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• This paper presents the results of an analytical study on the dynamic behavior of 
simple-span highway bridges traversed by heavy vehicles. The factors that affect the 
dynamic response of such bridges are reviewed, and the influence of several of these 
are discussed. The factors considered include the speed of the vehicle, the spacing of 
the vehicle axles, the dynamic conditions of the bridge and the vehicle as the vehicle 
enters on the span, and the unevenness of the bridge surface. Most of these factors 
have been foimd in field tests to be responsible for major dynamic effects in highway 
bridgesU). 

The approach used in this study consists m taking certain "representative" bridges 
and vehicles, and evaluating the effects of the parameters enumerated above by varying 
one parameter at a time. The bridges considered are of the I-beam type with span 
lengths in the range between 20 and 78 f t . This type of bridge consists of a series of 
steel girders and a reinforced concrete slab. With a tew exceptions, the vehicle load
ing used corresponds to the heavy rear axles of a tractor- semitrailer combination with 
weights equal to those of the rear axles of an H20-S16 vehicle. 

In the analysis, the bridge is idealized as a simply supported beam and the vehicle 
as a two-axle sprung load unit. Since the system is considered to have no width, the 
effects of the torsional oscillations of the bridge and the rolling of the vehicle about its 
longitudinal axis cannot be taken into account. The representation of the vehicle as a 
two-axle load is one of the distinguishing features of this study. 

The idealized system is analyzed on the assumption that the instantaneous deflection 
configuration of the neutral axis of the beam is proportional to the corresponding static 
configuration produced by the weight of the vehicle and the weight of the bridge itself. 
In effect, this assumption reduces the beam to a system with a single degree of freedom 
and simplifies the analysis of the problem. The method has been programmed for the 
ILLIAC, the electronic digital computer of the University of Illinois. The results pre
sented herein were obtained by application of this computer program. 

Anal3rtical studies of the dynamic response of highway bridges under moving vehicles 
have been reported in several publications. The effects of speed and of the initial ver
tical motion of the vehicle are discussed in Tung et al. (2) and Biggs et al. (3) by ideal
izing the vehicle as a single-axle load. The two-axle load used in the present study is 
obviously a more realistic representation of the vehicle. It enables one to take into ac
count the effects of such variables as the spacing of the axles and the pitching motion of 
the vehicle. Field tests data (4) have given evidence of increased dynamic effects when 
the period of axle applicationsli. e., the time between the passing of successive axles 
over a given point on the bridge) is synchronized with the fundamental natural period of 
vibration of the bridge. 

The f i rs t analytical investigation of the dynamic effects produced by multiple-axle 
loads was published by Looney (5), who considered both two-axle and three-axle loads. 
Each axle load was represented either as a moving force of constant magnitude or as a 
smoothly running unsprung mass. The effect of vehicle suspension was not considered. 
Some exploratory studies of the influence of roadway unevenness have been reported by 
Schetfey (6) and Edgerton and Beecroft (7). In the present study, these parameters are 
studied in greater detail than in any of the previous publications. 



METHOD OF ANALYSIS 
System Considered 

The idealized beam-load system used to represent the actual bridge-vehicle system 
is shown in Figure 1. It consists of a simply supported, linearly elastic beam spanning 
between two rigid supports on a horizontal line, and a two-axle load moving from left 
to right at a constant speed. 
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Figure 1. Idealized bridge-vehicle system. 

Although the surface of the beam may be uneven, the beam itself is assumed to be of 
uniform mass and flexural rigidity per unit of length. In other words, the magnitude of 
the unevenness is assumed to be so small that its effect on the distribution of the mass 
and flexural rigidity of the beam along the span is negligible. This assumption is real
istic because the height of the unevenness m actual bridges is usually small m com
parison with the depth of the bridge. (In Figure 1 the magnitude of the unevenness is 
greatly exaggerated.) 

The two-axle load consists of a rigid "sprung mass" connected to two "unsprung 
masses" through two linearly elastic springs. The unsprung mass is considered to be 
in direct contact with the roadway surface. The sprung mass represents the mass of 
the payload and chassis of the vehicle, and the unsprung masses represent the mass of 
the axles and tires. The springs simulate the flexibility of the suspension system and/ 
or tires. It should be noted that no damping is considered in either the vehicle or the 
bridge model. 

In the following discussion, the terms "beam" and "bridge" and the terms "load" 
and "vehicle" are used interchangeably. 



Analysis of Idealized System 
The beam is analyzed as a system with a single degree of freedom. This is done by 

specifying the shape of its deflection curve at any instant. Specifically, i t is assumed 
that the instantaneous dynamic deflection configuration of the beam is proportional to 
that produced by the weight of the moving load and the weight of the beam itself applied 
statically. Throughout the time that the vehicle is on the span, the axles of the vehicle 
are considered to be in contact with the beam or the approach pavement. The analysis 
is based on the ordinary beam theory which neglects the effects of shearing deformation 
and rotary inertia. 

With the above simplifications, the behavior of the bridge-vehicle system can be de
scribed in terms of three second-order linear differential equations with variable coef
ficients. The three unknown functions are the vertical displacement of the center of 
gravity of the sprung weight of the vehicle, z (see Figure l ) , the angular displacement 
of the sprung weight, u, and a function f(t) relating the instantaneous dynamic deflection 
of the beam to the corresponding static deflection. These equations were solved by a 
step-by-step method of numerical integration. For each time interval, the displace
ments z and u and the function f(t) are f i rs t determined. Next, the instantaneous reac
tions between the unsprung masses and the beam surface, and the inertia forces due to 
the mass of the beam are evaluated. Finally, the bending moments in the beam are 
determined from the instantaneous loading on the beam in the same manner as for a 
static problem. For the details of the method of analysis, the reader is referred to 
Wen (8). 
Problem Parameters 

The parameters that affect the response of the idealized system considered here may 
conveniently be classified as "bridge parameters" and "vehicle parameters." The bridge 
parameters include the span length, total weight, and fundamental natural period of v i 
bration of the bridge; the deviation, if any, of the bridge surface from a straight line 
through the end supports; and the initial dynamic condition of the bridge. The term "initial 
condition" is used to designate the dynamic displacement and the velocity of the bridge 
at the instant the vehicle enters the span. It is conceivable that these quantities may be 
different from zero, because when the vehicle enters the span the bridge may already 
be in a state of oscillation due to the previous passage of another vehicle. 

The vehicle parameters include the speed and total weight of the vehicle, the distri
bution of the weight among its unsprung and sprung components, the spacing of the axles, 
the effective spring constant for axle, and the initial dynamic condition of the vehicle. 
It is possible that at the instant the vehicle enters the span, the sprung weight of the 
vehicle may have a bouncing or a pitching motion, or a combination of the two. This 
motion may be due to the unevenness of the approach pavement, or it may result from 
a discontinuity at the bridge entrance. 

In the analysis, these variables are combined into the following dimensionless para
meters: 

The Speed Parameter. —Denoted by the symbol a, this parameter is defined by the 
equation 

•̂̂ b (1) 

in which v is the speed of the vehicle, T. is the fundamental natural period of vibration 
of the bridge, and L is the span length (for symbols see Appendix). 

