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Systems engineering techniques can be used in predicting trip distri-
butions in urban road networks. To deal quantitatively with the inter-
action of components, each component must be describable mathematical-
ly and must be incorporated into the system in accordance with the re-
quirements of linear graph theory. If the traffic system components
can be identified, the traffic problem can be solved.

This paper discusses the principles of linear graph theory and the
general requirements for using these methods. The most significant
contribution comes from applying these techmques to traffic inter-
change. By using a hypothetical community, the techniques of systems
engineering are compared with the gravity model and the electrostatic
model for predicting the distribution of work trips.

¢ THE WORK described in this paper shows the application of systems engineering
techniques to a traffic distribution problem. This method 1s a rigorous technique for
computing the system of traffic flow in a road network. Precise and balancing results
are obtained 1n one step by this method. Systems engineering techniques thus offer an
extremely powerful tool for the analysis of systems when the system components and
their measurements are adequately defined. This technique will be even more power-
ful when a computer solution for the routine matrix evaluation becomes available, It
18 excepted that this technmque will not only be refined for application to traffic flow
computation but will also be used for the analysis of other traffic engineering system
problems.

BACKGROUND

The trend 1n the many studies of traffic engineering is toward a more mathematical
and theoretical approach. Ths fact is evaidenced by the writings of Herman, Schneider,
Howe, Bevis, and others. One has only to refer to the bibliography of the special re-
port by Haight (1) to conclude that traffic engineering 1s on the verge of a breakthrough.
In spite of the as yet uncontrollable element of human choice or behavior, many phases
of the traific problem will evolve to a scientific level comparable to that of the physical
sciences. The traffic engineering profession will probably have to settle for somewhat
less replicability than the physical sciences because only two of their ingredients are
physical, the vehicle and the facility, whereas the third, the user, presents different
and still unsolved problems. This does not 1mply that the user problem 1s insur-
mountable, Although the individual has shown immunity to prediction, groups of many
such individuals have shown that patterns can be observed,

Evolution has come to the other sciences by a slow but orderly progression. First,
trial and error techniques were used and the effects were noted. The practitioner, who
was faced with a series of difficult tasks, slowly added to his store of engineering
judgment, and this he utilized on future problems as they developed. This was followed
by a concentrated effort to collect and evaluate data. Analysis of data 1n the field of
traffic flow has shown that groups of people are predictable and that mathematical form-
ulas can be developed to express various travel habits and patterns. In the last stage
of this evolution, the theory 1s established. In other fields, new theories have been
developed by building on the terminology and theories defined previously and by critical -
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ly analyzing the work of others in order to find a more direct approach.

So far the traffic theorists have concentrated their work on car-following theory,
queuing and waiting line theory, and traffic simulation. Some work dealing with techni-
ques such as the gravity model, the opportunity model and linear programing has been
done 1n the area of theoretical origin and destination studies.

The work reported in this paper deals with development of a methodology for solving
traffic flow i1n a road network by a mathematical model. The necessary preliminary
theoretical testing of systems analysis as a technique for theoretical origin and destina-
tion studies has been accomplished during the study, but many simplifying assumptions
were necessarily made. The theoretical results obtained with this technique are shown
to compare encouragingly well with those available with other techniques. In the analysis
of systems as a means for achieving a simple systematic procedure for formulating the
system equations, the theory of oriented linear graphs, developed as an abstract mathe-
matical topic, 1s valuable. Because the work with this technique is in its early stages,
primary attention i1n this paper 1s given to the network description and only secondary
consideration to the characteristics of the basic data.

The next step 1n the continuing research under way at Michigan State Umversity will
utilize these established concepts of systems engineering for predicting traffic flow in
actual urban road networks.

SYSTEMS ENGINEERING THEORY

The techniques presented here have sometimes been referred to as "linear graph
theory" and "network topology.' These terms can be used interchangeably (2). A
system can be defined as an orderly arrangement of interrelated elements acting to-
gether to achieve a specific purpose. Thus a system must have an avowed purpose, be
free of extraneous or mathematically redundant parts, and have the elements or com-
ponents Jowned in an orderly fashion. Discussion here is limited to systems made up
of components having only two terminals, although there 1s no limit on the number of
terminals the component may have 1n general systems theory.

