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Some Mathematical Aspects of
The Problem of Merging

FRANK A. HAIGHT, E. FARNSWORTH BISBEE, and CHARLES WOJCIK,
Respectively, Associate Research Mathematician, Graduate Research
Engineer, and Associate Research Engineer, Institute of Transportation
and Traffic Engineering, University of Califorma, Los Angeles

® AS ROADS and highways become capable of carrying higher and higher traffic volumes,
the perturbations introduced by vehicles traveling at speeds or 1n paths that differ sub-
stantially from the norm become increasingly harmful to safe and efficient operation of
the road network. Some of this individual variation is undoubtedly fortuitous and can

be removed, or at least diminished, by sensible efforts to educate and control drivers.

Even 1n the best of circumstances, however, there remains the necessity for accel-
erating, decelerating, weaving, and merging; namely, the need of each car to enter the
system and leave the system where 1t wishes. Not only 1s this each driver's prerogative,
but 1t 15 also one that in many cases he exercises without specific traffic controi.

Perhaps the most imp6rtant example of such a situation 1s the freeway on-ramp and
acceleration lane. At these points, which must be provided fairly frequently in urban
areas, the smooth flow of traffic 1s perpetually harassed by new arrivals.

Although 1t does not seem practical at the moment to 1magmne an automatic merging
control device having the ability to synchronize effectively the multitude of individual
merges that occur 1n a day, this does not mean that the traffic engineer need go to the
other extreme and abandon any 1dea of controlling the merging process.

Indeed, the literature contains ample evidence that location and design of on-ramps
and acceleration lanes are closely connected with the influence they exert on traffic
stability. If the exact nature of this influence 1s imperfectly understood today, 1t 1s only
because the relative complexity of the merging situation has made a completely scien-
tific treatment of the subject too difficult.

A complete mathematical model for merging cannot be claimed, but 1t 1s hoped 1n-
stead to point out the problems in formulation of such a model, and solve a few of them.
From the purely mathematical point of view, the merging problem has some interest
beyond the simple question of waiting for a suitable gap in traffic. It might be supposed,
for example, that a car traveling along an acceleration lane while waiting for the oppor-
tunity to merge 1s mathematically equivalent to a car waiting at a stop sign, or that the
difference resides only 1n the moving coordinate system. However, the driver on the
acceleration lane 1s able to control the traffic stream with which he wishes to merge
by changing his own speed, thereby increasing or decreasing his headway and spacing
relative to the main stream. The stop sign problem (whichhasbeen very fully analyzed
by mathematicians) does not contain this 1mportant ingredient, and therefore questions
of driving policy do not arise. There 1s only one possible policy at a stop sign: wait
for a suitable gap. Therefore, a mathematical model for a stop s1gn 18 purely descrip-
tive, and its principal result consists of a probability distribution for delay.

It 1s hoped to show that there are a much more varied and mnteresting collection of
problems available when the driver 1s allowed to alter (within limits) his attitude with
respect to the main stream.

NOTATION AND TERMINOLOGY

Three fundamental maneuvers performed by vehicles 1n traffic may be identified as
follows:

1. Weaving. The process of changing lanes within a flow where more than one flow

lane exists.
1



2. Branching. The process of leaving a flow. It does not include any preliminary
weaving necessary to get into position for the maneuver.

3. Merging. The process of entering and establishing constituency within a flow.
In this part, a vehicle is said to merge during the time when it moves from one accel-
eration lane to the lane of principal flow, excluding its travel time in the acceleration
lane. The particular vehicle under study is called the merging vehicle.

In actual practice, the merging lane can be regarded as an extreme case of the un-
controlled intersection, as shown in Figures 1 and 2. In an idealized model, this 1s
simplified as 1n Figure 3, where the car shown is said to be in entry position. The
length of the merging lane 1s called L, and of the merging vehicle D. In some circum-
stances, it will be assumed that L is infinite, or that D is zero.

