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Dynamic Behavior of Simple-Span 
Highway Bridges 
ROBERT K. WEN, Assistant Professor of CivU Engineering, Michigan State University, 
and A. S. VELETSOS, Professor of Civil Engineering, University of lUinois 

• This paper presents the results of an analytical study on the dynamic behavior of 
simple-span highway bridges traversed by heavy vehicles. The factors that affect the 
dynamic response of such bridges are reviewed, and the influence of several of these 
are discussed. The factors considered include the speed of the vehicle, the spacing of 
the vehicle axles, the dynamic conditions of the bridge and the vehicle as the vehicle 
enters on the span, and the unevenness of the bridge surface. Most of these factors 
have been foimd in field tests to be responsible for major dynamic effects in highway 
bridgesU). 

The approach used in this study consists m taking certain "representative" bridges 
and vehicles, and evaluating the effects of the parameters enumerated above by varying 
one parameter at a time. The bridges considered are of the I-beam type with span 
lengths in the range between 20 and 78 f t . This type of bridge consists of a series of 
steel girders and a reinforced concrete slab. With a tew exceptions, the vehicle load
ing used corresponds to the heavy rear axles of a tractor- semitrailer combination with 
weights equal to those of the rear axles of an H20-S16 vehicle. 

In the analysis, the bridge is idealized as a simply supported beam and the vehicle 
as a two-axle sprung load unit. Since the system is considered to have no width, the 
effects of the torsional oscillations of the bridge and the rolling of the vehicle about its 
longitudinal axis cannot be taken into account. The representation of the vehicle as a 
two-axle load is one of the distinguishing features of this study. 

The idealized system is analyzed on the assumption that the instantaneous deflection 
configuration of the neutral axis of the beam is proportional to the corresponding static 
configuration produced by the weight of the vehicle and the weight of the bridge itself. 
In effect, this assumption reduces the beam to a system with a single degree of freedom 
and simplifies the analysis of the problem. The method has been programmed for the 
ILLIAC, the electronic digital computer of the University of Illinois. The results pre
sented herein were obtained by application of this computer program. 

Anal3rtical studies of the dynamic response of highway bridges under moving vehicles 
have been reported in several publications. The effects of speed and of the initial ver
tical motion of the vehicle are discussed in Tung et al. (2) and Biggs et al. (3) by ideal
izing the vehicle as a single-axle load. The two-axle load used in the present study is 
obviously a more realistic representation of the vehicle. It enables one to take into ac
count the effects of such variables as the spacing of the axles and the pitching motion of 
the vehicle. Field tests data (4) have given evidence of increased dynamic effects when 
the period of axle applicationsli. e., the time between the passing of successive axles 
over a given point on the bridge) is synchronized with the fundamental natural period of 
vibration of the bridge. 

The f i rs t analytical investigation of the dynamic effects produced by multiple-axle 
loads was published by Looney (5), who considered both two-axle and three-axle loads. 
Each axle load was represented either as a moving force of constant magnitude or as a 
smoothly running unsprung mass. The effect of vehicle suspension was not considered. 
Some exploratory studies of the influence of roadway unevenness have been reported by 
Schetfey (6) and Edgerton and Beecroft (7). In the present study, these parameters are 
studied in greater detail than in any of the previous publications. 



METHOD OF ANALYSIS 
System Considered 

The idealized beam-load system used to represent the actual bridge-vehicle system 
is shown in Figure 1. It consists of a simply supported, linearly elastic beam spanning 
between two rigid supports on a horizontal line, and a two-axle load moving from left 
to right at a constant speed. 
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Figure 1. Idealized bridge-vehicle system. 

Although the surface of the beam may be uneven, the beam itself is assumed to be of 
uniform mass and flexural rigidity per unit of length. In other words, the magnitude of 
the unevenness is assumed to be so small that its effect on the distribution of the mass 
and flexural rigidity of the beam along the span is negligible. This assumption is real
istic because the height of the unevenness m actual bridges is usually small m com
parison with the depth of the bridge. (In Figure 1 the magnitude of the unevenness is 
greatly exaggerated.) 

The two-axle load consists of a rigid "sprung mass" connected to two "unsprung 
masses" through two linearly elastic springs. The unsprung mass is considered to be 
in direct contact with the roadway surface. The sprung mass represents the mass of 
the payload and chassis of the vehicle, and the unsprung masses represent the mass of 
the axles and tires. The springs simulate the flexibility of the suspension system and/ 
or tires. It should be noted that no damping is considered in either the vehicle or the 
bridge model. 

In the following discussion, the terms "beam" and "bridge" and the terms "load" 
and "vehicle" are used interchangeably. 



Analysis of Idealized System 
The beam is analyzed as a system with a single degree of freedom. This is done by 

specifying the shape of its deflection curve at any instant. Specifically, i t is assumed 
that the instantaneous dynamic deflection configuration of the beam is proportional to 
that produced by the weight of the moving load and the weight of the beam itself applied 
statically. Throughout the time that the vehicle is on the span, the axles of the vehicle 
are considered to be in contact with the beam or the approach pavement. The analysis 
is based on the ordinary beam theory which neglects the effects of shearing deformation 
and rotary inertia. 

With the above simplifications, the behavior of the bridge-vehicle system can be de
scribed in terms of three second-order linear differential equations with variable coef
ficients. The three unknown functions are the vertical displacement of the center of 
gravity of the sprung weight of the vehicle, z (see Figure l ) , the angular displacement 
of the sprung weight, u, and a function f(t) relating the instantaneous dynamic deflection 
of the beam to the corresponding static deflection. These equations were solved by a 
step-by-step method of numerical integration. For each time interval, the displace
ments z and u and the function f(t) are f i rs t determined. Next, the instantaneous reac
tions between the unsprung masses and the beam surface, and the inertia forces due to 
the mass of the beam are evaluated. Finally, the bending moments in the beam are 
determined from the instantaneous loading on the beam in the same manner as for a 
static problem. For the details of the method of analysis, the reader is referred to 
Wen (8). 
Problem Parameters 

The parameters that affect the response of the idealized system considered here may 
conveniently be classified as "bridge parameters" and "vehicle parameters." The bridge 
parameters include the span length, total weight, and fundamental natural period of v i 
bration of the bridge; the deviation, if any, of the bridge surface from a straight line 
through the end supports; and the initial dynamic condition of the bridge. The term "initial 
condition" is used to designate the dynamic displacement and the velocity of the bridge 
at the instant the vehicle enters the span. It is conceivable that these quantities may be 
different from zero, because when the vehicle enters the span the bridge may already 
be in a state of oscillation due to the previous passage of another vehicle. 

The vehicle parameters include the speed and total weight of the vehicle, the distri
bution of the weight among its unsprung and sprung components, the spacing of the axles, 
the effective spring constant for axle, and the initial dynamic condition of the vehicle. 
It is possible that at the instant the vehicle enters the span, the sprung weight of the 
vehicle may have a bouncing or a pitching motion, or a combination of the two. This 
motion may be due to the unevenness of the approach pavement, or it may result from 
a discontinuity at the bridge entrance. 

In the analysis, these variables are combined into the following dimensionless para
meters: 

The Speed Parameter. —Denoted by the symbol a, this parameter is defined by the 
equation 

•̂̂ b (1) 

in which v is the speed of the vehicle, T. is the fundamental natural period of vibration 
of the bridge, and L is the span length (for symbols see Appendix). 

For the type of highway bridge considered herein, the period T^ is for all practical 
purposes proportional to L. Hence, the parameter a is essentially a function of the 
vehicle speed only. 

The Weight and Weight Distribution Parameters. - The weight parameter is defined 
as the ratio of the total weight of the vehicle to the total weight of the bridge. The 
weight distribution parameters include the ratio of the static reactions on the two 



axles and the ratios of the unsprung weight for each axle to the total weight of 
the vehicle. 

Frequency Parameters. - Associated with each axle j (j = 1 or 2), there is a frequency 
parameter defined as the ratio 

^̂ v̂  ] ^ "Natural Frequency of Axle" 
~ Fundamental Natural Frequency of Bridge 

The axle frequency, (t^)y is defined by the equation 

2 ' i r ^ M . - 2^ ^ M : (2) 

in which k^ is the effective stiffness of the axle, and Mj is the corresponding sprung 
mass. The sprung mass for an axle is the mass corresponding to the static reaction on 
the axle due to the sprung weight of the vehicle. It should be pointed out that only in 
special cases does the axle frequency (f^)^ represent the actual natural frequency of the 
vehicle in either the vertical mode or the pitching mode of vibration. 

Rotary Inertia Parameter. — This parameter is a measure of the resistance of the 
sprung mass of the vehicle against pitching motion, and it is defined by the ratio 

j = 1 
in which J is the polar moment of inertia of the sprung mass about its centroidal axis, 
M. is the sprung mass for the j * * * axle, as previously defined, and a. is the horizontal 
distance between the j axle and the centroid of the sprung mass. The value of this 
parameter depends on the geometry of the sprung mass and the spacing of the axles. 
The expression in the denominator of this ratio represents the polar moment of inertia 
of the sprung mass when the masses M^ are concentrated at the axles. Thus, when this 
ratio is unity, the two-axle load can be thought of as two separate and independent single-
axle loads, each consisting of a sprung and an unsprung mass. 

Axle Spacing Parameter. — This parameter represents simply the ratio s/2L, where 
s is the spacing of the axles. 

Initial Condition Parameters for Bridge. — The initial condition of the bridge may be 
defined by the dynamic deflection and the velocity of the structure at the instant the front 
axle of the vehicle enters the span. The expressions for these quantities are presented 
later. 

Initial Condition Parameters for Vehicle. — The initial condition of the vehicle may 
be defined by the vertical and angular displacements and velocities of the sprung mass 
of the vehicle at the instant the front axle enters the span. The expressions for these 
quantities are also given later. 

Initial Profile Parameters.^These parameters specify the shape of the bridge surface 
when the bridge is in a position of equilibrium under the influence of its own weight only. 
The number of parameters required depends on the degree of regularity of the initial 
profUe, For example, if the profile can be represented by a mathematical expression, 
such as a sine function, one need specify only the amplitude and the length of the sinu
soidal wave. At the other extreme, if the profile is quite irregular, one must specify 
its elevation at a large number of stations along the span. In this case, the number of 
parameters needed is equal to the number of stations used. Obviously, the latter tech
nique may be used also Cor any profile representable by a simple mathematical 
function. 



Computer Program 
The method of analysis has been programmed for the ILLIAC, the high-speed digital 

computer of the University of Illinois. With the program developed, i t is possible to 
consider any practical combination of the parameters enumerated in the preceding sec
tion. By an appropriate choice of the weight distribution parameters, it is also possible 
to consider the effects of a two-axle, totally sprung load, or of two unsprung point 
masses. It is also possible to consider the case of two independent one-axle loads, 
each consisting of a sprung and/or unsprung mass, as well as the case of a single one-
axle load. These are simply "degenerated" cases of the more general two-axle load 
unit shown in Figure 1. 

The program can handle a sinusoidal profile variation with a maximum of 33 half-sine 
waves along the span, and any other nonsystematic profile that can be prescribed by the 
values of the ordinates at 100 stations equally spaced along the span. 

To use the program, one need only prepare a "parameter tape" on which are record
ed the values of the parameters defining the problem to be solved. This tape is then 
read by the computer following a "master tape" that contains appropriate machine in
structions for the analysis of the problem. The results computed include the dynamic 
deflection and the maximum static deflection at midspan, and the amplification factors 
tor bending moment at midspan and at sections beneath the axles. The term "amplifi
cation factor" is defined as the ratio of the total dynamic effect at a section to the cor
responding absolute maximum static effect at the same section. For example, the 
amplification factor tor bending moment at a section beneath the rear axle of the vehicle 
represents the ratio of the instantaneous dynamic moment at that section to the cor
responding absolute maximum static moment. 

A complete solution, covering the period between the instant the front axle moves on 
the span and the instant the rear axle leaves the span, is obtained in about 3 min. This 
time can be halved if the computer is instructed to print out only the maximum values 
of the quantities referred to above. 

SCOPE OF STUDY 
Approach 

The approach used in this investigation consists in considering specific bridges and 
vehicles and evaluating the dynamic behavior of these systems by varying each of the 
following parameters: (a) speed of the vehicle, (b) spacing of the axles, (c) initial con
dition of the bridge, (d) initial condition of the vehicle, and (e) unevenness of the bridge 
surface. 

It is realized that the effects of these factors cannot actually be isolated because of 
the interrelations among their roles and Influences. For example, when the effect of 
axle spacing is being considered, the influence of vehicle speed is inseparably involved. 
In this presentation, each factor wi l l be treated separately, but mention wil l be made 
of any important interrelations that exist between the various parameters. 

For each problem, the response of the bridge was evaluated for the time interval 
between the entry of the front axle on the span and the exit of the rear axle from the 
span. Except where otherwise indicated, i t is considered that (a) the vehicle has no 
vertical or angular motion at the instant i t enters the span and (b) the bridge is initially 
at rest, and its surface is horizontal and perfectly smooth. In other words, the bridge 
is assumed to be cambered for dead-load deflection. 

Bridges Considered 
The bridges considered in this study correspond to type SA- 2- 53 in the Standard 

Bridge Plans of the Bureau of Public Roads (9). These bridges are of the I-beam type 
with steel girders and a concrete deck, designed tor an H20-S16 loading. Their weights 
and natural frequencies, calculated from the data given in the standard plans, are listed 
in Table 1. In determining the natural frequencies, the bridges were assumed to be
have as simply supported beams. The flexural rigidity of the bridge cross-section, EI, 



was determined by considermg noncomposite action between the slab and the beams, 
and the modular ratio for concrete was taken equal to 10. 

TABLE 1 
ESTIMATED WEIGHTS AND NATURAL FREQUENCIES OF SA-2-53 BRIDGES 

Fundamental 
Span Total Natural 
(ft) Weight Frequency 

(lb) (cps) 

20 98, 000 12.13 
45 227,000 5.41 
50 257, 200 4.97 
60 323,500 4.08 
70 385, 700 3.19 
78 448,200 2.81 

For this class of bridges, the relationship between the speed parameter, a, defined 
by Eq. 1, and the speed of the vehicle, v, is given approximately by the equation 

a = 0. 003 V (3) 
in which v is in miles per hour. 

Vehicles Considered 
Three vehicles. A, B, and C, were used in this study. Their characteristics are 

shown in Table 2. The majority of the numerical results presented were obtained with 
Vehicle A. The characteristics of this vehicle were estimated from information ob
tained from 6 major truck and trailer manufacturers and from data contained in Refer
ence 10. The front and rear axle of this vehicle are intended to represent the rear 
axle of a tractor and the axle of a semitrailer, respectively. 

TABLE 2 
CHARACTERISTICS OF VEHICLES USED 

Quantity Vehicle A 
Front Axle Rear Axle 

Vehicle B 
with Two 
Identical 

Axles 

Vehicle C 
with 

Single 
Axle 

Unsprung weight (lb) 5, 200 3,400 4,300 5,100 
Sprung weight (lb) 26, 800 28, 600 27, 000 26, 000 
Spring constant (Ib/in.) 21, 700 26, 000 23, 850 21, 700 
"Natural frequency" (cps) 2.81 2.98 2. 90 2. 86 
Axle spacing (ft) 27.1 14.0 — 
Polar moment of inertia of 

total sprung mass about 
centroid (kip-ft^ 10, 200 2, 700 — 

Gross vehicle weight (lb) 64, 000 64, 000 31, 000 

Vehicle B, with identical axles, is a simplified version of Vehicle A. The weight 
and spring constants for each axle of this vehicle were taken equal to the average 
values of the corresponding quantities for the two axles of Vehicle A. In this case, it 



can readily be shown that the actual natural frequency of vibration of the vehicle for 
both the vertical mode and the pitching mode are identical and numerically equal to the 
natural frequencies of the axles. 