For the type of highway bridge considered herein, the period T^ is for all practical 
purposes proportional to L. Hence, the parameter a is essentially a function of the 
vehicle speed only. 

The Weight and Weight Distribution Parameters. - The weight parameter is defined 
as the ratio of the total weight of the vehicle to the total weight of the bridge. The 
weight distribution parameters include the ratio of the static reactions on the two 



axles and the ratios of the unsprung weight for each axle to the total weight of 
the vehicle. 

Frequency Parameters. - Associated with each axle j (j = 1 or 2), there is a frequency 
parameter defined as the ratio 

^̂ v̂  ] ^ "Natural Frequency of Axle" 
~ Fundamental Natural Frequency of Bridge 

The axle frequency, (t^)y is defined by the equation 

2 ' i r ^ M . - 2^ ^ M : (2) 

in which k^ is the effective stiffness of the axle, and Mj is the corresponding sprung 
mass. The sprung mass for an axle is the mass corresponding to the static reaction on 
the axle due to the sprung weight of the vehicle. It should be pointed out that only in 
special cases does the axle frequency (f^)^ represent the actual natural frequency of the 
vehicle in either the vertical mode or the pitching mode of vibration. 

Rotary Inertia Parameter. — This parameter is a measure of the resistance of the 
sprung mass of the vehicle against pitching motion, and it is defined by the ratio 

j = 1 
in which J is the polar moment of inertia of the sprung mass about its centroidal axis, 
M. is the sprung mass for the j * * * axle, as previously defined, and a. is the horizontal 
distance between the j axle and the centroid of the sprung mass. The value of this 
parameter depends on the geometry of the sprung mass and the spacing of the axles. 
The expression in the denominator of this ratio represents the polar moment of inertia 
of the sprung mass when the masses M^ are concentrated at the axles. Thus, when this 
ratio is unity, the two-axle load can be thought of as two separate and independent single-
axle loads, each consisting of a sprung and an unsprung mass. 

Axle Spacing Parameter. — This parameter represents simply the ratio s/2L, where 
s is the spacing of the axles. 

Initial Condition Parameters for Bridge. — The initial condition of the bridge may be 
defined by the dynamic deflection and the velocity of the structure at the instant the front 
axle of the vehicle enters the span. The expressions for these quantities are presented 
later. 

Initial Condition Parameters for Vehicle. — The initial condition of the vehicle may 
be defined by the vertical and angular displacements and velocities of the sprung mass 
of the vehicle at the instant the front axle enters the span. The expressions for these 
quantities are also given later. 

Initial Profile Parameters.^These parameters specify the shape of the bridge surface 
when the bridge is in a position of equilibrium under the influence of its own weight only. 
The number of parameters required depends on the degree of regularity of the initial 
profUe, For example, if the profile can be represented by a mathematical expression, 
such as a sine function, one need specify only the amplitude and the length of the sinu
soidal wave. At the other extreme, if the profile is quite irregular, one must specify 
its elevation at a large number of stations along the span. In this case, the number of 
parameters needed is equal to the number of stations used. Obviously, the latter tech
nique may be used also Cor any profile representable by a simple mathematical 
function. 



Computer Program 
The method of analysis has been programmed for the ILLIAC, the high-speed digital 

computer of the University of Illinois. With the program developed, i t is possible to 
consider any practical combination of the parameters enumerated in the preceding sec
tion. By an appropriate choice of the weight distribution parameters, it is also possible 
to consider the effects of a two-axle, totally sprung load, or of two unsprung point 
masses. It is also possible to consider the case of two independent one-axle loads, 
each consisting of a sprung and/or unsprung mass, as well as the case of a single one-
axle load. These are simply "degenerated" cases of the more general two-axle load 
unit shown in Figure 1. 

The program can handle a sinusoidal profile variation with a maximum of 33 half-sine 
waves along the span, and any other nonsystematic profile that can be prescribed by the 
values of the ordinates at 100 stations equally spaced along the span. 

To use the program, one need only prepare a "parameter tape" on which are record
ed the values of the parameters defining the problem to be solved. This tape is then 
read by the computer following a "master tape" that contains appropriate machine in
structions for the analysis of the problem. The results computed include the dynamic 
deflection and the maximum static deflection at midspan, and the amplification factors 
tor bending moment at midspan and at sections beneath the axles. The term "amplifi
cation factor" is defined as the ratio of the total dynamic effect at a section to the cor
responding absolute maximum static effect at the same section. For example, the 
amplification factor tor bending moment at a section beneath the rear axle of the vehicle 
represents the ratio of the instantaneous dynamic moment at that section to the cor
responding absolute maximum static moment. 

A complete solution, covering the period between the instant the front axle moves on 
the span and the instant the rear axle leaves the span, is obtained in about 3 min. This 
time can be halved if the computer is instructed to print out only the maximum values 
of the quantities referred to above. 

SCOPE OF STUDY 
Approach 

The approach used in this investigation consists in considering specific bridges and 
vehicles and evaluating the dynamic behavior of these systems by varying each of the 
following parameters: (a) speed of the vehicle, (b) spacing of the axles, (c) initial con
dition of the bridge, (d) initial condition of the vehicle, and (e) unevenness of the bridge 
surface. 

It is realized that the effects of these factors cannot actually be isolated because of 
the interrelations among their roles and Influences. For example, when the effect of 
axle spacing is being considered, the influence of vehicle speed is inseparably involved. 
In this presentation, each factor wi l l be treated separately, but mention wil l be made 
of any important interrelations that exist between the various parameters. 

For each problem, the response of the bridge was evaluated for the time interval 
between the entry of the front axle on the span and the exit of the rear axle from the 
span. Except where otherwise indicated, i t is considered that (a) the vehicle has no 
vertical or angular motion at the instant i t enters the span and (b) the bridge is initially 
at rest, and its surface is horizontal and perfectly smooth. In other words, the bridge 
is assumed to be cambered for dead-load deflection. 

Bridges Considered 
The bridges considered in this study correspond to type SA- 2- 53 in the Standard 

Bridge Plans of the Bureau of Public Roads (9). These bridges are of the I-beam type 
with steel girders and a concrete deck, designed tor an H20-S16 loading. Their weights 
and natural frequencies, calculated from the data given in the standard plans, are listed 
in Table 1. In determining the natural frequencies, the bridges were assumed to be
have as simply supported beams. The flexural rigidity of the bridge cross-section, EI, 



was determined by considermg noncomposite action between the slab and the beams, 
and the modular ratio for concrete was taken equal to 10. 

TABLE 1 
ESTIMATED WEIGHTS AND NATURAL FREQUENCIES OF SA-2-53 BRIDGES 

Fundamental 
Span Total Natural 
(ft) Weight Frequency 

(lb) (cps) 

20 98, 000 12.13 
45 227,000 5.41 
50 257, 200 4.97 
60 323,500 4.08 
70 385, 700 3.19 
78 448,200 2.81 

For this class of bridges, the relationship between the speed parameter, a, defined 
by Eq. 1, and the speed of the vehicle, v, is given approximately by the equation 

a = 0. 003 V (3) 
in which v is in miles per hour. 

