bituminous types, (3) surveys and plans, (4) preparation of the old pavement for resurfacing, (5) widening pavements and (6) resurfacing with both rigid and flexible-type overlays.

The committee was reactivated in January 1953 to study the performance of pavements after salvaging. Reorganization of the committee was essential due to the resignation of Mr. Tittle as chairman and a few changes in membership. The author of this paper was named to succeed Mr. Tittle, and the purpose of the committee and its scope of activities were revised to read:

Purpose. "...To study the performance of salvaged pavements to provide more comprehensive and instructive information as to methods of salvage, design and construction."

Scope. "1. Study of new developments in pavement salvage.

2. Evaluation studies:

- a. Pavement salvage by resurfacing and for which evaluation data are available from a survey.
- b. Underseals or other means of restoration of subgrade support for rigid-type pavements in connection with resurfacing.
- 3. Study of test methods and technique to determine additional strength provided by various thicknesses of resurfacing."

It may be well to state specifically relative to committee activity—its function is not to conduct research or experimental work but to assemble and analyze information and data from any agency performing such work, and disseminate worthwhile findings by committee prepared or sponsored publications.

As a means of gathering information for analysis and/or dissemination with minimum delay, the committee seeks out and encourages prospective authors concerned with some phase of research or experimentation within the scope of committee activity to present papers covering such work under committee sponsorship. So far as the committee may have knowledge, authors are selected to assure nationwide coverage and will be from highway departments, educational institutions and engineering, industrial and governmental agencies performing or concerned with pavement salvage.

For convenience in this paper, the writer will arbitrarily classify the subject matter of committee sponsored papers, or replies to questionnaires mentioned herein, under one of the three items set forth above as scope of committee activity.

DISCUSSION

A summary of pertinent information given in committee prepared or sponsored publications, and classified herein as applicable to one of the items previously mentioned as scope of committee activity, follows.

A. New Developments

1. Studies of Reflection Cracking in Flexible-Type Overlays

- a. Personnel of the Joint Highway Research Project, Massachusetts Institute of Technology and Massachusetts Department of Public Works. This agency has made an intensive study of means and/or methods of preventing or controlling reflection cracking in flexible-type overlays on rigid-type pavement. The titles of committee sponsored papers presented by it are:

- (1) "Control of Reflection Cracking in Bituminous Resurfacing Over Old Cement Concrete Pavements." The paper described several methods of experimental joint treatment and reinforcing for the years 1952 and 1953, and was reported in 1954. The devices used included plugging joints with cement grout or a stabilized soil mix, breaking bond between the bituminous concrete and cement concrete at joints, placing

metal plates on concrete, and reinforcing bituminous concrete with various types of metal either on the old pavement or between binder and surface courses of the overlay. Partial conclusions from this study are stated to be:

- (a) Reflection cracking results from differential vertical or horizontal movement in the underlying concrete. Vertical movement can usually be controlled by adequate subgrade support, but horizontal movements due to temperature changes are inevitable and are a primary cause of reflection cracking, particularly over transverse joints.
- (b) Tests described do not establish any sure method of eliminating reflection cracking though there are indications that its extent can be reduced.
- (2) "Current Practices and Research on Controlling Reflection Cracking." The paper presented in 1955 reviews methods proposed for controlling reflection cracking and classifies them as-(a) prevention and (b) sealing. The methods described and commented on include (a) elimination of joint movement by filling the joints with incompressible material, (b) breaking the pavement into small pieces before resurfacing, (c) increasing the thickness of overlay, (d) use of additive to the bituminous mix to increase ductility, (e) use of mesh reinforcing in overlay over existing joints, (f) use of light metal plates over the joints and under the overlay, (g) use of a granular intermediate course, (h) sawing grooves in the overlay over the joints in the existing pavement, (i) use of burlap layers in the bituminous mix over the existing joints, and (j) sealing methods and materials as maintenance measures for reflection cracks. The paper concludes that no wholly satisfactory method or technique for crack control has been developed. Recommendations relative to further studies are made.
- (3) "Progress of Reflection Cracking in Bituminous Concrete Resurfacing." The paper covers a study of reflection cracking in overlays on rigid-type pavements in Massachusetts with standard Class I state specification bituminous mixes and also mixes modified by various types of rubber additives. The study was started in 1952 and reported in 1956. Surveys have been conducted on twenty-five 1,000-ft sections of the pavement to evaluate their relative performance. From the study it is concluded that about 90 percent of the possible potential reflection cracking will take place by the time five or six years have elapsed regardless of the addition of additives.
- b. Personnel of the California Division of Highways. Paper by Ernest Zube titled "Wire Mesh Reinforcement in Bituminous Resurfacing," describes an experimental project in which the California Division of Highways in 1954 placed several test sections for the purpose of comparing the relative merits of various types of wire mesh as a preventative for reflection cracking of bituminous overlays. A cost analysis is made and a summary and partial conclusions are given. The cost analysis, in part, states that for continuous reinforcement the cost is equal to $1\frac{1}{2}$ in. of bituminous resurfacing. Limited service prevents definite opinions regarding the effectiveness of the various types of wire mesh used in preventing or retarding reflection cracking. It is stated, however, that there is definite evidence that the wire reinforcement has prevented the formation of longitudinal cracks.
- c. Personnel of the Iowa State Highway Commission. Paper by Stephen Roberts titled "Cracks in Asphalt Resurfacing Affected by Cracks in Rigid Bases," describes several test sections established in 1948 and 1949. The methods used include cleaning cracks and filling with binder mix and/or

binder mortar containing finer aggregate only, the use of SC-5 cutback asphalt as a first course of the overlay with an additional 3 in. of asphalt concrete placed in two courses using asphalt cement, and the use of 100+ penetration asphalt cement for the surface course versus 70-85 penetration grade for other sections. Based on observations made during the investigation, the summary states in part:

- (1) Where base cracks were cleaned and refilled before resurfacing, results indicate that an asphalt mortar is superior as a crack filler versus the regular binder coarse mix; where cracks were not cleaned or refilled an additional 1½ in. of overlay did not significantly reduce reflection cracking.
- (2) Some indications were noted that reflection cracking was affected by the penetration grade of asphalt used in the overlay.

d. **Personnel Anonymous.** HRB Circular 413, "Summary of Replies to Committed Questionnaire." The circular (in part) summarizes replies to a question asked in a questionnaire to all highway departments in 1958 relative to methods used or under test as a preventative for reflection cracking. Replies indicate that numerous methods have been or are being used, but perhaps the use of wire mesh and/or granular intermediate courses may be considered as most extensively used.

2. Studies and Experimental Work With Rigid-Type Overlays

- a. **Personnel of the Portland Cement Association.** Paper by Earl J. Felt titled "Resurfacing and Patching Concrete Pavements With Bonded Concrete," covers laboratory bond tests, experimental field projects, a survey of projects in use and recommended practices. A description of five experimental pilot study projects built from 1951 to 1954 is given—overlays varying in thickness from ¼ to 6 in. Field projects in Michigan, Nebraska, New York, Ohio, Pennsylvania, Rhode Island and Wisconsin are described. The paper sets forth the following pertinent findings: Laboratory data and field work indicate that bond strengths as determined by shear test may frequently be 400 lb or more, but that strengths of 200 lb per sq in. or even less may be adequate. The two main factors governing bonding are (1) the strength and integrity of the old base concrete and (2) the cleanliness of the old surface. Best bond was obtained when the base concrete was dry and grouted. Good compaction of the fresh concrete is also required for a strong bond. The performance of experimental projects and other projects in service shows that properly bonded surfaces will withstand extreme climate conditions and heavy traffic. The bonded surfaces giving satisfactory service date back to 1913.
- b. **Jointly by Personnel of the Iowa State Highway Commission and the Portland Cement Association.** Paper by J. W. Johnson and W. G. Bester titled "Widening and Resurfacing Highways With Concrete," describes resurfacing rigid-type pavements in Iowa with rigid-type overlays and includes a number of projects over a number of years. The work is arbitrarily divided into five-year periods from 1930 through 1950 for the purpose of design comparison and in order not to go into unnecessary detail for each project. Performance data are given for each five-year period.

The paper also covers a research project in 1954 in which the old pavement was widened 2 ft on each side with 10 in. of concrete. Resurfacing was 1, 2 and 3 in. in nominal thickness, bonded to a structurally sound concrete pavement. Reinforcement was used in some sections and not in other sections. In general, the condition of the pavement at time of reporting was good.

The paper concludes in part: It does not appear that bonding or no bonding

of the overlay to the old pavement was of importance in performance for thicknesses of resurfacing from 4 to 6 in. This paper is considered applicable also to "B—Evaluation Studies."

c. Personnel of the Washington Highway Commission. Paper titled "Preparing Old Pavements for Resurfacing With 50-Ton Compactor," by John L. Stackhouse, describes in detail the use of a 50-ton pneumatic-tired roller in seating an old portland cement pavement preparatory to widening and resurfacing in 1956. After using the roller a crushed stone base course of 3-in. minimum thickness was placed over the widened pavement followed by a top course of like material 2 in. in thickness. A 3-in. flexible-type overlay was then placed over the granular intermediate course.

The paper states that the advantage of the heavy compactor appears to be that by using a weight heavier than legal loads, the weak areas are disclosed and corrections for unstable material in such areas can be made. The paper further states that no reflection cracking has been noted after 18 months, but that main credit for elimination of reflection cracking probably should be given to the granular intermediate course rather than the heavy compactor.

B. Evaluation Studies

1. Pavement Salvage by Resurfacing

a. Personnel of the Missouri Highway Department. Paper titled "An Investigation of Concrete Resurfacing of a Concrete Pavement in Various Stages of Deterioration," by Messrs. Gotham and Lord, deals with two experimental concrete resurfacing projects on US 40 at specified locations in Missouri—one in 1932 and the other in 1936. The 1932 project included two $\frac{1}{4}$ -mi long sections, one with a 4-in. and the other a 6-in. overlay. The 1936 project was $1\frac{1}{4}$ mi in length and included overlays 4, 5 and 6 in. in thickness. The report covers a study of the effect of thickness on concrete overlay performance, effects of cracks in the old pavement, effects of expansion joints, etc.

In summary, the paper notes some 27 specific findings but only a few considered of particular significance are mentioned, as follows:

- (1) A thickness of 6 in. was more durable and theoretically more economical than 5 or 4 in.
- (2) The 6-in. surface built in 1932 gave excellent service for $18\frac{1}{2}$ yr and when again resurfaced in 1951 apparently could still have been used for many years without excessive maintenance.
- (3) The 4- and 5-in. resurfaces built in 1936 on old pavement in relatively good and in intermediate condition showed considerable distress after 15 yr of service and these, especially the 4 in., would have required extensive maintenance for further service.
- (4)Considering only those resurfacing slabs which lay on uncracked old pavement, a tendency was noted for such slabs to crack in lengths averaging 20 to 25 ft regardless of the thickness of the resurfacing.
- (5) Surface deterioration developed to some degree in each of the various surfaces, but in general the percentage of area affected varied inversely with the thickness of resurface. This paper is considered applicable also to "A—New Developments."

b. Personnel of the Portland Cement Association. Paper Titled "Bonded Resurfacing and Repairs of Concrete Pavement," by William G. Westall, discusses bonded concrete construction and its various applications to a pavement, and describes projects which have been accomplished at air bases from 1955 to 1959; it also illustrates the essential steps in surface preparation and construction. The paper is in two parts—Part I covers thin bonded concrete and Part II deals with bonded concrete for patching and repairing concrete.

Part I describes rigid-type overlays on rigid-type pavements for five airports. The overlays varied in thickness from 1 in. to 4 in. and all were placed under contract conditions.

Part II describes patching and repair of one air force base project with bonded concrete and includes a variety of types of repairs. Conclusions given in the paper are briefly stated herein as follows:

- (1) Resurfacing or patching of concrete pavements with bonded concrete has been proved feasible in both laboratory investigations and field construction projects.
- (2) When the overlay is to smooth a rough existing surface, a thin surfacing layer will perform as well as, and in many cases, better than a thick slab, provided adequate bond is obtained between the old and new concrete.
- (3) The satisfactory performance of resurfacing or patching with bonded concrete depends on the securing of adequate and uniform bond between the two surfaces.

2. Restoration of Subgrade Support for Rigid-Type Pavements in Connection With Resurfacing

- a. Personnel Anonymous. HRB Circular 413, "Summary of Replies to Committee Questionnaire." The Circular (in part) summarizes replies to a nationwide questionnaire to highway departments, prepared and mailed jointly by the committee and the Highway Research Board in 1958, requests information as to the method of subgrade restoration for rigid-type pavements used preparatory to resurfacing. Replies were received from all three highway departments. Although numerous methods were mentioned, replies indicated that perhaps bituminous underseals and mud jacking may be considered as most extensively used. To what extent methods used were considered successful is not stated in replies to the questionnaire.

C. Test Methods and Technique to Determine Required Thickness of Overlays

1. General

Information available to the committee indicated that the thickness of overlays used, regardless of type, was determined by engineering judgment and observing the condition of the existing pavement. Considering that perhaps scientific methods were being used or developed to determine the thickness of overlays required as the tempo of pavement salvage work increased, the committee jointly with the Highway Research Board prepared and sent out two questionnaires to determine definitely if scientific methods were being used tested.

- a. Personnel Anonymous. HRB Circular 316, "Summary of Replies to Committee Questionnaire." The summary mentioned above refers to replies to a questionnaire sent to all highway departments, territories and cities with a population of 500,000 or more, in 1954 requesting information as to whether scientific methods were used in determining the thickness of overlay required and, if so, what methods were used. From replies received it was shown that no city contacted uses such methods. A few state highway departments indicated the use of Hveem Stabilometer, CBR curves or the triaxial test for flexible-type pavements, and some other states stated that some scientific method was being considered or studied. It did not appear that any state was using a scientific method for determining the thickness of rigid-type overlay required. It was contemplated that the committee should maintain contact with highway departments using scientific methods to ascertain whether such methods were considered suitable.
- b. Personnel Anonymous. HRB Correlation Circular 413, "Summary of Replies to Committee Questionnaire." The summary of replies mentioned in this

case refers to a follow-up questionnaire concerning evaluation methods and sent to all highway departments in 1958. Replies did not indicate any change in status regarding the use of scientific methods for determining the thickness of rigid-type overlays.

c. Personnel of North Carolina State Highway Commission. Paper titled "Flexible Pavement Deflection Study in North Carolina," by L. D. Hicks, covers a three-year deflection study of flexible pavements with Benkelman Deflection Gage from 1957 to 1959. Some of the deflection surveys were made before and some after the flexible-type overlays were placed. Pavement design data, subgrade classification and specifications for base and surface courses, together with volume and character of traffic, are also given. An analysis of deflection data is made and from this analysis and the pavement condition, conclusions are drawn and recommendations for improvement in pavement design and construction can be made. The author states in his opinion:

- (1) A deflection survey is an excellent means of pavement evaluation.
- (2) The determination of maximum deflection, a bituminous plant mix pavement, can sustain without excessive cracking is a complex problem that will require much investigation—in North Carolina the desirable limit has been tentatively set at 0.3 in.
- (3) Excessive deflection of flexible-type pavements must be controlled in the preparation of the subgrade—test rolling is an excellent method for locating faulty subgrade.

This paper is considered applicable also to "B—Evaluation Studies."

CONCLUSIONS

Considering the three principal items under "scope of committee activity" discussed herein it may be concluded that:

1. It is probable that some new developments in pavement salvage which would be of general interest have not come to the attention of committee members and have not been publicized.
2. Information available to the committee seems to indicate that evaluation studies of flexible-type overlay performance are indeed limited.
3. Little, if any, progress is indicated by highway departments in the development of scientific means to evaluate the additional strength provided by various thicknesses of rigid-type overlays, but a few scientific methods being tested for evaluation of flexible-type overlays show promise. A written discussion to follow this paper will delineate scientific methods developed by the Portland Cement Association and Corps Engineers.
4. Practical and effective methods and/or means to eliminate reflection cracking of flexible-type overlays will apparently require further study even though quite extensive investigations have been reported.
5. Reflection cracking for rigid-type overlays, regardless of thickness, may not be a problem since no studies of this nature have been reported to the committee. The written discussion mentioned in Paragraph 3 above will mention effective methods to eliminate or reduce such cracking.

SUGGESTIONS FOR FUTURE COMMITTEE STUDY

1. Determine if reflection cracking of rigid-type overlays is a problem requiring further study and, if so, what studies should be or are being made in connection with this problem.
2. Keep abreast of new developments in design experimental work or construction technique for both flexible- and rigid-type overlays.
3. It is considered that reports of performance of pavements salvaged by resurfacing are of prime importance. It is of record that many variables have entered into

design for widening and resurfacing for both flexible- and rigid-type bases and overlays. Many miles of pavement have been salvaged and under traffic for some time. Performance reports are pertinent to committee activity and such reports are lacking for projects employing flexible-type overlays and the rigid, thin, bonded type.

4. Contact with states using or developing scientific methods for determination of overlay thickness for either the rigid- or flexible-type should be maintained.

GENERAL COMMENTS

In closing it may be well to advise that publications mentioned for one item under "scope of committee activity" often includes information pertinent to another item.

Titles and authors of committee prepared or sponsored publications for the period 1952-1960, including those mentioned herein, will be found in the Appendix. Several excellent papers not specifically mentioned in the body of this paper appear in the Appendix.

Appendix

HIGHWAY RESEARCH BOARD PUBLICATIONS (1952-1960)

PREPARED OR SPONSORED BY HIGHWAY RESEARCH BOARD, MAINTENANCE DEPARTMENT, COMMITTEE ON SALVAGING OLD PAVEMENTS BY RESURFACING

Highway Research Board Proceedings:

1. "Control of Reflection Cracking in Bituminous Resurfacing Over Old Cement Concrete Pavements," by Alexander J. Bone, Lewis W. Crump and Vincent J. Roggeveen. Vol. 33, pp. 345-354, 1954.

Concerns experimental work conducted by Massachusetts Institute of Technology and Massachusetts Department of Public Works. Causes of reflection cracking and several experimental techniques for control are discussed.

2. "Cracks in Asphalt Resurfacing Affected by Cracks in Rigid Bases," by Stephen E. Roberts, Iowa State Highway Commission. Vol. 33, pp. 341-345, 1954.

Covers investigation of reflection cracks in asphaltic surfaces over old concrete pavements. Test sections were established to provide information concerning the growth of reflection cracks.

3. "Widening and Resurfacing Highways With Concrete," by James W. Johnson, Iowa State Highway Commission, and W.C. Bester, Portland Cement Association. Vol. 34, pp. 434-452, 1955.

Covers widening and resurfacing on 45 projects.

4. "Resurfacing and Patching Concrete Pavements With Bonded Concrete," by Earl J. Felt, Portland Cement Association. Vol. 35, pp. 444-469, 1956.

5. "Preparing Old Pavements for Resurfacing With 50-Ton Compactor," by J. L. Stackhouse, Washington State Highway Commission. Vol. 38, pp. 464-471, 1959.

6. "Investigation of Longitudinal Cracking Reflected Through Asphaltic Concrete Resurfacing," by John E. Boring and Bert Myers, Iowa State Highway Commission. Vol. 38, pp. 472-479, 1959.

Medium of Publication Unknown:

(Papers presented January 1960.)

1. "Flexible Pavement Deflection Study in North Carolina," by L. D. Hicks, State Highway Commission.

Covers three-year study to determine maximum safe deflection a flexible-type pavement can undergo in service as measured by Bendelman Deflection Gage.

2. "Bonded Resurfacing and Repairs of Concrete Pavement," by William G. Westall, Portland Cement Association.

A discussion of bonded concrete construction and its various applications to pavements, in two parts. Part I covers thin bonded concrete overlays, and Part II deals with bonded concrete for patching and repairing concrete.