Vehicle C, a single-axle loading, simulates the front axle of Vehicle A. This vehicle 
was used to obtain most of the data relating to the effects of deck unevenness. 

The vehicle speeds used in this study ranged approximately from 15 to 70 mph. 

RESULTS OF STUDY 
Representative History Curves 

It IS instructive to examine f i rs t the response of a particular section of a bridge to 
the crossing of a vehicle. The graph of this response as a function of time wil l be re
ferred to as a "history curve." Such curves are given in Figures 2 and 3. 
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Figure 2. Representative history curves for midspan bending moment. 

In Figure 2 the solid line shows the time history of the bending moment at midspan 
of a 45-ft bridge traversed by Vehicle A at a speed of 51 mph. The ordinate represents 
the amplification factor for moment at midspan, as previously defined, and the abscissa 
represents the quantity v t /L , m which t is time. Since both v and L are constant for 
a given problem, the abscissa is essentially a time coordinate. The time origin, t = 0, 
is taken as the instant when the rear axle enters the span. Accordingly, the time in
terval between the entry of the front axle on the span and the exit of the rear axle cor
responds to a range of the abscissa f r o m - s / L to umty. The symbol, s, denotes the 
spacing of the axles. For the case considered, s/L = 27.1/45 = 0.60. 

Included in Figure 2 as a dotted line is the history curve of the corresponding static 
bending moment. This is essentially an influence line for moment at midspan due to 
the two-axle vehicle load. The difference between the ordinates of the solid curve and 
the dotted curve represents the history of the dynamic effect of midspan. 
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Figure 3. Representative history curves for midspan deflection. 

Figure 3 shows the dynamic and static history curves for deflection at midspan for 
the particular bridge-vehicle system considered in Figure 2. As before, the ordinates 
are expressed as amplification factors. 

It can be seen from Figures 2 and 3 that the dynamic history curves oscillate about 
the static curves with a "period" close to the fundamental natural period of vibration of 
the unloaded bridge, Tb. One complete wave on a history curve wil l be referred to as 
a dynamic oscillation. The reason the "period" of the dynamic oscillations is not identi
cal to is that the reactions between the axles and the bridge surface are not constant 
but vary with time generally in a fairly complex manner. If the "periods" of the indi
vidual waves are considered to be identical to T^, then the speed parameter acquires 
an interesting physical meamng: its reciprocal 

1 _ o L/v (4) 

is equal to twice the number of oscillations performed by the bridge in the time required 
for one axle to cross the span. 

Both the ordinate and the slope of the dynamic response curves in Figures 2 and 3 
are zero at the instant the front axle of the vehicle enters the span. This is as i t should 
be, because the bridge is initially at its position of static equilibrium. The free vibra
tion of the bridge ( i . e., the motion after the vehicle has left the span) is determined by 
the values of the deflection and velocity of the bridge at the instant the rear axle leaves 
the span. From Figure 3 it can be seen that both of these quantities are different from 
zero in this case. 

It should be noted that the maximum dynamic response may be greater or smaller than 
the maximum static response depending essentially on the positions of the dynamic oscilla
tions relative to that of the maximum static response. The term "dynamic response" refers 
to the sum of the static effect and the dynamic effect. For a given amplitude of dynamic 
oscillation, the dynamic response wil l be greatest when the peak of a dynamic oscillation 



coincides with the peak static response; i t wi l l be smallest when the valley point of a 
dynamic oscillation coincides with the peak static response. While the position of the 
load producing the maximum static effect at a section is fixed, the position of the dy
namic oscillations is altered when the speed of the vehicle, its initial conditions, or 
the initial conditions of the bridge are changed. 

Effect of Vehicle Speed 
The numerical results showing the effects of the various factors wil l be presented, 

in general, in the form of spectrum curves. A spectrum curve is a plot of the maximum 
dynamic response as a function of some parameter of the bridge-vehicle system. 

Figure 4 shows spectrum curves of amplification factors for midspan bending mo
ment and midspan^deflection as functions of the speed parameter for the system con
sidered in the preceding section; i . e., the 45-ft bridge traversed by Vehicle A. In 
addition to the values of a the abscissa shows the speed of the vehicle in miles per hour. 
The ordinates of these curves at v = 51 mph are the maximum values of the corresponding 
curves in Figures 2 and 3. 

It is noted that these spectrum curves are tmdulatory and that both the length and the 
height of the undulations increase with increasing values of the speed parameter. The 
undulatory feature is a consequence of the characteristics of the dynamic history curves, 
as discussed in the preceding section. It has been pointed out that the magnitude of the 
maximum dynamic response at a section depends on the position of the dynamic oscil
lations in the history curve relative to that of the maximum static value. An increase 
in the speed parameter, a, decreases the number of oscillations that the bridge under
goes while the vehicle is on the span. In other words, as the speed parameter increases, 
the lengths of the individual waves in the history curve increase, and the peaks of these 
waves shift to the right. It is this change in the position of the dynamic oscillations 
relative to that of the maximum static response that produces the major change in the 
magnitude of the maximum dynamic effect at a section. 
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The length of one undulation on the spectrum curve denotes the change in a necessary 
to "shift" one complete dynamic oscillation in the corresponding history curve past the 
position of the maximum static response. A relative maximum is obtained when the 
maximum static response coincides with the maximum ordinate of a dynamic oscillation, 
and a relative minimum is obtained when the peak static ordinate combines with the 
minimum ordinates of a dynamic oscillation. 

Because the number of dynamic oscillations for the period that the vehicle is on the 
span is approximately Inversely proportional to the speed parameter (see Eq. 4), a 
given change in speed wil l alter the positions of the dynamic oscillations by a smaller 
amount at high speeds than at low speeds. It is for this reason that the lengths of the 
undulations in the spectrum curves of Figure 4 increase with increasing speed. 

The undulating nature of the spectrum curves, though interesting, is of a limited 
practical importance, because in practice the speed of a vehicle may vary within a fairly 
wide range. From the standpoint of application to design, i t is the peak values of these 
curves that are significant. In this connection, i t is important to note that the peak 
values of the response increase with increasing speed. 

Figure 5 represents spectrum curves for midspan bending moment for the 20- and 
70-ft spans together with the curve for the 45-ft span reproduced in Figure 4. The term 
"spectrum curve for bending moment" is used in lieu of the more precise term of "spec
trum curve of amplification factors for bending moment" for the sake of brevity. This 
abbreviation wil l be adopted throughout the remaining part of this paper. Furthermore, 
unless otherwise noted, aU bending moments wi l l refer to midspan moments. 

The differences in the curves in Figure 5 reflect essentially the influence of the bridge 
characteristics. It should be noted that when the span of the bridge is changed, both the 
weight ratio and the frequency ratios of the system are altered. The values of these 
parameters for the three spans may be determined from the data listed in Tables 1 and 2. 

It is seen that the curves from the 20- and 70-ft spans exhibit the same general trends 
as those previously discussed for the 45-ft span. However, the m^nitudes of the re
sponse for the 20-ft span are considerably larger than those for the longer spans. From 
available data (2) i t would appear that the dynamic effects would not have been so large 
had a single-axle load been used to represent the vehicle. 
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For values of o less than 0. 21, corresponding to vehicle speeds of less than about 
70 mph, the absolute maximum amplification factors for bending moment for the 20-, 
45-, and 70-ft spans are 1.42, 1.15, and 1.29, respectively. The corresponding values 
of a are approximately 0.17, 0.16, and 0. 21. The lowest amplification factor, applica
ble to the 45-ft span, is associated with the smallest value of the speed parameter. In 
this connection, i t should be pointed out that the location of the peak values of the re
sponse in a spectrum curve is a function of the axle spacing. For different axle spac-
ings, i t is quite possible that the absolute maximum amplification factor for the 45-ft 
span may occur at a higher speed, in which case, the magnitude of the amplification 
factor may be considerably larger. The effect of the axle spacing is considered further 
in the next section. 

For the same range of the speed parameter, the absolute maximum amplification 
factors for deflection at midspan of the 20-, 45-, and 70-ft spans are 1.67, 1. 24, and 
1.26, respectively. The maxima occur at approximately the same values of the speed 
parameter as those for the absolute maximum bending moment. The spectrum curves 
for deflection are not included here, but are available in Wen (11). 

In Figure 5 i t is of interest to note that the curve for the 2 0 ^ span is considerably 
more sensitive to variations in the speed parameter than are the curves for the longer 
spans. For the purpose of explaining this trend, i t may be assumed that the period of 
the bridge oscillations induced by the front axle of the vehicle is equal to the fundamental 
natural period of vibration of the bridge, Tjj . Then the time interval between the entry 
of the two axles on the span is s/v, and the number of complete oscillations executed by 
the bridge in this time interval is 

„ _s /v (5a) 

By virtue of Eq. 1, this equation may also be written in the form 

The quantity H Q is essentially a measure of the "phase" of the bridge oscillation at the 
instant that the rear axle enters onto the span. Since the response of the bridge is ob
viously a function of this initial "phase," any change that influences this quantity wi l l 
have a corresponding influence on the magnitude of the response. From Eq. 5b i t can 
be seen that, for a fixed value of s, the change in n© resulting from a given change in 
a is greater for the shorter spans. It follows then that the response of the short spans 
should be more sensitive to variations in a than that of the long spans. This is in agree
ment with the trends shown in Figure 5. 

Figure 6 shows spectrum curves for bending moments at sections beneath the axles 
for a 45-ft span traversed by Vehicle A. In this case the moments are normalized with 
respect to the absolute maximum value of the static moment beneath an axle. This 
reference moment, which is the same for both axles because the two axle-loads are 
identical, represents the maximum possible static moment in the bridge. 

It can be seen in this figure that the curve for the rear axle exhibits higher pealcs 
and is more sensitive to variations in the speed parameter than the curve for the front 
axle. These features are consequences of the fact that the bridge is already in a state of 
oscillation when the rear axle enters the span, and may be explained in a manner analo
gous to that used previously in this section. 

Effect of Axle Spacing 
The field tests reported by Foster and Oehler (4) have shown that the axle spacing 

of the vehicle (in combination with the vehicle speed) is one of the major factors that 
influence the dynamic behavior of highway bridges. In these tests, relatively large dy
namic effects in the bridge were observed when the time interval between the passing 
of the two axles over a given point was equal to the natural period of vibration of the 
structure. This observation suggests that the successive applications of the axle loads 
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may act as a periodic forcing agent on the structure and, therefore the synchronization 
of the period of vibration of the bridge with the period of load application may lead to a 
sort of "resonant" condition. 

The Ume interval between the passing of the two axles of the vehicle over the same 
point is s/v. One would expect the "resonant" or "critical" condition to occur when 

s/v _ s/2L an integer (6) 

This theory is generally borne out by the analytical results that have been obtained, 
covering three span lengths of 20, 45, and 70 f t , three vehicle speeds of approximately 
35, 52, and 68 mph, and axle spacings from 0 to 35 f t . Some of these results are pre
sented and discussed in the following paragraphs. 

Figure 7 shows spectrum curves for moment and deflection as a function of the axle 
spacing. These results are for the 45-ft span and for a value of a = 0.105 (v~.35 mph). 
The characteristics of the vehicle used are the same as those of Vehicle A, except that 
the axle spacing is varied over a range. The abscissa shows both the dimenslonless 
axle spacing parameter, s/2L, and the axle spacing, in feet. It is seen that the distances 
between consecutive peaks in these curves are approximately constant. Furthermore, 
the peaks occur at values of s/2L that are essentially multiples of the speed parameter 
used. In other words, Eq. 6 is satisfied quite closely. However, the magnitude of 
the peak effects are not sufficiently large to justify the use of the term "resonance" to 
describe the phenomenon. In the following, the term quasi-resonance wil l be used. 

Spectrum curves of bending moment for the 20- and 70-ft spans are given in Figure 8, 
in which is also reproduced the moment spectrum curve from Figure 7. Al l three 
curves are for the same loading and the same value of the speed parameter, a = 0.105. 
It can be seen that the general features of these curves are essentially the same. Ad
ditional curves, obtained for values of a = 0.155 and 0. 205, show the same character
istics. Some of these data are summarized in Table 3. The complete curves are 
available in Wen (11). 

The third column of Table 3 lists the absolute maximum amplification factors for 
midspan moment for the complete range of axle spacmgs considered. The fourth 
column gives the amplification factors for s = 0; i . e., a single axle having the same 
total load. 

TABLE 3 
SUMMARY OF MAXIMUM MOMENTS FOR 

A RANGE OF AXLE SPACINGS 

Span 
Length 

(ft) 
a 

Amplification Factor for Maximum Midspan Moment Span 
Length 

(ft) 
a Maximum Value for 

0 4 s ^ 35 
Value for 

s = 0 

0.105 1.17 0.96 
20 0.155 1.31 1.06 

0. 205 1.34 0.84 
0.105 1.18 1.00 

45 0.155 1.27 1.16 
0. 205 1.32 0.97 
0.105 1.11 1.02 

70 0.155 1.21 1.01 
0.205 1.18 1.03 
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It is seen that the absolute maximum effects are, in general, significantly larger than 
those for the sii^le-axle loading. However, this comparison is not a reliable measure 
of the effect of axle spacing, because the results for the single-axle load are quite 
small for the particular speeds considered. A change in the speed parameter wi l l af
fect both sets of values, but the possible increase in the magmtude of the effects is 
expected to be more pronounced in the case of the single-axle load. This may be ap
preciated by noting that for the 20-ft span the amplification factor is less than one, 
even for a value of the speed parameter as high as a = 0. 205. It is apparent that in 
this case the maximum static moment combines with a negative ordinate of a dynamic 
oscillation. The amplitude of this oscillation is at least 0.16; i . e., 16 percent of the 
maximum static moment. Therefore, the amplification factor for moment wil l increase 
at least by 0.32 when the speed of the vehicle is changed so that the peak static moment 
combines with the maximum positive ordinate of a dynamic oscillation. For a complete 
evaluation of the axle-spacing parameter, one must consider also the effect of varying 
the speed parameter. 

Table 4 shows the interrelationship of speed and axle spacing. Column 1 gives the 
peak values of the bendii^ moment obtained by keeping the axle spacing at s = 27.1 f t 
and increasing the speed parameter to a maximum value of 0. 21. Column 2 gives the 
corresponding values obtained by considering three values of the speed parameter, as pre
viously noted, and vailing the axle spacing from 0 to 35 f t . It can be seen that, where
as for the 20- and 70-ft spans, the values given in Column 1 are larger than those in 
Column 2, for the 45-ft span the reverse is true. In Column 3 are listed the larger of 
the values given in Columns 1 and 2. These results show that the peak dynamic effects 
increase with decreasing spans. 

TABLE 4 
SUMMARY OF MAXIMUM MOMENTS FOR A RANGE OF SPEEDS AND 

AXLE SPACINGS 

Span 
(ft) 

Maximum Amplification Factors for Midspan Moment 
Span 

(ft) 
(1) (2) (3) Span 

(ft) Speed Varied Axle Spacing Max. Value of 
(1) and (2) 

20 1.42 1.34 1.42 
45 1,15 1.32 1.32 
70 1.29 1.21 1.29 

From the results presented, it may be inferred that, for a vehicle having more than 
two axles, the dynamic effects produced by the individual axles may be cumulative, if 
the spacings between consecutive axles are multiples of one another. 

Concerning the relative magnitude of the dynamic effects produced by tandem axles 
and a single axle of the same total load, i t may be noted that, no matter how small the 
axle spacing, Eq. 6 can always be satisfied, provided the vehicle speed is sufficiently 
low. However, from the discussion presented relative to the effect of vehicle speed, 
it follows also that quasi-resonance at low speeds is not as important as at high speeds. 
If one somewhat arbitrarily takes v=33 mph as the lowest speed for which dynamic ef
fects are of consequence, and uses s = 4 f t for tandem axles, then he finds that Eq. 6 
can be satisfied only for spans equal to or less than 20 f t . That is, for vehicle speeds 
greater than about 33 mph, the quasi-resonant condition cannot be realized in bridges 
with spans longer than 20 f t . Hence, as one might expect intuitively, the dynamic ef
fects produced by tandem axles may be substantially larger than those produced by a 
single axle only in the case of very short spans. 
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Effect of Initial Bridge Motion 
The dynamic oscillations induced by the passage of a vehicle over a bridge may last 

for a considerable time after the vehicle has left the span. The influence of this motion 
must be considered in evaluating the response of the bridge to the passage of a second 
vehicle following the f i rs t closely. 