Vehicles Considered 
Three vehicles. A, B, and C, were used in this study. Their characteristics are 

shown in Table 2. The majority of the numerical results presented were obtained with 
Vehicle A. The characteristics of this vehicle were estimated from information ob
tained from 6 major truck and trailer manufacturers and from data contained in Refer
ence 10. The front and rear axle of this vehicle are intended to represent the rear 
axle of a tractor and the axle of a semitrailer, respectively. 

TABLE 2 
CHARACTERISTICS OF VEHICLES USED 

Quantity Vehicle A 
Front Axle Rear Axle 

Vehicle B 
with Two 
Identical 

Axles 

Vehicle C 
with 

Single 
Axle 

Unsprung weight (lb) 5, 200 3,400 4,300 5,100 
Sprung weight (lb) 26, 800 28, 600 27, 000 26, 000 
Spring constant (Ib/in.) 21, 700 26, 000 23, 850 21, 700 
"Natural frequency" (cps) 2.81 2.98 2. 90 2. 86 
Axle spacing (ft) 27.1 14.0 — 
Polar moment of inertia of 

total sprung mass about 
centroid (kip-ft^ 10, 200 2, 700 — 

Gross vehicle weight (lb) 64, 000 64, 000 31, 000 

Vehicle B, with identical axles, is a simplified version of Vehicle A. The weight 
and spring constants for each axle of this vehicle were taken equal to the average 
values of the corresponding quantities for the two axles of Vehicle A. In this case, it 



can readily be shown that the actual natural frequency of vibration of the vehicle for 
both the vertical mode and the pitching mode are identical and numerically equal to the 
natural frequencies of the axles. 

Vehicle C, a single-axle loading, simulates the front axle of Vehicle A. This vehicle 
was used to obtain most of the data relating to the effects of deck unevenness. 

The vehicle speeds used in this study ranged approximately from 15 to 70 mph. 

RESULTS OF STUDY 
Representative History Curves 

It IS instructive to examine f i rs t the response of a particular section of a bridge to 
the crossing of a vehicle. The graph of this response as a function of time wil l be re
ferred to as a "history curve." Such curves are given in Figures 2 and 3. 
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Figure 2. Representative history curves for midspan bending moment. 

In Figure 2 the solid line shows the time history of the bending moment at midspan 
of a 45-ft bridge traversed by Vehicle A at a speed of 51 mph. The ordinate represents 
the amplification factor for moment at midspan, as previously defined, and the abscissa 
represents the quantity v t /L , m which t is time. Since both v and L are constant for 
a given problem, the abscissa is essentially a time coordinate. The time origin, t = 0, 
is taken as the instant when the rear axle enters the span. Accordingly, the time in
terval between the entry of the front axle on the span and the exit of the rear axle cor
responds to a range of the abscissa f r o m - s / L to umty. The symbol, s, denotes the 
spacing of the axles. For the case considered, s/L = 27.1/45 = 0.60. 

Included in Figure 2 as a dotted line is the history curve of the corresponding static 
bending moment. This is essentially an influence line for moment at midspan due to 
the two-axle vehicle load. The difference between the ordinates of the solid curve and 
the dotted curve represents the history of the dynamic effect of midspan. 



o 
z 
ac 

s 

s 
s 
a. M < 

1.6 

1.2 

0.8 

0.4 

-0.4 

4S FT. BRIDGE 
VEHICLE A 
• ^ • 0 . 1 9 9 iXATIC 

OYNAM IC RESPOI 4SE 

1 

. / \\ • • • A 
. . • • / , 

r 
* • % 

m 

i 1 

••/ 1 
• # 

• M 

1 

• 

1 
1 
! 

1 

-0.60 -0.40 -0.20 o 0.20 0.40 o.eo o.eo i.oo 
DISTANCE OF REAR A X L E TO LEFT SUPPORT 

SPAN LEN6TH 

Figure 3. Representative history curves for midspan deflection. 

Figure 3 shows the dynamic and static history curves for deflection at midspan for 
the particular bridge-vehicle system considered in Figure 2. As before, the ordinates 
are expressed as amplification factors. 

It can be seen from Figures 2 and 3 that the dynamic history curves oscillate about 
the static curves with a "period" close to the fundamental natural period of vibration of 
the unloaded bridge, Tb. One complete wave on a history curve wil l be referred to as 
a dynamic oscillation. The reason the "period" of the dynamic oscillations is not identi
cal to is that the reactions between the axles and the bridge surface are not constant 
but vary with time generally in a fairly complex manner. If the "periods" of the indi
vidual waves are considered to be identical to T^, then the speed parameter acquires 
an interesting physical meamng: its reciprocal 

1 _ o L/v (4) 

is equal to twice the number of oscillations performed by the bridge in the time required 
for one axle to cross the span. 

Both the ordinate and the slope of the dynamic response curves in Figures 2 and 3 
are zero at the instant the front axle of the vehicle enters the span. This is as i t should 
be, because the bridge is initially at its position of static equilibrium. The free vibra
tion of the bridge ( i . e., the motion after the vehicle has left the span) is determined by 
the values of the deflection and velocity of the bridge at the instant the rear axle leaves 
the span. From Figure 3 it can be seen that both of these quantities are different from 
zero in this case. 

It should be noted that the maximum dynamic response may be greater or smaller than 
the maximum static response depending essentially on the positions of the dynamic oscilla
tions relative to that of the maximum static response. The term "dynamic response" refers 
to the sum of the static effect and the dynamic effect. For a given amplitude of dynamic 
oscillation, the dynamic response wil l be greatest when the peak of a dynamic oscillation 



coincides with the peak static response; i t wi l l be smallest when the valley point of a 
dynamic oscillation coincides with the peak static response. While the position of the 
load producing the maximum static effect at a section is fixed, the position of the dy
namic oscillations is altered when the speed of the vehicle, its initial conditions, or 
the initial conditions of the bridge are changed. 

Effect of Vehicle Speed 
The numerical results showing the effects of the various factors wil l be presented, 

in general, in the form of spectrum curves. A spectrum curve is a plot of the maximum 
dynamic response as a function of some parameter of the bridge-vehicle system. 

Figure 4 shows spectrum curves of amplification factors for midspan bending mo
ment and midspan^deflection as functions of the speed parameter for the system con
sidered in the preceding section; i . e., the 45-ft bridge traversed by Vehicle A. In 
addition to the values of a the abscissa shows the speed of the vehicle in miles per hour. 
The ordinates of these curves at v = 51 mph are the maximum values of the corresponding 
curves in Figures 2 and 3. 

It is noted that these spectrum curves are tmdulatory and that both the length and the 
height of the undulations increase with increasing values of the speed parameter. The 
undulatory feature is a consequence of the characteristics of the dynamic history curves, 
as discussed in the preceding section. It has been pointed out that the magnitude of the 
maximum dynamic response at a section depends on the position of the dynamic oscil
lations in the history curve relative to that of the maximum static value. An increase 
in the speed parameter, a, decreases the number of oscillations that the bridge under
goes while the vehicle is on the span. In other words, as the speed parameter increases, 
the lengths of the individual waves in the history curve increase, and the peaks of these 
waves shift to the right. It is this change in the position of the dynamic oscillations 
relative to that of the maximum static response that produces the major change in the 
magnitude of the maximum dynamic effect at a section. 
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The length of one undulation on the spectrum curve denotes the change in a necessary 
to "shift" one complete dynamic oscillation in the corresponding history curve past the 
position of the maximum static response. A relative maximum is obtained when the 
maximum static response coincides with the maximum ordinate of a dynamic oscillation, 
and a relative minimum is obtained when the peak static ordinate combines with the 
minimum ordinates of a dynamic oscillation. 