For the computation of the system characteristics two steps are necessary:

1. To establish a mathematical model of the relevant physical characteristics of
the system components expressed in terms of measurements.

2, To establish in mathematical form and in terms of measurements from a know-
ledge of the component characteristics and their mode of interconnection, the character-
istics of the system; 1.e., a mathematical model of the system.

Components are described mathematically by relating two measurements of the com-
ponent 1n '"isolation from other components. (For a more detailed explanation see
Appendix.) These measurements must be such that one is a "through" (or series) mea-
surement called y, which when summed at each vertex must equal zero, and the other
1s an "across'" (or parallel) measurement called x, which when summed around each
circuit must equal zero. The relationship between measurements x and y 1s expressed
mathematically and called the terminal equation of the component. The component 1s
represented by an oriented line segment called the component terminal graph. The
collection of component terminal graphs obtained by joining the vertices of each terminal
graph 1n a one-to-one correspondence with the union of the physical components 1s called
a system graph.

A "tree" 1s selected and the elements of the system graph are classified into either
branches of the tree or chords. The '"vertex postulate' or the 'circuit postulate' 1s
then applied to the system graph to establish the graph equations. The graph equations
along with the terminal equations of the system components are defined as the system
equations. The system equations represent a complete mathematical description of the
system. These simultaneous equations are independent and can now be solved.
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APPLYING TECHNIQUES TO TRAFFIC FLOW COMPUTATION

Although the techniques of system analysis were developed primarily 1n electrical
network analysis, during the past several years this fundamental discipline of analysis
has been applied usefully to many other areas, such as mechanical, hydraulic, and
heat-transfer systems. Predicting traffic flow 1n an urban network also seems amenable
to this techmque, if the characteristics of the traffic problem can be defined in the form
of suitable components and measurements which can be assembled into workable system
graphs. The following discussion demonstrates how systems analysis can be applied
to the traffic problem.

The selection of the units that will serve as components depends first on what type
of system is being analyzed (1. e., transportation, sewage treatment, electrical, etc.),
and second, on the specific question to be answered by the analysis of the system.

For example, 1n the study of mass transit, the definition of components and measure-
ments for a study of the system of service areas would probably be different than the
defimitions for a study of the effect of street capacities on the system.

In selecting the components for the system analysis of traffic flow in a road network
1t seemed at first feasible to consider the user, the vehicle, and the facility. '"User"
can be defined as one individual. An individuval moves from place to place and this
movement could be defined as flow or "through" variable (y). This movement or flow
1s related to a desire or "pressure" which can serve as the across variable (x). How-
ever, analyzing traffic flow on the basis of the individual user would lead to systems
far too voluminous and too difficult to evaluate. Considering the vehicle as a basic
component, a y measurement could be assigned to flow, but the x variable as desire or
pressure 1s meaningless for a vehicle.

The dwelling unit and the family are the next possible basic components inasmuch
as they combine the user and the vehicle. Both will afford the same x and y measure-
ments as suggested for the individual. But even for the smaller urban areas, the
number of dwelling units and families involved 1n the system would still be too large
to provide a workable model, so that it will be more desirable to use even larger units,
such as zones.

A zone, similar or identical to those used 1n origin and destination surveys, seems
to be the best component evaluated to date. These zones should be defined so that the
traffic characteristics within the zones are as homogeneous as possible. It 1s now
assumed that the traffic characteristics of the entire zone can be computed from a
limited number of parameters. For example, given a homogeneous residential zone
containing a certain number of dwelling unmts or families and with known parameters
such as residential density, income level, and car ownership, one should then be able
to establish some value that would express the desire or pressure of that zone to gene-
rate a number of trips for a specific purpose. This pressure to make the trips from
the given residential area to, say, the central business district (CBD) must be large
enough to overcome the resistances against making these trips. The resistance 1s
generated by the previous experience of traveling to the CBD, of parking difficulty and
general congestion while 1n the CBD, and of returning home. If the pressure 1s not
sufficient the trips will not be made. The number of trips that will be made i1s a function
of pressure and resistance.