At any moment, the merging car will define its leading car and following car, mean-
ing simply those cars in the flow lane nearest to the merging car, and respectively
ahead of and behind it. The possibility of merging depends largely on these two cars,
but may also be influenced by other cars in the main stream. Therefore, the nth car
ahead of the merging car 1s defined as his nth leader, and similarly s nth follower.
The merging car cannot have any effect on his leaders, but can compel deceleration
among his followers if he wishes to do so. Also, these definitions refer to different
cars whenever the merging car passes or is passed.

There are several categories of merging problems:

1. What information is the merging driver assumed to possess? Is he instantly
aware of the dynamic characteristics of all cars in the flow lane, or only of his leader
and follower, or perhaps only of certain cars' positions, or positions and velocities, or
positions, velocities and accelerations? By varying slightly the degrees of information
available to the merging driver, new variations can be created on the merging problem.

2. What is assumed the merging driver is attempting to do? Is he trying to merge
as quickly as possible, or as far downstream as possible, or as safely as possible?
How much deceleration among the following cars is he willing to tolerate?

3. What constraints exist on the merging driver's behavior? Clearly it must be
assumed that he cannot accelerate or decelerate his own car beyond the known range of
vehicle performance; also, that he will not collide with other cars. This last point is
slightly ambiguous, however. If he is not permitted to collide, can it be said that he
can merge in such a way as to produce a collision between other cars? It is a well-
known consequence of several theories of traffic flow that fairly modest interference
with high density traffic can produce shock waves which in certain ranges of parameter
values lead quickly to a rear-end collision. Is one to assume the merging driver's
familiarity with such theories?

4, What stochastic process shall be assumed governs the flow of traffic in the main
stream? An answer to this question might
vary from the specification of a separate
function x(t) for each car in that stream
to some relatively simple idea such as
random arrangement and equal velocities.

5. Description of the best policy for a

p— 4./4—

—

WEAVING
SECTION

MERGING
DISTANCE

Figure 1. Single lanes intersecting. Figure 2., High flow merge.




driver to follow in order to satisfy some
particular merging criterion.
6. Description of the probable effect ; — Vp

(distribution of delay, for example) on a /L

driver who pursues such a policy.

7. Description of the operation of the
system if each driver pursues such a [ d /\/—>
policy.

It is easy to see that by varying 1 to 4,
different answers should obtain for 5 to Figure 3., Infinite merging lane.
7. This paper deals with certain special
cases.

SAFE MERGING

Before entering the flow of traffic on a freeway, a driver must select the right mo-
ment for merging. This selection is based on his judging whether a gap which he in-
tends to enter is large enough for a safe merge.

It is assumed that the driver's primary concern is the distance between his vehicle
and the one in front. This distance should be large enough so that, in the event that the
vehicle in front makes an emergency stop, there is enough room for the second car to
make a safe stop. The distance between two cars could be small if the driver of the
following vehicle had all information (i.e., position, velocity, and acceleration) about
the vehicle in front and had the means of controlling the acceleration of his vehicle in-
stantaneously. However, this is not the case in practice.

Knowledge about the vehicle in front is limited. The gap and the rate at which it
opens or closes can only be roughly estimated. Then, the responses are delayed. The
most helpful information in case of emergency stop 1s the instantaneous appearance of
the tail lights on the car in front. This light indicates that the brakes are applied, yet,
it is not known how hard. In defining the "safe distance,' all of these facts should be
taken into consideration. Before defining this "safe distance,' the basic mechanics of
a vehicle on a straight path should be reviewed.