Because the number of dynamic oscillations for the period that the vehicle is on the 
span is approximately Inversely proportional to the speed parameter (see Eq. 4), a 
given change in speed wil l alter the positions of the dynamic oscillations by a smaller 
amount at high speeds than at low speeds. It is for this reason that the lengths of the 
undulations in the spectrum curves of Figure 4 increase with increasing speed. 

The undulating nature of the spectrum curves, though interesting, is of a limited 
practical importance, because in practice the speed of a vehicle may vary within a fairly 
wide range. From the standpoint of application to design, i t is the peak values of these 
curves that are significant. In this connection, i t is important to note that the peak 
values of the response increase with increasing speed. 

Figure 5 represents spectrum curves for midspan bending moment for the 20- and 
70-ft spans together with the curve for the 45-ft span reproduced in Figure 4. The term 
"spectrum curve for bending moment" is used in lieu of the more precise term of "spec
trum curve of amplification factors for bending moment" for the sake of brevity. This 
abbreviation wil l be adopted throughout the remaining part of this paper. Furthermore, 
unless otherwise noted, aU bending moments wi l l refer to midspan moments. 

The differences in the curves in Figure 5 reflect essentially the influence of the bridge 
characteristics. It should be noted that when the span of the bridge is changed, both the 
weight ratio and the frequency ratios of the system are altered. The values of these 
parameters for the three spans may be determined from the data listed in Tables 1 and 2. 

It is seen that the curves from the 20- and 70-ft spans exhibit the same general trends 
as those previously discussed for the 45-ft span. However, the m^nitudes of the re
sponse for the 20-ft span are considerably larger than those for the longer spans. From 
available data (2) i t would appear that the dynamic effects would not have been so large 
had a single-axle load been used to represent the vehicle. 

VEHICLE A VEHICLE A 

• 
•. 20 FT 

• 

• 
•. 20 FT 

• 

• • 
• 70 FT. ^ i - -

• •• 
.* • 
• *. 
; • • • • 

« 
^45 FT. 

• 

y i 
'< 

• 
1 • • • 
1 * * * 
L* • • 
r ••• i 

• • • • 
• • • • ••• 

I40f 

13d 

* l.20f 

1.10 

1 0 * 

O90l 
0.06 oat 0.09 a n ois 

SPEED PARAMETER a> 

0.15 0J7 0J9 0.21 0.29 

Figure 5. Effect of vehicle speed (for three span lengths). 



11 

For values of o less than 0. 21, corresponding to vehicle speeds of less than about 
70 mph, the absolute maximum amplification factors for bending moment for the 20-, 
45-, and 70-ft spans are 1.42, 1.15, and 1.29, respectively. The corresponding values 
of a are approximately 0.17, 0.16, and 0. 21. The lowest amplification factor, applica
ble to the 45-ft span, is associated with the smallest value of the speed parameter. In 
this connection, i t should be pointed out that the location of the peak values of the re
sponse in a spectrum curve is a function of the axle spacing. For different axle spac-
ings, i t is quite possible that the absolute maximum amplification factor for the 45-ft 
span may occur at a higher speed, in which case, the magnitude of the amplification 
factor may be considerably larger. The effect of the axle spacing is considered further 
in the next section. 

For the same range of the speed parameter, the absolute maximum amplification 
factors for deflection at midspan of the 20-, 45-, and 70-ft spans are 1.67, 1. 24, and 
1.26, respectively. The maxima occur at approximately the same values of the speed 
parameter as those for the absolute maximum bending moment. The spectrum curves 
for deflection are not included here, but are available in Wen (11). 

In Figure 5 i t is of interest to note that the curve for the 2 0 ^ span is considerably 
more sensitive to variations in the speed parameter than are the curves for the longer 
spans. For the purpose of explaining this trend, i t may be assumed that the period of 
the bridge oscillations induced by the front axle of the vehicle is equal to the fundamental 
natural period of vibration of the bridge, Tjj . Then the time interval between the entry 
of the two axles on the span is s/v, and the number of complete oscillations executed by 
the bridge in this time interval is 

„ _s /v (5a) 

By virtue of Eq. 1, this equation may also be written in the form 

The quantity H Q is essentially a measure of the "phase" of the bridge oscillation at the 
instant that the rear axle enters onto the span. Since the response of the bridge is ob
viously a function of this initial "phase," any change that influences this quantity wi l l 
have a corresponding influence on the magnitude of the response. From Eq. 5b i t can 
be seen that, for a fixed value of s, the change in n© resulting from a given change in 
a is greater for the shorter spans. It follows then that the response of the short spans 
should be more sensitive to variations in a than that of the long spans. This is in agree
ment with the trends shown in Figure 5. 

Figure 6 shows spectrum curves for bending moments at sections beneath the axles 
for a 45-ft span traversed by Vehicle A. In this case the moments are normalized with 
respect to the absolute maximum value of the static moment beneath an axle. This 
reference moment, which is the same for both axles because the two axle-loads are 
identical, represents the maximum possible static moment in the bridge. 

It can be seen in this figure that the curve for the rear axle exhibits higher pealcs 
and is more sensitive to variations in the speed parameter than the curve for the front 
axle. These features are consequences of the fact that the bridge is already in a state of 
oscillation when the rear axle enters the span, and may be explained in a manner analo
gous to that used previously in this section. 

Effect of Axle Spacing 
The field tests reported by Foster and Oehler (4) have shown that the axle spacing 

of the vehicle (in combination with the vehicle speed) is one of the major factors that 
influence the dynamic behavior of highway bridges. In these tests, relatively large dy
namic effects in the bridge were observed when the time interval between the passing 
of the two axles over a given point was equal to the natural period of vibration of the 
structure. This observation suggests that the successive applications of the axle loads 
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may act as a periodic forcing agent on the structure and, therefore the synchronization 
of the period of vibration of the bridge with the period of load application may lead to a 
sort of "resonant" condition. 

The Ume interval between the passing of the two axles of the vehicle over the same 
point is s/v. One would expect the "resonant" or "critical" condition to occur when 

s/v _ s/2L an integer (6) 

This theory is generally borne out by the analytical results that have been obtained, 
covering three span lengths of 20, 45, and 70 f t , three vehicle speeds of approximately 
35, 52, and 68 mph, and axle spacings from 0 to 35 f t . Some of these results are pre
sented and discussed in the following paragraphs. 

Figure 7 shows spectrum curves for moment and deflection as a function of the axle 
spacing. These results are for the 45-ft span and for a value of a = 0.105 (v~.35 mph). 
The characteristics of the vehicle used are the same as those of Vehicle A, except that 
the axle spacing is varied over a range. The abscissa shows both the dimenslonless 
axle spacing parameter, s/2L, and the axle spacing, in feet. It is seen that the distances 
between consecutive peaks in these curves are approximately constant. Furthermore, 
the peaks occur at values of s/2L that are essentially multiples of the speed parameter 
used. In other words, Eq. 6 is satisfied quite closely. However, the magnitude of 
the peak effects are not sufficiently large to justify the use of the term "resonance" to 
describe the phenomenon. In the following, the term quasi-resonance wil l be used. 