Research thus far has indicated that 1n the theoretical computation of traffic flow
the classification of trip generation by trip purpose 1s essential. The percentage of trips
assignable to each purpose seems well established. Further studies beyond those cited
1n the references (3) have proved that there are only very small variations 1n the per-
centages within classes of trips according to purpose. Accordingly, if i1t 1s assumed
that in computing, say, shopping trips from a zone, one of the following three values
can be determined from parameters, estimates, or in some other way:

1. Actual flow of shopping trips out of the zone in a given time period: vy (t) or
2. Demand or pressure for such shopping trips to be made from the zone: x (t) or
3. Relationship between demand and flow; 1.e., the function relating x and y:

x = f(y(t)) or y = f(x(t)),
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then to solve the distribution problem of the trips generated in the zones, parts of

the street network also must be defined as components with measurements suitable for
systems analysis. In the preliminary stages only major arterials have been considered.
Later developments might prove that, between any two zones, each group of streets of
a specific type should be defined as a component with certain characteristics. Also,
intersections might serve as separate components. The required x and y measure-
'ments could reflect such items as posted speed limit, parking, abutting land use, etc.
_ In the example to be discussed 1n the next section, simplifications are made. All
routes between two zones are represented by two street components, one for each di-
rection. No attempt was made to determine an x or y measurement, but rather an R
value 1s used where x = Ry. In this equation R represents a parameter that 1s the
mathematical relationship between x and y. It defines the relationship between flow
and desire and might be visualized as a function of resistance or friction. The best
physical measurement to be used as a basis for R was determined, at this stage only
“on an empirical basis, to be travel time. Preliminary work has led to a group of
,curves where the value R is a function of travel time and dependent on trip purpose
(Fig. 1). Each street 1s assumed to be one-way for proper orientation of the terminal
graph. The streets may also be viewed as two-way, but then each direction 1s repre-
sented as a separate component. The curve used has been obtained by substitution of a
resistance scale and plotting the "frequency of trips'" table as reported by Carroll (4).
Further examination of travel time vs trip purpose as indicated in some of the recent
comprehensive studies should reveal a stronger correlation than the curves presently
used. This point, as well as many others, will require considerable research.

Other possible components of the system are shopping areas, work or employment
centers, the CBD, recreational areas, and others. Once again the component must be
described mathematically by x or y, or by some relationship between x and y. Early
trials have been limited to representing work trips to shopping areas and industrial
areas, where a flow y has been estimated on the basis of number of employees. Other
measures of an area's attraction will be considered in future research, A possible
relationship might come from comparing the specific area with some accepted standard
area, just as a resistor 1s calibrated by comparing 1t with some standard. Ths type
of approach 1s similar to McGrath's work 1n New Haven, where trip attraction based
on an effective acre is established as a standard (5). Other possible component measure-
ments will be tried as the research progresses.

SAMPLE PROBLEM

As an example, a small hypothetical commumty where an origin and destination
survey 1s not available 1s assumed. The specific problem to be solved here by means
of lanear graph theory 1s one of determining the distribution of work trips from each
residential zone to each employment zone. Initially, the community 1s separated into
residential zones and zones of employment. The labor force of each nearly homogeneous
residential zone might be determned from planning studies or from records of the local
Chamber of Commerce. Work trips might be approximated by a correlation equation
using driving time to the CBD and an estimate of car ownership. The number of auto
driver trips could then be estimated from an average car occupancy value. The number
of auto driver work trips arriving at each employment zone could be established by
some similar procedure or by a sampling of the known number of employees in that
zone. An estimate of auto driving time between every pair of zones in question could
be prepared by actual observation or from a travel time map. The validity of this -
approach 1s not the concern of this paper.