Highway Research Board Bulletins:

1. "Salvaging Old Pavements by Resurfacing," by Robert H. Tittle, Engineer of Construction, Illinois Division of Highways, and Chairman of Project Committee No. 1, Bulletin 47, 43 pp., 1952.
2. "Concrete Resurfacing of Concrete Pavement in Various Stages of Disintegration," by D. E. Gotham and G. W. Lord, Missouri State Highway Department. Bulletin 87, 9 pp., 1952.
Covers a study of the effect of thickness on concrete overlay performance, effect of cracks in the old pavement, effect of expansion joints, etc., on two experimental resurfacing projects in Missouri.
3. "Current Practices and Research on Controlling Reflection Cracking," by Alexander J. Bone and Lewis W. Crump, Joint Highway Research Project, Massachusetts Institute of Technology. Bulletin 123, pp. 33-39, 1956.
Reviews and discusses prevention and sealing of cracks as methods to control reflection cracking.
4. "Condition Surveys of Bituminous Resurfacing Over Concrete Pavements," by Lewis W. Crump and Alexander J. Bone, Joint Highway Research Project, Massachusetts Institute of Technology. Bulletin 123, pp. 19-32, 1956.
Describes a technique for making and analyzing condition surveys of flexible overlays on concrete pavements.
5. "Pavement Widening and Resurfacing in Idaho," by L. F. Erickson and Philip Marsh, Idaho Department of Highways. Bulletin 131, pp. 19-25, 1956.
Describes the manner and method in which structurally inadequate and narrow highways were reconstructed to desired standards in Idaho.
6. "Highway Rehabilitation by Resurfacing," by K. B. Hirashima, Territorial Highway Department, Honolulu, Hawaii. Bulletin 131, pp. 26-30, 1956.
Covers rehabilitation of old pavements by resurfacing in the City and County of Honolulu.
7. "Conditioning an Existing Concrete Pavement for Bituminous Resurfacing," by Ed W. Kimble, Ohio Department of Highways. Bulletin 123, pp. 11-18, 1956.
Describes method of conditioning an unreinforced concrete pavement constructed in time for a flexible-type overlay.
8. "Progress of Reflection Cracking in Bituminous Concrete Resurfacings," by Vincent J. Roggeveen and Egons Tons, Joint Highway Research Project, Massachusetts Institute of Technology. Bulletin 131, pp. 31-46, 1956.
Covers condition surveys of 25 sections of pavement resurfaced during 1949-1952 Massachusetts.
9. "Rejuvenating Highway Pavement," by John L. Stackhouse, Washington State Highway Commission. Bulletin 123, pp. 1-10, 1956.
Describes the resurfacing with a flexible-type overlay of a section of State Highway near Tacoma, Washington.
10. "Wire Mesh Reinforcement in Bituminous Resurfacing," by Ernest Zube, California Division of Highways. Bulletin 131, pp. 1-18, 1956.
Describes an experimental project in California covering eight test sections with various types of wire mesh in a flexible-type overlay.

Highway Research Board Correlation Service Circulars:

1. "Salvaging Old Pavements by Resurfacing—Summary of Replies to Committee Questionnaire." Anonymous. Circular 316, 1956.

Summarizes replies to a committee questionnaire to highway departments and large cities relative to pavement salvage evaluation.

2. "Salvaging Old Pavements by Resurfacing—Summary of Replies to Committee Questionnaire." Anonymous. Circular 413, 1960.

Summarizes replies to questionnaire to highway departments relative to methods of subgrade restoration for rigid-type pavements, methods used as a preventative for reflection cracking, and methods used or under test for evaluation of pavements before and after resurfacing.

Highway Research Board Bibliographies:

1. "Salvaging Old Pavements by Resurfacing, Annotated." Anonymous. Bibliography 21.

A single volume in two sections, each separately indexed, one section covering rigid-type overlays and the other overlays of the flexible type. References total 256 with annotations for each entry.

Discussion

WILLIAM G. WESTALL, Supervising Engineer, Airfield Program, Portland Cement Association.—The paper prepared by Mr. Gould provides a comprehensive summary of committee activities and the significant developments since 1947 in the field of pavement resurfacing. This report will be of great value in establishing the current status of pavement resurfacing and in pointing the direction the committee should take in future investigations.

The purpose of this discussion is to supplement statements made by the author in paragraphs three and 5 of his conclusions.

The reference to concrete overlays contained in paragraph 3 is quoted as follows:

"Little, if any, progress is indicated by highway departments in the development of scientific means to evaluate the additional strength provided by various thicknesses of rigid type overlays...."

The accuracy of this statement is in no way questioned. The available reports and records indicate that the design of concrete resurfacing for highway pavement has generally been on a trial-and-error basis with thickness determinations based on the experience and judgment of local paving engineers. The evaluation of such resurfacing has been dependent on its performance under traffic. This type of evaluation has serious shortcomings. If the resurfaced pavement shows early distress, there is no way of determining the degree of design deficiency. On the other hand, if the resurfacing performs adequately over a long period of time, there is no existing method for checking the possibility of over-design. In either case, the engineer is placed in a quandary.

The trial-and-error approach is understandable in view of the fact that well-established design criteria have been lacking. Tests conducted in recent years, however, have provided data for the development of design equations that are more realistic and less conservative in comparison with the formulas previously used.

For many years concrete resurfacing courses were designed on the theory that the strength of the two slabs was equal to that of a single slab having a thickness equal to the square root of the sum of the squares of the pavement and resurfacing.

$$h = \sqrt{h_r^2 + h_e^2}$$

here

h = thickness of required single slab, in inches;
 h_r = thickness of resurfacing, in inches;
 h_e = thickness of existing slab, in inches;

$$h_r = \sqrt{h^2 - h_e^2} \quad (2)$$

This method of analysis is theoretically correct only when the old pavement and the resurfacing slab are of the same stiffness and act as two independent beams deflecting equally under load, with no bond between them. Traffic tests on overlay pavements have provided evidence that this formula will yield thicknesses which are very conservative. Also, there is definite evidence that the bond and friction between the resurfacing and existing slab are sufficient to cause them to act to some extent as a single unit rather than independently as assumed in the preceding formula. The U. S. Army Corps of Engineers, which has conducted more tests on overlay pavements than any other agency, makes this comment regarding the formula in Appendix II to their Rigid Pavement Design Manual (1):

"The results of the traffic testing at Lockbourne No. 1 and No. 2 and Sharonsville No. 2 indicated that the above relationship was approximately correct when a leveling course, cushion course or bond-breaking course was placed between the two slabs, and that the relationship was too conservative when the overlay was placed directly on the base slab without purposely destroying the bond between the slabs."

Using a coefficient to express the condition of the existing pavement (as will be illustrated later), both the Corps of Engineers and Portland Cement Association use the previously stated formula for calculating the required overlay thickness when bond between the two layers is prevented by the use of some form of separating course.

After their test data demonstrated that the foregoing formula was too conservative for the design of overlays that would be partially bonded, the Corps of Engineers developed a revised empirical formula which expresses this relationship of the required overlay thickness to the single slab equivalent and the existing pavement:

$$h_r = \sqrt{h^{1.87} - h_e^2} \quad (3)$$

This equation gives lesser pavement thicknesses for the partially bonded condition which results when no measures are employed to prevent bond. After the coefficient presenting pavement condition has been explained, an example will be given comparing the overlay thickness given by this equation with the thickness given by Equation

Since concrete pavements considered for resurfacing will have variable structural value depending on their condition, it has been necessary to introduce a coefficient, to express the pavement condition. The Corps of Engineers has used the following values for C:

- C = 1.0 - when the existing pavement is in good condition.
- C = 0.75 - when the existing pavement has initial joint and corner cracks due to loading, but no progressive cracks.
- C = 0.35 - when the existing pavement is badly cracked or crushed.

Using the coefficient C, the two basic equations for expressing overlay thickness would become:

$$h_r = \sqrt{h^2 - Ch_e^2} \quad (4)$$

which is the equation for use when bond is prevented;

and

$$h_r = \sqrt{h^{1.87} - Ch_e^2} \quad (5)$$

which is the equation for use when partial bond will be obtained.

As an illustration of the difference between the two equations, it is assumed that the existing pavements in both cases are 6 in. thick, the required thickness of an equivalent single slab is 9 in. and the condition of the existing pavement in each case is such that $C = 0.75$. The overlay thickness required where bond is prevented would be

$$h_r = \sqrt{9^2 - (0.75 \times 6^2)} = 7.35 \text{ in.}$$

The overlay thickness required where partial bond exists would be

$$h_r = \sqrt{9^{1.87} - (0.75 \times 6^2)} = 5.82 \text{ in.}$$

The difference in thickness of the required overlays is $1\frac{1}{2}$ in. or 20 percent less thickness where partial bond is obtained.

While these empirical equations can hardly be classed as "scientific means" of evaluating the additional strength provided by concrete overlays, their value as design criteria has been established in tests conducted by the Corps of Engineers in the development of design criteria for airfield pavements. The test program included 21 different test items of rigid overlay on rigid pavement where a "partial bond" condition existed. Loading on the overlay sections ranged from a 20,000-lb single-wheel load to a 325,000-lb multiple-wheel gear load. The test sections were trafficked to either a predetermined number of coverages or to failure, depending on the adequacy of design. The Rigid Pavement Design Manual (1) is again quoted with reference to the tests:

"The Pavement Overlay Investigation was initiated for the purpose of obtaining data to aid in the formulation of design criteria for overlay pavements. This objective was accomplished in stages by construction of a series of full-scale test sections. After completion of testing of each successive test section, the results were analyzed and formulated into tentative design criteria. Each test section incorporated the results of previous projects and included new variables of loading, type and thickness of overlay, thickness and strength of the concrete base pavement, strength of subgrade, gear configuration, and total test load.... The equations used for determination of concrete overlay thickness have been developed from a correlation of theoretical developments and actual test results."

The design criteria based on the extensive investigations of concrete overlays by the Corps of Engineers should provide dependable guidance for highway engineers. It should be pointed out that the Corps has made further revision to the design equation used for partially bonded concrete resurfacing with the required overlay thickness expressed as

$$h_0 = \sqrt{1.4 h_d^{1.4} - Ch^{1.4}} \quad (6)$$

in which

h_0 = thickness of concrete overlay, in inches;

h_d = thickness of required single slab, in inches;

C = coefficient for pavement condition; and

h = thickness of existing slab, in inches.

This equation has been compared with the equation

$$h_r = \sqrt{h^{1.87} - Ch_e^2}$$

used previously in this discussion (and in Portland Cement Association literature) as

the basis for design of partially bonded overlays. In the range of normal resurfacings that would be applicable to highways, the two equations result in overlays with less than $\frac{1}{10}$ -in. difference in thickness. The Corps has found this revised formula more feasible or use in designing either exceptionally thick overlays for thin pavements or thin overlays for thick pavements. These design requirements are seldom encountered except in dealing with pavements for military airports. Design agencies may prefer to use the revised Corps of Engineers formula, however, since it will provide a dependable method for the design of concrete overlays for any combination of pavement and overlay thickness.

The tests conducted by the Corps of Engineers have conclusively proved that the composite pavement has greater load-carrying capacity when the concrete overlay is partially bonded to the base slab. This evidence, together with other comparatively recent developments, should lead to serious consideration of the advantages of fully bonded resurfacing as a means of strengthening existing pavements.

Development studies by the Portland Cement Association during the past several years have demonstrated the feasibility of bonding two layers of pavement together by economical methods. A report of the laboratory results was published in the Proceedings of the Highway Research Board, Vol. 35, 1956 (2). The practicability of field construction methods for placing bonded resurfacing has been demonstrated on comparatively large-scale projects built on airfield pavements during the past four years (1). All the PCA test slabs and large-scale projects referred to utilized portland cement grout as a bonding agent. Recent repetitive load tests on full-scale slabs, built outdoors at the Portland Cement Association Laboratories, indicate that a composite pavement of two bonded layers has the same strength as a monolithic slab of the same thickness. Using the cement grout bonding method, the Corps of Engineers constructed an 11-in. overlay on a 17-in. base slab at Sharonville, Ohio. This overlaid pavement was tested in comparison with a single-layer 28-in. slab by trafficking with a test rig which applied a dual-tandem gear load of 325,000 lb on the pavement. After more than 10,000 coverages with this loading, it was concluded that the bonded section performed as a monolithic slab. This conclusion was based, not only on the equivalent durability of the layered section, but also on deflection measurements and strain gage readings. The performance of bonded overlays in test installations is such as to indicate that this type of construction is feasible and economical when structural improvement is necessary. Pavements on two airports, one civil and one military, were strengthened by this method within the past two years. A 5-in. bonded overlay on an aircraft parking apron is scheduled for construction early this year by the U. S. Navy.

The performance of these resurfaced pavements should provide information for further evaluation of this method of construction.

In paragraph five of his conclusions, Mr. Gould states: "Reflection cracking for rigid-type overlays, regardless of thickness, may not be a problem since no studies of this nature have been reported to the committee."

In this connection it is necessary to report that joints and random cracks in the base pavement will generally be reflected in the concrete resurfacing unless some preventive measures are taken. The practice generally used to prevent joint reflection can easily be described by quoting again from the Corps of Engineers design manual:

"Joints in the overlay pavement will coincide with all joints of the base pavement. It is not necessary for joints to be over like joints." (1)

The second statement in the quotation requires some amplification. Many old concrete pavements were built with expansion joints at relatively short intervals. Expansion joints can usually be omitted in the resurfacing or placed at much longer intervals. Shrinkage joints should be placed over the expansion joint location. This procedure applies to overlays that are partially bonded. In placing thin layers of bonded resurfacing, it is considered necessary to match existing joints in both location and kind. Some success has been experienced in preventing reflective cracking by the use of separating courses between the base slab and overlay. There is not sufficient data available, however, to indicate the minimum thickness of separating course that will be completely effective. There are indications that any type of bond breaker will reduce the amount of reflective cracking, but as has been previously discussed, the use of a bond breaker creates the requirement for a thicker overlay.

If the old pavement is badly cracked, the use of distributed steel is probably the most dependable method of minimizing cracking in the resurfacing. This is true for both bonded and partially bonded overlays. If distributed steel was used in the original pavement, the amount of steel in the resurfacing should be based on the thickness of the overlay slab. If the old slab does not contain distributed steel, the amount of steel should be based on the combined thickness of the two slabs.

REFERENCES

1. Corps of Engineers, U.S. Army, "Engineering and Design Rigid Airfield Pavements." EM1110-45-303, Department of the Army, Office of the Chief of Engineers, 65 pp. and 2 appendices (February 3, 1958).
2. Felt, Earl J., "Resurfacing and Patching Concrete Pavements with Bonded Concrete." HRB Proc., Vol. 35:444-469 (1956).
3. Gaines, H. G., "Traffic Testing of Overlays on Rigid Airfield Pavements." HRB Proc., Vol. 25:85-95 (1945).
4. Ohio River Division Laboratories, Corps of Engineers, U.S. Army, "Report of Construction, Lockbourne No. 2, 300,000 Pound Experimental Mat." 202 p. (June 1945).
5. Ohio River Division Laboratories, Corps of Engineers, U.S. Army, "Lockbourne No. 1 Test Track Final Report." 116 pp. (March 1946).
6. Ohio River Division Laboratories. "Final Report—Lockbourne No. 2—Experimental Mat." Corps of Engineers, 249 pp. (May 1950).
7. Philippe, R. R., and Christiansen, C. H., "The Overlay of Rigid Pavements." HRB Proc., Vol. 30:96-107 (1950).
8. Portland Cement Association, "The Design and Construction of Concrete Resurfacing for Old Pavements." HB-22, 6 pp. (1956).
9. Portland Cement Association, "Bonded Concrete Resurfacing." HB-23, 2nd Edition, 6 pp. (1960).
10. Sale, J. P., and Hutchinson, R. L., "Development of Rigid Pavement Design Criteria for Military Airfields." American Society of Civil Engineer, Proc., Vol. 85, No. AT3, pp. 129-151 (July 1959).
11. Westall, W. G., "Bonded Resurfacing and Repairs of Concrete Pavement." HRB Bul. 260 (1960).

Five-Year Performance of Welded Wire Fabric in Bituminous Resurfacing

EGONS TONS, Assistant Professor of Transportation Engineering, and
ALEXANDER J. BONE, Associate Professor of Transportation Engineering, M. I. T.; and
VINCENT J. ROGGEVEEN, Associate Professor of Civil Engineering and Transportation, Stanford University

The primary objective of this paper is to report on placement and performance of reinforced bituminous concrete resurfacing over old portland cement concrete roadway.

In 1955 two sections of road (in Massachusetts) totaling three miles in length were resurfaced with a 3-in. bituminous concrete reinforced with various styles of welded wire fabric. The main purpose of this reinforcement was to prevent reflection cracks caused by underlying slab movements.

In one of the test roads the resurfacing was reinforced with strips placed above the slab joints only, whereas the other had various styles of continuous reinforcement extending into the shoulders. Altogether 25 test sections were installed with comparable unreinforced control sections.

The method of placing the reinforcement was simple and did not cause much difficulties.

After five years under traffic and weathering all reinforced test sections had lower cracking indexes than comparable controls. The best performance was by 3 x 6, $\frac{10}{10}$ welded wire fabric placed in continuous rolls where transverse cracking was about one-eighth of that found in the control, and longitudinal cracking was negligible.

THE CAUSES of reflection cracking have been described and discussed in numerous publications and it is evident that the amount of cracking will depend on many different factors. In this paper the emphasis is on reflection cracking as it has been observed in Massachusetts.

STRAINS IN RESURFACING CAUSED BY UNDERLYING SLAB MOVEMENTS

Many miles of old portland cement concrete slabs which have been covered with a 2- to 3-in. bituminous resurfacing, are about 8 in. thick, 10 ft wide and 57 ft long. They have been placed on a 12-in. gravel base with about 0.13 percent of longitudinal reinforcement. These roads were constructed in the thirties using only expansion joints with four 1-in. load transfer dowels for each 10-ft joint.

Horizontal Joint Opening

The amount of horizontal joint opening was studied in several Massachusetts locations over a period of years. The measurements show that about 80 percent of the transverse expansion joints open 0.05 in. or more during a one-year cycle. The best joint opening measured was 0.18 in. with a maximum daily variation of about 0.04 in. Laboratory strain tests have shown that a 4-in. long bituminous concrete

specimen can be strained about 0.04 to 0.05 in. before it breaks (12). A comparison between this obtained strain for the Massachusetts mix and the measured joint opening on a road indicates that due to horizontal strains alone at least 80 percent of the re-surfaced transverse joints will have reflection cracks above them within a relatively short period.

Vertical Differential Movements

To estimate the vertical differential movements of the slabs numerous field measurements were made using a truck and a deflection gage. The maximum relative deflection at a joint was 0.09 in. with about 50 percent of the measurements being 0.005 in. or less. Thus, it appears that the vertical joint deflections are relatively small compared to the horizontal movements. Laboratory measurements indicate that a crack might not appear in the surfacings if such low deflections are applied without any strains due to horizontal slab contraction. These studies further show that the differential vertical movement due to traffic load causes a flexural distortion in the resurfacing rather than shear deformation (11).

Combined Effects

Although field observations and laboratory measurements show that the main reason for reflection cracking in Massachusetts is the horizontal joint opening or tensile stress, it often can be the combined effects of both horizontal joint opening and vertical deflection movements which cause the cracking. Damaging axial and flexural tension in the resurfacing at a joint affect not only the immediate area above the joint, but also extend some distance on each side. Once a crack has appeared it has a tendency to deteriorate and widen.

PURPOSE OF STUDY

The main objective of this study was to test on the road the effectiveness of various welded wire fabric types as a reinforcement in bituminous concrete resurfacing against reflection cracking (in Massachusetts). The second purpose was to compare the field behavior of welded wire fabric reinforcement with data obtained from tests in the laboratory.

PREVIOUS INSTALLATIONS OF WELDED WIRE FABRIC REINFORCEMENT

The Walpole and Raynham Test Roads described in this paper were built in 1955. Before that, numerous experimental wire fabric installations had been placed in service and various results were obtained with the oldest dating back as far as 1945. These field installations were placed without any engineering calculations or experience, regardless of whether the wire fabric reinforcement was used for airports, highways, city streets, etc. The main emphasis in these experiments was on transverse joint reinforcement using both strip and continuous welded wire fabric.

TEST ROADS IN MASSACHUSETTS

The planning and execution of a test road involves cooperation and interest by numerous agencies. The interest of the Commonwealth of Massachusetts in reflection crack prevention was the principal reason for making road tests in Massachusetts. The personnel of the state-supported Joint Highway Research Project of the Massachusetts Institute of Technology and the Department of Public Works had been working on the reflection cracking problem for several years and had accumulated a considerable amount of data which were useful in planning actual welded wire fabric reinforcement test installations. Another reason for having the test roads in Massachusetts was the climatic conditions which are quite severe and to a degree typical of the northern states.