Spectrum curves of bending moment for the 20- and 70-ft spans are given in Figure 8, 
in which is also reproduced the moment spectrum curve from Figure 7. Al l three 
curves are for the same loading and the same value of the speed parameter, a = 0.105. 
It can be seen that the general features of these curves are essentially the same. Ad
ditional curves, obtained for values of a = 0.155 and 0. 205, show the same character
istics. Some of these data are summarized in Table 3. The complete curves are 
available in Wen (11). 

The third column of Table 3 lists the absolute maximum amplification factors for 
midspan moment for the complete range of axle spacmgs considered. The fourth 
column gives the amplification factors for s = 0; i . e., a single axle having the same 
total load. 

TABLE 3 
SUMMARY OF MAXIMUM MOMENTS FOR 

A RANGE OF AXLE SPACINGS 

Span 
Length 

(ft) 
a 

Amplification Factor for Maximum Midspan Moment Span 
Length 

(ft) 
a Maximum Value for 

0 4 s ^ 35 
Value for 

s = 0 

0.105 1.17 0.96 
20 0.155 1.31 1.06 

0. 205 1.34 0.84 
0.105 1.18 1.00 

45 0.155 1.27 1.16 
0. 205 1.32 0.97 
0.105 1.11 1.02 

70 0.155 1.21 1.01 
0.205 1.18 1.03 
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It is seen that the absolute maximum effects are, in general, significantly larger than 
those for the sii^le-axle loading. However, this comparison is not a reliable measure 
of the effect of axle spacing, because the results for the single-axle load are quite 
small for the particular speeds considered. A change in the speed parameter wi l l af
fect both sets of values, but the possible increase in the magmtude of the effects is 
expected to be more pronounced in the case of the single-axle load. This may be ap
preciated by noting that for the 20-ft span the amplification factor is less than one, 
even for a value of the speed parameter as high as a = 0. 205. It is apparent that in 
this case the maximum static moment combines with a negative ordinate of a dynamic 
oscillation. The amplitude of this oscillation is at least 0.16; i . e., 16 percent of the 
maximum static moment. Therefore, the amplification factor for moment wil l increase 
at least by 0.32 when the speed of the vehicle is changed so that the peak static moment 
combines with the maximum positive ordinate of a dynamic oscillation. For a complete 
evaluation of the axle-spacing parameter, one must consider also the effect of varying 
the speed parameter. 

Table 4 shows the interrelationship of speed and axle spacing. Column 1 gives the 
peak values of the bendii^ moment obtained by keeping the axle spacing at s = 27.1 f t 
and increasing the speed parameter to a maximum value of 0. 21. Column 2 gives the 
corresponding values obtained by considering three values of the speed parameter, as pre
viously noted, and vailing the axle spacing from 0 to 35 f t . It can be seen that, where
as for the 20- and 70-ft spans, the values given in Column 1 are larger than those in 
Column 2, for the 45-ft span the reverse is true. In Column 3 are listed the larger of 
the values given in Columns 1 and 2. These results show that the peak dynamic effects 
increase with decreasing spans. 

TABLE 4 
SUMMARY OF MAXIMUM MOMENTS FOR A RANGE OF SPEEDS AND 

AXLE SPACINGS 

Span 
(ft) 

Maximum Amplification Factors for Midspan Moment 
Span 

(ft) 
(1) (2) (3) Span 

(ft) Speed Varied Axle Spacing Max. Value of 
(1) and (2) 

20 1.42 1.34 1.42 
45 1,15 1.32 1.32 
70 1.29 1.21 1.29 

From the results presented, it may be inferred that, for a vehicle having more than 
two axles, the dynamic effects produced by the individual axles may be cumulative, if 
the spacings between consecutive axles are multiples of one another. 

Concerning the relative magnitude of the dynamic effects produced by tandem axles 
and a single axle of the same total load, i t may be noted that, no matter how small the 
axle spacing, Eq. 6 can always be satisfied, provided the vehicle speed is sufficiently 
low. However, from the discussion presented relative to the effect of vehicle speed, 
it follows also that quasi-resonance at low speeds is not as important as at high speeds. 
If one somewhat arbitrarily takes v=33 mph as the lowest speed for which dynamic ef
fects are of consequence, and uses s = 4 f t for tandem axles, then he finds that Eq. 6 
can be satisfied only for spans equal to or less than 20 f t . That is, for vehicle speeds 
greater than about 33 mph, the quasi-resonant condition cannot be realized in bridges 
with spans longer than 20 f t . Hence, as one might expect intuitively, the dynamic ef
fects produced by tandem axles may be substantially larger than those produced by a 
single axle only in the case of very short spans. 
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Effect of Initial Bridge Motion 
The dynamic oscillations induced by the passage of a vehicle over a bridge may last 

for a considerable time after the vehicle has left the span. The influence of this motion 
must be considered in evaluating the response of the bridge to the passage of a second 
vehicle following the f i rs t closely. 

It is reasonable to assume that the initial oscillation is in the fundamental mode of 
vibration of the bridge. The initial deflection, y(x,t ' ) , may then be expressed by the 
equation 

y ( x , f ) = yo s i n ^ s i n ( 2 i r ^ + pfa) (7) 

in which Yq is the amplitude of the midspan deflection, x is the position coordinate 
measured from the left support, t' is time measured from the Instant the front axle 
enters the span, and Pj, is a phase angle. At t' = 0, the midspan deflection is 

yo sm Pb, and the corresponding velocity is $J^JqCos Pj,. The initial condition of the 
bridge may be specified either in terms of the initial deflection and velocity, or in 
terms of the amplitude yQ and the phase angle Pb. In the following, the latter alterna
tive is used. For convenience, the amplitude Jq is specified by the dimenslonless 
parameter 

% = yo/ys (8) 
in which yg is the maximum static deflection of the bridge at midspan due to the weight 
of the vehicle. 

The influence of the phase angle, pj j , on the response of the bridge is shown in 
Figure 9, in which are given spectrum curves of bending moment for a 45-ft bridge 
traversed by Vehicle A. The value of qw = 0.314. The three curves correspond to 
vehicle speeds of 38, 51, and 58 mph. Values of pb = 0 and Pb = 2-ir define the con
dition in which the beam has no Initial deflection but has a maximum downward velocity. 
For Pb = t h e r e is no initial deflection, but there is a maximum upward velocity. For 
P^ =^ there is an initial maximum downward deflection but no initial velocity. 

I " 
I 

1 0 0 

0.96 

4 9 F T B R I D G E 

VEHICLE A ; q * 0 3l4 
b 

4 9 F T B R I D G E 

VEHICLE A ; q * 0 3l4 
b 

o •0.IS9 o •0.IS9 

• . . o - O J 79 

f 

'"/ 

am 0.1 

/ 

" 1 4 " i V I HIT 1V4I1 
PHASE AN6LE 0^ 

Figure 9. Effect of phase angle ol bridge in i t ia l oscillation. 