Regardless of the techmques use, 1t may be assumed that the following information
has been obtained concerning the small hypothetical community. There are four resi-
dential zones with a specified number of auto driver work trips as given in Table 1.

The number of work trips that arrive at each of the three employment zones is also

given in Table 1. The number of trips destined for employment zone 7 (Element 1) 1s
not defined, although 1t 1s clear that 3,000 trips must be destined for this zone unless
there 1s an unbalance 1n the work trip generation vs attraction. The number has been
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Frequency of Trips TABILE 1
0.0 1.0 2.0 3.0 A AUTO DRIVER WORK TRIPS
* TO AND FROM ZONES
Element Zone From To
2 26 Res-1 4,000 --
27 Res-2 3,000 --
28 Emp-4 -- 3,000
3 29 Emp-5 -- 5, 000
s 30 Res-3 2,000 --
E 31 Res-6 2,000 --
2 1 Emp-7 -- ?
g 5
é
(]
g
& TABLE 2
TRAVEL TIMES BETWEEN ZONES
IN MINUTES
\\\ 2 1 28 29 Zones
~— 10 10 14 26
o 17 14 10 27
1.00 0.75 0 50 025 0.00 10 17 14 30
14 20 10 31

Street Resistance Factors

Figure 1, Travel time resistance for
work trips.

left open 1n the table because the method of solution requires that this number be com-
puted. The correct answer serves as a check on the computation.

The estimated travel times between the centroids of each zone are given in Table 2.
The element number given for each zone is the number used for 1dentification 1n the
following analysis procedure.

The flow of trips completes a cycle in one day. Thus the time for which this analysis
15 made 15 a 24-hr period. Trips to work and trips home are i1dentical in number but
occur on different route components during different times of the day. The trips
emanating from one zone also return to that zone during the study period.

Component Representation

Each zone 1s represented as a component part of the urban network and its measure-
ments are shown in Figure 2.

Each residential zone, employment zone, and the system of routes that connect
these zones can similarly be 1llustrated as components. Each component 15 represented
as an oriented line segment which 1s referred to as the terminal graph of the component.
For example, 1n Figure 2, a residential zone 1s shown schematically and as a terminal
graph.

System Graph

With these components, the system graph can now be drawn 1n accordance with the
following rules:

1. Components are joined 1n the system graph according to the manner 1n which the
components are combined 1n the physical system.
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2. The direction of flow is indicated Pressure ox
by the direction of the line representing |~ Measureaent
the components. -

3. A "tree" is selected. This tree is Plov
a.subgraph of the system graph containing Bestdential 7 Measureneat
all vertexes but no circuits. The tree is Zone - 1 ~

used in formulating the systems equations.
4. Specified desire (x values) are
placed 1n the branches of the tree (B-1)
(there are no specified x values here).
5. Specified flow (y values) are
placed 1n the chord set, (C-2).

Schematic of Component

—
Figure 3a shows the system graph and 26

how 1t is built; Figure 3b shows the tree Terminal Graph of Companent

chosen for this example. A tabulation of . .

the values used as given measurements Figure 2. Component representation,

for the establishment and solution of this
system 1s given 1n Table 3, In the matrix
solution shown later, only R and y are
used. The other parameters are given only for information. The relation between
travel time and R was discussed and shown earlier in Figure 1.
|

Circuit Equations

The numerical solution of the system requires the writing of a set of equations (in
matrix form) which is done here 1n accordance with the circuit postulate of linear
graph theory.

D =g Branches (B-2) - T.ements 1 {o 13
smemfew  Residential Zones

O ——ge - Chords (C-1) - Elemente 14 to 25
g  Buployment Zomes —~«--~  Chords (C-2) - Elements 26 to 31
— «—  Routes (specified ¥'°%)