According to Newton's first law, every body continues in its state of rest or n uni-
form motion in a straight line until it is compelled by force to change that state. In
the case of an automobile traveling on a straight road at a constant speed, the sum of
all forces acting on it is equal to zero. Two types of forces are distinguished here:

(a) driving forces and (b) motion-resisting forces. The driving force usually is derived
from the torque generated by the power plant; sometimes it may be a grade of highway
(actually the gravity force) or a wind. The motion resisting forces are caused by fric-
tion, rolling friction, wind, highway grade, etc. Fora cartotravel ata speed of, say,

50 mph, acertain amount of power has tobe deliveredto overcome the resisting forces. A
decrease in supply of power will make a vehicle slow down, until it reaches a new velocity for
which the driving and motion-resisting forces are in equilibrium (steady state). In
some cases, for example in highway driving, such a control (supply of power) of speed
is sufficient for extended periods of time. However, for changes in speed as encoun-
tered in city driving, brakes are used to slow the vehicle at a much greater rate than the
motion resisting forces would do. In either case (i.e., whether using or not using gas
or brake pedal), the driver actually does not control the speed of the car directly; he
controls some forces (driving and braking) in such a way that the resultant of all forces
makes the vehicle accelerate or decelerate. Both these controlling forces are limited
by car and road characteristics. Knowing these characteristics, all forces acting on
the vehicle can be evaluated and thus its motion defined. However, in this limited
scope of defining the safe distance, it will be sufficient to consider only the maximum
values of the controlling forces; in other words, vehicle performance limits. Further,
it will be much more convenient to express these limits in terms of acceleration or decelera-
tion rather than interms of forces. The values of acceleration canbe easily measured and
are convenient touse in equations of motion. Infurther discussions, itis assumedthat all
cars consideredhave the same acceleration and deceleration capabilities.
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Figure L. Maxinum acceleration-time curve, up to LO mph, dry surface.

Figures 4 and 5 show typical recordings of maximum acceleration and maximum de-
celeration taken by the Institute. To simplify the analysis, the average values are used.
Thus, in Figure 4, the average value of the maximum acceleration is 0.31 g =10 ft per
sq sec, and in Figure 5, the average maximum decelerationis0.63 g =20 ft per sq sec.

An absolute safe distance is a gap between two cars in a lane which will allow the
following car to stop safely, even if deceleration of the car in front 1s maximum. Also,
it 1s assumed that the driver of the merging vehicle will use his brakes to full capacity F
in order to avoid collision.

For example, two cars on a straight and level path can be represented in the mathe-
matical model as the x-axis (see Fig. 6). The position of car 1 is denoted as xi and that
of car 2 as x3. The quantities %1, X, and %2, Xz are the respective velocities and accel-
erations (or decelerations). It 1s assumed that at time t =0, the driver of car 1 applies
brakes and at the same instant, the tail lights light up. Further, it is assumed that at
t =0, x2 =0 and therefore, x1 (0) =y (0) =yo(see Fig. 6), also % (0) =vi5 and ke = vz,

The driver of vehicle 2 will respond to the signal (tail lights) and will apply his
brakes. However, there is always some time required for a driver to move his foot
from the gas to brake pedal. This amount of time, called a "time delay, " or 'reaction
time, " varies greatly for different people. Figure 7 shows a distribution of reaction
times for a group of drivers. The average reaction time according to this figure is .
0.73 sec. This time can be defined by T =0.73 sec. Therefore, at time t =T, car 2 !
will start to decelerate (neglecting a small variation in speed due to the removal of foot
from tl;e gas pedal, an action that precedes the application of brakes by a fraction of a
second).

The positions of the cars, for time t > T, are defined by:

®at? |
X =Yy t Vet - T (1)

and

- % (t - T)?
Xz = vzot - (2)
Becauseonly the emergency stop is con-
sidered X1 =Xz =a =20 ft per sq sec to
find X1pa%. and Xamax,, Or 1n other words,
the positions at which vehicles 1 and 2 come
to a full stop, Eqs. 1 and 2 are differentiated
™\ — 63 ¢ AVG and equated to zero. Thus, dxi/dt =vy,-
at =0 and dxa/dt = vg,- a(t-T) = 0, which
givest =vio/a =tiandt =vgy/a + T =ts
R in which t; and tz are stopping times of

o]
ol V"o;;c— vehicles 1and2. Substitutingt;andtsfort
2 4 6 8 1012141618 EqS- la.nd2,

