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Tables of stress factors f o r systems of three elastic layers 
under load have been published by A . Jones of the Thornton 
Research Centre of "Shell" Research L td . i n connection with 
the development of a fundamental method of road design. For 
convenience in the analysis and design of road structures, i t 
is desirable to present these factors graphically. Some stress 
and strain factors not directly tabulated in Jones' report have 
been derived f r o m the data therein. A suitable graphical 
method for the presentation of the factors is described. A 
series of graphs covering four factors has been prepared. 

•MOST METHODS of road design are empir ical . They cannot be extended to cover 
new types of loading or materials of construction. Neither can they be used fo r the 
analysis of the behavior of roads. 

A fundamental method for the design of flexible roads is being developed by Thornton. 
The basis of this method is to determine the thicknesses of the various layers so that 
the stresses and strains developed by moving t ra f f i c are within the permissible l imi t s 
for the materials. I t is therefore necessary to be able to calculate the values of these 
stresses and strains. 

A real road structure may be represented by a system of elastic layers lying on a 
semi-infinite elastic mass. From a review of methods available fo r calculating stresses 
in such systems, i t was concluded that the stresses should be obtained f r o m rigorous 
solutions of the elastic equations for layered systems. Suitable solutions for a wide 
range of the parameters involved have been published by A . Jones of the Thornton 
Research Centre. 

The stress fectors are tabulated at wide intervals of the four parameters involved. 
In the analysis and design of road structures i t is necessary to interpolate between the 
tabulated values. A convenient graphical method of doing this is described. 

STRESS AND STRAIN FACTORS 

Figure 1 shows a three-layer road structure and the stresses for which factors have 
been calculated. These have been confined to points at the interfaces on the vert ical 
centerline through the loaded area because they have their maximum values under these 
conditions i f the load is uniformly distributed. 

The tables prepared by Jones (1) l i s t the stress factors given in Table 1. The stresses 
are obtained multiplying the contact stress by the stress factor. 

These were the six stress factors given by Acum and Fox (2) whose tables were con­
siderably extended by Jones (1). The difference between the vert ical and horizontal 
stresses was tabulated for convenience in obtaining shear stresses. Because in the 
design and analysis of flexible pavements the stresses and strains existing at the bases 
of the upper two layers can be important, i t would be convenient to have the stress fac­
tors , RRl and RR'2, and the strain factors, Vz ( R R l - Z Z l ) and % (RR'2 - ZZ2), tabu­
lated directly. They have been obtained f r o m data in the Jones tables by computations 
carr ied out on the I B M 650 system computer at Wood River. 

The horizontal strain is obtained f r o m the strain factor by multiplying the factor by 
the contact stress and dividing by the elastic modulus of the layer. 
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Legend: ZZO = Contact s t ress 
ZZI = V e r t i c a l s t ress at f i r s t i n t e r f a c e 
ZZ2 = V e r t i c a l s t ress at second i n t e r f a c e 
RRI = Hor izonta l s t ress at base of top layer 
RR2 = Hor izon ta l s t ress at top of middle layer 
RR'2= Hor izon ta l s t ress at base of middle layer 
RR3 = Hor izon ta l s t ress a t top of bottom layer 

Figure 1. Three-layer road structure. 

TABLE 1 
STRESS FACTORS TABULATED IN THORNTON REPORT 

Firs t Second 
Stress Interface Interface 

Vert ical Z Z I ZZ2 
(Vertical horizontal) ( Z Z I - RRI) (ZZ2 - RR'2) 

( Z Z I - RR2) (ZZ2 - RRSl 

GRAPHICAL PRESENTATION 

The stress and strain factors in the tables by Jones (and in subsequent tables at Wood 
River) are listed in terms of the following parameters: A = a/hz; H = bi/hz; K i = Ei/Ez; 
and Kz = E 2 / E 3 ; in which a is the radius of c ircular contact area; hi and hz are thicknesses 
of top and middle layers, respectively; and E i , Ez, and E3 are elastic moduli of top, 
middle, and bottom layers, respectively. 
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The stress and strain factors are tabulated for the following values of these param­
eters: 

A = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 
H = 0.125, 0. 25, 0. 50, 1. 0, 2. 0, 4. 0, 8. 0 

K i = 0. 2, 2. 0, 20. 0, 200. 0 
K2 = 0. 2, 2. 0, 20. 0, 200. 0 

These ranges were chosen to cover the conditions most likely to occur in flexible 
pavements. The individual values were selected to be convenient for interpolation. The 
data have now to be presented in a graphical form suitable for use in the analysis and 
design of flexible pavements. 

There are four independent variables and one dependent variable involved. The 
dependent variable and one pair of independent variables can be represented on one 
"grid" figure. The parameters A and H are related to the geometry of the pavement 
and the load system. The parameters K i and K2 are related to the elastic properties 
of the pavement. The same geometric arrangement may have to be analyzed for combi­
nations of materials of different properties. It would therefore be convenient to construct 
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Figure 2. Vert ica l stress factor ZZ2 for = = 20. 
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a series of grids, each one of which covered the full range of A- and H-values for one 
pair of values of Kl and K2. The full range of any one stress or strain function can be 
covered on 16 grids. 