It is reasonable to assume that the initial oscillation is in the fundamental mode of 
vibration of the bridge. The initial deflection, y(x,t ' ) , may then be expressed by the 
equation 

y ( x , f ) = yo s i n ^ s i n ( 2 i r ^ + pfa) (7) 

in which Yq is the amplitude of the midspan deflection, x is the position coordinate 
measured from the left support, t' is time measured from the Instant the front axle 
enters the span, and Pj, is a phase angle. At t' = 0, the midspan deflection is 

yo sm Pb, and the corresponding velocity is $J^JqCos Pj,. The initial condition of the 
bridge may be specified either in terms of the initial deflection and velocity, or in 
terms of the amplitude yQ and the phase angle Pb. In the following, the latter alterna
tive is used. For convenience, the amplitude Jq is specified by the dimenslonless 
parameter 

% = yo/ys (8) 
in which yg is the maximum static deflection of the bridge at midspan due to the weight 
of the vehicle. 

The influence of the phase angle, pj j , on the response of the bridge is shown in 
Figure 9, in which are given spectrum curves of bending moment for a 45-ft bridge 
traversed by Vehicle A. The value of qw = 0.314. The three curves correspond to 
vehicle speeds of 38, 51, and 58 mph. Values of pb = 0 and Pb = 2-ir define the con
dition in which the beam has no Initial deflection but has a maximum downward velocity. 
For Pb = t h e r e is no initial deflection, but there is a maximum upward velocity. For 
P^ =^ there is an initial maximum downward deflection but no initial velocity. 
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It can be seen from this figure that the maximum response at midspan is quite sensi
tive to variations in the phase angle Pŷ . As might be expected, the peak values of the 
resijonse, which are the most significant quantities from a design standpoint, occur at 
different values of P b different speeds. 

In Figure 10 the absolute maximum values of the bending moment and deflection for 
three initially oscillating bridges are plotted as a function of the initial oscillation para
meter q^. These results are for Vehicle B and a speed parameter of a = 0.10. The 
amplification factors plotted are the maximum possible for values of the phase angle 
Pb in the range between 0 and 2ir In other words, the ordmates m this plot represent 
the peaks of curves similar to those presented in Figure 9. 

It can be seen from Figure 10 that the amplification factors for both moment and de
flection increase linearly with qjj and that the rate of increase is approximately one to 
one. Accordingly, the maximum effects produced by a vehicle in an initially oscillating 
bridge are approximately equal to the sum of the effects of the initial oscillation and the 
effects produced by the vehicle when the bridge is initially at rest. This result may be 
expressed by the equation 

(AFL = (AF)o f i (9) 
in which (AF)q. is the maximum possible amplification factor for either moment or de
flection at midspan for an initially oscillating bridge, and (AF)^ is the corresponding 
quantity for the bridge when initially at rest. 

In Table 5, the amplification factors for bending moment predicted by Eq. 9 are com
pared with the exact values as determined from the plots given m Figures 9 and 10. It 
can be seen that the agreement between the two sets of results is quite satisfactory. It 
should be pointed out, however, that additional solutions are required to establish the 
range of validity of Eq. 9. 
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TABLE 5 
COMPARISON OF EXACT AND APPROXIMATE VALUES OF MAXIMUM MOMENT 

Maximum Amplification Factor for Midspan Moment 
a q^ = 0.314 

% ~ ^ From Fig. 9 From Eq. 9 

0.118 0.97 1.29 1.28 
0.155 1.15 1.46 1.46 
0.175 1.04 1.37 1.35 

Maximum Amplification Factor for Midspan Moment 

^b From Fig. 10 From Eq. 9 

20 1.06 1.46 1.56 
15 1.05 1.52 1.55 
70 1.10 1.50 1.60 

Effects of Initial Vehicle Motion 
The influence of this factor is investigated by assuming that the initial motion of the 

vehicle corresponds to one of its natural models of vibration. Proceeding in a manner 
analogous to that used in the preceding section, i t can be shown that, for each motion, 
the initial condition of the vehicle can be specified in terms of the amplitude of the mo
tion and a phase angle. 

For the motion corresponding to the vertical or bouncing natural mode of vibration, 
the phase angle wi l l be denoted by P^, and the amplitude of the Initial displacement 
wil l be expressed in terms of the dimensionless parameter, q^, defined as 

Qv = V^s 
where is the amplitude of the dynamic vertical displacement of the centroid of the 
sprung mass, measured from the position of static equilibrium, and z- Is the corre
sponding static deflection. The maximum value of q^ measured in the tield (3,12) ^ -
pears to be on the order of 0.40. For the motion corresponding to the pitching or 
angular natural mode of vibration, the phase angle wi l l be denoted by ^p, and the am
plitude of the motion wil l be expressed in terms of the parameter, q^, defined as 

<lp = V"s 
where u^ is the amplitude of the angular displacement, and Ug is the ratio of the sum 
of the static deformations of the springs for the two axles divided by the spacing of the 
axles. 

The effects of the phase angles, and Pp, on the response of the bridge are similar 
to that of the phase angle for initial bridge oscillation, Pi ,̂ considered in Figure 9, and 
they wUl not be discussed further here. 

The effects of the amplitudes Of initial motion are shown in Figure 11, wherein are 
given spectrum curves for bending moment and deflection for a 70-ft bridge traversed 
by Vehicle B at a speed corresponding to a value of a = 0.10. For the solid curves the 
initial oscillation consists of a purely vertical motion, and for the dashed curves i t 
consists of a purely angular motion. The ordinates in these plots represent the abso
lute maximum amplification factors for all possible values of the phase angle associated 
with the initial motion considered. 
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It is seen that, except for the initial portions of the solid curves that are curved, 
these curves increase linearly with increasing values of the abscissae. This linear 
relationship between the maximum response and the amplitude of the initial vehicle 
oscillation has been noted before'(3) for the case where the vehicle was represented 
as a single-axle load. 

For the vehicle considered, equal values of and qp define equal amplitudes of dy
namic deformation for the springs of the two axles. Of xourse, the deformations of the 
individual springs are in phase for the bouncing motionandlSOdeg out of phase for the 
pitching motion. On comparing the magnitudes of the dynamic effects produced for 
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identical values of q^ and qp, one finds that, when qy and qp are greater than about 0.10, 
the effects for an initial bouncing motion are appreciably larger than those for an initial 
pitching motion. It should be pointed out, however, that the characteristics of the ve
hicle used to obtain these data are such that the two natural frequencies are equal. It is 
conceivable that, if the two frequencies are appreciably different from one another and 
the pitching frequency is closer to the natural frequency of the bridge than is the bounc
ing frequency, the maximum effects produced by the initial pitching motion may be 
greater than those due to the initial bouncii^ motion. 

For the range of amplitudes of initial vehicle oscillation considered in Figure 11, 
the maximum amplification factors for the bouncing and pitching motion are roughly 
1.8 and 1. 5, respectively. These are undoubtedly rather large dynamic effects. How
ever, i t should be remembered that in obtaining these results the vehicle has been as-
sî ^med to have no damping." "The effect of damping wil l be to reduce the magnitude of the 
amplification factors. This reduction is expected to be particularly significant for the 
longer spans for which the time required for the vehicle to cross the span at a given 
speed is greater than for the shorter spans. 

k Effect of Deck Unevenness 
^ The fact that the condition of the bridge surface may be one of the major factors 
H I controlling the magnitude of the dynamic effects in highway bridges was demonstrated 

- in the tests reported by Edgerton and Beecroft (7). These tests involved two bridges 
^ ^ k w i t h identical superstructures, except that one bridge had a smoother deck than the 
^ I p o t h e r . For the same loading, considerably greater dynamic effects were measured in 

the bridge with the uneven deck. 
^ The majority of the solutions presented in the following paragraphs are for a sinu

soidal unevenness. The results of an exploratory study are also given for a deck pro
file representable by a series of half-sine waves of unequal lengths and amplitudes, 
and tor a localized irregularity or a "bump" located on the otherwise smooth surface. 
The vehicle is represented as a single-axle load. 

Sinusoidal Unevenness.— Let p(x) denote the deviation of the deck profile from the 
design grade, as shown in Figure 1. Then a sinusoidal unevenness may be expressed 
by the equation 

p ( x ) = b s i n H ^ (12) 

in which b is the amplitude of the unevenness, and m is the number of half-sine waves 
along the span. The length of each half-sine wave is L/m. 

There are two conditions under which the dynamic effects produced by the unevenness 
may be expected to be of appreciable magnitude. The first corresponds to the case in 
which the period of the profile deviation, Tp, is equal or close to the natural period of 
vibration of the vehicle, Ty. The period Tp is equal to the time required for the vehicle 
to travel the distance covered by one complete wave, and it is given by the equation 

T - 2L/m _ l ^ b 
P V m a (13) 

By equating the expression on the right-hand side of this equation with Ty, one finds 
that this critical or "resonant" condition wil l occur when 

X 
ma = = ^ (14) 

^v 
It is seen that m and a are interrelated. That is, for a given value of m there is a 
critical speed, and for a given speed there is a critical value of m. 

The second critical condition may be expected when the period of the profile variation 
coincides with the natural period of vibration of the bridge, Tb. On equating these two 
periods one obtains the relation 

ma = 1 (15) 
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Although the amplitude of variation of the force exerted by the vehicle on the bridge 
may be small in this case, the djmamic effects in the bridge may stil l be ^preclable. 
The absolute maximum effects might be expected to occur when 

Tp = Ty = Tb 
In this case Eqs. 14 and 15 are Identical. 

In the formulation of Eqs. 14 and 15, i t has implicitly been assumed that there is 
no coupling between the motion of the vehicle and the bridge. The extent to which these 
approximate equations can predict the actual critical conditions is discussed in the 
following. 

Figure 12 gives spectrum curves for bending moment as a function of the speed para
meter for values of m = 5, 9, and 15. Included in this figure as a solid curve is also 
the solution for a smooth surface, b = 0. The bridge Involved is the 70-ft span, and 
the vehicle is the single-axle Vehicle C. In this case, the amplitude of the unevenness, 
b, is one thousandth the length of the half-sine wave. Since L = 70 f t , the amplitude b, 
in inches, is given by the expression 

in which m is different from zero. 
For these and all subsequent problems the vehicle is assumed to have no vertical 

motion as It enters the span, and the bridge is considered to be initially at rest but de
flected under its own weight. In other words, the design grade is considered to coin
cide with the dead-load deflection configuration of the stnicture. The f i r s t wave of the 
unevenness is assumed to be located below the design grade. 

The most striking feature of the results depicted in this figure is that the peak values 
of the response for the wavy surfaces are considerably larger than those for the smooth 
surface. The values of a corresponding to the maximum peak values of the response are 
listed in Table 6 together with the values evaluated from Eqs. 14 and 15. In general 
the values obtained from Figure 12 are close to the predicted value, particularly those 
based on Eq. 14. 

According to Eqs. 14 and 15, for each of the spectrum curves in Figtire 12 there 
should be two high peaks. The fact that there is only one peak may be attributed to the 
closeness of the two resonant conditions that appears to have forced the two peaks to 
merge into one. For the system considered, the ratio Tb/Ty = 0.90. Additional re-
results reported elsewhere (8) (13) indicate that large dynamic effects do occur for each 
of the two critical conditions referred to above, but of the two conditions, the condition 
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of synchronization between the period of 
the profile variation and the natural period 
of vibration of the vehicle is, in general, 
the more severe. The implication of this 
result is that, m order for the dynamic 
effects in the bridge to be large, the 
amplitude of the variation of the interact
ing force must f i rs t be magnified. 

In Figure 12 i t is noted that the ordi-
nates of the curves for the wavy surfaces 
decrease rapidly after they have passed 
their respective high peaks and eventually 
join the curve for the smooth surface. 
This IS as it should be, inasmuch as one 
would normally expect the dynamic effect 
produced by the sinusoidal unevenness to 
be negligible when the period of the dis-

TABLE 6 
COMPARISON OF EXACT AND 
APPROXIMATE "CRITICAL" 

VALUES OF a 

Value 
of 
m 

Critical Value of a Value 
of 
m From 

Fig. 12 
From 
Eq. 14 

From 
Eq. 15 

5 
9 

15 

0.154 
0.093 
0.057 

0.179 
0.100 
0.060 

0. 200 
0.111 
0.067 

turbance, Tp, is small in comparison with the period of the responding system. For a 
given bridge*-vehicle system, Ty and Tb are constant but Tp is inversely proportional 
to V and m. Hence, the larger the value of m for a curve in Figure 12, the smaller is 
the value of v or a at which the dynamic effects of the unevenness become negligible and 
the curves for m = 0 to start to join the curve for b = 0. 

In Figure 13 are given spectrum curves for bending moment for five different bridges 
as a function of the number of half-sine waves present along the span. In each case, 
the speed parameter is a = 0.1 and the amplitude of the wave is 

0.001 
m 

The vehicle used is similar to Vehicle C, 
tion is 0.28 sec instead of 0.35 sec. The 
represent the ratio T|j/Ty. 

The values of m corresponding to the 
two highest peaks of the curves in Figure 
13 are compared in Table 7 with the 
values obtained from Eqs. 14 and 15. It 
can be seen that the agreement between 
the actual and the predicted critical values 
IS quite satisfactory. 

In Figure 13 i t can be seen that, except 
for the 78-ft span, the magnitude of the 
peak response increases with increasing 
span length. This trend is due to two 
factors: (a) since the parameter ml?/L is 
constant for all span lengths, the ampli
tude of the waves corresponding to a fixed 
value of m is greater for the longer spans 
and (b) as the span length increases the 
ratio Tjj/Ty approaches unity, with the 
result that at the critical value of m the 
period of the surface unevenness is in 
synchronism with both the natural period 
of the vehicle and the natural period of the 
bridge. Of the two factors, the latter is 
the more dominant. This is evidenced by 
the fact that the curve for the 78-ft span, 
which has the largest value of b but a ratio 
of Tb/Tv = 1. 27, lies considerably below 
the curves for the 60- and 70-ft spans. 

except that its natural period of vibra-
values in parentheses m this figure 
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TABLE 7 
COMPARISON OF EXACT AND APPROXIMATE "CRITICAL" VALUES OF m 

Span 
(ft) 

Tb 
Tv 

Critical Value of m 
Span 

(ft) 

Tb 
Tv From 

Fig. 13 
From 

Eq. 14 
From 

Fig. 13 
From 

Eq. 15 

20 0.294 2.0 2.9 10.0 10.0 
45 9.66 6.0 6.6 10.7 10.0 
60 0.875 8.8 8.7 8.8 10.0 
70 1.12 10.4 11.2 10.4 10.0 
78 1.27 13.0 12.7 11.0 10.0 

> 0 2 3 

It is important to note that although the amplitude of the surface unevenness considered 
in these conditions was by no means excessive, the computed effects are quite large. 
In this connection, i t must be remembered that the effects of both bridge damping and 
vehicle damping were not accounted for in the analysis. Accordingly, the computed ef
fects are generally larger than those expected in practical cases. The influence of 
damping is likely to be particularly important when the number of waves along the spanj 
is large or when the ratio Tyj/Ty is close to unity. 

Semisystematic Unevenness. —The form of the unevenness considered is shown in 
Figure 14. It consists of five half-sine waves, alternately of opposite signs, having 
different lengths and amplitudes. The length of each end wave is taken equal to 1/5 the 

length of the span, whereas the lengths of 
the remaining waves are varied over the 
entire possible range, keeping the waves 
symmetrical about the center of the 
span. The amplitude-to-length ratio is 
considered to be the same for all the 
waves. 