2

1o
2a (3)

Pigure 5. Deceleration-time curve for v

emergency stop from 30 mph on dry surface. X1imax. Yo

+
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Xamax. =Vgo T + V20 (4) 0 @ @ X
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Subtracting Eq. 4 from 3,

X,
Ximax. ~ Xmax. ~
v20? - V1o? Figure 6. Model of two cars in lane.
Yo Vol - =g ®
For a safe stop (no collision),
Ximax. - ¥amax. > 0 (6a)
Therefore, 2 2
Vol =V
yo-vZoT__zo_zaizo (6b)
For y, to be a safe distance, 2 2
V20 ~Vio
Yo 2 vaoT +-22—10 (60)
Case 1
If

V9o =Vigp = Vg, then,
Yo Z VoT (7a)
The "'safe distance" here, y,, is a function of the initial velocity v, and the response

time T. It is independent of the decelerations as long as both ¥, and ¥; are equal. As
an example, if vy =50 mph =73 ft per sec and T =0.73 sec, then y, > 53.3 ft.

Case 2

In the case when the following car is "catching up" with the car in front, or vy, >
Vigs Eq. 6¢ obtains. In comparison with Case 1, the "safe distance," y,, is increased
by (v’é0 - v"io)/za. As an example, if vgy =50 mph =173 ft per sec, vy =40 mph =58.4
ft per sec, a = 20 ft per sec, and T =0.73 sec, then substituting these values in Eq. 6,
— gives yo 2101.3 ft. As seen. y,, is nearly doubled.

100

l
95 PERCENTILE = 0.89 SEC.

80

60 !AVERAGE * 0.73 SEC.
40 /
o /
L LA

o 0.2 0.4 0.6 0.8 1.0 1.2 .4 1.6 1.8

PERCENTAGE OF DRIVERS

Figure 7. Reaction time 1n seconds (first stop).



For more general cases, Egs. 1 and 2 would be used and in similar manner the safe
distance, yq, derived for various ¥, (t) and ¥, (t).

So far, the safe distance discussed here refers to the gap between two vehicles when
one is following the other. In case of merging into oncoming traffic on a freeway, the
gap must be large enough to include safe distances between the merging car and the cars
in front and behind, and the length of the merging car. Assuming again marginal con-
ditions—i.e., use of brakes to their full capacity on all cars (emergency stop)—the safe
gap for merging is

So =V1o +V20 * L (o)

in which L is the length of the merging car, and y;, and yg, are safe distances (front
and rear) computed in the same way as y,-

In the selection of gap for merging ang "'placing the vehicle within this gap, the fol-
lowing three conditions have to be satisfied: s 2 sy, ¥ 2 y1o, andy 2 ygo.

Ifs =sy +b, then b is a distance within which the merging vehicle should be placed
(see Fig. 8).

From previous discussion (Eqs. 6 and 7) it follows that, for the same value of ve-
locities of vehicles 1 and 3, y1o 2 ¥2¢ for vyp 2 vig, andyi4 £ ¥20 for vo, < vips
when vg, =Vy,, then yg, =y;,. These facts should be remembered by the driver so he
can place his car at the right aistances, depending on whether his velocity 1s greater or
smaller than that of traffic.

MERGING AS A SIMPLE DELAY PROBLEM

This section makes the simplifying assumptions that the merging vehicle maintains
the constant speed v with which 1t arrives at the entry position, and that the vehicles in
the flow lane travel with constant speed V and random placement. This means that the
spacing or headway between consecutive vehicles 1n the flow lane will be governed by the
negative exponential distribution. There is then a flow which 1s Poisson for a moving
or stationary observer in either the number of vehicles passing in a given time, or the
number of vehicles contained in a given length of road.