PLANNING SCOPE OF PROJECT

Planning and building a field test calls for consideration of many variables. Only those who have participated in an actual execution of a test road can fully appreciate the complexity of such an undertaking. The condition of the old portland cement concrete roadway and the types and sizes of wire fabric reinforcement to be used in the resurfacing were the two major variables. Although the type and size of reinforcement could be selected, the condition of the old roadway was much more difficult to control.

Desired Variables and Length of Test Road

During the preliminary planning it was assumed that the test road itself would be uniform for all test sections. Therefore, the major variables were reduced to the type of wire fabric and its placement. The following major factors were discussed and considered: (a) wire size, (b) transverse wire spacing, (c) longitudinal wire spacing, (d) strip reinforcement versus continuous reinforcement, (e) position of the wire fabric in the resurfacing, and (f) ways of holding the wire fabric down.

If all these variables were to be included in this research the total number of test sections would have exceeded 10,000. As this was a practical impossibility a small number of tests were agreed on which are described later in this paper.

Number of Transverse Joints Needed to Obtain Meaningful Data

To compare two types of wire fabric the test conditions have to be similar. This often is not possible where a large number of test sections is involved. The slight variations in a test road of appreciable length can affect the results and prohibit a direct comparison between a section at one end of the test with that at the other. Therefore, it was decided that control sections would be placed between the test sections and the performance of the various wire fabrics would be compared directly with the adjacent controls. To decide on the minimum number of test joints, condition survey data from numerous field installations over the past five years were studied. It was found that at least 12 transverse joints would be necessary to keep a 5-yr cracking index within 10 percent, between two adjacent 12-joint test sections, 95 percent of the time. It was also anticipated that some joints would have to be eliminated due to construction faults and inherent irregularities in the portland cement concrete base. Therefore, the final number specified was 16 to 20 joints for each test and control section.

Practical Limitations

The amount of road surface available as well as budgetary limitations finally led to choice of 25 sections, excluding controls.

After the number of test sections was decided on a special committee (consisting of wire fabric manufacturers and the staff of the Joint Highway Research Project at Massachusetts Institute of Technology) listed the types of wire fabric that were to be used. The practical limitations favored the use of standard size wire fabrics rather than special fabrications. An attempt was made to incorporate various wire sizes in tests with the 10-gage wire dominating because it is easy to install in a 3-in. resurfacing.

Styles of Wire Fabric Chosen

Besides the common spacings (4 by 4 in., 6 by 3 in., and 3 by 6 in.) for the 10-gage wire, other dimensions and wire sizes were also used. The largest wire was 6 gage because the committee felt that anything stiffer than that would not be compatible with a relatively thin flexible overlay. The smallest wire was 14 gage. One section of the test road in which continuous reinforcement was planned contained wire fabric in mats. In those installations the longitudinal wire was 10 gage or thinner because it is too difficult to flatten out a roll when stiffer wire was present.

Size of Mats and Types of Reinforcement Chosen

As mentioned before, the most critical points where cracking is usually more severe

are the transverse joints. Therefore, attempts have been made in the past to place a strip of reinforcement right above the joints to prevent a reflection crack. To protect the longitudinal joints from crack appearance, similar strip reinforcement would be necessary also in these locations. This led to the conclusion that three major types of reinforcement should be tried: (a) strip reinforcement over transverse joints only, (b) strip reinforcement over longitudinal joints, and (c) a continuous reinforcement which covers the whole portland cement concrete roadway and extends a short distance beyond the longitudinal edges of the slabs. Small test installations in the past using strip reinforcement have indicated that the strip width of 3 to 4 ft is not always enough to curb reflection cracking (3, 4). If the strip is narrow there is a tendency to get a crack at the edge of the reinforcement. Therefore, about 7-ft wide reinforcement was adapted for the transverse joints. A few installations using 5- and 10-ft wide strip reinforcement were also tried.

The continuous reinforcement had most of the fabric in rolls. The length of the rolls was 57 ft or the same length as the underlying slabs. This was chosen to have the lapping of the rolls far away from the joints at the center of the slabs.

In three test sections a continuous sheet of reinforcement was planned using 18-ft long wire fabric.

TEST ROAD SPECIFICATIONS

After deciding on the number of test sections and the types of wire fabric to be used a search for a test road was undertaken which would fit the following requirements:

1. The test section should contain at least two adjacent lanes of old portland cement concrete.
2. The horizontal curves in the test road should not be less than 600-ft radius and the grades should be less than 2 percent.
3. The test road should have a uniform subgrade.
4. The underlying concrete slabs should not have longitudinal reinforcement failure.
5. The slabs should exhibit similar crack frequency characteristics.
6. Control sections of identical length should be spaced in between the test section and at least 12 transverse joints or 120 ft of joint should be usable in each test.
7. The test sections should carry similar traffic.

FINAL SELECTION OF TEST SITES

To place the 25 test sections with appropriate controls, about three miles of two-lane road were required. As it was not possible to find such a length of road under uniform conditions in one location, two separate test roads were selected. In this paper they are referred to as Raynham and Walpole Test Roads. At the Raynham Test Road, strip reinforcement was used and at the Walpole Test Road continuous wire fabric reinforcement (see Figs. 1 and 2 for wire fabric styles and sizes).

Raynham Test Road

The Raynham Test Road consisted of a three-lane reinforced cement concrete pavement 8 in. thick, placed on a 12-in. gravel base. It had bituminous macadam shoulder 3 to 5 ft wide, on each side.

The original portland cement concrete was in a good condition structurally. The majority of the 57-ft slabs had but one transverse crack with a very small percentage having two or more. The surface was scaled in places and many bituminous skin patches had been placed. The joints were about 1 in. wide and had worn considerably causing traffic to thump, but there was no evidence of major settlements.

The Raynham installations consisted of two types of strip reinforcement tests: (a) reinforcing of transverse joints with welded wire fabric sheets, and (b) reinforcing of longitudinal joints with wire fabric sheets (Table 1).

Walpole Test Road

The Walpole Test Road was a two-lane reinforced concrete pavement 8 in. thick,

placed on a 12-in. gravel base. It had bituminous macadam shoulders 3 ft wide on each side. The concrete lanes were 10 ft wide, the slabs averaged 57 ft in length. The resurfacing extended over both shoulders.

The original concrete was in fair structural condition, although the slabs averaged two to three transverse cracks each. The surface was scaled and contained a few bituminous skin patches. The rough-riding transverse joints were about 1 in. wide but did not show appreciable settlement.

The Walpole installation consisted of two types of continuous reinforcing tests: (a) continuous reinforcing of entire slabs using wire fabric sheets, and (b) continuous reinforcing using 57-ft long rolls (Table 2).

Comparison of Raynham and Walpole sites

Even though the two test roads are quite similar as far as the underlying portland cement concrete is concerned there are some differences that should be pointed out. One is the amount of transverse cracking. Whereas in Raynham only one or two transverse cracks were found on each slab, Walpole had two or three cracks per slab. This was one of the reasons why a continuous reinforcement was chosen for the Walpole Test pad. On the other hand, it must be emphasized that intermediate cracking between joints affects the amount of horizontal joint opening and closing. Therefore this should be kept in mind when making comparisons between Raynham and Walpole results.

The amount of traffic on both sites was medium heavy but in Raynham it was distributed over three lanes whereas in Walpole, due to the relatively narrow width, the traffic is concentrated in one lane in each direction.

PRELIMINARY WORK ON TEST SITES

Before the actual surfacing was started repairs were made to old road surface. The transverse joints still contained bituminous sealer and they were untouched. In some cases, where scaling of the slabs was extensive, new patches were applied. Some work was also performed on the shoulders and new side drains were installed where necessary.

TRANSPORTING AND DISTRIBUTING WIRE FABRIC REINFORCEMENT

The wire fabric reinforcement was received from the manufacturers already cut to size. In Raynham the fabric was carried to the site on a flat-bed truck and distributed beside the test sections of roadway. It was then placed over the joints immediately

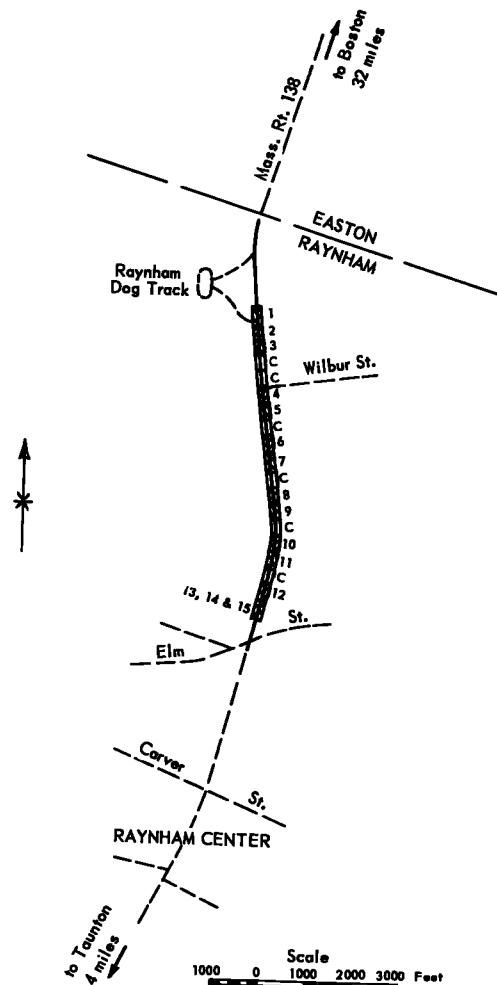


Figure 1. Location map of test road, Raynham, Mass. Numbers indicate test sections, C indicates control sections.

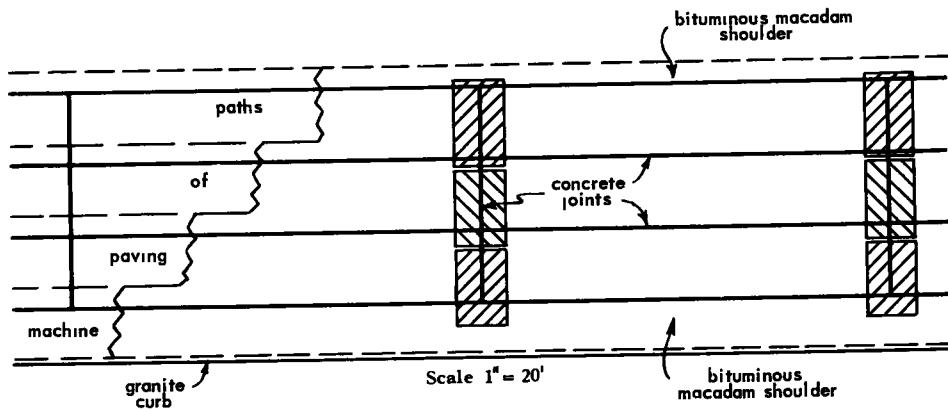


Figure 2. Placement of fabric on road. Transverse joint reinforcing with sheet fabric.

TABLE 1
WELDED WIRE FABRIC (SHEET REINFORCING) USED AT
RAYNHAM TEST SITE

Test No.	Total Sheets	Fabric Style	Spacing of Wire in Inches		Gage of Wire		Outside Dimensions of Sheets in Place	
			Transverse Dimension	Longitudinal Dimension	Transverse Wire	Longitudinal Wire	Transverse Dimension	Longitudinal Dimension
(a) Transverse Concrete Joints								
1	18	3×6 $\frac{10}{6}$	3	6	6	10	11	6'6"
2	18	6×6 $\frac{10}{10}$	6	6	10	10	11'	5'
3	18	6×6 $\frac{10}{10}$	6	6	10	10	11'	6'6"
4	18	3×6 $\frac{10}{6}$	3	6	6	10	11'	5'
5	18	6×3 $\frac{10}{10}$	6	3	10	10	11'	6'6"
6	18	3×6 $\frac{10}{10}$	3	6	10	10	11'	7'6"
7	18	4×8 $\frac{10}{6}$	4	8	6	10	11'	6'6"
8	18	4×4 $\frac{10}{10}$	4	4	10	10	11'	6'6"
10	18	6×6 $\frac{8}{8}$	6	6	8	8	11'	7'6"
11	18	12×6 $\frac{8}{6}$	12	6	6	8	11'	7'6"
12	36	12×6 $\frac{8}{6}$	12	6	6	8	5'6"	10'

(b) Longitudinal Concrete Joints

Test No.	Total Sheets	Fabric Style	Spacing of Wire in Inches		Gage of Wire		Outside Dimensions of Sheets in Place	
			Transverse Dimension	Longitudinal Dimension	Transverse Wire	Longitudinal Wire	Transverse Dimension	Longitudinal Dimension
13	24	4×4 $\frac{10}{10}$	4	4	10	10	5'	12'
14	24	6×3 $\frac{10}{10}$	6	3	10	10	5'	12'
15	24	6×6 $\frac{8}{8}$	6	6	8	8	5'	12'

TABLE 2
WELDED WIRE FABRIC (CONTINUOUS REINFORCING) USED
AT WALPOLE TEST SITE

Test No.	Total Sheets	Fabric Style	Spacing of Wire in Inches		Gage of Wire		Outside Dimensions of Sheets in Place	
			Transverse Dimension	Longitudinal Dimension	Transverse Wire	Longitudinal Wire	Transverse Dimension	Longitudinal Dimension
(a) Sheet Fabric								
16	96	6 x 12 8/6	6	12	6	8	6'	18'
	32	6 x 12 8/6	6	12	6	8	5'	18'
17	96	6 x 6 8/8	6	6	8	8	6'	18'
	32	6 x 6 8/8	6	6	8	8	5'	18'
18	96	3 x 6 10/6	3	6	6	10	6'	18'
	32	3 x 6 10/6	3	6	6	10	5'	18'
(b) Roll Fabric								
Test No.	Total Rolls	Fabric Style	Spacing of Wire in Inches		Gage of Wire		Outside Dimensions of Rolls in Place	
			Transverse Dimension	Longitudinal Dimension	Transverse Wire	Longitudinal Wire	Transverse Dimension	Longitudinal Dimension
19	30	6 x 3 10/10 ⁽¹⁾	6	3	6	10	6'	57'
	10	6 x 3 10/10	6	3	6	10	5'	57'
20	30	3 x 6 10/10	3	6	10	10	6'	57'
	10	3 x 6 10/10	3	6	10	10	5'	57'
21	30	4 x 4 10/10	4	4	10	10	6'	57'
	10	4 x 4 10/10	4	4	10	10	5'	57'
23	30	6 x 3 10/10	6	3	10	10	6'	57'
	10	6 x 3 10/10	6	3	10	10	5'	57'
24	30	3 x 6 10/10 ⁽¹⁾	3	6	10	10	6'	57'
	10	3 x 6 10/10 ⁽¹⁾	3	6	10	10	5'	57'
25	Test 25 placed with total resurfacing thickness increased from normal 3" to 3 3/4", without reinforcing.							
26	30	3 x 3 12/12 ⁽²⁾	3	3	12	12	6'	57'
	10	3 x 3 12/12 ⁽²⁾	3	3	12	12	5'	57'
27	30	2 x 2 14/14 ⁽³⁾	2	2	14	14	6'	57'
	10	2 x 2 14/14 ⁽³⁾	2	2	14	14	5'	57'

Note (1) - Placed with Transverse wire on top

Note (2) - Galvanized wire

front of the trucks delivering the mix to the paving machine. Similarly, the Walpole reinforcement was transported to the site and distributed along the roadside.

PLACING OF REINFORCEMENT

In both Raynham and Walpole tests the wire fabric was placed directly on the portland cement concrete with longitudinal wires up. There were a few installations where the transverse wires were up (Tables 1 and 2).

In Raynham the wire fabric strips were nailed to the pavement using metal clips and a Remington stud driver (Fig. 10). About four to six clips were placed along the side of the fabric nearest the paver thus preventing the wire reinforcement from being caught in the machine. The transverse sheets of fabric were laid with little effort. Occasionally where the crown of the road was lowered by reducing the usual $1\frac{3}{4}$ -in. thickness of the binder, an additional one or two studs and clips were used. No sleds or other hold-down devices were needed. The tracks of the Barber-Greene finisher did not cause any disturbance of the fabric except where an attempt was made to pave over strips which had not been fastened down.

On the Walpole Test Road the rolls were first flattened out to their full length of about 57 ft (Figs. 12 and 13). The ends were overlapped in the middle of the concrete slabs by about $1\frac{1}{2}$ of the transverse wire spacing. However, the curl of the rolls, when rolled out, caused the lap to have a tendency to rise up off the concrete. This was remedied by increasing the overlap to 18 in. and fastening both ends of the rolled out fabric together with hog rings. Thus a lane of smooth reinforcement was obtained.

In the three sections where continuous sheet reinforcement was laid, the sheets were overlapped about $1\frac{1}{2}$ of the transverse spacing and tied together with hog rings. One or two rings were also occasionally used to fasten the longitudinal edges of adjacent sheets together whenever they showed a tendency to curl (see Figs. 1 to 14 for laying plans and operations).

PLACING BINDER COURSE ON TOP OF FABRIC

Massachusetts Type I binder course mix with $\frac{7}{8}$ -in. maximum size aggregate was used to cover the fabric with a $1\frac{3}{4}$ -in. layer. Specifications for this mix are given in the Appendix. For both test roads a Barber-Greene finisher was used. The work was done under contract and, therefore, the test installations were actually laid with the same equipment and construction techniques as on the usual resurfacing job.

On the Walpole Test Road the fabric was held down by a sled made of railroad rails and attached to the Barber-Greene paving machine (Fig. 14). This sled was dragged ahead by the front frame of the finisher with the individual rails trailing behind and riding directly over the fabric for their length. One rail of the sled was always kept on the edge of the fabric to prevent it from curling up.

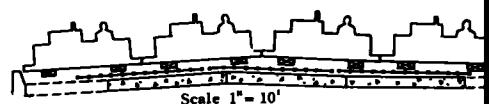


Figure 3. Cross-section showing positions of paving machine passing over fabric

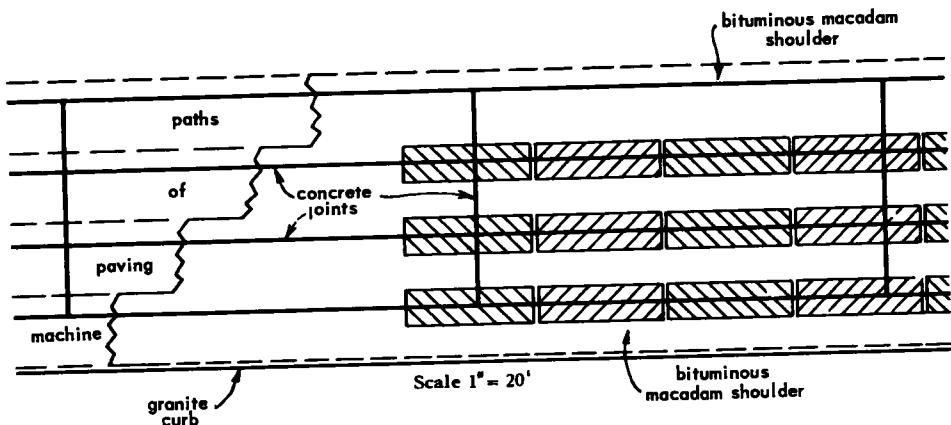


Figure 4. Placement of fabric on road. Longitudinal joint reinforcing with sheet fabric.

During the paving operations traffic was restricted to one side of the road. As soon as the binder course was completed in one lane, traffic was switched to the other side while the remaining bare area was covered with fabric and paved.

AREAS WHERE CAUTION IS ADVISABLE

During the paving operations in Raynham very few difficulties were encountered in placing the binder course over welded wire fabric reinforcement and 96 percent of placement was completed without any incident. In the Walpole Test Road several small difficulties developed with the continuous reinforcement. In the continuous roll section sometimes a wave was created by the paving machine as it moved forward. This wave usually extended itself at the next lap at the middle of the slab but sometimes it curled up and became caught in the machine. In some locations where the binder course happened to be quite thin due to surface irregularities of the old portland cement concrete, the screed caused a relatively high frictional force and pushed a localized wave of the fabric ahead of it. This resulted in distortions of the reinforcement and cracking in the binder behind the finisher. Some wire sections had to be cut out for this reason. There were also few difficulties due to the curl of the rolls which sometimes caused it to rise the binder immediately behind the paver at the lap joints. Under roller the binder either cracked or became springy over the lap, and the ends of the rolls tended to protrude through the mix. This was remedied to a great extent by increasing the length of the lap. There were instances where the mix had been spilled on the pavement before the reinforcement was laid, thus creating a high spot and causing the paver to catch the fabric as it passed over it.