16 

It can be seen from this figure that the maximum response at midspan is quite sensi
tive to variations in the phase angle Pŷ . As might be expected, the peak values of the 
resijonse, which are the most significant quantities from a design standpoint, occur at 
different values of P b different speeds. 

In Figure 10 the absolute maximum values of the bending moment and deflection for 
three initially oscillating bridges are plotted as a function of the initial oscillation para
meter q^. These results are for Vehicle B and a speed parameter of a = 0.10. The 
amplification factors plotted are the maximum possible for values of the phase angle 
Pb in the range between 0 and 2ir In other words, the ordmates m this plot represent 
the peaks of curves similar to those presented in Figure 9. 

It can be seen from Figure 10 that the amplification factors for both moment and de
flection increase linearly with qjj and that the rate of increase is approximately one to 
one. Accordingly, the maximum effects produced by a vehicle in an initially oscillating 
bridge are approximately equal to the sum of the effects of the initial oscillation and the 
effects produced by the vehicle when the bridge is initially at rest. This result may be 
expressed by the equation 

(AFL = (AF)o f i (9) 
in which (AF)q. is the maximum possible amplification factor for either moment or de
flection at midspan for an initially oscillating bridge, and (AF)^ is the corresponding 
quantity for the bridge when initially at rest. 

In Table 5, the amplification factors for bending moment predicted by Eq. 9 are com
pared with the exact values as determined from the plots given m Figures 9 and 10. It 
can be seen that the agreement between the two sets of results is quite satisfactory. It 
should be pointed out, however, that additional solutions are required to establish the 
range of validity of Eq. 9. 
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Figure 10. Effect of amplitude of bridge in i t ia l oscillation. 
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TABLE 5 
COMPARISON OF EXACT AND APPROXIMATE VALUES OF MAXIMUM MOMENT 

Maximum Amplification Factor for Midspan Moment 
a q^ = 0.314 

% ~ ^ From Fig. 9 From Eq. 9 

0.118 0.97 1.29 1.28 
0.155 1.15 1.46 1.46 
0.175 1.04 1.37 1.35 

Maximum Amplification Factor for Midspan Moment 

^b From Fig. 10 From Eq. 9 

20 1.06 1.46 1.56 
15 1.05 1.52 1.55 
70 1.10 1.50 1.60 

Effects of Initial Vehicle Motion 
The influence of this factor is investigated by assuming that the initial motion of the 

vehicle corresponds to one of its natural models of vibration. Proceeding in a manner 
analogous to that used in the preceding section, i t can be shown that, for each motion, 
the initial condition of the vehicle can be specified in terms of the amplitude of the mo
tion and a phase angle. 

For the motion corresponding to the vertical or bouncing natural mode of vibration, 
the phase angle wi l l be denoted by P^, and the amplitude of the Initial displacement 
wil l be expressed in terms of the dimensionless parameter, q^, defined as 

Qv = V^s 
where is the amplitude of the dynamic vertical displacement of the centroid of the 
sprung mass, measured from the position of static equilibrium, and z- Is the corre
sponding static deflection. The maximum value of q^ measured in the tield (3,12) ^ -
pears to be on the order of 0.40. For the motion corresponding to the pitching or 
angular natural mode of vibration, the phase angle wi l l be denoted by ^p, and the am
plitude of the motion wil l be expressed in terms of the parameter, q^, defined as 

<lp = V"s 
where u^ is the amplitude of the angular displacement, and Ug is the ratio of the sum 
of the static deformations of the springs for the two axles divided by the spacing of the 
axles. 

The effects of the phase angles, and Pp, on the response of the bridge are similar 
to that of the phase angle for initial bridge oscillation, Pi ,̂ considered in Figure 9, and 
they wUl not be discussed further here. 

The effects of the amplitudes Of initial motion are shown in Figure 11, wherein are 
given spectrum curves for bending moment and deflection for a 70-ft bridge traversed 
by Vehicle B at a speed corresponding to a value of a = 0.10. For the solid curves the 
initial oscillation consists of a purely vertical motion, and for the dashed curves i t 
consists of a purely angular motion. The ordinates in these plots represent the abso
lute maximum amplification factors for all possible values of the phase angle associated 
with the initial motion considered. 
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It is seen that, except for the initial portions of the solid curves that are curved, 
these curves increase linearly with increasing values of the abscissae. This linear 
relationship between the maximum response and the amplitude of the initial vehicle 
oscillation has been noted before'(3) for the case where the vehicle was represented 
as a single-axle load. 

For the vehicle considered, equal values of and qp define equal amplitudes of dy
namic deformation for the springs of the two axles. Of xourse, the deformations of the 
individual springs are in phase for the bouncing motionandlSOdeg out of phase for the 
pitching motion. On comparing the magnitudes of the dynamic effects produced for 
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identical values of q^ and qp, one finds that, when qy and qp are greater than about 0.10, 
the effects for an initial bouncing motion are appreciably larger than those for an initial 
pitching motion. It should be pointed out, however, that the characteristics of the ve
hicle used to obtain these data are such that the two natural frequencies are equal. It is 
conceivable that, if the two frequencies are appreciably different from one another and 
the pitching frequency is closer to the natural frequency of the bridge than is the bounc
ing frequency, the maximum effects produced by the initial pitching motion may be 
greater than those due to the initial bouncii^ motion. 

For the range of amplitudes of initial vehicle oscillation considered in Figure 11, 
the maximum amplification factors for the bouncing and pitching motion are roughly 
1.8 and 1. 5, respectively. These are undoubtedly rather large dynamic effects. How
ever, i t should be remembered that in obtaining these results the vehicle has been as-
sî ^med to have no damping." "The effect of damping wil l be to reduce the magnitude of the 
amplification factors. This reduction is expected to be particularly significant for the 
longer spans for which the time required for the vehicle to cross the span at a given 
speed is greater than for the shorter spans. 

k Effect of Deck Unevenness 
^ The fact that the condition of the bridge surface may be one of the major factors 
H I controlling the magnitude of the dynamic effects in highway bridges was demonstrated 

- in the tests reported by Edgerton and Beecroft (7). These tests involved two bridges 
^ ^ k w i t h identical superstructures, except that one bridge had a smoother deck than the 
^ I p o t h e r . For the same loading, considerably greater dynamic effects were measured in 

the bridge with the uneven deck. 
^ The majority of the solutions presented in the following paragraphs are for a sinu

soidal unevenness. The results of an exploratory study are also given for a deck pro
file representable by a series of half-sine waves of unequal lengths and amplitudes, 
and tor a localized irregularity or a "bump" located on the otherwise smooth surface. 
The vehicle is represented as a single-axle load. 

Sinusoidal Unevenness.— Let p(x) denote the deviation of the deck profile from the 
design grade, as shown in Figure 1. Then a sinusoidal unevenness may be expressed 
by the equation 

p ( x ) = b s i n H ^ (12) 

in which b is the amplitude of the unevenness, and m is the number of half-sine waves 
along the span. The length of each half-sine wave is L/m. 