The distribution of the unevenness can 
conveniently be specified m terms of the 
dimensionless parameter, X, defined as 

L<2 + J-'3 

where L2 and L3 are the lengths of the 
second and third waves, respectively. 
The range of X is from 0 to 1. As 
shown in Figure 14, X = 0 corresponds 
to the case in which there are only three 
waves along the span, whereas X = 1 
corresponds to the cases in which 
there are four waves. For a sinusoidal 
unevenness X = 0. 5. The end waves are 
assumed to be located below the design 
grade. 

The parameter X is essentially a 
measure of the regularity of the uneven
ness. Its influence is shown in Figure 

y , ,^ 15, in which the absolute maximum am
plification factor for midspan bending 

F i g u r e Ik. S i n u s o i d a l deck p r o f i l e v l t h °^ 
var y i n g wave length. bridges of 20-, 45-, and 70-ft spans. The 

X -o 
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Figure 15. E f f e c t of r e l a t i v e wave length. 

amplification factors plotted are the maximum within the range of speeds from 15 to 
70 mph. These results were obtained by use of Vehicle C. 

It is noted that for a fairly wide range of values of X the ordinates of the curves in 
this figure are of the same order of magnitude as the corresponding ordinate for a sinu
soidal profile (X = 0. 5). This is particularly true in the case of the 70-ft span for 
which the natural period of the bridge and the vehicle are close to one another. For 
this span, the amplification factor for bending moment varies from 1.97 to 1.85 for 
values of the X in the range between 0.15 and 1.0. 

The practical implication of these results is that, even when the unevenness of the 
bridge deck is not entirely symmetric, i t may be possible to estimate the absolute 
maximum effects by considering a sinusoidal unevenness with approximately the same 
number of waves and an amplitude equal to the average amplitude of the waves in the 
actual profile. 
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Localized Unevenness.—Figure 16 gives spectrum curves for bending moment as a 
function of the speed parameter for a 70-ft bridge with a localized irregularity in the 
form of a half-sine wave. The wave is considered to project above the design grade. 
Its amplitude is 1.68 in. and its length is 1/5 of the length of the bridge span. The 
curves labeled 1, 2, and 3 correspond to the cases where the irregularity occupies the 
f irs t , second, and third f i f th of the span, respectively. The curve labeled zero is for 
a smooth deck. 

It is seen that the dynamic effects produced by the unevenness are in general of con
siderable magnitude, and the absolute maximum effect is produced when the irregularity 
is located at the second fif th of the span instead of when centered about midspan. The 
latter result can be explained as follows. The primary effect of the irregularity is to 
amplify the vertical motion of the vehicle and thus increase the magnitude of the dy
namic reaction exerted by the vehicle on the bridge. But there is a time lag between 
the initiation of the motion of the vehicle due to the unevenness and the development of 
the maximum possible djmamic reaction. When the irregularity is situated at midspan, 
by the time the dynamic reaction attains its maximum value, the vehicle is past mid-
span and at a position for which a given force wi l l stress the structure of the lesser 
extent than when the same force is applied at midspan. 

SUMMARY 
The results of an anal3^ical study have been presented to illustrate the influence of 

some of the factors producing dynamic effects in simple- span highway bridges. In the 
majority of the solutions the vehicle was represented as a two-axle loading. 

The factors considered fall into two categories. In the f i rs t belong the factors re
lated to the behavior of bridges with a smooth surface traversed by a vehicle that is 
initially in its position of static equilibrium. They include the speed of the vehicle, 
the axle spacing, and the initial oscillation of the bridge. The common characteristics 
of these factors is that they prevail in all bridges to a comparable degree, and their 
possible ranges are reasonably certain. In the second category belong the additional 
factors associated with the effects of the unevenness of the bridge surface and the ap-
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proaches. They include the initial oscillation of the vehicle and the characteristics of 
the bridge surface. The relative Importance of these factors may be quite different 
for different bridges, as the surface Irregularities depend on such factors as the type 
of the pavement, and the location and maintenance of the bridge. At the present time, 
little is known about the distribution and the magnitude of roadway unevenness for high
way bridges. 

In general the magnitude of the maximum dynamic effects in a bridge increase with 
increasing vehicle speed. For axle spacings larger than the bridge length, the dynamic 
effects produced by a two-axle loading were found to be larger than those produced by 
single-axle loading. The increase is attributed to the fact that when the rear-axle en
ters the span the bridge is already in a state of oscillation. 

By varying the axle spacing while keeping all other variables constant, it was found 
that a quasi-resonance condition is developed when the time interval between the appli
cation of the two axles over a point is equal to the fundamentalnatural period of vibration 
of the bridge. 

It the bridge is already in a state of oscillation when the vehicle enters the span, the 
dynamic effects produced by the vehicle depend on the timing of the entry of the vehicle 
with the oscillation of the bridge. The absolute maximum effect can be estimated ap
proximately by superimposing on the maximum effect due to the initial oscillation the 
effect that would be produced by the vehicle if the structure were Imtially at rest. 

The Influence of the initial vehicle oscillation was investigated by considering both 
a bouncing and a pitching motion for the vehicle. For the problems studied i t was found 
that, for the same amplitude of initial deformation in the springs, the effects of pitch
ing are less severe than those of bouncing. The magnitude of the resulting dynamic ef
fects were found to Increase almost linearly with the amplitude of the initial oscillation 
considered. 

The influence of the unevenness of the bridge deck was Investigated by considering 
a sinusoidal profile variation, a semisystematlc unevenness consisting of a series of 
half-sine waves of unequal amplitudes and lengths, and a localized unevenness. The 
results obtained show clearly that roadway unevenness may be a source of large dynamic 
effects in highway bridges. 

In interpreting the practical significance of the solutions presented in this paper i t 
must be kept in mind that the contributions of both vehicle damping and bridge damping 
were not accounted for in the analysis. Accordingly, the computed effects are generally 
larger than those to be expected in actual cases. 
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Appendix 

NOTATIONS 

AF = amplification factor 
b = amplitude of sinusoidal unevenness on bridge surface 
fb = fundamental natural frequency of vibration of bridge, in cycles per sec 
L = span length of bridge 
m = number of half- sine waves along the bridge span 
% " ^o^^s " dimensionless amplitude of initial bridge oscillation 
q = dimensionless amplitude of initial pitching motion for vehicle, as defined by 
^ Eq. 11 

q = dimensionless amplitude of initial vertical motion for vehicle, as defined by 
Eq. 10 

s = spacing between axles 
Tb = fundamental natural period of vibration of bridge 
Ty = natural period of vibration of vehicle, idealized as a single-axle load 
T = period of sinusoidal profile, defined by Eq. 13 
t = time 
v = vehicle speed 
y^ = amplitude of initial bridge oscillation at midspan 
yg = maximum static deflection of bridge at midspan due to weight of vehicle 
a = speed parameter, defined by Eq. 1 

Pb = phase angle of initial bridge oscillation 
Pp = phase angle of initial pitching motion of vehicle 
PY = phase angle of initial (vertical) bouncing motion of vehicle 



Bridge Vibrations as Influenced by 
Elastomeric Bearings 
W I L L I A M ZUK, Professor of C iv i l Engineering, University of Virginia, and Highway 
Research Engineer, Virginia Council of Highway Investigation and Research 

Inasmuch as many highway bridges are now being built with elasto
meric bearings, i t was considered desirable to study the vibration 
effects of such bridges. A theoretical analysis is presented, f o l 
lowed by several example calculations of short and medium span 
bridges. 

General relationships are presented to determine the frequency 
of vibration of simple span bridges in the fundamental mode and the 
rat io of bridge beam deflections to the flexible bearing deflection 
under vibration subject to vehicular loads. 

Contrasting the behavior of bridges with elastomeric bearings 
and with conventional r ig id bearings, the following general con
clusions are found: (a) the dynamic bridge deflections are i n 
creased; (b) the frequency of vibration is reduced (c) the 
elastomeric bearings add damping to the system; and (d) the 
dynamic stresses in the bridge are significantly reduced. 

The fact that the impact stresses are reduced is quite reveal
ing, as elastomeric bearings may lead to further structural 
economy, whereby less tolerance need be allowed fo r impact. 

• MANY modern highway bridges are now being constructed in which the conventional 
r ig id metal end bearings are being replaced by elastomeric bearing pads, such as 
neoprene. The pr imary purpose of using such neoprene bearings fo r short and medium 
span bridges is to reduce the cost of end bearing construction while s t i l l maintaining 
provision for expansion, contraction, and rotation of the bridge beams. 

Because such supports are much more flexible than conventional supports, these 
elastomeric bearings w i l l change the vibration characteristics of such bridges. The 
damping properties of elastomeric pads may also exert an influence on the vibration. 

A completely rigorous theoretical study of bridge vibration including a l l the effects 
of oscillating moving loads, of the i r regular i t ies of road surface, of the infinite degree 
of freedom of the structure, and of the many manners of damping is a well-recogmzed 
task of monumental proportions. C. E. Inglis, in his book on vibrations, goes so fa r 
as to say, perhaps not too facetiously, that these "repulsive" mathematical equations 
are so complex that solutions cannot be had unti l after much prayer and fasting. As 
this study represents a f i r s t attempt to evaluate, in order of magnitude, the dynamic 
behavior of bridges supported on elastomeric bear i i^s , the theoretical assumptions 
w i l l be simplified to the ones believed to be the most influential on the behavior. 

Several examples w i l l be presented following the theory to indicate the trends of 
frequency, dynamic stresses, and deflections that would possibly occur under l ive loads. 

THEORY 

Undamped Frequency with Vehicular Load 

The most c r i t i ca l bridge frequency is the one that is m resonance with the forcing 
frequency, as caused by a heavily loaded truck whose spring mass is oscillating v e r t i 
cally (1.). For a simply supported bridge this c r i t i ca l frequency maybe analytically ob
tained by placing the vehicle at the midspan and determining the fundamental mode caused 
by the bridge and truck masses. ^ • 
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At resonance, the vert ical oscillations of the vehicle w i l l be in phase with the osci l 
lations of the bridge i tself . For simplici ty of analysis, the oscillations of the vehicle 
w i l l be assumed equal to that of the midspan of the bridge. * 

Figure 1 shows the fundamental mode of vibration fo r a bridge beam supported on 
elastic bearings. Using Rayleigh's energy method of analysis (2), the total bridge de
flection w i l l be considered as 

y = (a + b sin ) cos pt = X cos pt (1) 

where p is the circular frequency, t is t ime, a is the maximum support deflection, 
and b is the maximum beam deflection. 

In Rayleigh's method, the maximum potential energy, V, is equated to the maximum 
kinetic energy, T. 

From Ar t i c le 4 in Timoshenko (2) 

EI 
-I dx + 2 I â  

where EI is the f lexura l r ig id i ty of the beam, and k is the spring constant of the 
flexible support. 

2 J c 
dx + - i M Vi 

(2) 

(3) 

where m is the mass of the bridge beam per unit length, M is the mass of the vehicle 
applied to the beam, and v i is the maximum vert ical velocity of the vehicle, taken as 
p(a + b) f o r harmonic motion. 

Af te r equating V to T and regrouping 

#The a p p r o x i m a t i o n he re l i e s i n t h e p o s s i b i l i t y t h a t t h e m o t i o n o f t h e sprung mass o f t h e 
v e h i c l e may d i f f e r , f r o m t h a t o f t h e b r i d g e , n e c e s s i t a t i n g more i n v o l v e d a n a l y s i s . 
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(4) 

m l dx + M (a + b)'' 

This reduces to 

4Trka='L' + i r*EIb ' ' 

2Trma^ L* + 8abmL* + - i r m b V + 2 i r M a V + 4 i r M a b L ' + 2 i rMb 'L* (5) 

To obtain the fundamental mode, p is minimized by taking 

0 a a b 

Both expressions give the same results. Af te r performing this operation and reduc
ing, the support deflection, a, may be found in terms of the beam deflection, b, as 
fol lows: 

a = nb (6) 
where 

n=-n'EI(Lm+M) -2-irKL'(Lm+2M) + r 2 i r K L ' ( L m + 2 M ) - i r ' E I ( L m + M ) l ^ + I G x E I K L ' 

( 2 L m + w M ) Y ' ' / 8 K L ' ( 2 L m + i r M ) 
To obtain the circular frequency, p, Eq. 6 is substituted into Eq. 5. Both a and b 

w i l l thereby be eliminated, and p may be determined as 

4 i r k n V +ir*EI 

2"irmn^L* + 8nmL* +irmL* + 2irMn^L" +4-irMnL" + 2 i rML* 

The fundamental frequency in cycles per unit of t ime is therefore 

1/2 
(7) 

For comparative purposes, the fundamental frequency f o r a supported bridge beam 
with a load at the center (but with r i g i d bearings) may be found as outlined in Norr i s et 
a l . U , p. 423) and Timoshenko (2, pp. 26-27). By considering one-half the beam mass 
acting with the central load, the beam vibration problem may be resolved into a single 
degree of freedom problem whose frequency solution is 

f = i -
2Tr ^ 

^, 48EI 

k' 
m L / 2 + M (8) 

Amplitudes and Stresses with Damping 
Without specific knowledge of the magnitude of the disturbing force, such as one 

caused by a moving truck, the exact amplitudes and stresses in a bridge cannot be de
termined. However, if one assumes that the same disturbing force acts on a bridge 
with f lexible supports as with conventional r ig id supports, a rat io of amplitudes between 
the two may be determined. 

If one degree of freedom is assumed, a dynamic model of the loaded bridge with 
damped elastic bearings may be shown, as i n Figure 2. C is the coefficient of viscous 
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damping f o r the elastic support and "C" Is the coefficient of viscous damping f o r the 
beam itself . * If k is considered infinite and C considered zero, the model in Figure 2 
then represents a bridge conventionally supported. 

F rom Ar t i c le 13 (2), the rat io of amplitudes fo r bridges with and without f lexible 
supports f o r a resonance condition of forced vibration with damping may be obtained 
as fol lows: 

Ampl i t . elastic support _ _ _ C f 
Ampl i t . r ig id support " A (9) 

where Cg = C + 2C = Effective damping of beam and support 

2k k' 
" k ' + 2k Effective spring constant of beam and support 

Note that in Eq. 9 the bridge and vehicle masses divide out, as does the disturbing 
force, P. As w i l l be shown later, this rat io, R^, f o r dynamic deflections is generally 
greater than unity. 

For comparative purposes, the rat io of l ive load nondynamic deflections with and 
without elastic supports f o r vehicles at crawl speed or stopped may be wri t ten as 

R/ k^ 
k„ (10) 

This value of R^ '̂ also exceeds unity. 

I t i s assumed t h a t i n c o n v e n t i o n a l l y s u p p o r t e d b r i d g e s , t h e r o l l e r s o r r o c k e r s are w e l l 
l u b r i c a t e d , h a v i n g n e g l i g i b l e damping . 
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Since the maximum total dynamic bridge deflection consists of the support deflection, 
a, and the beam deflection, b, the increased bridge deflection obtained f o r elastically 
supported bridges f r o m Eq. 9 does not necessarily imply increased dynamic f lexural 
stresses. 

If the dynamic amplitude f o r r ig id ly supported beams is taken as unity then R ^ rep
resents the dynamic amplitude fo r elastically supported beams. Therefore 

a + b =R^ 
However, using Eq. 6 

b(l + n) = R ^ 

Because the beam deflections are direct ly related to the djmamic f lexural stress, 
S, the rat io of vibration induced stresses of bridges with and without elastic supports 
i s given by 

Dyn. stress elastic support _ b _ R A _ C ' f 1 ( l l ) 
E^n. stress r i g i d support 1 1 + n ~ Cgf (1+n) 

As w i l l be shown later, this rat io, Rs is generally less than unity. 
Again fo r comparative purposes, i t is wel l to remember that no stress chaises take 

place in the beam with vehicles at crawl speed or stopped (not considering vibration) 
fo r bridges with or without elastic supports. In simply supported beams, the beam 
stresses do not change under this "static" condition, because the stresses are independ
ent of the end deflections. 