The graphical representation of three or more variables is discussed by Mcintosh (3) 
and the method is described in detail in Appendix B of this report. A specimen grid 
giving the vertical stress factor ZZ2, for Ki = Kz = 20, is shown in Figure 2. 

The production of the grids for ZZl and ZZ2 is straightforward. At h l ^ values of 
A and low values of H the grid for ZZl becomes compressed but that is unimportant as 
it is in a range of very thin pavements where ZZl is approximately equal to unity. 

The production of grids for the horizontal stress and strain factors is complicated 
by two features. First, the factors change sign over the range of the tables. Because 
only the regions of tensile stress and strain are of interest in the analysis of flexible 
pavements, the compressive values are disregarded in plotting. Second, when plotting 

H = 0.125 

H = 0 .5x 

0.1 

Figure 3. Horizontal stress factor RRI vs A for K-ĵ  = Kg = 20. Pavements corresponding 

to pairs of values of A at one value of H are compared m Table 2. 

TABLE 2 
VALUES TAKEN FROM FIGURE 3 FOR RRI = 3 (a = 6 IN.) Total 

hi hz Thickness 
H A (in.) (in.) (in.) 

0.125 0.17 4.4 35.3 39.7 
0. 65 1.2 9.2 10.4 

0. 25 0.32 4.7 18.8 23.5 
5.8 0. 26 1.03 1.29 

0.5 0.54 5.5 11.1 16.6 
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the factors against A, for a given value of H, they are sometimes seen to pass through 
maxima as A increases. This occurs at high values of A and low values of H. 

I Graphs of the radial stress factor, RRl, as a function of A are shown in Figure 3. 
j For H = 0.125 and 0.25 two values of A correspond to each value of RRl. A similar 
situation has been shown to exist in a two-layer structure by van der Poel (4). In prac-

j tice, the pavements denoted by the larger of each pair of values of A are inadmissible 
. because they are so thin that the soil would be overstressed. In plotting grids of the 
horizontal stress and strain factors the lines are stopped when peak values are reached. 
This simplifies interpolation, but there must be no extrapolation. 

The pavements corresponding to the values of A of 0.65 and 5. 8 are very thin and 
• are imlikely to be able to protect the soil. 
i A typical grid showing the values of the horizontal stress factor, RRl, for K i = = 
20 is given in Figure 4. A series of grids has been plotted for the vertical stress fac-

I tors ZZl and ZZ2 and the horizontal stress and strain factors RRl and Vz (RRl - ZZl). 
The former were chosen because of their importance in granular bases and subgrades; 
the latter because of their importance in bituminous carpets. 

The full series of grids, which is given in Appendix A, is composed of the following 
figures: Figures 8 to 23, vertical compressive stress factor ZZl; Figures 24 to 39, 
vertical compressive stress factor ZZ2; Figures 40 to 51, horizontal tensile stress 

; factor RRl; and Figures 52 to 67, horizontal tensile strain factor % (RRl - ZZl). 
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h,= 7 " S u r f a c e 

h 2 = I O " Base 

t 

P = 8 0 ps i 

E | = 2 5 0 . 0 0 0 ps i 

I Eg = 5 0 , 0 0 0 ps i 

Z Z - 2 

Subgrade 

A = a / h 2 = 6 / 1 0 = 0 . 6 

H = h , / h 2 = 7 / 1 0 = 0 . 7 

Figure 5. Hypothetical pavement 

^ E3 = 5 , 0 0 0 ps i 

K | = E | / E 2 = 2 5 0 , 0 0 0 / 5 0 , 0 0 0 = 5 

Kg = E 2 / E 3 = 5 0 , 0 0 0 / 5 , 0 0 0 = 1 0 

TABLE 3 
VERTICAL STRESS ON SUBGRADE FOR 9, 000-LB WHEEL LOAD 

Ki = 0.2 K, = 2.0 K i = 20.0 Ki = 200.0 
Stress 
Factor 

ZZ-2 
Stress^ 
(psi) 

Stress 
Factor 

ZZ-2 
Stress 
(psi) 

Stress 
Factor 

ZZ-2 
Stress* 

(psi) 

Stress 
Factor 

ZZ-2 
Stress* 
(psi) 

0.2 
2.0 

20.0 
200.0 

0.19 
0.13 
0.045 
0. 012 

15.2 
10.4 
3.6 
0.96 

0.21 
0.11 
0. 026 
0. 006 

16.8 
8.8 
2. 08 
0.48 

0.13 
0. 05 
0.013 
0. 0028 

10.4 
4.0 
1.04 
0. 22 

0.05 
0.017 
0. 0045 
0. 0010 

4.0 
1.36 
0.36 
0. 08 

For applied unit load of 80 psi. 