Figure 3a. System graph development, Figure 3b, System graph and tree,
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TABLE 3
COMPONENT INFORMATION NECESSARY TO SOLVE THE LINEAR GRAPH
Element Travel Time Resistance Y (work
No. Component {min) Factor trips)
1 Employment (I-7) - -- ?
2 Street 10 0. 7500
3 Street 10 0 7500
4 Street 14 0.8125
5 Street 10 0.7500
6 Street 14 0.8125
7 Street 10 0 7500
8 Street 10 0. 7500
9 Street 17 0. 8450
10 Street 20 0. 8675
11 Street 10 0. 7500
12 Street 14 0.8125
13 Street 10 0. 7500
14 Street 17 0. 8450
15 Street 10 0. 7500
16 Street 14 0.8125
17 Street 14 0 8125
18 Street 10 0.7500
19 Street 14 0. 8125
20 Street 17 0. 8450
21 Street 14 0, 8125
22 Street 10 0. 7500
23 Street 14 0. 8125
24 Street 17 0. 8450
25 Street 20 0. 8675
26 Residential (R-1) -- - 4,000
27 Residential (R-2) - -——- 3,000
28 Employment (I-4) -- --- 3,000
29 Employment (I-5) - --- 5,000
30 Residential (R-3) - - 2,000
31 Residential (R-6) -- . 2,000

1. In accordance with the circuit postulate, the general equation for the kth cireunt

[+
Z by x =0

1=1

18:

in which
0 if the jth element 1s not included 1n the kth circuit;

1 if the orientation of the JtR glement 1s the same as
the orientation for the kth circuit;

-
[

-1 if the orientation of the ]th element 1s opposite to
the orientation of the kth circuit.

R
{

2. Each circuit will have one and only one chord, and the circuit equations will be
written in such sequence that a unit matrix results for the entries C-1 and C-2.

3. Equations using chords (C-1) are written first and chords (C-2) written last.

4. The x's are arranged 1n the column matrix 1n the following order Xp-1» Xg-2»
Xc_l, and XC_Z.
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X for XB-Z and XC_I:

2 3 45 6 7 8 91

Substituting RY

1

General Solution of Equations in Symbolic Form
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One of the key advantages of this type of analysis is the possibility of replacing
certain unknown variables in an equation with a relation of known values. In the next
substitution, the unknown Ypg_3 are replaced by the known values Yc._g 2).

xr

v 3 T By
2| = | Pz P2 || Yer
Y
. c-1 U0 ez

which, when inserted, gives the main equation:

. . - T ‘I: .
B 5. uljr .o 3. B _|lY 0
x || 12 B-2 12 22| e, X

] o] o R U 0 Y

321 _ 22 c-1 c-2

In this main expression, the bottom line of equations, dealing only with known values,
does not contribute to the solution. With the top equation from the preceding, the gen-
eral mesh form or circuit equation can be written:

T
. . . - +
Byt Xt [312 Rg-2 " By *U RC-I] [YC-IJ

+0° X _,=0

gl

[Blz " Rpp” BzzJ Ye-2

The first term is nonexistent in this case, because no XE_I values exast in this
by

problem. Furthermore, because the last term 1s multiplie zero, it vanishes. The
resulting equation for this problem 1s therefore

T T -
[BIZ %-2 B12 + RC-l] [Yc-l] + [B]_z RB-Z Byo ] [YC-ZJ =0

Arithmetic Solution

Numerical computations with the previous equation will give the desired values for
YC-1, the flow on the streets connecting the zones. Replacing the symbols by the
actual matrix and solving the triple matrix product gives the resulting matrix equation
in terms of R. Inserting the proper R values and reducing the matrix size where
possible, gives the two matrix equations:

+3.1575 42.3125 +0.7500 :0.0000 -1.5000 -1.5000} [v14] [vig] [-5437.50
12,3125 -4.5250 -+2.3125 -1.5625 -2.2500 -3.0525f] ¥is Y19] |-8625.00
+0.7500 +2.3125 +3.1250 -1.5625 -1.5000 -2.3125|| vig]|+0-|v20|+|-6187.50| =0

+0.0000 -1.5625 -1.5625 -3.1250 -0.7500 --2.3125]| Y17 Y21 +1687. 50
-1.5000 =-2.2500 -1.5000 -0.7500 +3.0950 4-2.2500{] Y24 Y22 +3750.00
-1.5000 -3.0625 -2.3125 -2.3125 42.2500 -4.5300]] Y25 Y23 -+4687. 50