When a gap appears that is large enough to allow the entering vehicle to merge
safely, taking into account the difference in velocity between the merging vehicle and
its leading and following vehicles, then the merge is executed. The distance traveled
while waiting for this gap is simply

d=vt (8)

in which t is the time elapsed after passing the entry point P, until a gap appears. The
distance d is measured from P,. A gap sufficient for a safe merge will be at least T
time units in length.

It is the intent to construct a theory of merging based on known results in delay
theory. These latter treat the wait that a vehicle must endure to enter or cross a
stream of traffic when the entering vehicle is at a stop. Under these conditions,
the probability distribution of waiting time W(t) has been discussed and is well

known (6, 7, 8). However, when the
merging vehicle 1s moving, two difficulties
arise. In the first place, a safe gap must
be defined more carefully because at some

s relative velocity for the entering vehicle
can NM"—YZ —*cntu ‘;l‘Yl-—c‘m "o | with respect to the major stream velocity,
] a time criterion for merge must give way
0 -, | G2 | G X to a space criterion. At a very low rela-
X3 Yoo +je— b —i»l Yo e tive velocity_between major stream and
X2 entering vehicle, the time between the
X, transits of two successive vehicles past

the entering vehicle may be very long with-
Figure 8. Model of three cars in out the existence of sufficient physical
lane. space between them for a merge.




The second difficulty arises in the changed rate of flow of gaps past a moving ve-
hicle from the rate of gap flow past a stationary vehicle. It is necessary to be able to
characterize the velocity of the vehicles in the flow lane which cannot be done from a
mere statement of the flow rate.

As the merging vehicle arrives at the point P; imagine all traffic to be stopped in-
stantly as 1n a photograph. Two points, Pz and Ps 1n the flow lane, in the upstream and
downstream direction, respectively, are defined: P is the first point upstream from
P, for which the distance to the next upstream vehicle is greater than, or equal to, a
value S (see Fig. 9). Ps1s defined similarly. If s 1s the distance between P: and Pe,
then s has a distribution which 1s called g(s). The distance P, to Ps also has the same
distribution g. If the arrival of the merging vehicle at P, occurs at an arbitrary time,
then at that instant the location of the other vehicles with respect to P, is also arbitrary.

The distance S is more explicitly defined in terms of the safe gap T. I a value is
assumed for the quantity T, then to a stationary observer at Pi, the safe gap T can be
transformed to a minimum distance VT, and to an observer in the merging vehicle,
the distance is (V - v) T. The foregoing expression 1s only valid in the case where v is
less than V. If a safe gap T is required at a relative velocity V - v, then spacing
| v - v|T is required.

When relative velocities are small and approach zero, then the physical requirement
of a certain minimum space must be accounted for. If S, is the length of a vehicle plus
minimum maneuvering clearance, the expression for § may now be written,

S = max [IV -viT, So] (9)

In Figure 10, S is plotted against relative velocity.
It is important to relate the well-known distribution of wait for a gap, w(t), with the
distribution g(s). If a minimum gap time is assumed,

W(t;T) = Prob [Wait for (gap 2 T)1s 2 t] (10)
and assuming a minimum gap distance,
G(s;S) = Prob [Distance to (gap 2 S)is 2 s] (11)

When each unit of the traffic stream has a velocity V, the mmimum time gap T = s/Vv
and, t =s/V. Then,

G(s;S) = Prob [Distance to (gap 2 S) 1s 2 s]
= Prob [v-time to (gap 2 8)is 2 s]
= Prob [Time to (gap 2z §/V)is 2 s/V]
= W(s/V;S/V) (12)

The same result may be obtained by
making a change of variable in the den-

sity and integrating: N ]
g(s;S) =w(t;T) |at/ds| =
(1/V) w(s/V;S/V) (13a)

P2 P, Py
= | [
o v
0| ® oot & o o a
/O -«—— [NCREASING VELOCITY OF

/ MERGING VEHICLES

Figure 10. Safe merging spdce vs relative
Figure . Sufe merging space. velocity.