EXAMPLES 
Short Span Bridge 

As an example of a short span highway bridge, a simply supported reinforced con
crete structure, 36 f t in length is selected. H-20 loading is assumed, acting umformly 
on f ive parallel stringers. The bearing pads are assumed made of neoprene, I 'A in . 
thick of 60 Durometer hardness. Based on compressive load-deflection curves by 
Biggs and Suer (3), the equivalent spring constant, k, fo r this particular pad is 
32 X 10* lb per in . F rom Yerzley Oscillograph readings performed in accordance 
with test method ASTM D 945 as supplied by the E. I . DuPont de Nemours and Co. 
the coefficient of viscous damping, C, is computed as 3.11 lb-sec per in . • 

Other pertinent data f o r this bridge are as fol lows: 

Mass per unit length of beam = m = 0. 282 lb-sec^ per in . 
Mass of vehicle per beam = M = 21. 7 lb-sec* per in . 
Modulus of elasticity of beam = E = 3 x 10^ lb per sq m . 
Moment of inert ia of beam = I = 73 x 10* in . " 

The coefficient of viscous damping, C, of the bridge beam itself is d i f f icu l t to pin
point, as many accumulated minor factors are involved. A number of citations to ex
perimental damping coefficients are given by DuPont de Nemours and Co. (4), Foster 
and Oehler (5) and Inglis (6). A decision of judgment therefore had to be made in the 
selection of the coefhcient, C, based on the significant structural s imilar i t ies between 
the example bridge and the bridge in the previously cited references. For this bridge 
the value of C = 460 lb-sec per in . i s taken as a representative mean. 

By means of Eq. 6, the relationship is found that 

I! a = 0. 597 b 

* T h i s c o n s t a n t was a l s o checked b y an independen t method b y t h e a u t h o r . 
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By use of Eq. 7, the fundamental frequency is found as 

f = 6. 5 cps 

By means of Eq. 9, the rat io of dynamic amplitude, R^, with and without elastic 
support i s 

R A = 1.44 

By means of Eq. 11, the rat io of dynamic stresses, Rg, with and without elastic 
support is 

Rg = 0.90 

For comparative purposes, the bridge frequency with r ig id supports i s computed 
f r o m Eq. 8 as 

f = 9. 5 cps 

Also f o r comparative purposes, the rat io of nondynamic live-load deflection with 
and without elastic supports i s computed f r o m Eq. 10 as 

R A ' = 1 . 4 5 

Thus to summarize this example of a short span bridge, the consequences of using 
elastic bearings instead of conventional bearings are the following : 

1. Reduction of the frequency of vibration by a ratio R j = 0.685. This reduction 
in frequency may have significant consequences if the frequency is reduced below 
6.5 cps as tests by Foster and Oehler (5) indicate this to be the threshold of pedestrian 
distress. If the frequency is reduced below 3 cps, undesirable resonance between ve
hicles and structure may result. 

2. Increase of the total dynamic amplitude by a rat io R^ = 1.44 of which 37. 5 per
cent of the total amplitude lies in the support pads. However, this increased amplitude 
is not serious within i tself . 

3. Increase of the over-al l damping by a ratio R^ = 1.01. This chaise is negligibly 
small . 

4. Decrease of the dynamic beam stresses by a rat io Rg = 0.90. This decrease is 
significant as less allowance may perhaps be permissible fo r impact stresses. 

5. Increase of the nondynamic live-load deflection by a rat io R^' = 1.45 of which 
31 percent of the total deflection lies in the bearings. 

6. Absence of change in the nondynamic live-load or dead-load beam stresses; i . e., 
Rs' = 1-

Medium Span Bridge 

A 78-ft simply supported bridge with prestressed concrete beams is taken as another 
example. H-20 loading is again assumed. The bearing pads are assumed to be the 
same as in the pr ior example. The data pertinent to this bridge are given as follows: 

m = 0. 286 lb-sec^ per in . 
M = 27. 7 lb-sec" per in . 
E = 5 X 10* lb per sq in . 
I = 640. 57 X 10^ in . 
k = 32 X 10* lb per in . 
C = 3.11 lb-sec per in . 
C = 866 lb-sec per in . 

From Eq. 6 a = 0. 4077 b 
From Eq. 7 f = 4.49 
From Eq. 9 R A = 1.20 
From Eq. 11 Rs 

f 
= 0.85 

From Eq. 8 
Rs 
f = 5. 42 cps 

From Eq. 10 R A ' = 1.29 
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Summarizing the results of this example, i t i s seen that the use of elastic bearings 
in place of r ig id bearings achieves the following: 

1. Reduction of the frequency of vibration by a rat io Rf = 0.83 putting the bridge in 
a more c r i t i ca l low frequency range. 

2. Increase of the total djmamic amplitude by a ratio R^ = 1. 20, i n which 29 percent 
of the total amplitude l ies in the flexible bearings. 

3. Increase of the over-a l l damping by rat io = 1.01. 
4. Decrease of the dynamic beam stresses by a rat io Rs = 0. 85. 
5. Increase of the nondynamic live-load deflection by a rat io R^ ' = 1. 29, of which 

22. 5 percent of the total deflection l ies in the bearings. 
6. Absence of change in the nondynamic live-load or dead-load beam stresses, 

making Rg' = 1. 

To i l lustrate the effects of thicker bearing pads, consider the same 78-ft bridge but 
with 3- in . thick neoprene pads.of Durometer hardness 70. For this pad k = 23. 3 x 10* 
lb per i n . and C = 5.19 lb - sec per in . 

Then f r o m Eq. 6 a = 0.542b 
From Eq. 7 f = 4. 42 cps 
From Eq. 9 R A = 1.21 
Frorii Eq. 11 Rs 

f 
= 0.79 

From Eq. 8 
Rs 
f = 5.42 cps 

From Eq. 10 R A ' = 1.40 

Thus, the consequences of using thick elastic bearings in place of conventional r ig id 
bearings are the following: 

1. Reduction of the frequency of vibration by a ratio Rf = 0 .81 . 
2. Increase of the total dynamic amplitude by a rat io R^ = 1. 21, in which 35 per

cent of the total amplitude l ies in the supports. 
3. Increase of the over-a l l damping by a ratio = 1.01. 
4. Decrease of the dynamic beam stresses by a rat io Rg = 0.79. 
5. Increase of the nondynamic live-load deflection by a rat io R^ '̂ = 1.40, of which 

28. 5 percent of the total deflection lies in the bearings. 
6. Absence of change in the nond3mamic live-load or dead-load beam stress. 

A comparative study of the dynamic effects of the same bridge with thick and thin 
bearing pad shows that impact stresses are reduced an additional 6 percent fo r thick 
pads, or a total of 21 percent over r ig id bearings. 

CONCLUSIONS 

Despite the fact that the example bridges are of different types and lengths, the 
general trends of amplitudes, stresses, and frequencies are s imi la r . 

Flexible supports w i l l decrease the natural bridge frequency; however, the example 
problems indicate the reduction in the order of magnitude of 20 to 30 percent, being 
larger for shorter spans. Bridges normally stiff enough with r ig id bearings may there
fore become undesirably flexible with elastomeric bearings, especially if frequencies 
are in the range of 4 to 6 cps. 

It is also obvious that elastic supports w i l l increase both dynamic and nondynamic 
amplitudes and deflections. However, the examples show that the increase is slightly 
less fo r dynamic than fo r nondynamic live-loads. 

The small amount of damping added to the system by the elastomeric supports is 
negligibly small , and even this increase is questionable inasmuch as the theoretical 
assumption is made that the conventional supports have no damping. 

In cases of rusty or d i r ty conventional supports that have an appreciable amount of 
f r i c t i on damping, a replacement with elastomeric bearings may actually decrease the 
total damping. 

The most interesting and somewhat paradoxical conclusion to be drawn f r o m this 
study however, is that the dynamic beam stresses actually decrease by about 15 per
cent, despite an increase in total deflection of about 30 percent. The explanation lies 
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in the fact that the total deflection is due to the sum of the support and beam deflections; 
whereas the stresses are due only to the beam deflection portion of the total deflection. 
The explanation may also be stated in another maimer, namely, the total impact energy 
is distributed to both the beam and the elastic support. Because the supports absorb a 
portion of this energy, there is less energy fo r the beam to absorb. In a general way, 
the elastic supports act as shock absorbers. 

The examples show that the thicker bearing pads tend to reduce impact stresses ma
ter ia l ly as compared to thinner pads. Thus, the question of design arises if perhaps 
designing f o r thicker pads is not to be preferred to reduce impact stresses, providing 
that frequency levels are not c r i t i c a l . A lower impact stress would certainly be advan
tageous in many respects, including that of improving a bridge's fatigue l i f e . 

Unfortunately, immediate experimental verif icat ion to the theoretical conclusions is 
not available. Unti l i t i s , certain caution is suggested in adoptii^ the theoretical con
clusions fo r design use, as the theory is based on many simplifying assumptions. 

Relatively easy laboratory experiments would generally be useless due to the v i r tua l 
impossibility of scaling and reproducing vehicular djmamics, deck roughness, and damp
ing. Field tests would therefore provide the only reliable confirmation fo r design use. 
In f i e ld testing, two possibilities appear feasible. The f i r s t is to design twin bridges 
(as on a dual highway) one with conventional bearings and the other with elastomeric 
bearings. Instrumenting both bridges would then provide comparative information. 
However, variations in deck roughness between the two bridges may conceivably be a 
significant factor in impact. Therefore, a second alternate fo r f ie ld testing would be 
to use but one bridge but designed fo r interchanging r ig id bearings and elastic bearings. 
The second alternate is more costly, although more precise. The Bridge Division of 
the Virgin ia Department of Highways is currently considering erecting such bridges 
f r o m which reliable data may be found. I t i s hoped that this may be done in the near 
future. 
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Truss Deflections by Electronic Computation of 
The Williot-Mohr Diagram 
ZA LEE MOH, Structural Designer, and CHARLES E . COOPER, Junior Engineer, 
State Highway Department of Indiana, Indianapolis 

This paper describes the method and procedure used in a digital 
computer program to f ind horizontal and ver t ical movements 
of a l l joints of a truss, given the member stresses and the 
structure properties. The method presented is a solution by 
anal3rtic geometry of the well-known graphical method of WHliot 
and Mohr. The discussion of the basic program procedure is 
accompanied by a simplif ied flow chart. A sample case is i n 
cluded to i l lustrate the speed, accuracy, and f lex ib i l i ty of the 
program. 

• T H E A D V A N T A G E S of truss construction are well known, as witnessed by i ts wide
spread use in bridge building. A major disadvantage, however, has been that the design 
calculations are usually very time-consuming, part icularly fo r indeterminate trusses. 
This disadvantage, however, is becoming less and less significant with the growing use 
of the digital computer. There have already been several programs developed for stress 
analysis of determinate and indeterminate trusses. The program described i n this 
paper deals with another important phase—that of deflections. The necessity f o r truss 
deflection computations arises both in the design office, as in the determination of 
secondary stresses, and in the f ie ld , as in the erection of continuous trusses by the 
cantilever method. 

Representative of the several procedures fo r determining truss deflections are the 
v i r tua l work, the elastic weight, and Wil l io t -Mohr diagram methods. The method of 
v i r tua l work is perhaps the best and most direct method fo r computing one component 
of deflection fo r one joint, but this process becomes quite lengthy i f the true absolute 
deflections of a l l joints are needed. The elastic weight method comes a step closer, 
but even i t is l imited to only one component fo r each joint . This method also becomes 
lengthy i f both the horizontal and ver t ical components are to be computed. The Wi l l i o t -
Mohr diagram yields the resultant deflections of a l l joints by a single solution. As a 
graphical method, i t too has i ts disadvantages. Although i t is theoretically sound, i t 
i s by i ts very nature l imited in accuracy, and fo r very large structures, i t becomes 
part icular ly troublesome in matters of scaling and orientation on the paper. But these 
disadvantages are easily overcome by an algebraic procedure that corresponds to the 
graphical one. The computations involved in the solution by analytic geometry of the 
Wi l l io t -Mohr diagram are quite simple and are highly repetitive i n nature, thus making 
this method wel l suited to the electronic computer. The analytic solution is both accu
rate and fast. I t is the purpose of this paper to describe an electronic computer program 
and the method used therein f o r the computation of truss deflections. 

NOTATION 

Specific symbols are defined where they appear in this paper. In general, however, 
the fol lowing rules apply: 

1. Superscripts T, W, and M refer , respectively, to the truss diagram, the Wil l io t 
diagram, and the Mohr correction diagram. 

2. Subscripts re fer to specific points or vectors. X and Y subscripts are used to 
denote, respectively, x and y components of vectors. 
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3. Points on the different diagrams are designated by an upper case letter with a 
superscript. Thus, for example, A"" is the point on the Wil l io t diagram that corresponds 
with point (or joint) of the truss diagram. 

4. The relative positions or locations of the various points are defined by x and y 
coordinates. For example, ( , y^;;) are the coordinates of point A " on the Wi l l io t 
diagram. 

THE WILLIOT-MOHR METHOD 

Though no attempt is made here to develop or prove the Wil l io t -Mohr method f o r 
determining truss deflections, the following graphical procedure is described as a 
basis fo r the development of the analytic procedure. 

The Wil l iot diagram, which is drawn f i r s t , gives the movements of a l l joints of the truss 
with respect to one of the joints and a member that enters that joint. I f the member 
that was used as a direction reference actually rotates with the deformation of thetrus.s, 
the Mohr correction diagram must be added to give the true absolute movements of a l l 
the joints. The scaling of the Mohr correction diagram depends on the amount that the 
original reference member actually rotates, and the positioning of the correction dia
gram depends on the actual movement of the original reference joint . If a truss joint 
that i s actually fixed against translation i s used as the reference point fo r the Wil l io t 
diagram, then both the Wil l io t diagram deflection and the Mohr diagram correction for that 
joint would be zero. A second point on the Wil l io t diagram may be located by using one 
of the members entering the fixed joint as a direction reference. A vector equal to the 
deformation of that member is drawn f r o m the reference point i n the direction in which 
the opposite joint of that member moves 
with respect to the f ixed joint. The loca
tion of the f i r s t two points on the WiUiot 
diagram is shown in Figure 1. Point F"" 
on the Wil l io t diagram corresponds to the 
f ixed joint F''' on the truss diagram. The 
member connecting joints F ^ and is 
used as a direction reference for the 

pWHW Will iot diagram. The vector r ' n - rep
resents the magnitude and direction of 
the movement of joint H with respect 
to joint F ^ , and thereby the position of 
pomt on the Wil l io t diagram is es
tablished. Note_that is drawn 
parallel to F ^ H ^ . 

Af ter having established the f i r s t two 
points, the Wil l io t diagram is completed 
by proceeding f r o m joint to joint i n a 
series of s imilar steps. In each step 
two known Wil l io t diagram points and 
the deformations of two members are 
used to establish the position of a third 
Wi l l io t diagram point. One such step is 
shown in Figure 2, which shows a typical 
triangular truss panel (Fig. 2a) with joints 

, B" , and and the corresponding 
portion of the Wil l io t diagram (Fig. 2b). 
Points A^and are the known Wil l io t 
diagram points and Cw is the point to be 
determined. The location of point i s 
determined as fol lows: 

1. The intermediate point W^^ is es
tablished by the vector A'̂ Wŷ c which is 

(a) TRUSS DIAGRAM 

Y 

/ f 

c 

/ f 
\ \ 
\ V 

\ \ 
\ \ 

(b) WILLIOT-MOHR DIAGRAM 
F i g u r e 1 . Example t r u s s and W i l l i o t - J l o h r 

d i a g r a m s . 
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Y 

-X 

Y 

(a) TRUSS DIAGRAM 

(b) WILLIOT DIAGRAM 

F i g u r e 2 . T y p i c a l t r i a n g u l a r t r u s s p a n e l 
w i t h c o r r e s p o n d i n g p o r t i o n o f W i l l i o t 

d i a g r a m . 

necting points and 

proportional i n l e i ^ t h to the deformation 
of member AC and is drawn parallel to 
that member f r o m A * to in the direc
tion that C moves with respect to A^ . 
The intermediate point W is established 
in l ike manner with respect to member 
BC. 