Y1¢ £3.0950 -2.3450 -0.7500 -1.5950 -2.3450 -1.5000}{v1g] |-1595.00
Y15 +2.3450 44.7200 +2.3125 -1.5950 -3.1575 -2.3125}]v19]| |-2220.00

0- |vigls |-0.7500 -2.3125 +3.1575 :0.0000 -1.5625 -1.5625||v20], [-2125.00| =0
Y17 -1.5950 .1.5950 +0.0000 -+3.2750 -2.4625 <0.7500]]¥21 |t |-1640.00
Y2L -2.3450 -3.1575 -1.5625 -2.4625 <4.7750 -+2.3125]|v22] |-176¢5.00

Y25 -1.5000 -2.3125 -1.5625 +0.7500 42.2125 --3.1250]}Y23 -0875.00



These equations can now be solved
directly by solving first for Y,4 to Ygs and
then for Y, to Y;s. The solutions are
given in Table 4,

Discussion of Systems Solution

The matrix manipulations and the
arithmetic solution have only been
sketched. A more detailed discussion of
the steps taken and of the validity of the
computation would have been too extensive
for this paper, but these matters are ex-
plained 1n detail 1n the texts on this sub-
ject (2).

It might be argued at this point that a
rather cumbersome algebraic procedure
was used to solve a relatively trivial prob-
lem and that systems analysis for larger
and more complex systems would be 1m-
possible to do manually, This 1s correct,
but the extensive algebraic manipulations
are an easy task for an electronic com-
puter. The only reason for manually
computing such a small example here 1s
to demonstrate how such a problem can
be worked. Michigan State University 1s
presently developing a computer program
which will solve these steps and produce
the final answers directly from the given
terminal and system equations.

A flow diagram of the solution showing
the flow of trips to work only 1s given in
Figure 4.

Comparison with Gravity Model

In this and the following sections the
same sample problem 1s worked using
the 1iterative processes called "gravity
model" (6) and "electrostatic model" (7),
relspectively. Only the principal formulas
used and the correction factors are re-
peated here.

- The results of the second estimate of
the gravity model and of the fourth assign-
ment of the electrostatic model are com-
pared with the results obtained with sys-
tems engineering methods in Table 5.

The difference of each flow line computa-
tion by the three methods is shown and
expressed in percentage's, assuming the
systems solution as a basis.

X
Ty = T.i . Tj / (Du)
¥ Tj/ (D%

1

TABLE 4
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WORK TRIPS OR FLOW THROUGH

EACH ELEMENT

Element Work
No, Trips
1 3,000.00
2 1,199.10
3 1,215, 40
4 825,08
5 536.13
6 973. 54
7 1,044,.91
8 536.13
9 490, 33
10 469.19
11 1,199.10
12 1, 585. 50
13 1, 396. 05
14 778,87
15 1,396.05
16 1, 585, 50
17 485. 90
18 1,215, 40
19 825, 08
20 778. 87
21 485. 90
22 1,044, 91
23 973.53
24 490, 33
25 469.19

Scale 1 inch = 5000 work trips

Figure 4, Flow diagram of work trips
from four residential zones to three em-

ployment zones.
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in which

T, = number of auto driver work trips made from each resi-
dential area (1);

T] =- s1ze of attractor represented by number of auto driver
trips made to each industrial area ();

Dy = distance factor expressed in terms of travel time;

x = empirically determined exponent, assumed as 0.5,

Corrections 1n the first computation are made as follows:
1. A correction factor is computed for each value of ) which equals