In the Walpole Test Road the top course was not placed immediately after the binder application and the binder course was subjected to considerable traffic use. As a result after about 24 hours a few springy spots developed in some sections, each about

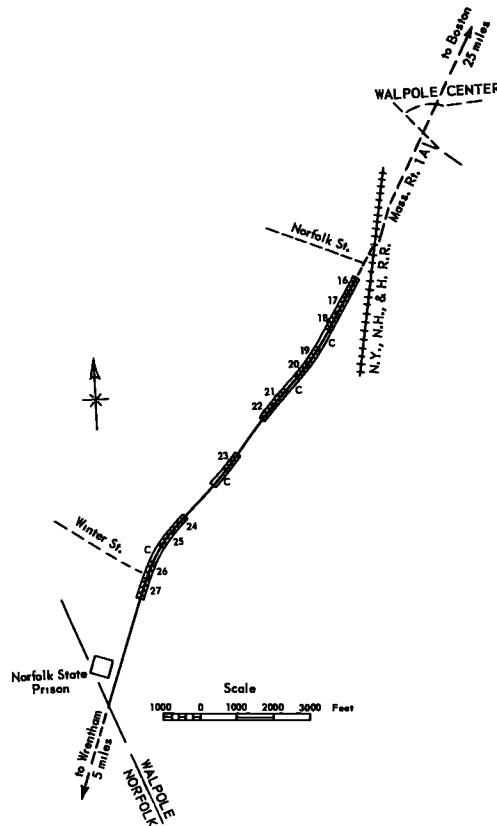


Figure 5. Location map of test road, Walpole, Mass. Numbers indicate test sections, C indicates control sections.

the binder immediately behind the paver at the lap joints. Under roller the binder either cracked or became springy over the lap, and the ends of the rolls tended to protrude through the mix. This was remedied to a great extent by increasing the length of the lap. There were instances where the mix had been spilled on the pavement before the reinforcement was laid, thus creating a high spot and causing the paver to catch the fabric as it passed over it.

In the Walpole Test Road the top course was not placed immediately after the binder application and the binder course was subjected to considerable traffic use. As a result after about 24 hours a few springy spots developed in some sections, each about

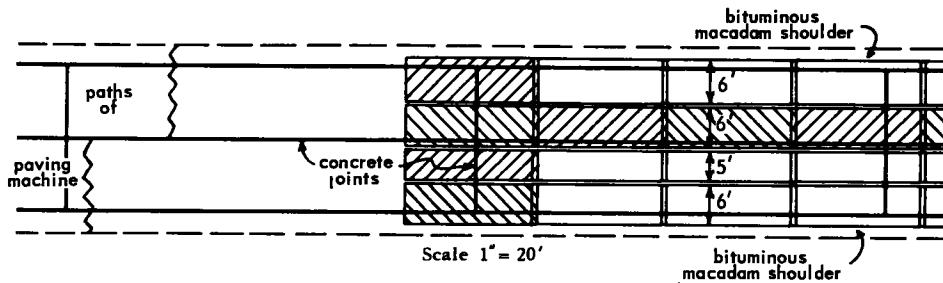


Figure 6. Placement of fabric on road. Continuous reinforcing with sheet fabric.

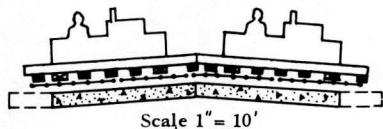


Figure 7. Cross-section showing positions of paving machine passing over fabric.

12 to 18 in. in diameter. The areas in which this developed were over fabric which had curled up in the mix where the bituminous concrete binder course was relatively thin. In these springy spots the binder was removed, the wire cut out and the area patched before the top mix was placed. These defects have not shown up in the top surface so far.

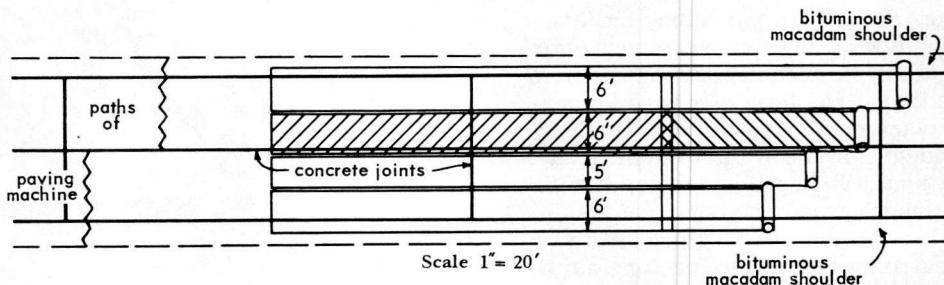


Figure 8. Placement of fabric on road. Continuous reinforcing with roll fabric.

PLACING TOP COURSE

The mix used to cover the binder course was Massachusetts Type I top mix, $1\frac{1}{4}$ in. thick. This was laid by a Barber-Greene finisher without any special precautions or provisions being required. The mix specifications are given in the Appendix.

CONDITION SURVEYS AND INSPECTION

The paving operations on the Raynham test site began on September 28, 1955, and were completed on October 18, 1955. Th

Figure 9. Typical installation of transverse reinforcing over joint.

Figure 10. Remington stud driver used to hold down fabric sheets.

Figure 11. Typical installation of longitudinal reinforcing over joint.

Figure 12. Placing continuous sheet reinforcing.

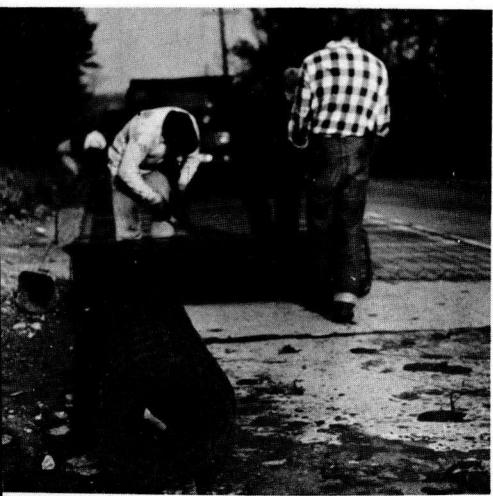


Figure 13. Placing continuous roll reinforcing.

Walpole test was started on October 26 and completed on November 17, 1955.

The first inspection of the test roads was made in the fall of 1955. From that time on two major condition surveys were made each year: the first one during the winter months, preferably January or February, and the second one during the summer months. The surveys were done according to an established method by plotting the crack lengths and widths on forms specially prepared for this purpose. These records were then analyzed and the various types of cracks classified according to the width and type.

Several additional inspections were made using photographic and visual methods. The development of defects and cracking in the various sections has been recorded from survey data and is presented in subsequent paragraphs.

CRACK DEVELOPMENT WITH TIME

It has been observed during the past 10 years that under Massachusetts conditions reflection crack development in a Type I mix is usually delayed for about a year after placing the resurfacing (8). This holds true also for the Raynham and Walpole Test roads. Only few cracks were observed on the Walpole Test Road during the winter of 1956 and the first cracks were observed on the Raynham test in September 1956. The initial large-scale condition survey in February 1957, revealed considerable cracking because the winter was severe and the crack development was unusual as compared to past experience. During this second winter more than 50 percent of the transverse joints in the control sections had cracks, whereas other test sections showed lower percentages or none at all.



Figure 14. Sled used on Barber-Greene paver for holding down continuous reinforcing.

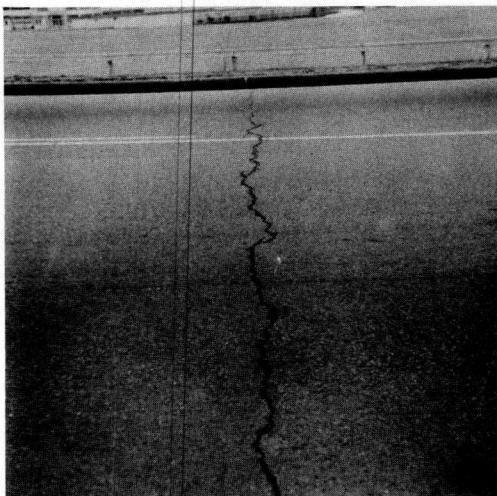


Figure 15. One of the cracks in non-reinforced section.

Figure 16. Crack above joint in reinforced section, Raynham.

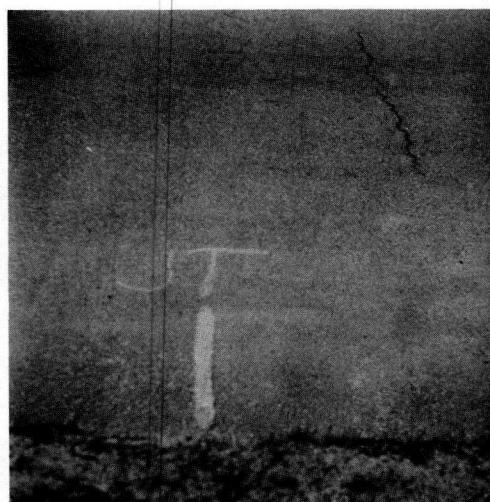


Figure 17. Crack at edge of reinforcement, Raynham.

FIVE-YEAR FIELD RESULTS

All sections have been subjected to five years of traffic and weathering. Data compiled from winter and summer surveys indicate that the differences between the amount of cracks during the warm period and the cold period are not great except for the crack width. Some small cracks tend to close up during the summer especially during the first years. In this report comparisons between the various test sections will be made on basis of winter surveys when the cracks are at their widest opening.

Raynham—Transverse Joint Strip Reinforcement

The width of the strip reinforcement in Raynham varied between 5 and 10 ft. The 5-ft wide strips are herein called narrow, the 6½- to 7½-ft strips are called medium wide and the 10-ft strips are designated as wide. The percentage of total reflection cracking above the transverse joints is given in Figure 19. This figure contains six

separate bar graphs which were necessary to compare each of the reinforced test sections with its adjoining control section. It can be seen that the amount of cracking both in the test sections as well as in the controls increased with time, with the control sections developing cracks at a faster rate than the test sections. Because the width of the cracks varied from one area to another, the distinction between "wide cracks" and "narrow cracks" was set at $\frac{1}{8}$ in. The cracks wider than $\frac{1}{8}$ in. are represented by the shadowed part of the bar, whereas narrow cracks have not been shaded. This dividing point at the $\frac{1}{8}$ -in. width was selected because usually cracks that are $\frac{1}{8}$ in. and less in width are not sealed in maintenance operations. During the actual field surveys the narrow cracks were subdivided into two categories: (a) hair cracks and (b) cracks of about $\frac{1}{8}$ -in. width. The wide cracks had several other recorded sub-classifications. The records of these are available, but for the sake of simplicity and brevity, the detailed data have not been included in this paper.

In the case of the strip reinforcement the cracks that are found appear in two distinct places: (a) immediately above the old joint and (b) at the edge of the reinforcement strip. In practically all cases the cracks appeared either above the joint or at the edge and very seldom in both places. In those few instances where two parallel cracks had appeared the lengths of the cracks were counted as one, and only the crack width was increased in the classification. In this manner the total percentage of cracking cannot exceed 100 percent.

Figure 20 shows a division between the amount of edge cracks and cracks right over a joint. Here again, the hatched area designates wide cracks, whereas the blank part of the bar denotes the narrow cracks. The arrangement of the bar graphs is slightly different in Figure 20 than in Figure 19, showing for each test section the development or increase in cracking with time. The control sections are not included in this comparison because they contain only one kind of crack; that is, only those immediately above the joint.

Wynham—Strip Reinforcement over Longitudinal Joints

As given in Table 1, three test sections were established using 5-ft wide strip reinforcement over the longitudinal joints only. The relative comparisons between the control and the three tests are given in Table 3. The percentages are based on about 240 ft longitudinal joint for each test section.

Walpole—Continuous Reinforcement Sections

As given in Table 2, the Walpole test sections were constructed using continuous reinforcement not only over the whole area of the portland cement concrete slabs but also extending over each side onto the shoulders (Figs. 6, 8, and 12).

The cracking percentages for the transverse joints are shown in Figure 21. Three of the test sections contained wire fabric in sheets, whereas the rest of the test had the reinforcement in rolls of approximately the same length as the slabs. In Figure 21 the various test sections are compared with the adjacent control sections and, therefore, each section of the bar graphs has to be studied independently. For instance, tests 20 and 21 have an adjoining control section, C-3, which cannot be directly

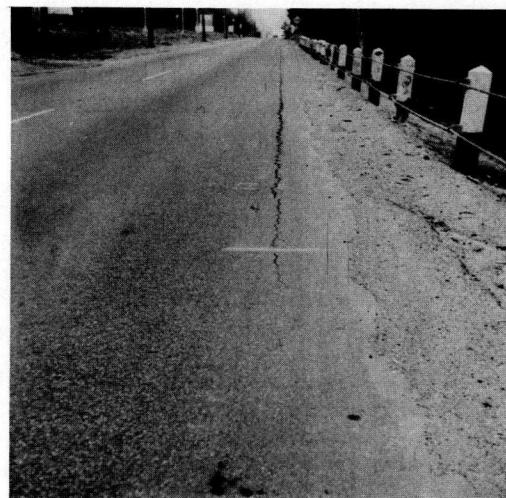


Figure 18. Longitudinal crack narrows down and stops at reinforced section (bottom), Walpole.

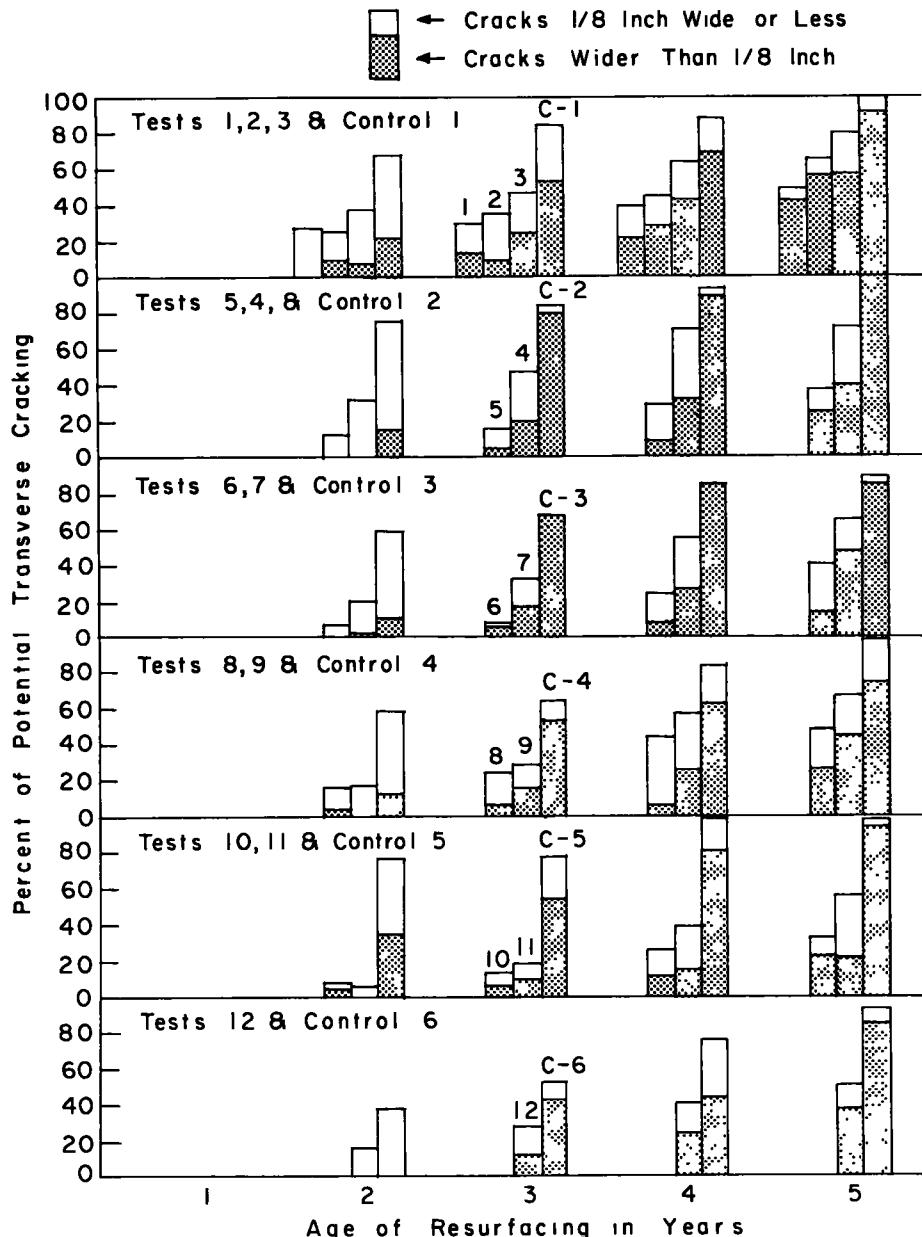


Figure 19. Comparison of transverse crack development for the Raynham Test Road using strip reinforcement.

compared with tests 16 and 17 because the control section adjacent to tests 20 and 21 shows about 70 percent cracking, whereas the control section next to tests 16 and 17 has cracked 100 percent. Again, as in the Raynham test results, the hatched area of the bar graphs denotes the amount of wide cracks, whereas the blank area gives the percentages of narrow cracks.

Figure 22 shows a comparison for cracks along the edges of the pavement between the slab and the shoulder. Comparing Figure 21 with Figure 22 it is apparent that the amount of longitudinal cracking in Walpole is very small as compared to the transverse cracking.

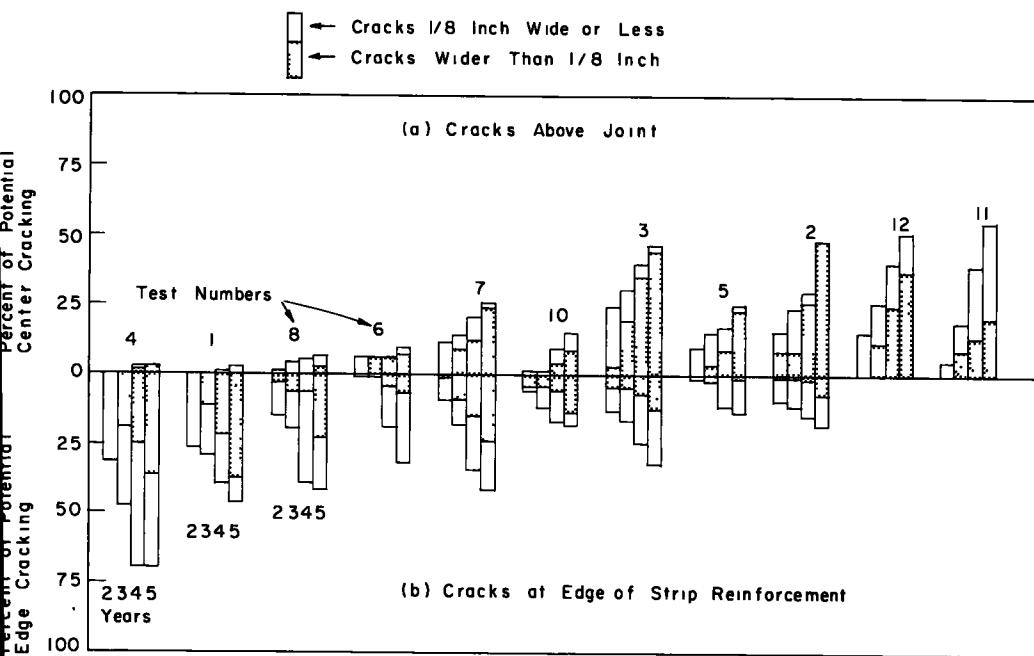


Figure 20. Comparison between the two types of transverse cracking in Raynham: (a) cracks right above the underlying joint and (b) cracks at the edge of the strip reinforcement.