2. Perpendiculars are erected at points 
W;̂ c ^ ^ B C ^ extended unt i l they 
intersect to locate . 

This procedure is repeated unti l a cor
responding Wi l l io t diagram point has been 
established f o r each joint of the truss. 

With the Wi l l io t diagram completed, 
the Mohr correction diagram can be drawn 
to give the true absolute movements of a l l 
the joints. Because the fixed joint of the 
truss was used as the starting point fo r 
the Wil l io t diagram, the correction i n 
volves only the rotation of the structure 
about that joint unti l the guided joint is 
brought back into i ts predetermined path. 
The Mohr diagram is geometrically s imi 
la r to the truss configuration, and fur ther
more, the lines of the Mohr diagram are 
perpendicular to the corresponding lines 
of the truss diagram. Referring again to 
Figure 1, coincides with F * because 
F""^ is actually fixed in position. Another 
Mohr diagram point, G , is defined by 
the intersection of a line drawn through 
G"" parallel to the direction of movement 
of the guided joint G and the line drawn 
through^ F perpendicular to the line con-

With these two points, F"" and G"" , determined, the rest 
of the Mohr diagram can be f i l l ed i n to scale in accordance with the preceding. 

THE ANALYTIC PROCEDURE 
Input Data 

The information needed f o r the construction of the Wil l io t -Mohr diagram consists of 
an adequate description of the truss configuration and the deformation (shortening or 
lengthening) of each member. For the computer program the truss is described by 
means of two tabulations. The f i r s t i s a tabulation of joints by number giving a pair of 
of rectangular coordinates fo r each joint. The second is a tabulation of members giving 
the joint numbers of the two joints that each member enters. The coordinates axes are 
positioned on the truss diagram so that the entire truss l ies in the f i r s t quadrant, thus 
eliminating negative coordinates. 

In addition to the joint and member tabulations, the numbers of the fixed and guided 
joints and the direction i n which the guided joint moves must be indicated. The direc
tion of movement of the guided joint is expressed as an angle, p' , measured f r o m the 
X-axis. Also, because the output deflections (answers) are to be given in x and y com
ponents, the desired directions f o r these components (such as horizontal and vertical) 
are indicated by an angle, a , measured f r o m the respective coordinate axes used to 
describe the truss. For both a and the usual sign convention applies; i . e . , counter
clockwise is positive, clockwise is negative. Note that, regarding algebraic sign, these 
angles are given with respect to the original coordinate axes used to describe the truss 
configuration. 
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The data needed fo r computing the member deformations include the axial force, 
cross-sectional area, and length of each member along with the modulus of elasticity 
of the truss material . The axial forces (stresses), S, and the cross-sectional areas, 
A, are included in the member table, and the lengths are determined f r o m the joint 
coordinates. The appropriate conversion factors may be incorporated into the f igure 
f o r modulus of elasticity in order that a l l other data may be entered "as found" without 
regard to units. Based on the data thus provided, the computations for truss deflections 
can be started. 

Preliminary Computations 

The guiding principle in the preparation of the format fo r input data was that these 
data should be l imi ted as nearly as possible to those quantities that are readily availa
ble, leaving conversions and other prel iminary computations to the computer program. 
The f i r s t of these prel iminary computations to be considered here is that fo r member 
deformations. Because the subsequent computations w i l l involve only x and y compo
nents, the unit deformation rather than the total deformation is computed fo r each 
member at this t ime. Unit deformation, 8, may be defined as the amount by which a 
unit length of a member elongates or shortens. In accordance with the definition of 
modulus of elasticity. 

6 = 
A E (1) 

The algebraic sign, of course, depends on the sign of S, which is considered positive 
fo r tension and negative for compression. 

Having oriented the original coordinate axes on the basis of convenience fo r describ
ing the truss configuration, the next step 
is to t ransform the coordinates so that 
(a) the or igin coincides with the fixed joint 
and (b) t h e X and Yaxes l ie , respectively, 
in the directions in which the f ina l deflec
tion components are desired; e. g . , ho r i 
zontal and ver t ical . The formulas fo r 
transformation of coordinates are 

X = (y'- k) sina + (x'-h) cos a (2a) 

y = (y ' -k) cosa - (x'-h) sin a (2b) 

in which x and y are the coordinates of a 
point i n the new system, x' and y' are the 
coordinates of the same point in the old 
system, h and k are the coordinates of 
the or ig in of the new system in terms of 
the old system, and a is the angle that 
the new axes makes with the correspond
ing old axes. 

Figure 3a shows a sample truss dia
gram with angles a and p ' labeled and the 
original coordinate axes used to describe 
the truss. Figure 3b shows the positioning 
of the new axes, presuming that i n this 
case horizontal and vert ical components of 
joint deflections are desired. Note that 
the angle p is found as follows: 

P = P' - a (2c) 

The Analytic Solution 

Once the unit deformations have been 
computed and the coordinate axes properly 

p HORIZONTAL 

Figure 3. Orientation of coordinate axes. 
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oriented as indicated above, the rest of the procedure involves only x and y components. 
As in the graphical solution, the f i r s t two points to be located on the WiUiot diagram 
are those corresponding with the fixed joint and the opposite joint of a member that 

enters the f ixed joint. The Wil l io t diagram coordinates ( , y* )of the point, F*" , 

which corresponds with the fixed joint, , are both equal to zero (see F ig . 1). If the 
member, F H , which connects joints and H ^ , is used as the direction reference f o r 
the Wil l io t diagram, then the Wil l io t diagram coordinates f o r point are computed 
by resolving the movement of joint with respect to joint F ^ into x and y components. 
Thus: 

in which 8^^ is the unit deformation fo r the member F H . But because the truss diagram 
coordinates fo r the fixed joint are zero, the equations become 

x « = ^ S , ^ (3a) 

VH = y n S r H (3b) 
The remaining step-by-step procedure f o r completing the table of Wil l io t diagram 

coordinates is again analogous to that of the graphical procedure. However, instead 
of using the length of a member to compute i t s deformation, the x and y components of 
the vector representing the distance f r o m the near end of the member to the fa r end 
must be used in order to account fo r the direction in which the fa r end moves with re 
spect to the near end. I f joints and are at the "near ends" of members AC and 
BC, respectively, and i f the " far ends" of both members enter joint (see F ig . 2a), 
then the length vectors are computed as fol lows: 

L x A = x ^ - x : (4a) 

L y a = y j - yX (4b) 

L = y"r _ y T (4C) 

L y b = yl - yl (4d) 

in which L^^ is the x component of the vector , Ly^ is the y component of the same 
vector, etc. For the typical triangular truss panel of Figure 2, the WiUiot diagram co
ordinates of points A**" and B " are known and the coordinates of point C"*' are to be com
puted. The intermediate points W^ .̂ and Wg .̂ axe obtained by adding the respective 
vectors representing the movement of joint C with respect to joint parallel to 
member AC and the movement of joint C with respect to joint B^ parallel to member 
pC to the points A"" and B ^ . Therefore, the coordinates of these intermediate points 
piay be computed by using the following equations: 

: yAc= L y A c - y : (5'>) 

X b c = I - x b S b c ' X b (5c) 

yBC= LyBSBC-ye (5d) 
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Final ly, the location of pomt is defined by the intersection of the lines perpen
dicular to the vectors A ^ W a c and B'^'Wbc and passing through points W^^. and W - . , 
respectively. The general equation of a line given a point( x, , y, )on that line ana the 
slope, m, of a line normal to i t i s 

y = y r 7 n < x - x , ) 

The slopes of vectors A™Wac ^^^BC equal to and^=ifi-, respectively. By 

substituting these slopes and the coordinates of the correspondin^^points Ŵ ĉ and 

into the general equation above, the following equations f o r the lines W^^C" Wg^C" 
result: 

Solving these two equations simultaneously f o r the coordinates, ( x^ , y^), of point C" 
yields 

•-YA L y b (6a) 

jySA- _ '-xp 

I-VA 
X a c -

(6b) 

• - X A ' - X B 

Therefore, Eqs. 4-6 may be used to locate each successive Wil l io t diagram point 
with respect to the coordinate axes after the two starting points have been located, the 
f i r s t being at the or ig in and the second by Eqs. 3a and 3b. Special consideration must 
be given, however, i f the result of any one of the Eqs. 4a-4d i s zero, as would be the 
case f o r a member parallel to either coordinate axis. The following rules apply: 

If LxA-0 ; then y^ = y^^ (7a) 

K LyA=0; then Xc = x^c C^) 

If LxB=0; then y^ = y^c C^c) 

K then Xc = x^c (7d| 

Having completed the Wi l l io t diagram as indicated above, the next step is to computp 
the angle, 6, through which the truss must be rotated about i ts f ixed joint to br ing the 
guided joint back into i ts previously designated path. Because 0 is quite small in any 
practical case, i t may be taken as equal to i t s tangent, thus: 
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in which x j is the x coordinate of the guided joint (truss diagram) andi( x^ , ) are the 
coordinates of the corresponding Wi l l io t diagram point. The coordinate? fo r each point 
on the Mohr correction diagram (see F ig . lb) may be computed by the foUowi i^ equa
tions: 

y N = e x j ; 

in which x j and y j arethe coordinates of any joint, , of the truss diagram and 

xjlj and yj!̂  are the coordinates of the corresponding Mohr correction diagram point. 

The X and y components of the true absolute movement of each truss joint may be ob
tained by subtracting, respectively, the coordinates of the Mohr diagram points f r o m 
the coordinates of the corresponding Wil l io t diagram points; thus: 

(9a) 

'YN (9b) 

in which D ,̂̂  and Dyĝ  are the x and y components of the deflection of any joint, N ^ , 
respectively. 

THE COMPUTER PROGRAM 

A computer program fo r the computation of truss deflections based on the described 
method was wri t ten f o r the IBM 650 data processing system. This program follows 
basically the procedure set fo r th in the simplif ied flow chart. Figure 4. The program 
was l imited a rb i t r a r i ly to trusses with up to 99 non-redundant members. It i s , of 
course, also l imi ted to those truss deflection problems that can be solved by the WiUiot-
Mohr method. 

ENTERf Load Joint Coordinates, Fixed and 
Guided Joint Numbers, E,OC, /3 . 

Load Area, Stress, & Serial 
Number for one Member. 

Find a Member entering Fixed Joint; compute 
and store Williot Diagram Coordinates for 
Non-fixed Joint of that Member. 

Compute and store 
Unit Defomiation. 

NO 
Has all 
Member Data 
Been Stored? 

YES 

Select two Members which 
1 . Entera common Joint whose Williot 

Diagram Coordinates are unknown, 
2. Each enter a Joint whose Williot 

Diagram Coordinates are known. 

NO 

Store ( 0 , 0 ) Williot 
Diagram Coordinates 

of Fixed Joint. 

Compute Williot Diagram 
Coordinates for the 
common Joint. 

NO 
Is transfomiation 
of Coordinates 

required •> 
YES 

Transform Coordinates such that: 
1 . The Origin coincides with Fixed 
2. The X axis is horizontal. 

Joint, 

Have all the Members been 
used in the computation for 
Williot Diagram Coordinates?] 

^ S > - Compute Mohr 
Correction Angle, 

E X I T 

PRINT OUT 
Compute corrected Deflection 
Components for one Joint. 

Have all Deflection 
Components been 
computed? 

Prepare to get 
next Joint, 

F i g u r e U . S i m p l i f i e d f l o w c h a r t f o r computer p r o g r a m . 
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Input data include the joint and member tabulations, the modulus of elasticity, and 
the respective numbers of the fixed and guided joints, as previously indicated. In addi
tion to these, the joint and member counts are required. The output consists of the x 
and y components of deflection f o r each joint . 

Running t ime varies f r o m about 4 to 12 sec per joint depending on the order i n which 
the truss members are numbered. If the members are numbered in the order in which 
they would be used in the construction of the Wil l io t diagram, the searching time for the 
machine is greatly reduced. Regardless of member numbering, however, the total 
running t ime f o r a 99-member truss would not exceed about 10 min. 

SAMPLE CASE 

The New Albany-Louisville Bridge on Interstate 64 over the Ohio River was used to 
i l lustrate the described truss deflection program. The bridge is a double-decked, t ied-
arch truss 797. 5 f t long f r o m fixed joint to guided joint . Bridge elevations and joint 
coordinates are shown in Figure 5. Physical properties and dead-load stresses are listed 
in Table 1. Using for the modulus of elasticity of the truss material 29,000 ks i , the 
horizontal and vert ical components of deflection (Table 2) were computed for each joint 
in a total of 3 min 5 sec, including read-in and punch-out t ime, by the I B M 650 digital 
computer. 

TABLE 1 

PHYSICAL PROPERTIES AND DEAD LOAD STRESSES* 

Member Serial Number Area Stress 
Member No. From Joint To Joint (sq in . ) (kips) 

01 01 02 142.00 -710 
02 01 03 227.40 -5517 
03 02 03 45.20 737 
04 02 04 79.10 -474 
05 03 04 70.80 -749 
06 04 05 45.20 782 
07 03 05 202.60 -4821 
08 05 06 54.70 -726 
09 04 06 96.70 -1095 
10 06 07 40.40 711 
11 05 07 175.50 -4031 
12 07 08 50.00 -572 
13 06 08 131.80 -1751 
14 08 09 38.20 638 
15 07 09 151.80 -3284 
16 09 10 39.60 -375 
17 08 10 120.40 -2342 
18 10 11 36.30 601 
19 09 11 130.10 -2620 
20 11 12 37.70 -310 
21 10 12 130.70 -2838 
22 12 13 34.40 563 
23 11 13 118.80 -2029 
24 13 14 35.20 -182 
25 12 14 148.70 -3293 
26 14 15 32.60 486 
27 13 15 132.20 -1496 
28 15 16 33.80 -118 
29 14 16 161.00 -3665 
30 16 17 32.60 435 
31 15 17 101.30 -1056 
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TABLE 1 (Continued) 
PHYSICAL PROPERTIES AND DEAD LOAD STRESSES^ 

Member Serial Number Area 
(sq m.) 

Stress 
(kips) Member No. From Joint To Joint 

Area 
(sq m.) 

Stress 
(kips) 

32 17 18 33.80 3 
33 16 18 171.80 -3991 
34 18 19 34.40 309 
35 17 19 101.30 -676 
36 19 20 31.10 85 
37 18 20 175. 50 -4208 
38 20 21 39.70 231 
39 19 21 83.80 -418 
40 21 22 31.10 214 
41 20 22 179.50 -4368 
42 22 23 42.30 39 
43 21 23 75.00 -228 
44 23 24 26.70 240 
TIE 01 46 132.00 4582 

Structure i s symmetrical about member kh. 

TABLE 2 
OUTPUT DEFLECTIONS: HORIZONTAL AND VERTICAL COMPONENTS 

Joint 
No. 

Horiz. Comp. 
• (ft) 

Vert. Comp. 
(ft) 

Joint 
No. 