o ©
G(s;S) = j g (u;S) du =(1/V) J w(u/V;S/V) du = W(s/V;S/V) (13b)
S S
If the probability that the merging vehicle travels a distance greater than or equal to
d before being able to merge 1s F(d), the time which the merging vehicle waits for a
safe gap 1s just
t=s |V-v| ! (14)

and the distance traveled by the merging vehicle while waiting this time, assuming
V - v is not small, is

d=vt =<—|V—Yﬂ—>s (15)

The merging vehicle may travel faster or slower than V, but if V =v, then the distance
traveled before merge 1s zero with probability e'aSO, where a 1s the average flow rate,
and infinite with probability 1 - e=250,

Substituting 1n F(d),

F(d) = Prob [Distance to merge > d]
=Prob [(v/ |V-v| )s >d]
=Prob [s > ( |V-v| /v)d]
=G( |[V-v| d/v)
=W ( |V —Vvvl d) (16)
For the particular case of exponential spacings, the distribution of wait is given by the

following expression which has been tabulated by Raff (6). The distribution of F(d) then
proceeds from the substitution indicated in Eq. 16.

W (t;T) = Prob [Wait > t] .
) Jz':(l) (1)t e-(+1)aT , [t -1D] ' _[at- D] ! (17)
i= 1.'

- i+1)7
for(j -1)T <t < 3T

The gap criterion enters as a parameter 1n this distribution. F(d) has been plotted 1n
Figure 11. The probability of zero wait has also been plotted (see Fig. 12).

In Figure 13 the most interesting results of this section are plotted. The length of
the merging lane 1s considered fixed at 500 ft and merging vehicles travel at constant
velocity on the merging lane until either a merge 1s completed or the lane ends. The
stopping behavior considered 1n the next section 1s simplified here to instantaneous
braking n zero distance. The figure shows the probability of success in merging with
the elementary policy of constant velocity and two features are of interest; the anomaly
due to the mmimum distance requirement in the vicinity of the flow lane velocity V, and
the mimimum probability of success for moderate merging velocity.

For this simple merging policy, Figure 11 shows the point of view of design length
of merging lane so that a given fraction of vehicles will merge before stopping, and
Figure 13 shows the alternate point of view, which 1s the best constant velocity to
choose for an existing merging lane and given flow lane velocity.

VARIABLE SPEEDS, COORDINATE SYSTEMS

If the length of the merging lane 1s L, and the position of the leading point of the
merging car 1s denoted by X, 0 £ x £ L, where the origin 1s taken at the beginning of
the merging lane, the time origin at the moment when the merging car appears in the
lane may also be conveniently taken so that t =0 when x =0. If the velocity of the
merging car is v (no longer constant), if Vo be the value on entering the lane, and v,
the largest value obtainable in the distance L, then with exponential acceleration, the
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best velocity achievable 1n time t 1n the merging lane would be

- - Bt
V=V - (vm - vo) e (18)
in which B 1s either a constant or the mean value of 2 random variable. Some informa-
tion on values of g and v, could be obtained from the drag races, which are now widely
held. In these contests, both v,, and elapsed time are announced 1n every case, appar-
ently 1n recognition of the independence of these quantities. In fact, if Eq. 18 1s inte-
grated,

x=v t+(1/8)(v_ - v) (e Bt _1) (19)

Setting x = L 1n this equation yields a relationship involving the elapsed time, denoted
by t;,. Inthe drag races, v, =0, and L = Y4 m1; therefore, B8 could be conveniently
computed for various given values of v, and ty.