TABLE 3

COMPARISONS OF LONGITUDINAL CRACKING BETWEEN ADJACENT SLABS IN THREE TEST SECTIONS IN RAYNHAM

Test	Fabric Style	Potential Cracking at Various Ages (%)				
		1 Yr	2 Yr	3 Yr	4 Yr	5 Yr
3	4 x 4, $\frac{10}{10}$	0	0	15	21	31
4	6 x 3, $\frac{10}{10}$	0	0	6	6	7
5	6 x 6, $\frac{8}{8}$	0	0	0	0	0
	none	0	7	14	22	38

Besides cracks immediately above the old joints, there are also a few cracks in areas where the overlap of the wire fabric sheets or rolls occurs. The relative amount of this kind of cracking as compared to the longitudinal and transverse cracks is very small and the length of cracks for 1,000 sq ft, both for wire fabric in sheets and rolls, given in Tables 4 and 5.

The amount of longitudinal cracking between two adjacent slabs in Walpole has not been shown in any of the comparisons. The reason for this is that many cracks in the center of the road had been caused by the paint stripes and it was virtually impossible to separate these cracks from the joint cracks. It can also be seen from Figure 8 that the butting of two adjacent rolls or sheets occurred about 6 in. on one side of the longitudinal center joint. Observations in cracking pattern indicate that reinforcement at such a short distance from a joint leaves the reinforcement ineffective against longitudinal joint crack appearances. Therefore, due to the closeness of the reinforcement

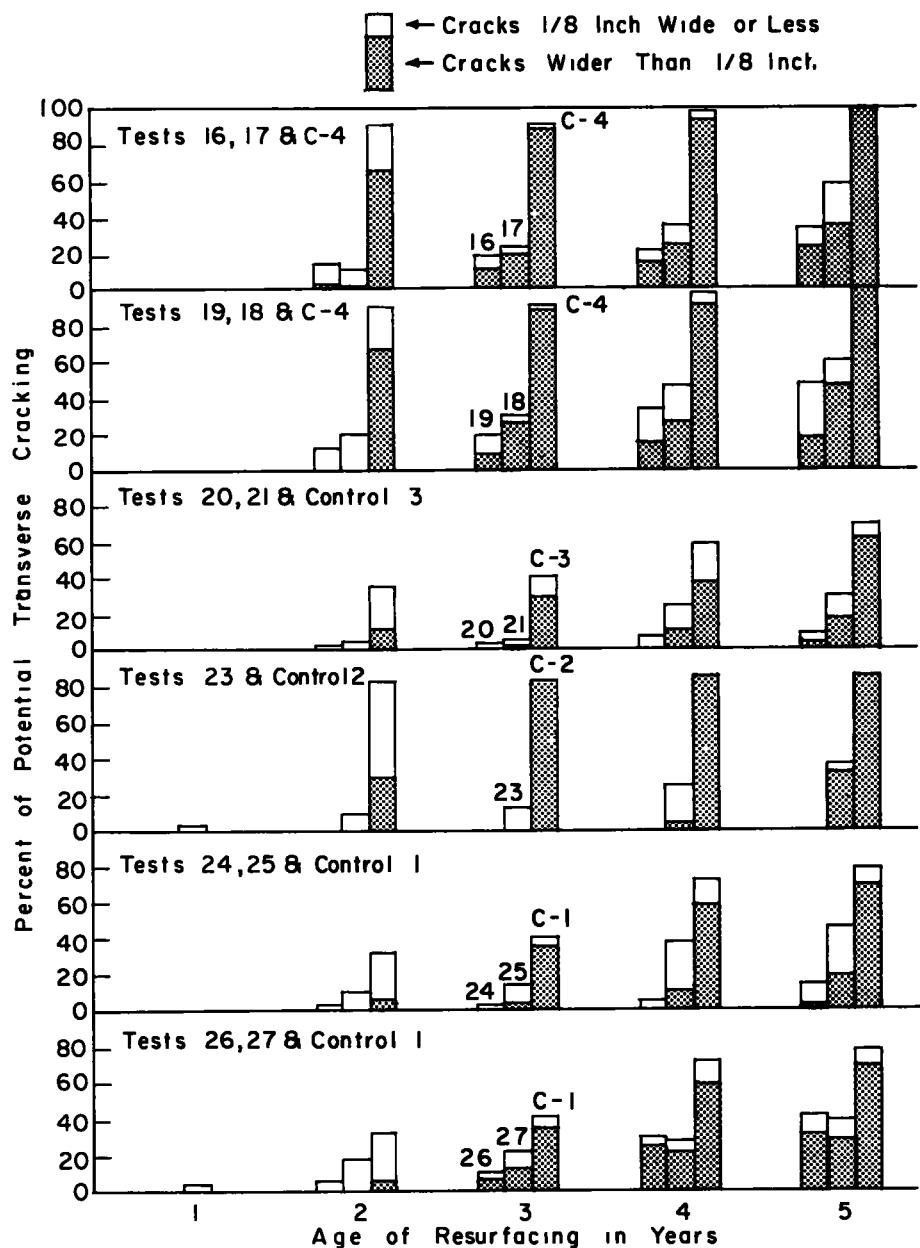


Figure 21. Comparison of transverse crack development for the Walpole Test Road using continuous reinforcement.

butting and the occurrence of paint cracks immediately above the joint, the comparison between the test sections and the control sections in this paper has not been made. The actual observed amount of cracking was similar to the adjacent control sections.

DISCUSSION OF FIELD RESULTS

The main purpose of the two test roads was to compare the effectiveness of various strip reinforcements placed above the transverse joints and continuous reinforce-

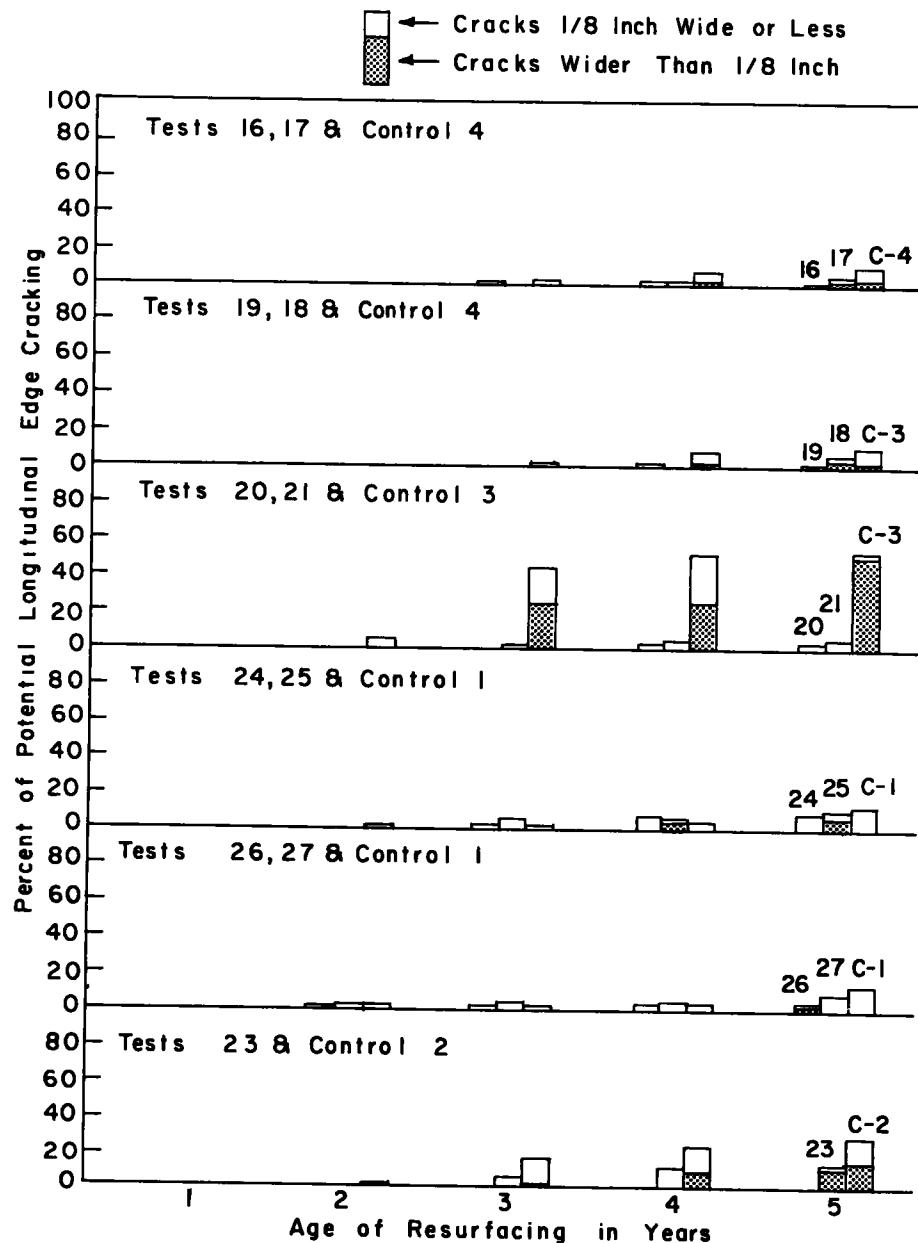


Figure 22. Comparison of longitudinal edge crack development for the Walpole Test Road.

inch covers the whole road surface. The types and sizes of the wire fabric used in various sections were selected according to practical considerations and availability of the various wire fabric styles. Following is a discussion of the field performance of two test roads.

Raynham—Strip Reinforcement

The main emphasis in the Raynham test section was placed on the performance of reinforcement over transverse joints because the strains are relatively higher at these

TABLE 4
CRACKING OVER LAPS BETWEEN SHEETS AND ROLLS IN
WALPOLE TEST ROAD

Test	Cracking (ft/1,000 sq ft)				
	1 Yr	2 Yr	3 Yr	4 Yr	5 Yr
16	0	2.4	3.1	3.7	5.1
17	0	1.1	1.4	2.2	2.3
18	0	1.2	2.0	3.1	3.1
19	0	1.4	2.0	3.1	3.9
20	0	0	0	0.3	0.3
21	0	0	0.1	0.8	0.8
23	0	0	0	0	0.1
24	0	0	0	0.2	1.8
26	0	0	0	0	0.2
27	0	0	0	0	0

TABLE 5
RANDOM CRACKING OVER INTERIOR OF SLABS IN WALPOLE TEST ROAD

Test	Cracking (ft/1,000 sq ft)				
	1 Yr	2 Yr	3 Yr	4 Yr	5 Yr
16	0	0.3	0.8	5.1	5.
17	0	1.8	1.4	3.5	3.
18	0	0.8	0.8	0.8	0.
19	0	1.6	1.1	3.3	4.
20	0	0	0	0.2	0.
21	0.2	0.4	0.4	1.2	1.
23	0	0	0.6	1.6	1.
24	0	0.4	0.6	0.7	1.
25	0	0	0	0.3	1.
26	0	0	0.2	0.2	1.
27	0.7	2.8	4.5	4.9	8.
C-1	0	0.2	1.1	2.9	4.
C-2	0	0.4	0.5	1.2	2.
C-3	0	0	0.2	1.3	1.
C-4	0	0.2	1.0	3.2	4.

areas as compared to the longitudinal joints. Figure 19 shows that all test sections and controls had cracks after two years of traffic and exposure to weather. In all cases the cracks increased in width and length with time. The most undesirable cracks are the wide ones because they require continued maintenance. Comparing the amount of wide cracks as well as the total cracking in Figure 19 it is apparent that the control sections in all cases had more of both types of cracking than any of the wire reinforced test sections. Thus, it can be said that any of the wire fabric reinforcement over the transverse joints will help in a degree to prevent reflection cracking. The lowest percentage of reflection cracks was found in test 10 (fabric style-6 x 6, $\frac{1}{8}$) which had about one-third of that in a comparable control section. If the percentage of the wide cracks is defined as the most important, test 6 (fabric style-3 x 6, $\frac{10}{10}$) is the best. In general, tests 5, 6, 8 and 10 are the best performers with total cracking from ab-

one-half to one-third and wide cracks between one-half to one-sixth of that in the controls.

The two types of transverse cracks encountered in Raynham test section are compared in Figure 20. It is apparent that the type of reinforcement plays a great role in the structural behavior of the bituminous concrete and reinforcement combination. Laboratory studies show that the design and placement of the reinforcement for transverse joints is an engineering problem which requires balancing of "strength" to resist the forces of nature and traffic (11). For instance, if the strip reinforcement is made of stiff wire closely spaced and the width of the strip is not adequate, there will be no cracking immediately above the joint but the strongly reinforced section will transfer the strain to the edge of the reinforcement causing a crack there. On the other hand, the sizes of the wire fabric are small, the spacing between the wires is considerable, and the strip of wire fabric placed above the joint is wide, the likelihood of reflection cracks occurring immediately above the joint is high. Laboratory tests and theoretical studies indicate (10, 11, 17), that the behavior of welded wire fabric in the bituminous concrete is different from that of reinforcement placed in portland cement concrete. When a reinforced bituminous concrete layer is subjected to slow tension the longitudinal wires offer very little bond resistance. The main resistance to the strain of the reinforced overlay is exercised by the transverse wires which undergo a shear movement through the mix. The amount of shear movement depends on stress, temperature of mix, time of loading and other factors. Part of this movement is recoverable elastically, whereas the other part becomes a permanent deformation. The main factors that appear to play a role in deciding whether a crack will appear immediately above the joint or at the edge of the strip reinforcement are as follows:

1. The percentage of the longitudinal steel area affects the amount of strain that is distributed along the longitudinal wire for a given stress. The thinner the longitudinal wires or the less of them per unit area the easier it will be to "stretch" the fabric.
2. The transverse wire length between two longitudinal wires is of great importance. The longer the spacing the more flexible is the reinforcement system and the more likely center cracks can occur. This flexibility is influenced also by the transverse wire diameter.
3. The shear resistance of the transverse wires which is influenced by the transverse wire diameter is another factor that affects the wire fabric reinforcement behavior. The smaller the transverse wire diameter the easier the wire will cut into the mix or undergo shear movement under the given load and more likely allow cracks to develop immediately above the joint.
4. Road tests show that the width of the wire fabric strip reinforcement is important in deciding whether there will be cracking or not and if so where this cracking will occur. For narrow strip reinforcement the likelihood is an edge crack.

It must be remembered, however, that the wire fabric reinforcement alone is not enough to determine whether the reinforced joint will have a crack or not. The condition of the underlying slab, especially surface roughness as well as other factors, will play a role in defining where the crack will form—if it does. By outlining the previously-discussed reinforcement factors for each of the Raynham test sections, a fairly consistent explanation of why certain sections had cracks at the edges, whereas the others did not, can be obtained. For instance, test 12 has a relatively low longitudinal wire steel area, the longitudinal wire spacing is 12 in., the transverse wire diameter is relatively large but the spacing is 6 in., and the strips are 10 ft wide which is wide according to the authors' classification. Therefore, it is likely that cracks will develop along the center of the reinforcement or immediately above the joint. On the other hand, test 4 has a high longitudinal steel area, narrow spacing of longitudinal wires, and the strip width is only 5 ft. Therefore, if any cracks would appear they are likely to be at the edge of the strip. This is true for both installations (Fig. 20). Similar comparisons for the other test sections will indicate the same trend. Although it is difficult at this time to assign definite numbers for the aforementioned factors, it is assumed that future research will reach conclusions as to their relative significance. The Raynham Test Road indicates that under Massachusetts conditions and with the

styles of strip reinforcement used, reflection cracking can be considerably reduced but not prevented. The main reason for this is the fact that strip reinforcement needs balanced design which is difficult to achieve where slabs are of considerable length and the horizontal joint opening and closing is large. This question has been discussed at greater length in a previous publication (11).

In addition to the 11 tests of transverse joints, three areas were covered with strip reinforcement for longitudinal joints only. The cracking index for these three sections are given in Table 3. Because of the relatively short length of these tests any conclusions should be drawn with caution. Test 13 (fabric type 4 x 4, $\frac{10}{10}$) has unusually high crack index which is unexpected and cannot be explained at this time. Test 15 (fabric type 6 x 6, $\frac{8}{8}$) which has the same fabric as test 10, has no cracking.

Walpole—Continuous Reinforcement

The Walpole Test Road contains three test sections with the continuous sheet of reinforcement and seven sections where rolls were used. Figure 21 summarizes the amount of transverse cracking and again it must be emphasized that comparisons can be made only between the tests and the adjacent control sections. Thus tests 20 and 2 should be compared with control 3 rather than with other controls. This calls for a caution when direct comparison between various sections are made.

The basic idea behind the continuous reinforcement is to make the resurfacing independent of the underlying slab movements. In a continuously-reinforced surfacing the possibility of so-called edge cracking (as shown in Raynham) is no longer a problem; and instead of balancing the various forces on both sides of the joint, the design involves optimum reinforcement to obtain the strength necessary to avert any excess strain in the resurfacing. The results in Figure 21 indicate that the best performance was obtained with 3 x 6, $\frac{10}{10}$ welded wire fabric in rolls. There are two test sections with this type of wire fabric and both of them show good results (tests 20 and 24). The difference between the two is the manner in which the wire was laid: in test 20, the longitudinal wires were on the top of the fabric, whereas in test 24 this was reversed. The total amount of cracking as compared to the control is about one-seventh for test 20 and about one-fifth for test 24. The number of wide cracks in both test sections is low and very few cracks are noticeable driving over these sections. It can be said that after five years, transverse cracking in these two sections is negligible from a maintenance standpoint.

Tests 16, 17 and 18 were reinforced with various types of fabric in sheets and the performance is less impressive than with similar wire fabrics of a continuous type of reinforcement. The possible reason for this is that even though the sheets were tied together by hog rings there actually was never a continuous-type reinforcement in such an arrangement. In several cases the laps of the joints were very close to the old portland cement concrete joints thus causing a plane of weakness near the joint. In test sections where rolls were used the longitudinal wires in all cases had to be gage 10 or higher (thinner) because of the difficulty in flattening the rolls on the road. As a consequence no heavier gage than 10 was used on a test section. Test 26 had 3 x 3 $\frac{13}{12}$ wire fabric style in rolls and test 27 was 2 x 2, $\frac{14}{14}$ wire fabric. Both sections were difficult to place mainly because of the narrow wire spacing and the $\frac{7}{8}$ -in. aggregate used in the binder course. Test 25 contained no wire but the thickness was increased to $3\frac{1}{4}$ in. instead of the conventional 3 in. so that the cost would equal that of wire fabric. The transverse cracking in this section has reached 50 percent but is still low compared to the adjacent control.

The percentages of longitudinal cracking between the edge of the slab and the shoulder on each side are given in Figure 19. As can be seen, the relative number of cracks found is small compared to the previously discussed transverse cracking. Even the control sections (except for control 3) have low cracking index. The reinforcement in the bituminous concrete overlay was extended over already existing bituminous concrete shoulders. Therefore, the amount of settlement so far has been very small which might account for the relatively low cracking indexes. There were a few instances where drainage was placed along the edge of the old pavement prior

resurfacing. The disturbed and then compacted soil and gravel support has settled about $\frac{1}{4}$ to $\frac{1}{2}$ in. in these locations and edge cracking has taken place. These areas, however, had to be eliminated from the test compilations as they could not be compared with test sections where such disturbances were not present. The high percentage of cracks in control 3 is not explainable from data available.

In summary it can be said that several types of wire fabrics are capable of restricting the longitudinal edge reflection crack development for at least five years.

Table 4 summarizes the number of cracks which have developed at the wire fabric laps. Similarly, a few cracks that have developed over the interior of the slabs are given in Table 5. The highest occurrence of these two types of cracks is found in tests 16, 17 and 18 where the sheet type of reinforcement was used. The length of the crack for each area, however, is very small and of little importance.

Raynham Compared to Walpole Tests

The comparison between the two has to be made with some caution because of the relative differences between the test roads and also due to slight differentials in the cracking indexes of the control sections. If a "rough" comparison is assumed to be valid, all but two of the wire tests have performed better than the best control. In an over-all comparison a continuous type of reinforcement has performed better than the strip type of reinforcement with 3×6 , $\frac{1}{10}$ wire fabric in continuous rolls showing the most outstanding performance. The ability of the 3×6 , $\frac{1}{10}$ welded wire fabric to resist formation of cracks above transverse joints is also clearly indicated by the performance of tests 1, 4 and 6 in Raynham. Although they have cracks at the edges of the reinforcement, center cracking is below ten percent; that is, comparable to the 3×6 , $\frac{1}{10}$ sections in Walpole.