There are two conditions under which the dynamic effects produced by the unevenness 
may be expected to be of appreciable magnitude. The first corresponds to the case in 
which the period of the profile deviation, Tp, is equal or close to the natural period of 
vibration of the vehicle, Ty. The period Tp is equal to the time required for the vehicle 
to travel the distance covered by one complete wave, and it is given by the equation 

T - 2L/m _ l ^ b 
P V m a (13) 

By equating the expression on the right-hand side of this equation with Ty, one finds 
that this critical or "resonant" condition wil l occur when 

X 
ma = = ^ (14) 

^v 
It is seen that m and a are interrelated. That is, for a given value of m there is a 
critical speed, and for a given speed there is a critical value of m. 

The second critical condition may be expected when the period of the profile variation 
coincides with the natural period of vibration of the bridge, Tb. On equating these two 
periods one obtains the relation 

ma = 1 (15) 
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Although the amplitude of variation of the force exerted by the vehicle on the bridge 
may be small in this case, the djmamic effects in the bridge may stil l be ^preclable. 
The absolute maximum effects might be expected to occur when 

Tp = Ty = Tb 
In this case Eqs. 14 and 15 are Identical. 

In the formulation of Eqs. 14 and 15, i t has implicitly been assumed that there is 
no coupling between the motion of the vehicle and the bridge. The extent to which these 
approximate equations can predict the actual critical conditions is discussed in the 
following. 

Figure 12 gives spectrum curves for bending moment as a function of the speed para
meter for values of m = 5, 9, and 15. Included in this figure as a solid curve is also 
the solution for a smooth surface, b = 0. The bridge Involved is the 70-ft span, and 
the vehicle is the single-axle Vehicle C. In this case, the amplitude of the unevenness, 
b, is one thousandth the length of the half-sine wave. Since L = 70 f t , the amplitude b, 
in inches, is given by the expression 

in which m is different from zero. 
For these and all subsequent problems the vehicle is assumed to have no vertical 

motion as It enters the span, and the bridge is considered to be initially at rest but de
flected under its own weight. In other words, the design grade is considered to coin
cide with the dead-load deflection configuration of the stnicture. The f i r s t wave of the 
unevenness is assumed to be located below the design grade. 

The most striking feature of the results depicted in this figure is that the peak values 
of the response for the wavy surfaces are considerably larger than those for the smooth 
surface. The values of a corresponding to the maximum peak values of the response are 
listed in Table 6 together with the values evaluated from Eqs. 14 and 15. In general 
the values obtained from Figure 12 are close to the predicted value, particularly those 
based on Eq. 14. 

According to Eqs. 14 and 15, for each of the spectrum curves in Figtire 12 there 
should be two high peaks. The fact that there is only one peak may be attributed to the 
closeness of the two resonant conditions that appears to have forced the two peaks to 
merge into one. For the system considered, the ratio Tb/Ty = 0.90. Additional re-
results reported elsewhere (8) (13) indicate that large dynamic effects do occur for each 
of the two critical conditions referred to above, but of the two conditions, the condition 
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of synchronization between the period of 
the profile variation and the natural period 
of vibration of the vehicle is, in general, 
the more severe. The implication of this 
result is that, m order for the dynamic 
effects in the bridge to be large, the 
amplitude of the variation of the interact
ing force must f i rs t be magnified. 

In Figure 12 i t is noted that the ordi-
nates of the curves for the wavy surfaces 
decrease rapidly after they have passed 
their respective high peaks and eventually 
join the curve for the smooth surface. 
This IS as it should be, inasmuch as one 
would normally expect the dynamic effect 
produced by the sinusoidal unevenness to 
be negligible when the period of the dis-

TABLE 6 
COMPARISON OF EXACT AND 
APPROXIMATE "CRITICAL" 

VALUES OF a 

Value 
of 
m 

Critical Value of a Value 
of 
m From 

Fig. 12 
From 
Eq. 14 

From 
Eq. 15 

5 
9 

15 

0.154 
0.093 
0.057 

0.179 
0.100 
0.060 

0. 200 
0.111 
0.067 

turbance, Tp, is small in comparison with the period of the responding system. For a 
given bridge*-vehicle system, Ty and Tb are constant but Tp is inversely proportional 
to V and m. Hence, the larger the value of m for a curve in Figure 12, the smaller is 
the value of v or a at which the dynamic effects of the unevenness become negligible and 
the curves for m = 0 to start to join the curve for b = 0. 

In Figure 13 are given spectrum curves for bending moment for five different bridges 
as a function of the number of half-sine waves present along the span. In each case, 
the speed parameter is a = 0.1 and the amplitude of the wave is 

0.001 
m 

The vehicle used is similar to Vehicle C, 
tion is 0.28 sec instead of 0.35 sec. The 
represent the ratio T|j/Ty. 

The values of m corresponding to the 
two highest peaks of the curves in Figure 
13 are compared in Table 7 with the 
values obtained from Eqs. 14 and 15. It 
can be seen that the agreement between 
the actual and the predicted critical values 
IS quite satisfactory. 

In Figure 13 i t can be seen that, except 
for the 78-ft span, the magnitude of the 
peak response increases with increasing 
span length. This trend is due to two 
factors: (a) since the parameter ml?/L is 
constant for all span lengths, the ampli
tude of the waves corresponding to a fixed 
value of m is greater for the longer spans 
and (b) as the span length increases the 
ratio Tjj/Ty approaches unity, with the 
result that at the critical value of m the 
period of the surface unevenness is in 
synchronism with both the natural period 
of the vehicle and the natural period of the 
bridge. Of the two factors, the latter is 
the more dominant. This is evidenced by 
the fact that the curve for the 78-ft span, 
which has the largest value of b but a ratio 
of Tb/Tv = 1. 27, lies considerably below 
the curves for the 60- and 70-ft spans. 

except that its natural period of vibra-
values in parentheses m this figure 
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TABLE 7 
COMPARISON OF EXACT AND APPROXIMATE "CRITICAL" VALUES OF m 

Span 
(ft) 

Tb 
Tv 

Critical Value of m 
Span 

(ft) 

Tb 
Tv From 

Fig. 13 
From 

Eq. 14 
From 

Fig. 13 
From 

Eq. 15 

20 0.294 2.0 2.9 10.0 10.0 
45 9.66 6.0 6.6 10.7 10.0 
60 0.875 8.8 8.7 8.8 10.0 
70 1.12 10.4 11.2 10.4 10.0 
78 1.27 13.0 12.7 11.0 10.0 

> 0 2 3 

It is important to note that although the amplitude of the surface unevenness considered 
in these conditions was by no means excessive, the computed effects are quite large. 
In this connection, i t must be remembered that the effects of both bridge damping and 
vehicle damping were not accounted for in the analysis. Accordingly, the computed ef
fects are generally larger than those expected in practical cases. The influence of 
damping is likely to be particularly important when the number of waves along the spanj 
is large or when the ratio Tyj/Ty is close to unity. 

Semisystematic Unevenness. —The form of the unevenness considered is shown in 
Figure 14. It consists of five half-sine waves, alternately of opposite signs, having 
different lengths and amplitudes. The length of each end wave is taken equal to 1/5 the 

length of the span, whereas the lengths of 
the remaining waves are varied over the 
entire possible range, keeping the waves 
symmetrical about the center of the 
span. The amplitude-to-length ratio is 
considered to be the same for all the 
waves. 