Horiz. Comp. 
(ft) 

Vert. Comp. 
(ft) 

01 0.000 0.000 24 0.478 1.779 
02 0.245 0.012 25 0.448 1.749 
03 0.080 0.185 26 0.475 1.756 
04 0.287 0. 205 27 0.424 1.672 
05 0.161 0.386 28 0.476 1.675 
06 0.338 0.407 29 0.409 1.556 
07 0.238 0. 596 30 0.487 1.556 
08 0.401 0.612 31 0.409 1.404 
09 0.307 0.809 32 0. 508 1.400 
10 0.460 0.821 33 0.422 1.227 
11 0.365 1.019 34 0.544 1.221 
12 0.504 1.030 35 0.452 1.030 
13 0.411 1.221 36 0. 591 1.019 
14 0. 533 1.227 37 0.496 0.821 
15 0.447 1.400 38 0.649 0.809 
16 0.547 1.404 39 0. 554 0.612 
17 0.469 1.556 40 0.718 0. 596 
18 0. 546 1.556 41 0.618 0.407 
19 0.479 1.675 42 0. 794 0.386 
20 0. 532 1.672 43 0.669 0.205 
21 0.481 1.756 44 0. 876 0.185 
22 0.508 1.749 45 0.710 0.012 
23 0.478 1.788 46 0.956 0.000 
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797 50 FT. 

JT.NQ X Y JTNQ y Y JT.NO. X Y JT.NO X Y JTNQ X Y 
02 000 7000 1 1 181.25 9835 20 32625 16600 29 bOTSO 161.00 38 65250 8331 
03 3625 2430 12 18125 13400 2 1 36^0 13884 30 50750 12959 39 58875 10600 
04 3625 6933 13 21750 II107 22 36250 16900 31 54375 15400 40 S8875 6595 
05 7250 4628 14 21750 14500 23 140.00 32 543.7i 12149 41 725P0 9133 
06 7250 9133 15 25375 12149 24 398.75 17000 33 58000 14500 4 ? 72500 4628 
07 I0a75 6595 16 25375 15400 25 13500 \69O0 34 58000 I 11.07 43 761,25 7933 
08 10675 10600 1 7 » 0 0 0 12959 26 13500 13884 35 61625 13400 44 76L25 2430 
09 14500 8331 1 8 29000 I6IXX) 27 47125 16600 36 61625 9835 45 79750 7000 
10 I4S00 12100 19 32625 13537 28 4712S 13537 37 65250 12100 46 79750 0000 

N E W A L B A N Y - L O U I S V I L L E BRIDGE 

Figure 5. Sample case (New Albany-Louisville Bridge). 

REMARKS 
The method just described for the analysis of truss deflection is nothing new. It is 

only an analytic version of the commonly used Williot-Mohr diagram. The procedure 
is also similar in many respects to K. H. Chu's method (1), which was developed for 
use with a desk calculator. The sign convention is always troublesome in the Williot-
Mohr graphical method, but it is taken care of automatically by the computer program. 
Length of each member is determined from the joint coordinates, a fact that also sim
plifies the input data. 
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Fatigue in Welded Beams and Girders 
W. H. MUNSE and J . E . STALLMEYER, Professors of Civil Engineering, 
Department of Civil Engineering, University of Illinois, Urbana 

• IN RECENT YEARS there has been a marked increase in the use of welding of high
way bridges, particularly for welded girder bridges. At the same time, this increase 
in the {^plication of welding to bridges has resulted in a greater need for information 
concerning the fatigue behavior of such structures. 

The current AWS design specifications (l) for welded bridges are based on a con
sideration of fatigue. The problem of designing for fatigue, however, is complicated 
by the fact that the fatigue behavior varies considerably for the component members, 
connections, and details of such structures. Some members or details may receive 
relatively few and others may receive many applications of maximum load, some 
members or locations may be subjected to relatively small changes in stress and 
others may receive reversals or large ranges of stress during a loading. These are 
factors of major importance and need to be taken into account in design if the structures 
are to resist efficiently and economically the loads to which they are subjected. 

Also of importance to the behavior of structures subjected to repeated loads is the 
geometry of the details of the individual parts that make up the structure. The resulting 
stress concentrations have a marked effect on the behavior of the structure and may, in 
fact, be responsible for failures unless they are properly provided for in the design. 

This paper summarizes the results of a number of tests made at the University of 
Illinois in recent years to demonstrate the effect of details on the fatigue behavior of 
welded flexural members. Details such as splices, stiffeners, cover plates and at
tachments, all of which can be expected to produce reductions in the fatigue strength 
of the basic member, have been included. In addition, the fatigue behavior of these 
members is related to that of the basic material, thereby making it possible to obtain 
an indication of the effective stress concentration of the various details studied. 

In this evaluation of laboratory data, the test conditions are related to actual service 
conditions; however, because of the many different combinations of loading obtainable 
in the field, only selected service conditions will be related directly to the data. Never
theless, interpolations and extrapolations from the laboratory data provide a general 
indication of the behavior that can be expected under various service conditions. Though 
very limited in number, service records from actual structures in which fatigue failures 
have developed provide another means of relating the laboratory data with the field be
havior. 

DESCRIPTION OF MATERIALS AND TESTS 
The tests, except for a few of those included in a preliminary series, were conducted 

on specimens fabricated from ASTM A373 steel. An ASTM A7 steel was used for the 
preliminary tests but did not differ greatly in chemical composition or in mechanical 
properties from the A373 steel used in the major portion of the program. The chemical 
composition and physical properties of the A373 steel are given in Table 1. 

Manual arc welding with E7016 electrodes was used in the fabrication of most of the 
specimens for the tests discussed herein. The welds were deposited with reversed 
polarity, in the flat position, and with 5/32-in. electrodes for the assembly of the basic 
section and l/8-in. electrodes for the attachment of stiffeners. All electrodes were 
stored in a drying oven to prevent absorption of moisture in the electrode coating. 

The beams were tested in the 200, 000-lb University of Illinois fatigue testing ma
chine shown in Figures 1 and 2. These machines, when used for the testing of welded 
beams, are capable of applying a maximum midspan load of approximately 112, 000 lb 

\6 
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TABLE 1 

PROPERTIES OF ASTM A373* STEEL PLATES FOR WELDED BEAMS 

Thickness 
(in.) 

Chemical 
Content (%) 

Physical Properties 
Yield 

Strength 
Ultimate 
Strength 

Elongation 
in 8-in. 

c Mn P S Si Cu (psi) (psi) (%) 

0.23 0.60 0.023 0.030 0.050 0. 065 42, 040 65,490 28.3 
0.23 0. 56 0.018 0.024 0.070 0.020 35,990 64,780 31.0 
0.18 0.94 0.007 0.019 0.050 0.025 38, 700 63,400 29.0 
0.23 0.53 0.019 0.028 0.068 0.095 37, 010 65,460 28.7 

3/16*' 
1/2 
3/4 

ASTM A373 Structural Grade Steel for Welding. Average for three heats of steel. 

p-oroiiz.ooou 

Specimen 

Flg\ire 1. <!00,000-lb I l l inois fatigue testing machine adapted to test flexural specimens. 

at a rate of 180 applications per min. Thus, 2q>proximately 250, 000 cycles of loading 
can be implied in 1 day or 2, 000, 000 cycles of loading in approximately 8 days. 

The capacity of the testing machines has limited to some extent the size of the mem
bers that can be tested. Nevertheless, they are large enough to permit the testing of 
beams with depths as great as 16 in. and spans of 8 ft 6 in. Although these members 
are relatively small in comparison with long-span welded bridges, they are of such a 
scale that the results of the tests will be directly applicable to the design of full-scale 
structures. 

Most of the studies were conducted on a stress cycle in which the stress in the ex
treme fibres of the bottom flange of the member ranged from zero to tension. However, 
selected members have also been subjected to stress cycles of full reversal, or partial 
tension to a full tension in the extreme fibres. The use of these various cycles makes 
It possible to relate the behavior of the test members directly to the behavior that can 
be e:q>ected in bridges employing similar details. 

The maximum values of test stress were selected to produce failures at lives rang-
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Figure 2. Flexural fatigue tests under way in 200,000-lb I l l i n o i s fatigue machines. 

ranging from 100, 000 to 2, 000, 000 cycles and to provide S-N relationships which can 
be used to evaluate the effect of details upon the fatigue behavior of the test members. 
Such information also can be employed to develop design rules that will provide ade
quate resistance against fatigue. 

After failure of the test members, the actual dimensions of the cross-section at the 
failures were measured and the stresses at these locations calculated using the general 
flexure formula, 

Me s = - ^ 

Thus, although the applied loads were based on the nominal section of the test members, 
the failure stresses are based on the actual sections at which the failures occurred. 

FATIGUE BEHAVIOR OF I-BEAMS 
A limited number of tests have been conducted at the University of Illinois on plain 

rolled I-beams (2). Many more tests have been made on plain welded beams wherein 
a variety of sizes and shapes of members has been studied. 

A summary of the fatigue strengths obtained for rolled beams of A7 steel, and 
welded beams of A7 and A373 steels are presented in Table 2. These results are only 
for members subjected to a stress cycle of zero to tension in the extreme fibres of the 
tension flange. 

Comparing the fatigue resistance of the various beams with that of flat plates in the 
as-rolled condition, the fatigue resistance of the rolled beam appears only slightly dif
ferent from that of the plain flat plate. However, the average fatigue strengths of the 
welded beams were about 5, 000 psi below those of the plain flat plates and those of the 
rolled beams. This decrease results from the details inherent in the fabricated beams-
such details or factors as the weld and its geometry, the edge preparation of the various 
plates, the relative thickness of the components and the straightness of the member. 

An examination of the test data indicates that for a stress cycle of 0 to 30, 000 psi, 
the fatigue life of the plain welded beams ranged from approximately 600, 000 to 
2, 000, 000 cycles. This scatter, although relatively large in terms of life, is equivalent 
to a variation in fatigue strength of only about 7, 000 psi. 
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• Mt : :•: TABLE 2 ' • •;: 
FATIGUE STRENGTHS OF PLATES AND BEAMS 

(Zero-to-Tension Cycle) 

Type of Member Type of 
Steel^ 

Fatigue Strength'̂  
(psi) 

No. of Tests 
Averaged^ 

Plain plates , 31,700 , — d 
A373 33,000 • 3 

Rolled beams A7 31,200 ; 3 
Welded beams A7 ' ' 28, 200 ' 4 

• ' A373 26, 500 16 

^ASM structural steels. 
t>N = 2 , 0 0 0 , 0 0 0 . 
^Extrapolation based on k = 0 .135 ' 
^Data from p r e v i o u s i n v e s t i g a t i o n s . 

-v-.:;: FiguFB 3 . Fat lguB c r a c k i n i t i a t i n g at weld c r a t e r . 

One factor found to have an effect on the fatigue resistance of the welded beams is 
the ratio of the thickness of the flange to that of the web. In one series of tests on 
ASTM A7 steel beams the ratio was varied from 1.0 to 5.3. Although limited in number 
the tests, all conducted on the same stress cycle, gave lives ranging from 830, 000 to 
2,164, 300 cycles. With so few tests, one would normally hesitate to draw conclusions 
concerning a factor such as the effect of the flange-to-web thickness ratio. However, 
the trend was consistent in all of the tests—the members with a thin web and heavy 
flanges had the greatest fatigue resistance when used in a plain welded beam. 

In addition to the variation in fatigue life with the flange-to-web thickness ratio, a 
difference in the mode of failure was observed. The point of failure initiation was 
generally the same—in a weld crater of the fiUet welds at the web-flarge junction. 
However, the sequence of crack propagation differed somewhat for the various flange-
to-web thickness ratios. For members with a low ratio (l to 1), the cracks generally 
propagated through the flanges first and then into the web. For specimens with a high 
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flange-to-web thickness ratio (1 to 5.3), the initial direction of propagation was into the 
web. In the latter case, the rate of crack propagation decreased as the crack propagated 
toward the neutral axis and only when the crack in the web was 2 to 3 in. long did it begin 
to spread into the flange. This difference in crack propagation helps to explain, at least 
in part, the variation in fatigue life obtained from the specimens with various ratios of 
flange-to-web thickness. 

Most of the plain-welded beams failed in the pure moment region of the members. 
The cracks generally initiated at a weld crater in the web-flange junction and propagated 
in a direction normal to the axis of the beams. However, one of the failures initiated 
at a weld crater a short distance outside the pure moment area and propagated through 
the flange and diagonally upward into the web. This change in direction of the fatigue 
crack was a result of the combined state of stress existing in the web; this fracture is 
shown in Figure 3. The photograph also shows the manner in which the fatigue cracks 
initiated in the weld craters. In the other members of this type, the cracks in the web 
propagated vertically. However, though the weld craters may provide the points at 
which the failures initiate, their effect on the fatigue strength of the members is not 
great (see Table 2). 

E F F E C T OF SPLICES ON FATIGUE BEHAVIOR 
Splices are often used in welded girder bridges, particularly in those that are con

tinuous structures. The details of such splices may be of several types; they may have 
the welds all in a single plane or staggered, and may be fabricated with or without cope 
holes at the flange splices. In addition, shop splices may be made in either the web or 
the flange alone. All of these details, because of their inherent stress concentrations, 
can be expected to have an effect on the fatigue resistance of the members. 

Laboratory data are available from tests on splices and splice details of the types 
shown in Figure 4. A comparison of the test results for the various splices on a zero-
to-tension stress cycle is presented in Figure 5. On examination, the slopes of the 
S-N curves appear different for the two basic types of splices; the curves are steeper 
for the members with the splice in a single plane than for those that are staggered. 
Also, the cope holes reduced the fatigue strength in both instances by approximately 
2, 000 to 3,000 psi. Thus, both the splice and the details of the splice affect the fatigue 
behavior of the members. 

Good quality splices in thin-web members of the type shown in Figure 4, can usually 
be produced without cope holes, but with a thick web it may be necessary to use the 
cope holes to obtain a sound flange weld. Consequently, care must be exercised in 
extrapolating from the laboratory tests to actual service conditions; the details that 
prove best in the laboratory may not always be as effective in the field but may still 
be necessary. 

A summary of the fatigue strengths of the various types of spliced members is pre
sented in Table 3. The fatigue strength of the spliced beams can be made to approach 
or equal that of a plain plate with a transverse butt weld; however, the fatigue strength 
of the spliced members at 2, 000, 000 cycles is only about two-thirds as great as the 
fatigue strength of the plain plate material. Even the flange splice alone or the cope 
holes alone (specimen types C and F) have an effect on the fatigue strength of the mem
bers and again demonstrate the effect of welding and geometrical details on the fatigue 
behavior of the members. 

Although most of the tests of spliced members were conducted on a stress cycle of 
zero to tension, cycles of full reversal and half-tension to full tension have been used 
for the type A and D splices. The results of these latter tests, showing the effect of 
stress cycle, are given in Figure 6. Again it is evident that liie type D splice without 
cope holes had a slightly higher fatigue strength than did the splice fabricated with cope 
holes. 

As the next step of this evaluation the fatigue data may be analyzed with respect to 
the current specifications of the American Welding Society for the design of welded 
highway and railway bridges (1). The results of such a comparison are given in Figure 
7. The lines identified as AWS-15 and AWS-7 represent the AWS design relationships 
for butt welds subjected to tension. 
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Type'A 

T<jpe-b 

Tc/pe C 

Type-D 

Type- £ 

Type F 

Figure li. Details for splices in welded beams. 
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Sphie Type 'BT Sp//c<f Tt/pe'D' Jpliee r^pe 

^ 30 

I 75 

/5 

^ ^ , f^/>e 'O' ICAK 

Zaro-to-Tinsion\ Shtss CMes Splice *up» A' K-att 
too SOB loeo 

O/eks fo Failure in Thousands 
teoe fcoo 

F i g u r e 5. Comparison o f t e s t r e s u l t s f o r s p l i c e d beams. 

TABLE 3 
SUMMARY OF FATIGUE STRENGTHS FOR SPLICED MEMBERS 

(Zero-to-Tension Cycle) 

Type of Member* Fatigue Strength (psi) 
n = 100, 000 n = 2, 000, 000 

Plain plate - 33, 000 
Transverse butt welded joint (as welded) - 22, 500 
In-line splice with cope holes, type A 

(Fig. 4) 33, 500 17, 500 
Staggered splice with cope holes, 

type B (Fig. 4) 31,000 21, 000 
In-line splice, as welded, type D 

(Fig. 4) 40, 000 19, 500 
Staggered splice, as welded, type E 

19, 500 

(Fig. 4) 32, 000 23, 000 
Flange splice only, as welded, type C 

26, 000(2)̂  (Fig. 4) - 26, 000(2)̂  
Cope hole only, type F (Fig. 4) - 23, 000(3)'' 

fabricated from ASM A373 steel. 
Number in parentheses indicates number of tests averaged when extrapolation based on 
only a anall number of tests. 
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TtweAM Tupe 0 

•/znensiOD-to 

Cycles to Failure in Thousands 

Figure 6. Results of fatigue tests on welded beams with splices. 