CONCLUSIONS

When comparing these results, the variations in the condition of each test section as well as in the physical environment of the test sites over the 5-yr period must be kept in mind. Observations and measurements indicate the following:

1. It is easy to place the types and styles of welded wire fabric used in Raynham and Walpole tests in 3 in. of bituminous resurfacing when the fabric is placed directly on the surface of the old concrete pavement.
2. All types and styles of fabric used had the effect of reducing the amount of reflection cracking to less than that in control sections.
3. Where cracks did appear at reinforced transverse joints, they were of smaller average width than those in the comparable control sections.
4. The most outstanding resistance to reflection cracking was shown by 3×6 , $\frac{1}{10}$ continuous welded wire fabric reinforcement in rolls (test 20). For example:
 - (a) Only nine percent of the total length of potential transverse reflection cracks appeared. This is nearly one-eighth that in the comparable control section.
 - (b) Only four percent of the cracks are wide (more than $\frac{1}{8}$ in.), which is about one-fifteenth of the wide cracks found in the control section.
 - (c) Only about two percent of possible longitudinal edge cracking occurred with only narrow cracks present.
5. In the strip reinforcement test a strip of 6×6 , $\frac{1}{8}$ welded wire fabric 7.5 ft wide proved the best. Total cracking was only one-third (33 percent) of that in the control. Test 6 using 3×6 , $\frac{1}{10}$ fabric showed the lowest percentage of wide cracks; that is, about one-seventh than that of the control.
6. The performance of welded wire strip reinforcement is evidently influenced by the longitudinal steel area, longitudinal wire spacing, transverse wire diameter, and width of the strip reinforcement. Strip reinforcement requires a balanced design (not too strong and not too weak) where relatively large horizontal joint openings are expected (about 0.1 in. or more).
7. While the choice of width of welded wire fabric reinforcement strips is a function of several factors, under the conditions tested 6- to 8-ft wide reinforcement for

transverse joints and about 5 ft for longitudinal joints appears satisfactory.

8. The amount of longitudinal edge cracking was small in the Walpole Test Road in all reinforced sections.

9. If settlement of the resurfacing over a shoulder is more than about $\frac{1}{4}$ in., longitudinal cracks will occur between the slab and the shoulder even with reinforcement.

10. The $3\frac{3}{4}$ -in. thick resurfacing in test 25, costing the same as a continuously-reinforced surfacing 3 in. thick, had a transverse crack incidence five times greater than in test 20 where 3×6 , 10% welded wire fabric reinforcement was used in the 3-in. thickness.

11. Field observations show that $\frac{7}{8}$ -in. maximum size aggregate appears to be the upper size limit if the reinforcement opening is 2×2 in. In other words, the minimum fabric wire spacing in the mat should be at least twice and preferably three times the maximum dimension of the aggregate used in the mix.

RECOMMENDATIONS

The work described in this paper has been aimed at systematic gathering of data concerning welded wire fabric reinforcement in bituminous concrete resurfacings so that meaningful conclusions could be reached. This should be continued in order to find solutions for varied situations:

1. The amount of horizontal and vertical joint movements should be measured and data compiled in each state.
2. In areas where the conditions are similar to Massachusetts large installations using the best types of continuous reinforcement should be undertaken.
3. Strip reinforcement should be tried in areas where the maximum horizontal joint movement is not as great as in Massachusetts and where the main purpose is to reinforce against shear and flexure at the joints.
4. Some samples removed from the test road showed evidence of rusting of the wire fabric. Although this does not appear to have influenced the performance of the reinforcement, ways of protecting the steel should be investigated, such as sandwiching it between layers of bituminous concrete.
5. Improvements in methods of laying fabric including the development of equipment for this purpose should be studied.
6. Theoretical studies of welded wire fabric reinforcement in a viscoelastic material (bituminous concrete) should be pursued.
7. Laboratory studies to prove theories and to accumulate knowledge on the importance of factors like longitudinal wire cross-sectional area, spacing, transverse wire size and strip width should be continued.
8. Rheological studies of various types of bituminous concrete reinforced with welded wire fabric should be continued in the laboratory.

ACKNOWLEDGMENTS

The cooperation and help of many organizations and individuals was necessary to make the first phase of the project a success.

The Committee on Welded Wire Fabric Reinforcement Research of the American Iron and Steel Institute sponsored the research.

The Massachusetts Department of Public Works incurred considerable extra expense in planning and constructing the test roads used for the experiment. It bore the full cost of fabric placement. In addition, it provided field personnel for the necessary condition surveys and extra resident engineer staff during construction. Considerable time was spent by the supervisory staff of the Maintenance Division at Department headquarters, Nashua Street, and by the staff of District 6, Taunton.

The Wire Reinforcing Institute, British Road Research Laboratory, and many other organizations familiar with the use of welded wire fabric in resurfacing projects contributed valuable technical advice and assistance.

The Pittsburgh Steel Products Company, American Steel and Wire Division of United States Steel Corporation, and Wickwire Spencer Steel Division of The Colorado Fuel

and Iron Corporation manufactured the fabric, much of which was in small lots of special styles.

The Remington Arms Company furnished a stud driver and donated the supplies used with it.

The Norfolk Construction Company and Thomas Brothers Corporation were the construction contractors.

The staff members of the Joint Highway Research Project all gave invaluable assistance to the work. Especially appreciated are the efforts of J. W. Horn, who was active in planning and construction of the test roads.

REFERENCES

- Bone, A. J., and Roggeveen, V. J., "A Survey of the Use of Rubber in Asphalt Paving." MIT Joint Highway Research Project Research Report 4 (Sept. 1951).
- Bone, A. J., Crump, L. W., and Roggeveen, V. J., "Control of Reflection Cracking in Bituminous Resurfacing Over Old Cement-Concrete Pavements." HRB Proc., Vol. 33 (1954).
- Bone, A. J. and Crump, L. W., "Revere Resurfacing Project - Progress Report No. 1 - An Experiment in Control of Reflection Cracking in Bituminous Surfaces Over Concrete Pavement." MIT, Joint Highway Research Project Research Report 8 (June 1954).
- Crump, L. W., and Bone, A. J., "An Experiment in Use of Expanded Metal Reinforcing to Control Reflection Cracking in Bituminous Surfaces Over Concrete." MIT, Joint Highway Research Project Research Report 11 (June 1955).
- Crump, L. W., and Bone, A. J., "A Review of Current Practices and Research on Controlling Reflection Cracking." HRB Bull. 123 (1956).
- Crump, L. W., and Bone, A. J., "Condition Surveys of Bituminous Resurfacing Over Concrete Pavements." HRB Bull. 123 (1956).
- Horn, J. W., Roggeveen, V. J., and Bone, A. J., "Welded Wire Fabric in Bituminous Resurfacing - Progress Report No. 1 - An Experiment in the Use of Welded Wire Fabric Reinforcing to Control Reflection Cracking in Bituminous Resurfacing Over Concrete." MIT, Joint Highway Research Project Research Report 17 (Nov. 1955).
- Roggeveen, V. J., and Tons, E., "Progress of Reflection Cracking in Bituminous Concrete Resurfacings." HRB Bull. 131 (1956).
- Tons, E., and Bone, A. J., "Westboro Subsealing Experiment." MIT, Joint Highway Research Project Research Report 21 (Dec. 1956).
- Bicher, G. A., Harris, R. L., and Roggeveen, V. J., "A Laboratory Study of Welded Wire Fabric Reinforcement in Bituminous Concrete Resurfacing." AAPT Proc., Vol. 26 (1957).
- Tons, E., and Korkosky, E. M., "A Study of Welded Wire Fabric Strip Reinforcement in Bituminous Concrete Resurfacings." Presented at Annual Meeting, AAPT, Memphis, Tenn. (Jan. 1959).
- Bowers, L. L., "Influence of Temperature and Admixtures on Tensile Strength of Bituminous Concrete Mixes." M.S. Thesis, MIT (1953).
- Blakeslee, R. W., "Correlation of Joint Width and Temperature Changes in Concrete Pavements." B.S. Thesis, MIT (1954).
- Horn, J. W., "The Experimental Use of Welded Wire Fabric Reinforcing in Bituminous Concrete Resurfacing." M.S. Thesis MIT (1956).
- Cyros, K. L., "A Method of Measuring Temperatures of Concrete Pavement Slabs." B.S. Thesis, MIT (May 1956).
- Bicher, G. A., and Harris, R. L., "An Experimental Investigation of the Action of Welded Wire Fabric in Bituminous Concrete Overlays as Related to Its Use in Control of Reflection Cracking." M.S. Thesis, MIT (Sept. 1956).
- Foley, J. V., and Waggner, J. G., "The Behavior of Welded Wire Fabric Reinforcement in Bituminous Concrete." M.S. Thesis, MIT (Sept. 1957).

18. Milligan, R. I., "A Method for Testing Reinforced Bituminous Concrete." B.S. Thesis, MIT (May 1958).
19. Comerford, J. M., "An Experimental Investigation of Plain and Reinforced Bituminous Concrete in Shear." B.S. Thesis, MIT (May 1959).
20. Davis, M. M., "A Field Study of Methods of Preventing Reflection Cracks in Bituminous Resurfacing of Concrete Pavements: Part I, Theory and Installation." Ontario Joint Highway Research Program, Report No. 12 (1960).
21. Payne, H. F., Bransford, T. L., and Gartner, W., Jr., "Cracking of Asphaltic Concrete Adjacent to Traffic Stripes." HRB Proc., Vol. 38 (1959).
22. Boring, J. E., and Myers, B., "Investigation of Longitudinal Cracking Reflected Through Asphaltic Concrete Resurfacing." HRB Proc., Vol. 38 (1959).
23. Roberts, S. E., "Cracks in Asphalt Resurfacing Affected by Cracks in Rigid Bases." HRB Proc., Vol. 33 (1954).
24. Erickson, L. F., and Marsh, P. A., "Pavement Widening and Resurfacing in Idaho." HRB Bull. 131 (1956).
25. Hirashima, K. B., "Highway Rehabilitation by Resurfacing." HRB Bull. 131 (1956).
26. Stackhouse, J. L., "Rejuvenating Highway Pavement." HRB Bull. 123 (1956).
27. Howard, E. M., "Welded Wire Fabric Reinforcement in Asphaltic Concrete." Amer. Road Builders' Assoc., Tech. Bull. 226 (1957).
28. Wakefield, F. G., "The Practical and Laboratory Use of Wire Fabric in Bituminous Resurfacing at Willow Run Airport." Amer. Road Builders' Assoc., Tech. Bull. 215 (1956).
29. Smith, N. G., "Resumé of Results of Welded Wire Fabric in Bituminous Surfaces." Amer. Road Builders' Assoc., Tech. Bull. 215 (1956).
30. Swanberg, J. H., "Experimental Installation of Welded Wire Fabric in Bituminous Pavements." Amer. Road Builders' Assoc., Tech. Bull. No. 207 (1954).
31. Zube, E., "Wire Mesh Reinforcement in Bituminous Resurfacing." HRB Bull. 131 (1956).

Appendix

SPECIFICATIONS FOR MASSACHUSETTS TYPE I BITUMINOUS CONCRETE MIX

Material	Standard Sieves		Percent by Weight			
	Passing	Retained	Standard Bottom Course		Standard Top Course	
			Min	Max	Min	Max
Coarse aggregate ^a						
	-	7/8"	-	0	-	-
	7/8"	1/2"	30	50 ¹	-	0
	1/2"	No. 4	15	30	25	40 ¹
	No. 4	No. 10	5	15	15	25
Fine aggregate and mineral filler	No. 10	No. 20	2	8	4	12
	No. 20	No. 40	4	10	6	16
	No. 40	No. 80	4	10	6	16
	No. 80	No. 200	2	6	4	10
	No. 200	-	1	4	4	6
Bitumen (sol in CS ₂)			4 1/2	5 1/2	6	7
Total				100		100
Total fine agg. and min. filler			20	30	35	45

^a Not more than 1/5 of the 7/8- to 1/2-in. fraction in the bottom course shall be retained on a 3/4-in. sieve. Not more than 1/4 of the 1/2 in. to No. 4 fraction in the top course or dense mix shall be retained on a 3/8-in. sieve.

Effect of Pavement Breaker Rolling on Crack Reflectance in Bituminous Overlays

PAUL G. VELZ, Research Engineer, Minnesota Department of Highways, St. Paul

THIS STUDY was conducted on S. P. 6511-10 and S. P. 6512-01 (T. H. 212) located between Bird Island and Stewart. The project was a typical widening and bituminous resurfacing project, in which the bituminous mixtures were placed directly on the old concrete pavement.

The 1931 concrete pavement, like a number of the older pavements in Minnesota, had warped panels, cracks, and faulted joints to the extent that the riding qualities had become somewhat objectionable, especially for trucks. Experience on other bituminous resurfacing projects indicated that many of these objectionable features will eventually be reflected in the bituminous overlay surface. Usually the joints and cracks in the old pavement cause cracks in the new surface within a very short time. Then longitudinal cracks appear at the edges of the old pavement and many times at centerline; and, ultimately, slab movements cause recurrence of general roughness. Maintenance costs go up, and the serviceability of the surface is reduced.

In the past, one solution has been to provide lifts of granular material over rough old pavements before placing the bituminous surface. The added thickness retarded the reflectance of cracks and roughness; and, when thick enough, lifts actually eliminated most of the effects of the old pavement defects. However, this type of construction was costly because of the large quantities of granular materials needed and because the additional grade widening usually required. It also might be considered extravagant, in that the full potential of the old pavement as a base course was not used and because it consumed such large volumes of good base aggregate—an undesirable feature in any case, but especially so in areas of gravel scarcity.

A different solution to the problem of crack and roughness reflection from old pavements; namely, pavement breaker rolling, was tried experimentally on this project. The experiment was limited to a 1½-mi section (Sta. 950 to 1025) located about 1 mi east of Stewart. This section was rolled with a 59-ton roller to break the old pavement, and was constructed to three different design sections. The variables were: 1-in. leveling course, 3-in. bituminous base and 6-in. bituminous base, as compared with a 1½-in. leveling course on the rest of the project. These variables were coupled with a 1½-in. binder course, a 1½-in. wearing course and a standard widening section to complete the reconstruction.

To assist in the study, four comparison sections were selected as follows: Sta. 0 to 130, one of the roughest portions of the old pavement; Sta. 800 to 810, an area typical of roughness; Sta. 925 to 950, immediately adjacent to the beginning of the experimental section; and Sta. 1025 to 1033, immediately adjacent to the end of the experimental section. (The comparative value of this last section was partially lost because rolling was extended to Sta. 1029.)

This report includes the results of the evaluation studies made during construction in 1959 and subsequently to April 1960, a period of six months after completion of the bituminous surfacing. Information is included on such items as the design of the old pavement, the immediate effects of the rolling on the old pavement, typical sections, costs of the reconstruction and the performance of the project to date.

SUMMARY OF FINDINGS

The project is not old enough to draw positive conclusions regarding the effects of pavement breaker rolling and the performance of the various design sections. However, a number of interesting facts and observations are disclosed by the study.

to date. These findings, discussed in detail in this paper, are summarized as follows.

Pavement Breaker Rolling

1. Contact tire pressure was 83.5 psi based on the gross contact area of the 18.00 x 25, 24-ply tires.
2. Vertical slab movements at joints were variable, ranging from $\frac{1}{8}$ to $\frac{1}{2}$ in. and averaging about $\frac{1}{4}$ to $\frac{3}{8}$ in.
3. Ten passes of the 59-ton roller provided optimum cracking on this project. An additional ten passes increased the number of cracks only slightly.
4. After rolling, all cracks (new plus old) averaged 16.4 per station in each lane. When the joints are included with the cracks, the total openings averaged 19.1 per station in each lane—an average spacing of 5.2 ft.
5. Cracking in 20-ft panels was comparable to cracking in 40-ft panels; however, the 20-ft panels had 4.9 more openings per station, mostly on account of more joints.
6. Pavement breaker rolling caused only minor permanent changes in the profile of the concrete pavement. Generally, the pavement was permanently depressed from 0.01 to 0.05 ft over most of its length. Some portions of the pavement were unchanged; some were raised slightly and some were depressed greater amounts, up to 0.13 ft (about $1\frac{1}{2}$ in.).
7. Pavement breaker rolling caused only a slight decrease in roughness in one lane (160 to 154 in. per mile) and no change in the other lane (154 in. per mile) as measured by the road roughness recorder.
8. Pavement breaker rolling cost \$271.44 per mile for 10 passes of the roller over the 20-ft pavement.

Typical Sections and Costs

9. Resurfacing sections included a $1\frac{1}{2}$ -in. wearing course, a $1\frac{1}{2}$ -in. binder course and widening plus the following variables, all at the total indicated costs per mile:

1 $\frac{1}{2}$ -in. leveling course (std. sec. for project)	\$ 38,340
2-in. leveling course (sta. 1000 to 1025)	39,908
3-in. bituminous base (sta. 950 to 975)	40,427
6-in. bituminous base (sta. 975 to 1000)	45,001

The latter three sections include pavement breaker rolling.

Performance

10. Sections subjected to pavement breaker rolling have had less cracking in the bituminous surface to date than unrolled sections. Where rolled, 5 to 42 percent of the transverse joints and two cracks were reflected as compared to 48 to 100 percent of the transverse joints and one crack reflected where not rolled.
11. Reflectance cracking occurred over the 1-in. expansion joints sooner than over contraction joints on both the rolled and unrolled sections.
12. No cracking over the edge of the old pavement has occurred on the rolled sections, whereas from 2 ft to 364 ft has occurred on unrolled comparison sections.
13. Cracking over the centerline of the old pavement has occurred on all sections except the 6-in. bituminous base section (rolled) which showed very little cracking of any kind. Some of this centerline cracking may have been associated with frost action.
14. Frost heaving occurred on all the sections, with the maximum measured heaving being 2.4 in.
15. Differential heaving, though slight in many cases, was noticeable at a considerable number of cracks. Where every joint was cracked, such as between Sta. 120 and Sta. 130, the heaving at cracks caused a slight warped panel effect.
16. Roughness on the rolled sections was 50 in. per mile after construction and 56 in. per mile in April 1960. Project averages were 56 and 60 in. per mile at these same times.
17. No rutting or displacement of the bituminous mixtures in the wheel tracks has occurred on this project to date.

18. It appears from all the data, that pavement breaker rolling has had a beneficial effect in retarding reflectance cracking during the first six-months performance of this project.

OLD PAVEMENT

The old concrete pavement was constructed in 1931. The slab was 20 ft wide, 9 in. thick at the edges and tapered to 7 in. thick 4 ft from the edges, a typical 9-7-9 section. Panels were generally 40 ft 4 in. long, with every other joint being an expansion joint. The 1-in. expansion joints had $\frac{3}{4}$ -in. dowels with steel sockets on one end. The dummy-type contraction joints had $\frac{3}{4}$ -in. dowels which were greased on one end. Slab reinforcement consisted of two $\frac{5}{8}$ -in. bars along each edge and one along each side of centerline, one $\frac{5}{8}$ -in. bar along each side of the joints, and $\frac{1}{2}$ -in. by 4-ft tie bars across centerline. The pavement design is shown in more detail in Figure 1.

In minor portions of the project, the pavement was modified to 20-ft panels. Some of these shorter panels occur in the experimental and comparison sections.

Just prior to construction, in April of 1959, the road roughness recorder showed an average roughness of 138 in. per mile, with 163 in. being the roughest mile recorded and 121 in. being the smoothest mile recorded. This roughness, combined with the warped panels, caused very unsatisfactory riding qualities on a considerable length of the project.

PAVEMENT BREAKER ROLLING

The pavement breaker rolling was performed July 23 and 24, 1959 on the $1\frac{1}{2}$ -mi experimental section near the east end of this project, Sta. 950 to Sta. 1025. The special Provisions required that each 10-ft lane be covered by 10 passes of a 59-ton roller having four wheels on one transverse axle and tire air pressure of 90 psi. These provisions were followed, except that 20 passes of the roller were made in the west-bound lane between Sta. 949 and 964+13, and with the further exception that the rolling was extended beyond Sta. 1025 to an entrance at Sta. 1029 to facilitate turning the roller.