: T1
z Ty
1

2. The first estimate 1s multiplied by the appropriate correction factors.

Comparison with Electrostatic Model

9;
x P
v Ry ' =1, 2 n)
= = i g seeny
PQ, m
R
J = 1 1]
in which
VPIQ] = probability of movement from 1 to j;
P, = number of workers living 1n Zone 1;
Q = number of jobs available at Zone };
Ry = straight-le distance from 1 to ) if the field contains
no physical barriers. Where such barriers exist,
R would have to be the straight-line distance from
1 to the point of passage across the barrier plus
that from the point of passage to ).
TABLE 5
COMPARISON OF FLOW COMPUTATIONS
Z::e Model® From Zone 26 'From Zone 27 From Zone 30 From Zone 31 Total to
Flow A % Flow A % Flow A % Flow A % Zones
1 S 1,199 1 778 9 536 1 485 9 3,000,0
G 1,161 5 - 376 -31 695 0 - 83 9 -108 623 5 + 87 4 +163 519 9 +34,0 +7 0 2,999 9
E 1,217 6 +185 + 15 583 7 -195,2 -250 707 8 +171 7 +32 0 490,9 + 5,0 +1,0 3,000 0
28 s 1,215 4 825 1 490 3 469, 2 3,000,0
G 1,231 9 + 165 + 1.4 8121 -130 -16 5072 + 16,9 + 3,5 461,4 - 7 8 16 33,0126
E 1,359,8 +144,4 +11 9 791 6 - 33,5 - 41 464,9 -254 -52 383 7 -85 5 -18 2 3,000 0
29 S 1,585, 5 1,396 1 973 5 1,044.9 5, 000, 0
G 1,620 5 + 350 +22 1,494,1+ 980 +70 8695 -104,0 -107 1,014,7 -302 - 29 4,998 8
E 1,423,5 =162 0 <10 2 1,624,2 +228 1 +16 3 B827.4 1461 -150 1,124,8 479 9 + 7.6 4,999 9
Total S 4,000 0 3,000,1 1,999 9 2,000 0 11, 000.0
G 4,013 9 3.00|l 2 2,000.2 1,996 0 11,011 3
E 4,000.9 2,999 5 2,000.1 1,999 7 11,000 1

B5 = gystems engineering, G = gravity model, E = electrostatic model
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Corrections 1n this computation are based on the following equation:

1. First assignment 1s multiplied by the appropriate correction factor C] for; =
1, 2, ..... , m

2. The second assignment 1s multiplied by the appropriate correction factor C, for
1=1,2, ....,n

3. The first and second steps are repeated for each successive assignment.

COMMENTS

The example problem, although extremely small, should have served to demonstrate
the great potential of systems analysis by linear graph techniques for theoretical traffic
flow problems. Many simplifying assumptions have been made. Further research 1s
required to establish the technique to the point where 1t can be used to its full potential,
The next step 1n the research will be a test of the theory against actual origin and des-
tination surveys.

Future work on establishing other system components must be tried to evolve finally
the best possible components or component systems, with proper x and y measurements
and terminal representation. It 1s possible that a heterogeneous zone might be separated
into distinct parts, each of which may be defined by a component and described mathe-
matically.

The components used to date require a more complete study. For example, the
curves used to predict the resistance factor on the street components must be studied
more completely.

Although only a hypothetical case has been presented here, the results, when com-
pared with the gravity model or the electrostatic model, show promise for eventual
acceptance of this method.

It must be recognized, too, that changes in parameters in the given system can be
made easily without disturbing the principles of the technique. Thus, any refinements
1n component definition can be entered as they become available without need for de-
velopment of a new techmque. Eventually this technique will permit research into the
parameters.

Appendix

DETAILS OF LINEAR GRAPH
Measurements

In the mathematical analysis of any given type of physical system (electrical,
mechanical, thermal, etc.) the tie between the mathematics and the system is generally
accomplished through the use of two basic measurements; the across (or x) and the
through (or y) measurements. The x and y measurements used to date are

1. Electrical. —x 1s voltage and y 1s current flow.

9. Mechanical translation. —x 1s displacement and y 18 force.
3. Thermal systems. —x 1S temperature and y 1s heat flow.
4. Hydraulics. —x is pressure and y is flow.
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Definitions

Terminal Graph. —The terminal graph of an n-terminal component 1s defined as a
collection of (n - 1) oriented line segments which forms a connected graph with no
circuits and includes exactly one vertex for each terminal of the component.