Spliced beams 

-ZO -10 0 a to 30 40 
Minimum Tensik Stress, ksi 

Figure 7. Relationship between test results for spliced beams and design specifications. 
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AWS Formula 7 (butt weld at 2, 000, 000 cycles): 
. Max. - 1/2 Min. „ 13,500 
A = or s '-

but 

13, 500 
Max. 
18, 000 

1 - 1/2 k 

but s 18,000 

where k 

AWS Formula 15 (butt weld at 100, 000 cycles): 

_/Min.\ 
i M a x . j 

. _ Max. - 1/2 Min. ̂  18,000 
A TO-RT^T; or s - ^ _ 1 / 2 k 18, 000 

but s 18, 000 but ^ 18, 000 

where k - 1 ^ ! ^ 

t -7tAA-yiR 

Figure 8. Plange-weld fatigue cracks i n 
beams with butt-welded splices: ( a ) in
line-splice, and (b) staggered splice. 

Figure 9. Fatigue cracks at edge of flange 
welds in beams with butt-welded splices: 
(a) in-line splice, and (b) staggered 

splice. 
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Line AWS-15 is generally thought to represent a condition comparable to 100, 000 cycles 
of loading, whereas line AWS- 7 corresponds to a condition representing 2, 000, 000 cy
cles of loading. In the diagram it is evident that when the stress cycle varies from one 
of partial tension to full tension, the design factor of safety (relationship of fatigue 
strength to allowable design stress) may become relatively large. However, under a 
cycle of full reversal, a spliced member that is expected to receive 2, 000, 000 cycles 
of maximum loading during its lifetime will have a relatively small factor of safety. 

A further indication of the fatigue behavior of the spliced members can be obtained 
from an examination of the fractures of these members. Although the number of tests 
was not great, a variety of failures was obtained. Some failures occurred in the weld 
(Fig. 8), some initiated at the toe of the butt weld (Fig. 9), and others initiated at the 
toe of the fillet welds associated with the cope holes (Fig. 10). In spite of this variety 
of failures the fatigue resistance of the various members did not differ greatly. 

E F F E C T OF STIFFENERS ON FATIGUE BEHAVIOR 
The American Welding Society's specification tor welded highway and railway bridges 

(J.) states: 

Ends of s t i f f e n e r s and other attachments may be welded to f l a n g e s 
only at p o i n t s where the f l a n g e s c a r r y compressive s t r e s s or where 
the t e n s i l e s t r e s s does not exceed 75 percent o f the maximum a l l o w 
able s t r e s s permit ted by the ^ p l i c a b l e g e n e r a l s p e c i f i c a t i o n . 

Thus, the specifications are concerned only with the effect the stiffeners have on the 
behavior of the flanges and not with their 
effect on the behavior of the web. Never
theless, the results of recent tests sug
gest that both the flanges and webs may 
need to be considered in designing for 
fatigue. 

In tests recently conducted at the 
University of niinois, the effects of 
various stiffeners on the fatigue behavior 
of welded flexural members have been 
studied. Figure 11 shows the variations 
in the details studied, including members 
with stiffeners on one or both sides of 
the web, members with and without the 
stiffener attached to the tension and com
pression flanges, members with the stif
feners attached to the web with intermit
tent fUlet welds, and members with 
stiffeners attached only over a part of 
the web. Although these are but a few of 
the many details that could be used, they 
provide a general picture of the effect of 
stiffeners on the flexural behavior of the 
members. 

All fatigue tests conducted on beams 
with stiffeners were made with a stress 
cycle of zero to tension in the extreme 
fibres of the bottom flange. The results 
of these tests, for five types of stiffeners, 
are shown by the S-N diagram in Figure 
12. It should be noted, however, that 

F i g u r e 1 0 . F a t i g u e c r a c k s a t cope-ho les : t^ese data are presented on the basis of 
( a ) f l a n g e f a i l u r e a t toe of f i l l e t , and the maximum flexural stress in the ex-

(b) f a i l u r e i n web a t cope h o l e . treme fibres of the test member and not 
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F i g u r e 12 . S-N diagram f o r s t i f f e n e d beams based on maximum f l e x u r a l s t r e s s . 

necessarily on the basis of the stress at the point of failure. Nevertheless, excellent 
consistency was obtained for aU of the stiffener details included in the study. Obviously 
the members all have about the same total flexural resistance; however, because the 
failures occurred at various points along the length of the span, the members did not 
necessarily have the same flexural fatigue strength at the points of failure. 

In evaluating the data from the stiffener tests, several factors must be considered. 
The most important of these are the failure location and the general occurrence of 
fractures at stiffeners that were not in 
the region of pure moment. In fact, 
most of the fractures occurred at stif-
feners located where the flexural stress
es were considerably lower than the max
imum flexural stresses. After a thorough 
examination of the data, the best correla
tion was obtained when the data were 
analyzed on the basis of the maximum 
principal tensile stress (including the ef
fect of the shear) at the point of failure. 
The following relationships were used to 
determine the maximum principal tensile 
stress at the point where failure initiated. 
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Figure 13. S-N diagram for maximiun principal tensile stress at failure section. 

The comparison obtained on the basis of a principal stress analysis is shown in 
Figure 13. Although there is stiU a scatter in the test results, the band is well defined 
for the entire range of lives and stresses used in tests. 

A further indication of the fatigue behavior of the members with stiffeners can be 
obtained from an examination of the fatigue failures. As might be expected, a variety 
of failures was obtained. Members with types A, D, or E stiffeners and members with 
continuous welds connecting the stiffeners to the web had failures that initiated at the 
bottom of the fillet welds connecting the stiffeners to the web. Upon initiation, these 
cracks propagated diagonally upward into the web in a direction approximately normal 
to the principal tensile stress. 

Another indication of the importance of the principal stress is the fact that the frac
tures were just as likely to initiate at a section near the supports as they were to 
initiate near the center of the beam. 
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F i g u r e lU. Web c rack at type A 
(cont inuous web w e l d ) . 

stiffener 

Figure 14 shows a typical failure at a 
stiff ener. In this instance, the crack 
initiated in the web at a point 25 V2 in. 
from the beam support and propagated 
at an angle of approximately 50 deg. The 
computed angle for the maximum princi
pal stress at this location was only 
slightly greater than 50 deg. The maxi
mum flexural stress in this same mem
ber occurred at approximately 45 in. 
from the supports. 

The fatigue cracks in members with 
type C stiff ener s initiated at either the 
the top or bottom of the intermittent 
fillet welds connecting the stiffeners to 
the web. These cracks were then found 
to propagate diagonally upward into the 
web and downward to the flange. An in
dication of one such failure is shown in 
Figure 15. This failure initiated in the 
web of the member at a distance of ap
proximately 20 in. from the support. 

The members with type B stiffeners 
were the only ones for which the stiffen
ers were welded to the tension flange. 
These members generally failed at the 
toe of the fillet weld connecting the stif-
fener to the flange of the beam, in the 
region near the maximum moment, and 
propagated vertically through the flange 
and up into the web. Nevertheless, the 
total fatigue resistance of the members 
with the type B stiffeners (those welded 
all around) was as great or greater than 
that of the members fabricated with the 
other stiff ener details. 

In view of the fatigue behavior that has 
been observed, it may be desirable to 
re-examine the restrictions of current 
specifications for the attachment of stiffeners. It would appear that when stiffeners are 
not welded to the tension flange of a flexural member that is subjected to repeated loads, 
the shear in the web of the member should be considered. This consideration need not 
include the effect of shear as a separate factor but only as it affects the principal ten
sile stress in the web of the member. 

F i g u r e 15 . Web crack at type C stiffener 
( i n t e r m i t t e n t web w e l d ) . 

E F F E C T OF COVER PLATES ON FATIGUE BEHAVIOR 
Because attachments to the tension flange of a beam change its geometry and pro

duce stress concentrations, it can be expected that such attachments will also change 
the fatigue behavior of the member at the sections where such attachments are affixed. 
A partial-length cover plate on a beam, for example, can be expected to have a marked 
effect on the fatigue behavior of the beam. 

Recently, studies were made at the University of Illinois on a variety of cover and 
flange plate details. The end details used for the cover plates are shown in Figure 16 
and flange transitions in Figure 17. Varying the width or thickness of the flange plate 
in the manner shown in Figure 17 provides a more uniform transfer of stress than does 
the cover plate and can be expected to have a greater fatigue resistance than that of the 
member with a partial-length cover plate. However, the partial-length cover plate is 
a simple, economical, and effective means of providing an increase in section modulus. 
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Only a limited number of tests have been conducted on members with various cover 
plate details. Nevertheless, the data from these tests have been sufficient to provide 
S-N curves for each of the details and a loading cycle of zero to tension. A summary 
of these data (Table 4) shows that there is a relatively large variation in the fatigue 
resistance of the members with various cover plate or flange plate details. At 
2,000,000 cycles the fatigue strengths were found to range from 11,300 to 14, 500 psi 
for partial-length cover plates. However, the flange transitions provided a fatigue 
strength of approximately 19,000 psi. 

A study of Table 4 indicates that any means used to make the change in cross-
section more gradual is effective in increasing the fatigue strength of the beam 
under repeated loads. At the higher loads, the beams that exhibited the best be
havior were those with the type F cover plate; this type of end detail combined 
the beneficial effects of tapering the end of the cover plate and of eliminating trans-

Cov. ft COV. K. 

Type 'A' Type "5' 

Cov. It. Cov. ft 

Type 'D" Type "E" Type "F" Tyyotf 'O' 
Figure l6. Details of various types of cover plates. 
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TABLE 4 
SUMMARY OF FATIGUE STRENGTHS OF BEAMS WITH 

VARIOUS CHANGES IN FLANGE AREA 
(Zero-to-Tension Cycle) 

Description •"100,000 '2.000,000 

Partial-length cover plates, square ends with 
continuous weld all around (Type A) 

Partial-length cover plates, tapered ends with 
continuous weld all aroimd (Type B) 

Partial-length cover plates, concave profile 
with continuous weld all around (Type C) 

Partial-length cover plates, square ends with 
continuous welds along edges only (Type D) 

Partial-length cover plates, tapered ends with 
continuous weld along edges only (Type F) 

Partial-length cover plates, convex profile 
with continuous weld al l around (Type G) 

Butt-welded flange transition, tapered in 
width (Type J) 

Butt-welded flange transition, tapered in 
thickness (Type K) 

26, 500 11,300 

34, 000 11,400 

30, 700 14, 500 

34, 700 12,100 

37, 800 13,400 

29, 400 11,600 

34, 900 19, 500 

34, 600 18, 500 

verse welds. At the lower loads (longer 
life), beams with the type C end detail 
gave the best results. However, the 
difference in fatigue behavior of mem
bers with these various details was not 
great. 

The omission of the transverse welds 
at the ends of the cover plates appears 
to provide an mcrease in the fatigue re
sistance of the members. Nevertheless, 
the most effective means of increasing 
the fatigue resistance of the beams of 
variable section was to vary the flange 
in width or thickness, in the manner 
shown in Figure 17. In this way, afatigue 
resistance almost as great as that of a 
spliced beam was obtained, again demon
strating the advantage of reducing the 
stress concentration to a minimum when 
fatigue is involved. 

RELATIONSHIP BETWEEN FATIGUE 
BEHAVIOR AND DESIGN 

SPECIFICATIONS 
A variety of welded details and their 

effect on the fatigue behavior of a welded 
beam have been discussed. Although 
the test data considered herein provide a 
general indication of the fatigue behavior 
of welded beams and girders, i t is evident 

- J 

M Transition in Flange Thickness (Type k) 

ft) Transiiion m Flange Width (Type j ) 

Figure 17. Weld details for flanges of 
beams with flange-plate transitions. 
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that the results in individual S-N diagrams or from a single series of tests can not 
provide sufficient information to relate directly the behavior of the members of all 
field or service conditions. However, effective extrapolations can be made to service 
conditions. 
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Figure 18. Relationship between fatigue strength of welded beams with basic design 
stresses. 
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Al l of the weld details are known to reduce the fatigue resistance of a welded beam 
or girder below that of the basic material. However, the degree of this reduction de
pends on the magnitude of the stress concentrations resulting from the details. A sum
mary of the approximate fatigue strengths of welded beams with various details is 
presented in Table 5. Here it may be seen that most of the details, although decreas
ing the fatigue strength of the basic material, provide members with a relatively high 
fatigue resistance; only the partial-length cover plate produces a major reduction in 
the fatigue strength of the material. 

The data of Table 5 provide an indication only of the fatigue strength of the members 
at 2,000,000 cycles and for a zero-to-tension loading cycle. To understand more 
fully the general fatigue behavior of the members, i t is necessary to consider what 
might be expected under other loading conditions. Data are not available to describe 
directly the behavior of the members under various loading conditions but, by means 
of relationships such as shown in Figure 18, i t is possible to relate approximately the 
behavior of welded flexural members to the maximum stresses employed in design. 

In Figure 18, the basic tensile design stresses for bridges are compared with the 
results of the fatigue tests discussed herein. The data demonstrate that plain welded 
beams and those with stiffeners should not fa i l in fatigue under any conditions of load
ing, so long as the basic design stresses are not exceeded. However, when splices or 
partial-length cover plates are used, further reductions in design stress may be neces
sary for members subjected to repeated loads; the magnitude of the reduction depending 
on the expected life and the loading conditions. 

TABLE 5 
SUMMARY OF APPROXIMATE FATIGUE STRENGTHS OF WELDED 

VARIOUS DETAILS 
(Zero-to-Tension Cycle) 

BEAMS WITH 

Member or Section ^2,000,000 
Ratio to 

Plain Plate 

Plain plate 31, 700 1.0 
Rolled I-beam 31, 200 0.98 
Welded I-beam 26, 500 0.83 
Welded beam with stiffeners 23, 000 0.73 
Welded beam with splice 20, 000 0.63 
Welded beam with butt-welded flange 

transitions 19, 000 0.60 
Welded beam with partial-length 

cover plate 12, 500 0.39 

In general, welded girder highway bridges are subjected to loads that produce cycles 
of maximum stress ranging from % or Va tension to tension. Under such loading 
conditions, all but members with partial-length cover plates and possibly members 
with splices would appear to have adequate fatigue capacity at the basic design stresses 
for 2,000,000 cycles of loadmg. However, the magnitude of the factor of safety for the 
various types of members varies considerably. In the case of members with partial-
length cover plates or those with splices, lower design stresses are necessary to pro
vide a suitable factor of safety. 
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The current provisions of the AWS specifications for welded highway and railway 
bridges provide the'following reduced allowable unit stresses for members with partial-
length cover plates and subjected to 2, 000,000 cycles or more of loading. 
AWS Formula 1 (tension in member adjacent to f i l le t welds): 

. _ Max. - 2/3 Min. _ 7,500 
^ " 7,500 or s - 1 . 2 /3 k 

* 10,000 ^ 10,000 

This relationship, shown m Figure 18 as AWS-1, provides safety against failure m 
members with partial-length cover plates for all types of stress cycles. The relation
ships shown in Figure 7 provide for members with splices. 

On the basis of the data discussed herein i t can be seen that when the current speci
fications are correctly applied, welded beams and girders of highway bridges, if prop
erly fabricated, should have adequate fatigue capacity. However, in view of the web 
failures observed in the laboratory tests, further consideration should be given to the 
effect of shear (principal tensile stresses in the webs) on the fatigue behavior of mem
bers with thin webs. 
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