ARE CONTACT PRESSURE

The roller was a Bros Compactor loaded to 118,000 lb (59 tons) and fitted with four,

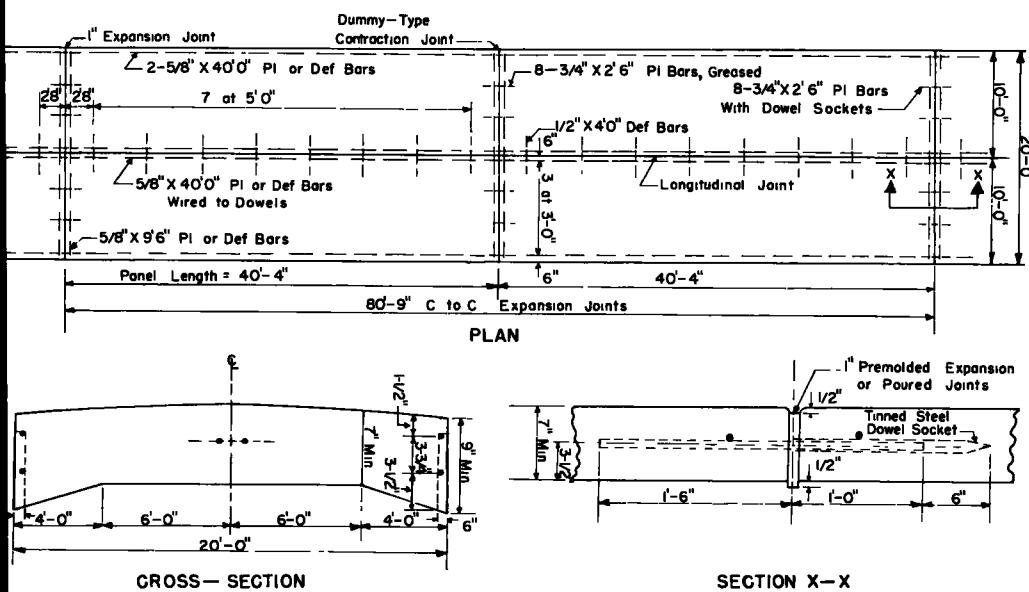


Figure 1. Concrete pavement details.

18.00 x 25, 24-ply, diamond tread tires inflated to 90-psi air pressure. The rolling width, measured from outside to outside of tire contact, was 8 ft 8 in. An International TD 24 tractor was used to pull the roller and did an excellent job of controlling it at all times. The roller-tractor combination is shown in Figure 2.

To measure the tire contact areas, a length of 30-in. wide paper was placed across a clean portion of pavement slab, and the roller was pulled forward until the tires were on the paper. Then using pressurized cans, paint was sprayed completely around the contact periphery of each tire, being sure to cover the tire and the paper at all places. When the roller was moved ahead, the four contact areas were outlined on the paper as shown in Figure 3. Later, these were measured as follows:

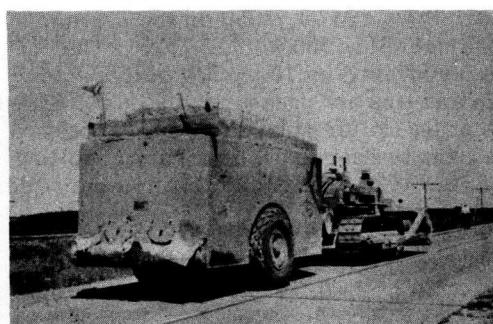
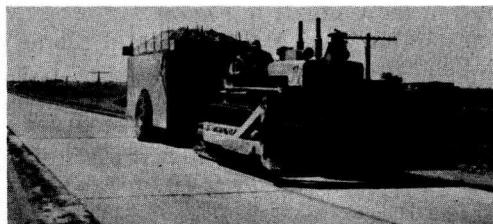



Figure 2. Fifty-nine-ton pavement breaker roller.

do not bear this out.

Four joints were checked for vertical movement as follows:

Station	Joint Type	Vertical Movement (in ft)			
		At Centerline		At Left Edge	
Panel 1	Panel 2	Panel 1	Panel 2		
959+00	Expansion	0.015	0.030	0.025	0.030
959+41	Contraction	0.010	0.030	0.025	0.025
959+82	Expansion	0.030	0.015	0.040	0.020
960+22	Contraction	0.020	0.025	0.025	0.010

These measurements seem typical of the movements observed—varying from about $\frac{1}{8}$ to $\frac{1}{2}$ in. with most approximately $\frac{1}{4}$ to $\frac{3}{8}$ in. However, the measured movements were not significantly larger at the expansion joints.

Cracking

Visual cracking of the pavement slab did not occur until after several passes of the

Tire	Gross Contact Area (sq in.)
Left outside	354.3
Left inside	344.7
Right inside	384.8 ^a
Right outside	329.3 ^b
Total	1,413.1 sq in.

^aNoticeably larger. ^bNoticeably smaller.

Using this total area the average contact pressure was computed as 83.5 psi.

Vertical Slab Movements

From visual observations, it was noted that there was considerable variation in slab movement at joints from panel to panel and place to place. It seemed that the slab ends at expansion joints moved more when the roller passed than they did at contraction joints. This seemed logical considering that some aggregate interlock was still effective in resisting vertical movement at the contraction joints. However, the few actual measurements taken

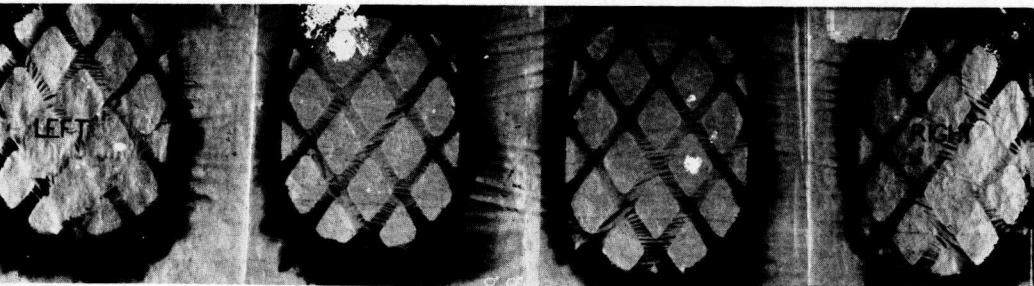


Figure 3. Tire contact areas, 59-ton pavement breaker roller.

oller, and cracks became more visible as rolling continued. When they first occurred, cracks were extremely fine and difficult to observe. As rolling progressed, the top edges spalled slightly, and the cracks became more visible. It was also observed that traffic caused a similar spalling of the cracks. Much of this spalling was very minute, being just enough to show whitish dots along the path of the crack, although a few spalls ultimately were an inch or more in diameter. Practically all cracks, new and old, were transverse cracks with the exception of some diagonal cracks in frostheave areas.

Prior to rolling, there were 368 cracks in the left (W.B.) lane and 339 cracks in the right (E.B.) lane. Rolling caused 933 and 935 new cracks in the respective lanes. When 420 half-width joints were added to the cracks, there were a total of 2,995 openings in the two lanes.

Converting these figures to cracks or openings per station, the following comparisons can be made:

	Left	Right	Both Lanes
old cracks per Sta.	4.7	4.3	9.0
new cracks per Sta.	11.9	11.9	23.8
total cracks per Sta.	16.6	16.3	32.9
total openings per Sta. (including joints)	19.3	18.9	38.2
average spacing between cracks and joints (ft)	5.2	5.3	-

Between Sta. 949+00 and Sta. 964+13, there were 10 passes of the roller in the right lane and 20 passes of the roller in the left lane. The difference in cracking was as follows:

	Left	Right
	20 Passes	10 Passes
number of old cracks	77	67
number of new cracks	207	184
total No. of cracks	284	251
total No. of openings (including joints)	322	289
old cracks per Sta.	5.1	4.4
new cracks per Sta.	13.7	12.2
total cracks per Sta.	18.8	16.6
total openings per Sta. (including joints)	21.3	19.1

The 20 passes on the left lane caused only 23 more new cracks than the 10 passes on the right lane. This small increase in cracking indicates that, for this project, 10 passes of the roller were sufficient to develop the optimum amount of cracking.

On this project, the standard joint spacing was 40 ft. However, there was a 580-ft section of 20-ft panels in the rolled area. Therefore, a comparison of cracking can be made between these two joint spacings as follows:

	Cracks in Both Lanes	
	20-ft Panels	40-ft Panels
Old cracks per Sta.	10.9	8.9
New cracks per Sta.	22.2	24.0
Total cracks per Sta.	33.1	32.9
Total openings per Sta. (including joints)	42.8	37.9

The new cracking caused by the rolling was slightly greater for the 40-ft panels, though not a significant amount when you consider that there were more old cracks in the 20-ft panels. Combining the new and old, the 20-ft panels had slightly more total cracks after rolling. When the joints are added, the 20-ft panel section averages 4.9 openings more per station than the 40-ft panel section, a significant difference.

Permanent Slab Deflections and Roughness

Profiles were taken 8 ft right and left of centerline on the old concrete pavement before and after the pavement breaker rolling at three locations. The results were generally as follows:

Sta. 950 to 955.—There were only minor changes in the profile of the old pavement. In a few places, the pavement was higher by 0.01 to 0.04 ft after rolling. In other places, there was no measurable change in elevation. However, in a majority of places the rolling depressed the old slab from 0.01 to 0.06 ft.

Sta. 980 to 990.—Through most of this section the profile after rolling was within 0.02 ft of the original profile. Generally, the rolling depressed the slab, but not at all places. The old pavement was depressed more than 0.02 ft only in isolated areas.

Sta. 1010 to 1025.—Rolling caused a somewhat more consistent lowering of the pavement by 0.02 to 0.05 ft through this section. However, there were areas of little or no change and areas where the slab was slightly higher after rolling. At one point, at a crack, the slab was depressed 0.13 ft. This was the maximum permanent deflection caused by rolling as measured by the profiles.

Roughometer readings before and after rolling show a slight decrease in average roughness in the westbound lane and no change in the eastbound lane. The westbound lane averaged 160 in. per mile in April prior to rolling and 154 in. per mile in July after rolling. The eastbound lane averaged 154 in. per mile at both times.

RESURFACING SECTIONS AND COSTS

The typical resurfacing section for the project consisted of a 1 $\frac{1}{2}$ -in. leveling course, a 1 $\frac{1}{2}$ -in. binder course and a 1 $\frac{1}{2}$ -in. wearing course over the old concrete pavement. This section was varied over the rolled experimental portion of the project to provide for a 2-in. leveling course, a 3-in. bituminous base and a 6-in. bituminous base as alternates to the 1 $\frac{1}{2}$ -in. leveling course on the standard section. These features plus the widening designs are shown in detail in Figure 4.

Costs of the various sections constructed on this project were computed on the basis of average job data. All items pertaining to the construction from shoulder to shoulder, including the excavation for the widening, were taken into account. Items such as culvert extensions, subgrade treatments, sodding and seeding were not included. On this basis, the costs of the various sections are given in Table 1. The cost of the standard section (1 $\frac{1}{2}$ -in. leveling course) was \$38,340 per mile. The costs of the other sections

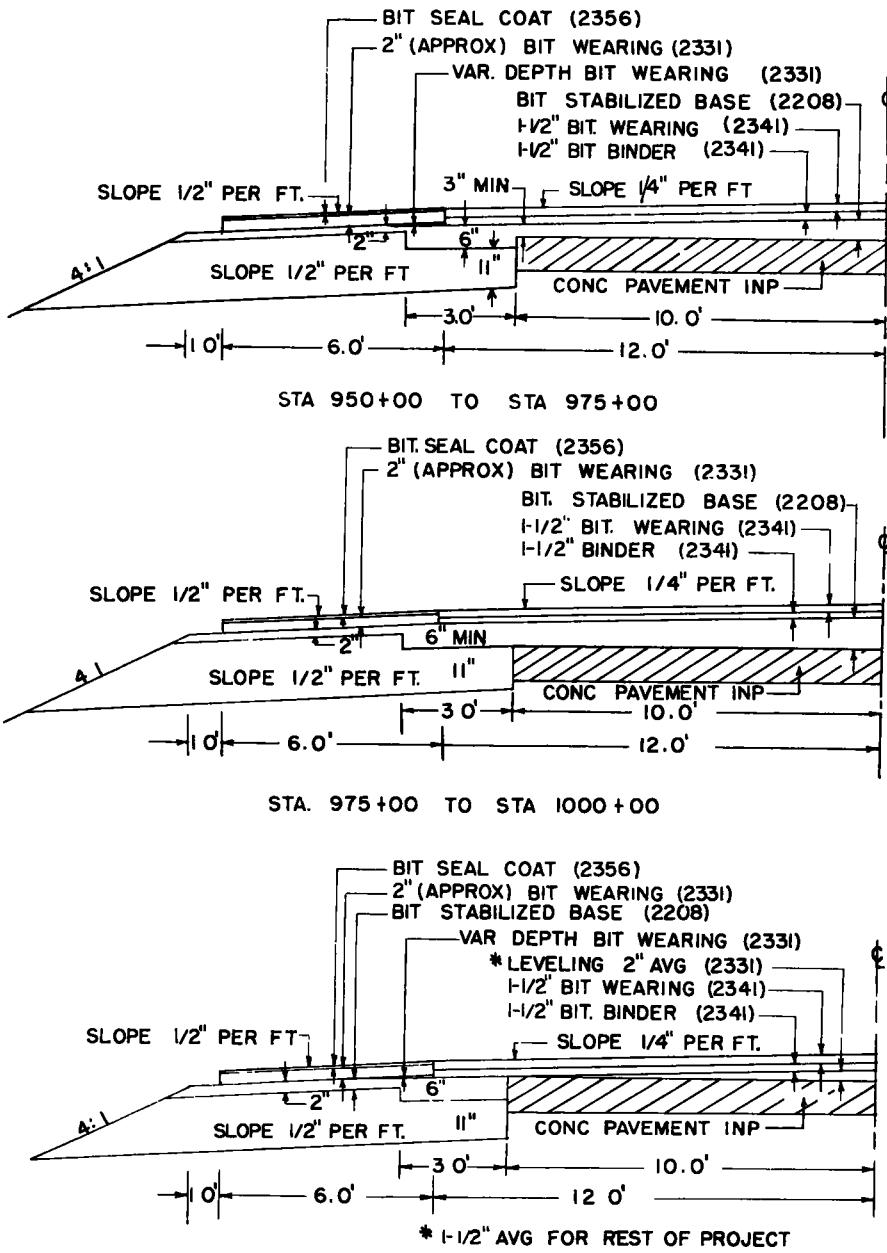


Figure 4. Typical sections.

re increasingly greater as the thickness of bituminous mixture was increased: the 2-in. leveling course section being \$39,908; the 3-in. base section being \$40,427; and 6-in. base section being \$45,001. These latter costs include \$271.44 per mile for pavement breaker rolling.

PERFORMANCE OF THE PROJECT

The performance of the bituminous resurfacing has been evaluated and compared in

TABLE 1
RELATIVE COSTS OF RESURFACING SECTIONS

Station	Wearing Course (in.)	Binder Course (in.)	Leveling Course (in.)	Bituminous Base (in.)	Pvt. Breaker Rolling ^a	Cost per Mile ^b (\$)	Date Surface Complete
950-975	1.5	1.5	-	3.0	Yes	40,427	9/28/59
975-1000	1.5	1.5	-	6.0	Yes	45,001	9/28/59
1000-1025	1.5	1.5	Av. 2.0	-	Yes	39,908	9/28/59
Rem. of Project	1.5	1.5	Av. 1.5	-	No	38,340	10/9/59 ^c

^a\$271.44 per mile for 10 passes.

^bComplete section including widening.

^cBased on Sta. 925 to 950 as a comparable area.

several ways. Crack surveys have been made before rolling, after rolling, and several times after completion of the surfacing. Profiles were taken before and after rolling, after completion of the surfacing, and in February 1960, to show the effects of frost heaving. Detailed cross-sections of the bituminous surface have been taken to detect rutting in the wheel tracks. And, as previously mentioned, several comparison sections were selected with which the performance of the experimental sections could be compared and evaluated.

The information on cracking, profiles, and roughness before and after rolling have already been discussed in relation to the rolling. This data will not be repeated here, but it must be pointed out that the condition of the pavement after rolling is the condition which will influence the performance of the surfacing in the experimental section.

Reflectance Cracking

The results of crack surveys on each of the sections, comparison and experimental are discussed separately, covering the sequence and amount of cracking. This information is also summarized in Table 2, where it will be noticed that the rolled sections have less cracking than the comparison sections. The rolled section between Sta. 975 and Sta. 1000 with the 6-in. bituminous base is the least cracked.

Sta. 120 to 130.—This section is located 2.5 mi east of Bird Island and was selected for study because it represented one of the roughest portions of old pavement on the project. The average roughometer reading was 166 in. per mile on this section.

The surfacing was completed during July, and, according to reports from field personnel, cracking started a day or two after the mat was laid. Earlier cracking has also been reported in the binder course before the wearing course was placed. It is probable that this cracking—which occurred over much of the project completed during July and early August—was caused by excessive joint movements due to high temperatures during this period.

In September, when the first condition survey was made on this section, 100 percent of the transverse joints were reflected as cracks in the new surface, and there were

TABLE 2
SUMMARY OF REFLECTANCE CRACKING

Station	Treat- ment	Pvt. Rolling	Const. Cost (\$/mi)	Date Surf. Compl.	No. Sts.	Condition Surveys												Length (ft)	
						Cracks													
						11/19/59			2/9/60			4/14/60							
L	R	L	R	L	R	L	R	L	R	L	R	L	R	L	R	Left Edge	Right Edge	Cent line	
120-130	Std. Sec.	No	38,340	July	35 35 34 35 97	100	34 35 97	100	34 35 97	100	34 35 97	100	230	134	446				
800-810	Std. Sec.	No	38,340	Oct. 1	25 25 2 7 8	28	12 12 48	48	12 12 48	48	12 12 48	48	0	2	20				
925-950	Std. Sec.	No	38,340	Oct. 9	63 63 25 6 40	10	32 30 51	48	34 ^a 30 52	48	34 ^a 30 52	48	38	22	10				
950-975	3-in. Bit. Base	Yes	40,427	Sept. 28	59 59 0 0 0	0	15 17 25	29	25 ^a 27 ^b 41	42	0	0	0	0	0	0	0		
975-1000	6-in. Bit. Base	Yes	45,001	Sept. 28	64 64 0 0 0	0	0 0 0 0	0	0 3 4 5	6	0	0	0	0	0	0	0	0	
1000-1025	2-in. Bit. Level	Yes	39,908	Sept. 28	73 73 0 0 0	0	9 7 12	10 19 21 26	29	0	0	0	0	0	0	0	0	0	

^aIncludes one crack over crack in old pavement.

^bIncludes two cracks over cracks in old pavement.

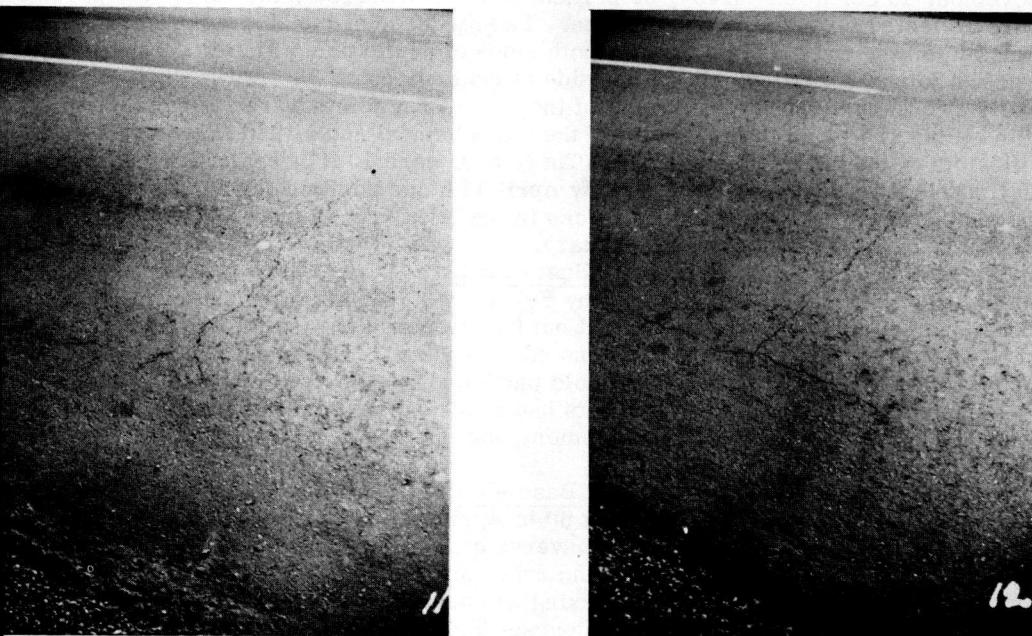


Figure 5. Typical transverse and widening cracks, Sta. 120 to 130.

er 200 ft of longitudinal cracking on centerline. Widening cracks along the edge of the old slab extended up to 5 ft from many of the transverse cracks. Figure 5 shows typical examples of this cracking.