EXAMPLE OF USE OF GRAPHS 
The following numerical example demonstrates the use of the graphs. Considering 

a hypothetical pavement with properties and dimensions as shown in Figure 5, it is 
required to determine the vertical compressive stress produced on the subgrade by a 
uniform load of 80 psi at the surface. This load acting on an area of 6-in. radius is 
equal to a total load of 9, 000 lb. It is similar to the load imposed by a truck wheel. 

First, it is necessary to evaluate the parameters A, H, K i , and K2. These values 
shown at the bottom of Figure E are used to enter the graphs. 

Next, a table like Table 3 is prepared, and stress factors (ZZ-2) are listed for 
different combinations of Ki and K2. These are the stress factors for a pavement of 
the given dimensions, but they represent different modular ratios between the layers. 
Each factor is obtained by interpolation on a separate graph. Thus, the factor of 0.19 
for K i = 0. 2 and K2 = 0. 2 is read from Figure 24 for values of the dimensional param­
eters A and H equal to 0.6 and 0.7. Factors for other combinations of K i and K2 are 
read from Figures 25 through 39. Numerical stresses in separate columns of Table 3 
are obtained by multiplying stress factors by the applied unit load of 80 psi. 
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Figure 6. Relation of subgrade stress to modular rat io Kg. 
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Figure 7. Relation of subgrade stress to e las t ic modulus of surface. 
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In Figure 6, subgrade stresses are plotted against corresponding values of K i and K2. 
The figure demonstrates the influence of modular ratios on subgrade stress. For a 
constant subgrade modulus, an increase in base course modulus (increase in K2) reduces 
subgrade stress. An increase in surface modulus (increase in Ki) also reduces stress. 

Stresses for the pavement in the example are taken from Figure 6 at a value of K2 
equal to 10. These, in turn, are replotted in Figure 7. Here, subgrade stresses are 
shown as a function of the surface modulus Ei(Ex = Ki x E2). For the designated surface 
modulus of 250, 000 psi, the vertical stress on the subgrade under an 80-psi load is 2.6 
psi. 

A graph like Figure 7 is frequently useful because it demonstrates how subgrade 
stresses are influenced by changes in the surface modulus. 

The foregoing example illustrates the use of the graphs to calculate the theoretical 
stress on the subgrade. The graphs can be used in the same manner to calculate other 
values. These include the tensile stress or strain, and the vertical compressive stress 
at the bottom of the surface layer. Thus, stresses can be investigated at several critical 
points in a pavement structure. 

CONCLUSIONS 
In the design and analysis of flexible pavements it would be convenient to have the 

horizontal stress and strain factors directly tabulated. These factors have been calcu­
lated from the original data published by A. Jones of the Thornton Research Centre. 

A suitable graphical method for presenting the stress and strain factors has been 
selected. A series of these graphs covering the &ctors commonly used in the analysis 
and design of flexible pavements has been produced. 
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Appendix A 
GRAPHICAL REPRESENTATION OF STRESS 

AND STRAIN FACTORS 
The following factors are presented graphically: 

ZZl = Vertical compressive stress at first interface—Figures 8-23 
ZZ2 = Vertical compressive stress at second interface—Figures 24-39 
RRl = Horizontal tensile stress at base of top layer—Figures 40-51 
% (RRl-ZZl) = Horizontal tensile strain at base of top layer—Figures 52-67 

The factors for all combinations of A and H appear on one grid. The grids are 
arranged in groups of four in ascending order of K i . Within a group each grid corre­
sponds to one value of Kj . 

There must be no extrapolation on any of the grids. 
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Appendix B 
PLOTTING OF THREE VARIABLES BY THE GRID METHOD 

In the grid method of plotting (3), the dependent variable is plotted vertically in the 
conventional manner. The independent variables are plotted horizontally on a composite 
scale. 

The dependent variable is plotted against one independent variable for one value of 
the other Independent variable as shown by the solid line in Figure 68. The whole scale 
is then displaced horizontally and the second (dotted) line is plotted. A third displace­
ment of the horizontal scale for A enables the (chain dotted) line for the next value of 
H to be plotted. Once all the plots of the stress factor against A have been drawn, the 
points of equal A-values are connected together to complete the grid. 

The amount of displacement should be selected to give a good intersection of the grid 
lines; i .e. , so that the Jines intersect nearly at right angles. In the present series of 
graphs it has been found convenient to place the "0.1" point of each A-scale at a distance 
from the left-hand axis proportional to the logarithm of the relevant value of H. 

1.0 

0.1 u 

0.01 

zzz 

0.001 

0.0001 

= i.e 

0.I2S 

A = 3.2 

0.1 0.2 O.U 0.8 I . e 3.2 
A (For H = 0 .128) 

'*07l2B 
0.1 0.2 O.U 0.8 I . e 3.2 

— 0 . 2 W A (For H = 0 .26) 

0.1 0.2 O.U 0.8 1.6 3.2 
0.6 • A (For H = 0 .6) 

Figure 68. Construction of grid for v e r t i c a l stress factor ZZ2. 