In general, the terminal graph serves to 1dentify the variables in the termnal equa-
tions with a unique set of measurements and establishes a vital link between the physi-
cal component and 1ts mathematical description. The graph or terminal equation are
each incomplete in themselves.

Terminal Equations. —The mathematical equations relating the measurements rep-
resented by the through and across variables of the terminal graph are called the
terminal equations of the component.

Terminal Representation. —The terminal graph plus the terminal equations are
called the terminal representation of a system component.

System Graph. —A system graph is a collection of component terminal graphs ob-
tained by uniting the vertices of the terminal graphs 1n a one-to-one correspondence
with the union of the physical components. When the fundamental operational concept
of the linear graph 1s adopted, the system graph follows directly from the prescribed
manner in which the components of the system are connected. If the characteristics
of the system components can be determined—and they must be if the system 1s to be
analyzed—there is never any question as to the form of the system graph.

System Equations. —The graph equations along with the terminal equations of the
system components are defined as the system equations. The fundamental cut-set
equations, stating that the sum of all through measurements at the vertices equal zero,
and fundamental circuit equations, hereafter referred to as the graph equations, serve
to establish a set of independent equations among the through and among the across
variables used 1n presenting the characteristics of the system components,

The system equations represent a complete mathematical description of the system.
When the terminal equations of the system components are linear, a partial solution to
these simultaneous equations can be effected without the necessity of calculating an
inverse. The partial solutions obtainable depend on the given forms of component
terminal equations.

Tree. —~If a connected graph G contains v vertices, connected subgraph of G con-
taining all v vertices and no circuits 1s defined as a tree.

Branches. —The elements in the tree are appropriately called branches. Although
there may be many different trees in any graph, a tree 1s easily identified by simply
allowing one and only one element to join any pair of the v vertices. The tree which
has all elements incident at one vertex 1s called a Lagrangian tree.

Chords. —The elements of a connected graph G which form the complement of a
tree are defined as chords.

Specified Values. —The tree will then be further subdivided into those elements for
which one has specified x or across variables, symbolically referred to as (B-1), and
those for which no variable 1s known (B-2). The chords are also subdivided 1into (C-1)
which are the unknowns and (C-2) for which the y or through variable has been speci-
fied.

Postulates

The graph equations can be established when the vertex and circuit equations are
satisfied. The system must be such that the x or across variab'es will sum to zero
around the circuits of the systems graph and further that the y or through variables
sum to zero at the vertices of the linear graph. The fundamental across and through
variables used to represent measurements in the various types of physical systems
all have these important and fundamental properties. The mathematical formulation
of these properties (the vertex and circuit equations, together with the component
terminal equations) forms the basis for the analysis of physical systems. If the
through and across variables of the system graph are defined so that they sum to zero
at the vertices and around the circuits, then these techniques of formulation will apply
to that physical system. These criteria can be formally stated as postulates.
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Vertex Postulate. —If the system graph of a physical system contains e-oriented
elements and 1 y, represents the fundamental through variable of the th element, then
at the kth vertex of the graph

in which

= 0o the ]th element 1s not incident at the kth vertex;

®
\

= 1 if the ]th element 1s oriented away from the kth vertex;

»
&
I

a) = -11if the iR element 1s oriented toward the kth vertex.

Circuit Postulate. —If the linear graph of a physical system contains e-oriented
elements and if x, represents the fundamental across variable of the jth element, then
for the kth circw

e
Z bx =0
1)
1=1
1in which
by = 01f the ith element 1s not included 1n the kth circuit;
b] = 1 if the orientation of the ]th element 1s the same as the

orientation chosen for the kth circuit;

[=2
1t

) -1 1f the orientation of the jth element 1s opposite to that
of the kth circuit.

When the circuits used in writing the independent equations are chosen so as to
include the branches first and chords last, a general and convenient form can be ob-
tained. This 1s also applicable when writing the vertex or segregate equations except
that one and only one branch 1s included when summing around the vertices.
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