By November 19 two transverse cracks had faulted significantly, 20 percent of the transverse cracks had extended across the widening, and the centerline and widening longitudinal cracks had extended slightly. Cracking progressed so that on February 9, 1960, 57 percent of the cracks extended across the widening. This increased to 66 percent by April 14th. All transverse cracks were over the pavement joints except one which occurred at a construction joint in the bituminous surface in the left lane. However, by April 14 the longitudinal cracking had progressed to the point where there were 446 ft on centerline, 230 ft over the left edge and 134 ft over the right edge of the old pavement. This section has cracked more than any of the other sections studied in detail.

Sta. 800-810.—This section is located about 1 mi east of Buffalo Lake and represents old pavement of average roughness, 150 in. per mile. The binder course was laid on September 15, and the wearing course was completed on October 6, 1959. On September 22 there were no cracks in the binder course. However, on November 19 one-third of the transverse joints were showing as cracks in the wearing course. Some of these cracks were only on one-half of the road, and none extended into the widening. It is quite certain, although not verified, that all of these cracks are over expansion joints.

By February 9, 1960, 48 percent of the joints had reflected as cracks in the bituminous surface. All of these were the full width of the old pavement and many extended into the widening. There was no change in the number of cracks up to April 14th except that nearly all the transverse cracks had progressed into the widening. There were only four instances where the cracks did not extend into the widening on one side.

Sta. 925 to 950.—This section is located adjacent to the beginning of the experimental (filled) section and was selected for comparison purposes. The binder course was completed on September 17, and the wearing course on October 9. At the time of the

November 19 condition survey, 39 percent of the transverse joints in the old pavement were reflected through the new surface. Twenty-three of the 25 cracks were over expansion joints, and only six were on both sides of centerline. The two cracks over contraction joints were also only on one side of centerline.

By February 9, 1960, 51 percent of the transverse joints were reflected as cracks with all but two being the full width of the old pavement and all but three extending the full width of the bituminous surface. There also were 10 ft of centerline cracking and 60 ft of edge cracking at this time. By April 14th one additional joint and one crack in the old pavement had reflected as cracks in the left (W.B.) lane. Otherwise, there was no change from the condition in February.

Sta. 950 to 975 (3-In. Bituminous Base—Rolled).—There were no cracks in this section on November 19, 1959; but, by February 9, 1960, 29 percent of the transverse joints had reflected as cracks, and all but five extended across the widening. There were 80 ft of centerline cracking and no edge cracking. One short crack in the bituminous surface was over a crack in the old pavement.

By April 14, 46 percent of the joints had cracked, one more crack appeared which probably was over a crack in the pavement, and there was no change in the centerline or edge cracking.

Sta. 975 to 1000 (6-In. Bituminous Base—Rolled).—This rolled section with the 6-in. bituminous base has cracked the least up to April 14, 1960. No cracking had occurred up to February 9th, and only four transverse cracks occurred over joints by April 14. One of these was only on one-half of the road, and none of the cracks extended into the widening. No centerline or edge cracking had occurred up to this date.

Sta. 1000 to 1025 (2-In. Leveling Course—Rolled).—At the time of the February 9, 1960 condition survey, 13 percent of the transverse joints had reflected as cracks in the bituminous surface. Of the 10 cracks occurring, six covered the width of the concrete slab, and only 3 extended into the widening. Approximately 30 ft of centerline cracking had occurred in a frost heave area and there was no edge cracking.

By April 14, 28 percent of the transverse joints and one crack had reflected through the bituminous surface. Only four cracks had extended into the widening on one or both sides. There was no longitudinal cracking over the edges of the old slab, and there was no increase in the longitudinal cracking on centerline since February.

Profiles and Frost Action

On all experimental and comparison sections profiles were taken 8 ft right and 8 ft left of centerline for the purpose of evaluating roughness and distortion of the new bituminous surface with age. The first profiles of the new surface were taken shortly after placement. The second set were taken on February 18 and 24, 1960, to show the effects of frost. It is planned to take more profiles to follow the progression of distortion.

The February profiles showed that frost heaving was occurring in most of the area. The maximum measured heaving amounted to 0.20 ft or 2.4 in. Most of the heaving was quite uniform, however, differential heaving at some of the transverse cracks or joints occurred to various degrees. The conditions on each section were as follows:

Sta. 120 to Sta. 130 (Comparison Section).—Heaving was more pronounced on the portion between Sta. 124+60 and Sta. 130 than on the westerly 460 ft of this section. However, nearly every cracked joint was raised by heaving, particularly where panels were 40 ft long rather than 20 ft. These raised joints were as much as 0.06 ft higher than the center of the 40-ft panels. Where the panels were 20 ft long, the differential was on the order of 0.02 to 0.04 ft. Because practically every joint was cracked on this section, the differential heaving at the joints was creating a slight although noticeable reflection of the severe warping that existed in the old pavement prior to resurfacing.

Sta. 800 to Sta. 810 (Comparison Section).—The heaving on this section was generally slight except for a few spots where it approached 0.05 to 0.08 ft. Here again, the cracks over joints showed a slight differential heave in many cases, but not to the degree found on the previously discussed section. Cracks were further apart so the warped panel effect was not noticeable at this time.

Sta. 945 to Sta. 950 (Comparison Section). — The heaving on this section averaged from 0.02 to 0.06 ft except for an old heave area at Sta. 948+10 where the maximum heave amounted to 0.16 ft. This heaving has caused the reflection of diagonal cracking in the new surface. Heaving at cracks over joints was not noticeable in this area.

Sta. 950 to Sta. 955 (Rolled Section—3-In. Bituminous Base). — Heaving was generally 0.02 to 0.06 ft through this area with no major differentials. Four out of six cracks over joints showed slight differential heaving, but this was only minor at this time.

Sta. 980 to Sta. 990 (Rolled Section—6-In. Bituminous Base). — Between Sta. 980 and 987+40 heaving was generally less than 0.04 ft and quite uniform. There were no cracks in this section in February. From Sta. 987+40 almost to Sta. 990, heaving was more pronounced and not as uniform. The maximum rise was about 0.12 ft. Diagonal cracking in the old pavement indicated this to be a potential heave area. One transverse crack over a joint was found in this area in April 1960, and could have resulted from the frost effects.

Sta. 1010 to 1025 (Rolled Section—2-In. Leveling). — Between Sta. 1010 and Sta. 1019+80 the heaving was minor ranging from practically nothing to 0.04 ft. There was one crack over a joint in this area which was raised slightly. From Sta. 1019+80 to Sta. 1025 the profiles show an area of differential heaving which was also indicated by diagonal cracks in the old pavement. This heaving ranged up to 0.20 ft. In the area of greatest heave (Sta. 1023+80), cracking was found on centerline in February. Oddly, transverse cracking was found in this heave area in April as might have been expected.

Roughness

Roughness measurements were made with the road roughness recorder shortly after the surface was completed in October 1959, and again in April 1960. The average results obtained on the entire project and on the various sections are given in Table 3.

TABLE 3
SUMMARY OF ROAD ROUGHNESS READINGS

Section	Roughness (in./mi)	
	October 1959	April 1960
Project average	56	60
a. 120 to 130	54	62
a. 800 to 810	53	58
a. 950 to 1025 ^a	50	56

^a Pavement breaker rolling on this section.

These figures show an average increase of 4 in. per mile for the project as a whole from October to April. The individual sections show slightly more increase in roughness than the average, but the differences are still so small that they are not very significant.

Surface Cross-Sections

Cross-sections of the bituminous surface were taken to determine distortion of the surface in the wheel tracks. Such distortion (wheel tracking) has occurred on other projects due to vertical and lateral displacement or movement of the bituminous mixture. Because various thicknesses of mixtures were used on this project, these cross-sections were taken and will continue to be taken as a measure of the stability of the mix under typical highway traffic.

The cross-sections were taken at established locations on the various sections three times, October 1959, and February and April 1960. To date, no rutting was found to

exist. This was more or less expected, because the weather has been cold during this time, and most displacement of the bituminous mixture would occur during warm weather. The plots of the February cross-sections did show the frost heaving. These cross-sections were taken with a leveled straight-edge and scale and were measured to 0.01 in.

ACKNOWLEDGMENTS

The Materials and Research Section of the Minnesota Department of Highways, and the author in particular, gratefully acknowledge the assistance of the employees of District 8 who prepared profiles, made cost estimates, and provided general engineering which contributed much toward the completion of this study. We wish to thank C. A. Thompson, District Engineer, and O. T. Olson, Resident Engineer, for their cooperation in arranging for this assistance.

Discussion

J. L. STACKHOUSE, Maintenance Engineer, Washington State Department of Highways—This discussion was requested by V. G. Gould, Chairman of HRB Committee on Salvaging Old Pavements by Resurfacing, and H. E. Diers, Chairman, HRB Department of Maintenance, primarily because this paper is closely associated with the work reviewed by the writer in a paper reported in the 1959 HRB Proceedings describing a similar type of construction performed on a Washington highway.

Mr. Velz is to be congratulated on the excellence of his paper generally and the presentation of details of the preliminary work performed with the variable load compactor on the old cement concrete. The paper presents each step undertaken on all sections of the experimental construction on Minnesota highways and evaluates the results.

The writer was keenly interested to note, after reviewing this paper, the similarity of results of rolling old concrete pavement with a variable load compactor with near identical loads of 59 tons gross weight on both projects; also, the agreement of other items noted in the report from the sections in Minnesota and Washington. The writer recently had the unexpected opportunity to consult with Mr. Wade Faulk, Resident Engineer on the Ethel to Salkum project in Washington. Mr. Faulk and the writer concur on the following comparison of results as noted in this paper:

Pavement Breaker Rolling.—The vertical slab movements noted on the Washington project agree with that found by Mr. Velz. The maximum number of passes with the compactor to produce optimum cracking was found to be from 8 to 10 which substantially agrees with the author's findings. The crack pattern of the old concrete pavement after rolling, as noted in this paper, was about the same as observed by Mr. Faulk and some portions of the pavement remained unchanged, whereas other portions were raised and others subsided from $1\frac{1}{2}$ to 2 in., which concurs with the Minnesota findings.

It is noted that slightly greater compaction of the old pavement slab occurred at centerline rather than at the edge on the Minnesota project, whereas the edges of the slabs were compacted or subsided slightly more, generally, than the center area on the Washington section. Some areas were not compacted from their original profile. However, there seemed to be no uniformity in compaction as to slabs or locations as reported by Mr. Faulk.

The delay of small cracks appearing after the start of rolling until several passes with the compactor had been made, as reported by Mr. Velz, checks closely with the action noted by Mr. Faulk. As the rolling progressed the cracks became more visible accompanied by a crushing, grinding sound in the slab as the compactor passed over the pavement.

Old Pavement.—Inasmuch as the age of the old pavements is not the same (the Minnesota pavement was constructed in 1931 and Washington's section in 1924), and the pavement on which Mr. Velz reports was reinforced with two bars at the edges and on each side of the center longitudinal joint of each 10-ft slab and the Washington section was unreinforced with the exception of dowel bars tying the two 9-ft slabs together a

centerline, it is significant to note that the results of the variable load compactor were similar as previously noted. The Minnesota section was slightly thicker in cross-section. It is indicated the compactor was heavy enough to overcome this difference in construction design and to break down bridging of the pavement on the subgrade.

Performance. — It is interesting to note the radical reduction of percentage of transverse reflection cracks, reported by Mr. Velz, that appeared in the asphalt concrete surface which was laid on the concrete pavement rolled by the compactor as compared to the control sections which were not rolled. This observation was made after six months of use by traffic. The findings of Mr. Velz that less reflective cracks appeared in the section constructed with the 6-in. leveling base course checks with the experience in Washington's resurfacing projects the past 20 years where old cement concrete pavements have been widened and resurfaced. It is axiomatic with the writer and engineers in this department's Construction Division that the thicker the asphalt concrete pavement constructed, the less reflective cracks will develop and the longer it will take them to appear.

The performance of the Ethel to Salkum section in Washington has been excellent. After a visual inspection made on December 8, 1960, or 3½ years after the pavement was opened to traffic, no transverse or longitudinal reflective cracks were observed while walking and driving slowly over the pavement. Credit for the absence of reflection cracks in the wearing surface of the Washington pavement is only partially given to the action of the compactor roller and the major part of this lack of cracks is believed to be due to the 4-in. average thickness of base course and 2-in. thickness of top course surfacing material that was used to level up the old cement concrete pavement after impaction. In the construction of these uncemented, crushed gravel surfacing courses processing with a motor patrol blade, wetting and rolling with both steel-tired and pneumatic rollers, some fine particles of the aggregate were worked down into the larger cracks of the old pavement, thereby firmly wedging the broken slab pieces in place and precluding any possibility of further rocking under loads. It is believed the granular material is the greatest deterrent to crack prevention in insulating the wearing surface from the contracting and expanding stresses of the underlying concrete pavement and eliminating any possible chance of such stresses being transmitted to the asphalt pavement. The subject sections in Minnesota and Washington are not comparable in design in this respect, inasmuch as the Minnesota pavement under discussion did not have a crushed gravel or rock layer between the concrete pavement and the asphalt leveling and wearing surface. It is also possible that the foregoing comments are ingenuous in view of the policy of the Minnesota Highway Department as to design and intent and therefore the comparison may not be valid. The policy of the Plans and Contracts Division of the Washington Highway Department is that when traffic volumes indicate a design standard of the ultimate width of wearing surface, shoulder and ditch, providing funds are available, the old roadway will be reconstructed similar to the subject section in Washington. Likewise if it is the intention to improve the old highway to a tolerable standard with future long-range plans to reconstruct the roadway to the ultimate design standard, then the old pavement is usually widened to 22 or 24 ft when resurfaced and less than standard shoulders provided. No improvement is made in areas outside the shoulders. The thickness of asphalt concrete leveling and wearing surface is usually a total of 3 in. with the expectation that reflective cracks will appear within a year in the new wearing surface. It is the present policy in Washington, when reconstructing a highway with existing concrete pavement, to break the pavement with a compactor and place leveling courses of base and top course surfacing materials over the concrete before constructing the asphalt cement pavement as described in the Washington report.

Comment is made on the third paragraph of Mr. Velz' paper in discussion of the former use of granular materials to overlay rough old pavements and particularly, also might be considered extravagant, in that the full potential of the old pavement as a base course was not used and because it consumed such large volumes of good aggregate—an undesirable feature in any case, but especially so in areas of gravel scarcity."

The quantities of base aggregate to which Mr. Velz refers are not known; however,

if the thickness of the overlay aggregates did not exceed 12 in., it would not seem extravagant, to the writer, if the added thickness would provide more than adequate foundation or more than the bare needs of the wearing surface to resist forces of heavy traffic using the highway. In the past, designers of highway foundation sections have provided thicknesses of materials that theoretically would develop the full potential of the base without providing for any factor of safety to allow for extremely wet conditions, frost heaves, or unusual conditions. It is common practice for designers of portland cement concrete highway structures to provide at least a factor of safety of $2\frac{1}{2}$ in the structures to insure against failure. Then why is it not economical to construct foundations under pavements that are more than just adequate to carry the current maximum loads under all conditions? Prior to 1947 the foundations on several projects in Washington state were designed on the apparent theory of "cutting the suit pattern to fit the cloth" because of shortage of funds. The end result was that after the first winter the wearing surface failed; after much criticism and many complaints the project was resurfaced and the wearing surface was replaced. The blame for the failure, in these cases, was placed on the wearing surface by most of the uninformed citizens affected whereas the real cause of the failure was the inadequate foundation which would not support the loads using the highway.

Attention is called to the fact that where it is indicated, leveling an old pavement will require more than 6 to 7 in. average thickness of material, including 3 to 4 in. of asphalt pavement. A saving can be obtained by using granular material (such as $\frac{5}{8}$ -in. or smaller top course) for the first 3 in. As an example, the unit contract cost on the subject Washington project was \$6.65 per ton for asphalt concrete leveling and wearing course and \$1.95 per ton for crushed gravel surfacing or a saving of 3.4 in. in the cost of asphalt concrete for the purpose of leveling.

Costs.—The comparison of cost of use of the variable load compactor of both projects indicates the rolling, as stated in Mr. Velz' paper, was computed to be \$271.4 per mile for a 20-ft pavement width. This compares with \$331.28 per mile for rolling an 18-ft wide concrete pavement. A comparison cost of the asphalt pavement of all courses of the two sections cannot be fairly made because of the difference of method of leveling up the old pavement; however, Mr. Velz reports the total cost per mile for a $1\frac{1}{2}$ -in. wearing course over a $1\frac{1}{2}$ -in. binder course and the $1\frac{1}{2}$ -in. leveling course was \$38,340 per mile. Comparable costs on the Washington project for a $1\frac{3}{4}$ -in. leveling course under a $1\frac{1}{4}$ -in. course wearing surface was \$17,705.53 per mile. The width of both wearing surfaces was 24 ft. Although the plan for the total thickness of the Washington project is shown to be 3 in., the thickness of this pavement was actually approximately $4\frac{1}{2}$ in., due to the fact that the quantities were computed on an average specific gravity for aggregate and the aggregates used in the mixture were slightly less. The total quantities of tons of mixtures set up under the contract were used, which resulted in a larger volume of mixture and consequently a thicker layer. Although Mr. Velz reports that a $1\frac{1}{2}$ -in. leveling course was used, it is believed that the average thickness in leveling up the old concrete pavement was greater than this figure.

Comments.—It is of interest to note that on one 4.2-in. contract completed in 1961 in eastern Washington, where a compactor was specified to break down the old concrete pavement constructed about 1932 with a 9-in. uniform slab thickness, the compactor was unable to break the slabs and eliminate the bridging effect of the pavement. After a trial with the 59-ton compactor, which had no crushing effect on the pavement, a 20-cu yd Euclid scraper unit was loaded to full capacity and operated over the old pavement at a speed of from 15-20 mph. The bouncing effect of the approximately 50-ton load accomplished the desired effect of breaking the slabs that were rocking under the compactor.

As a result of the experience gained on Washington highways during the past five years, it has been concluded that where a highway is to be reconstructed to ultimate standards and the existing pavement is a portland cement concrete type, the most successful method for obtaining an asphalt pavement wearing surface that will remain free of reflection cracks and maintain a uniform profile grade is by the use of a variable load compactor to first break down the old concrete pavement to eliminate void areas and level up with a granular material.

THE NATIONAL ACADEMY OF SCIENCES—NATIONAL RESEARCH COUNCIL is a private, nonprofit organization of scientists, dedicated to the furtherance of science and to its use for the general welfare. The ACADEMY itself was established in 1863 under a congressional charter signed by President Lincoln. Empowered to provide for all activities appropriate to academies of science, it was also required by its charter to act as an adviser to the federal government in scientific matters. This provision accounts for the close ties that have always existed between the ACADEMY and the government, although the ACADEMY is not a governmental agency.

The NATIONAL RESEARCH COUNCIL was established by the ACADEMY in 1916, at the request of President Wilson, to enable scientists generally to associate their efforts with those of the limited membership of the ACADEMY in service to the nation, to society, and to science at home and abroad. Members of the NATIONAL RESEARCH COUNCIL receive their appointments from the president of the ACADEMY. They include representatives nominated by the major scientific and technical societies, representatives of the federal government, and a number of members at large. In addition, several thousand scientists and engineers take part in the activities of the research council through membership on its various boards and committees.

Receiving funds from both public and private sources, by contribution, grant, or contract, the ACADEMY and its RESEARCH COUNCIL thus work to stimulate research and its applications, to survey the broad possibilities of science, to promote effective utilization of the scientific and technical resources of the country, to serve the government, and to further the general interests of science.

The HIGHWAY RESEARCH BOARD was organized November 11, 1920, as an agency of the Division of Engineering and Industrial Research, one of the eight functional divisions of the NATIONAL RESEARCH COUNCIL. The BOARD is a cooperative organization of the highway technologists of America operating under the auspices of the ACADEMY—COUNCIL and with the support of the several highway departments, the Bureau of Public Roads, and many other organizations interested in the development of highway transportation. The purposes of the BOARD are to encourage research and to provide a national clearinghouse and correlation service for research activities and information on highway administration and technology.