The distribution of the unevenness can 
conveniently be specified m terms of the 
dimensionless parameter, X, defined as 

L<2 + J-'3 

where L2 and L3 are the lengths of the 
second and third waves, respectively. 
The range of X is from 0 to 1. As 
shown in Figure 14, X = 0 corresponds 
to the case in which there are only three 
waves along the span, whereas X = 1 
corresponds to the cases in which 
there are four waves. For a sinusoidal 
unevenness X = 0. 5. The end waves are 
assumed to be located below the design 
grade. 

The parameter X is essentially a 
measure of the regularity of the uneven
ness. Its influence is shown in Figure 

y , ,^ 15, in which the absolute maximum am
plification factor for midspan bending 

F i g u r e Ik. S i n u s o i d a l deck p r o f i l e v l t h °^ 
var y i n g wave length. bridges of 20-, 45-, and 70-ft spans. The 

X -o 
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Figure 15. E f f e c t of r e l a t i v e wave length. 

amplification factors plotted are the maximum within the range of speeds from 15 to 
70 mph. These results were obtained by use of Vehicle C. 

It is noted that for a fairly wide range of values of X the ordinates of the curves in 
this figure are of the same order of magnitude as the corresponding ordinate for a sinu
soidal profile (X = 0. 5). This is particularly true in the case of the 70-ft span for 
which the natural period of the bridge and the vehicle are close to one another. For 
this span, the amplification factor for bending moment varies from 1.97 to 1.85 for 
values of the X in the range between 0.15 and 1.0. 

The practical implication of these results is that, even when the unevenness of the 
bridge deck is not entirely symmetric, i t may be possible to estimate the absolute 
maximum effects by considering a sinusoidal unevenness with approximately the same 
number of waves and an amplitude equal to the average amplitude of the waves in the 
actual profile. 
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Figure 16. Effect of a "bump" on deck. 

Localized Unevenness.—Figure 16 gives spectrum curves for bending moment as a 
function of the speed parameter for a 70-ft bridge with a localized irregularity in the 
form of a half-sine wave. The wave is considered to project above the design grade. 
Its amplitude is 1.68 in. and its length is 1/5 of the length of the bridge span. The 
curves labeled 1, 2, and 3 correspond to the cases where the irregularity occupies the 
f irs t , second, and third f i f th of the span, respectively. The curve labeled zero is for 
a smooth deck. 

It is seen that the dynamic effects produced by the unevenness are in general of con
siderable magnitude, and the absolute maximum effect is produced when the irregularity 
is located at the second fif th of the span instead of when centered about midspan. The 
latter result can be explained as follows. The primary effect of the irregularity is to 
amplify the vertical motion of the vehicle and thus increase the magnitude of the dy
namic reaction exerted by the vehicle on the bridge. But there is a time lag between 
the initiation of the motion of the vehicle due to the unevenness and the development of 
the maximum possible djmamic reaction. When the irregularity is situated at midspan, 
by the time the dynamic reaction attains its maximum value, the vehicle is past mid-
span and at a position for which a given force wi l l stress the structure of the lesser 
extent than when the same force is applied at midspan. 

SUMMARY 
The results of an anal3^ical study have been presented to illustrate the influence of 

some of the factors producing dynamic effects in simple- span highway bridges. In the 
majority of the solutions the vehicle was represented as a two-axle loading. 

The factors considered fall into two categories. In the f i rs t belong the factors re
lated to the behavior of bridges with a smooth surface traversed by a vehicle that is 
initially in its position of static equilibrium. They include the speed of the vehicle, 
the axle spacing, and the initial oscillation of the bridge. The common characteristics 
of these factors is that they prevail in all bridges to a comparable degree, and their 
possible ranges are reasonably certain. In the second category belong the additional 
factors associated with the effects of the unevenness of the bridge surface and the ap-
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proaches. They include the initial oscillation of the vehicle and the characteristics of 
the bridge surface. The relative Importance of these factors may be quite different 
for different bridges, as the surface Irregularities depend on such factors as the type 
of the pavement, and the location and maintenance of the bridge. At the present time, 
little is known about the distribution and the magnitude of roadway unevenness for high
way bridges. 

In general the magnitude of the maximum dynamic effects in a bridge increase with 
increasing vehicle speed. For axle spacings larger than the bridge length, the dynamic 
effects produced by a two-axle loading were found to be larger than those produced by 
single-axle loading. The increase is attributed to the fact that when the rear-axle en
ters the span the bridge is already in a state of oscillation. 

By varying the axle spacing while keeping all other variables constant, it was found 
that a quasi-resonance condition is developed when the time interval between the appli
cation of the two axles over a point is equal to the fundamentalnatural period of vibration 
of the bridge. 

It the bridge is already in a state of oscillation when the vehicle enters the span, the 
dynamic effects produced by the vehicle depend on the timing of the entry of the vehicle 
with the oscillation of the bridge. The absolute maximum effect can be estimated ap
proximately by superimposing on the maximum effect due to the initial oscillation the 
effect that would be produced by the vehicle if the structure were Imtially at rest. 

The Influence of the initial vehicle oscillation was investigated by considering both 
a bouncing and a pitching motion for the vehicle. For the problems studied i t was found 
that, for the same amplitude of initial deformation in the springs, the effects of pitch
ing are less severe than those of bouncing. The magnitude of the resulting dynamic ef
fects were found to Increase almost linearly with the amplitude of the initial oscillation 
considered. 

The influence of the unevenness of the bridge deck was Investigated by considering 
a sinusoidal profile variation, a semisystematlc unevenness consisting of a series of 
half-sine waves of unequal amplitudes and lengths, and a localized unevenness. The 
results obtained show clearly that roadway unevenness may be a source of large dynamic 
effects in highway bridges. 

In interpreting the practical significance of the solutions presented in this paper i t 
must be kept in mind that the contributions of both vehicle damping and bridge damping 
were not accounted for in the analysis. Accordingly, the computed effects are generally 
larger than those to be expected in actual cases. 
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Appendix 

NOTATIONS 

AF = amplification factor 
b = amplitude of sinusoidal unevenness on bridge surface 
fb = fundamental natural frequency of vibration of bridge, in cycles per sec 
L = span length of bridge 
m = number of half- sine waves along the bridge span 
% " ^o^^s " dimensionless amplitude of initial bridge oscillation 
q = dimensionless amplitude of initial pitching motion for vehicle, as defined by 
^ Eq. 11 

q = dimensionless amplitude of initial vertical motion for vehicle, as defined by 
Eq. 10 

s = spacing between axles 
Tb = fundamental natural period of vibration of bridge 
Ty = natural period of vibration of vehicle, idealized as a single-axle load 
T = period of sinusoidal profile, defined by Eq. 13 
t = time 
v = vehicle speed 
y^ = amplitude of initial bridge oscillation at midspan 
yg = maximum static deflection of bridge at midspan due to weight of vehicle 
a = speed parameter, defined by Eq. 1 

Pb = phase angle of initial bridge oscillation 
Pp = phase angle of initial pitching motion of vehicle 
PY = phase angle of initial (vertical) bouncing motion of vehicle 