The minimum velocity permitted the merging car 1s Vo- The reason for this ap-
parently arbitrary restriction 1s quite simple; 1f that car were permitted to have very
small velocities, this would be equivalent to allowing an infinitely long acceleration
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lane. Because it is intrinsic to problem 5 that L is finite (for with an infinitely long
merging lane, a best policy might be never to merge), the velocities allowed must be
bounded away from zero, and v, is a convenient and not wholly unrealistic bound.
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There is however, an exception to this statement. When the merging car approaches
the end of the available lane, he must stop if he has been unsuccessful in merging.
Assuming linear braking, the allowed velocity variation for the merging driver is shown
in Figure 14, where the equation of the curved portion of the boundary is Eq. 18. The
driver will be permitted to cross from the vertically shaded region into the horizontally
shaded region only if he is able to merge before coming to the end of the merging lane.
Otherwise, he must apply maximum braking at the line of maximum braking, and merge
from a standstill at the end of the lane.

If it is assumed that the traffic in the adjoining lane is all going at the same speed,
then an auxiliary coordinate system can be defined in the adjoining lane relative to the
merging car, and this system can be used to measure the degree of success in merging.
If y denotes the position of the merging car relative to the rigidly moving adjoining
lane; if the value of y is taken as zero at the point of entry into the acceleration lane
when the merging car first arrives there; and if the position of the merging car rela-
tive to the adjoining stream is positive downstream from y =0 and negative upstream
from y =0; then one can refer to a positive or negative merge, depending on whether
at the instant of merging, the merging car has improved his position relative to the
adjoining stream or not.

If the constant speed of the adjoining stream is V, then the merging car moves at
speed v - V relative to that stream, and in time t changes his y coordinate by an amount
t(v - V). Therefore, if he obtains maximum acceleration in the merging lane, and is
able to merge at the last moment, he will have gained on the traffic stream an amount,

tL (V = V);

which represents the best value y can have. I the criterion of success that he shall
merge as far downstream as possible, is adopted, this can be expressed numerically
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Figure 13. Probability of merging in S00 ft or less for flow lane velocity of LS mph.
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CURVE OF according to the distance of the y value ob-

v MAXIMUM tained from its maximum given by ty(v-V).
| ACCELERATION
PROBABILITY OF MERGING
IN NTH GAP
Vm Y MEAN If at the moment when the merging car
—————— L — — — — — TRAFFIC arrives at the entry position, the length of
v IE SPEED the gap from L back to the first vehicle
° y flow lane 1s dy, from that one to the next
< . =x 1s dg, etc., what conditions need to be ful-

filled for the merging vehicle to merge in-
to d,, and what 1s the probability of these

LINE OF
MAXIMUM conditions being fulfilled? First, consider-
BRAKING ing dy, which is supposed to extend back

fromx = Ltox =L - dy, if the merging
Figure 1L4. Allowed velocity varirauce for  vehicle is barely going to fit into this gap,
mergilng driver. then 1its nose must arrive at x = L exactly
when the gap has shrunk to a length D (a
car length). This has taken an elapsed time ty,, during which the traific flow has
traveled Vtj, and this is the amount by which dy has shrunk. Therefore,

L-dy +tV=L-D (20)
or
dy =D+t V (21)

for the barely possible merge nto the first gap. Consequently, if Eq. 20 1s improved
by enlarging dj, merge 1n that gap will be possible. Therefore, if 1t 1s said that

C=D+tV (22)
then it follows that merging into dj 1s possible when d 2 C and impossible otherwise.
Because the distribution of gaps is negative exponential, the probability of a merge into
dj is

-AC (23)

Pi=[ xeMax=e
C

in which X 1s the traffic density in the flow lane.

The probabihty that the first gap d; willbe unsatisfactory but the second one dy willbe sat-
isfactory is the probability that all the follow -
ing inequalities willbe satisfied: dy <C, dj +
dy 2C, anddy 2D, which, inthed;-dg plane
represents the area shaded in Figure 15.
Setting up the integralfor this area,

C
P, = a2e M) gy gy o
27 e

J; Icc Atem ) g dy
-y

- AC [1 e *P - d)] (24)

It is easy to calculate successive forms of
this equation, using in each case the pre-
vious form, together with the fact that the
distribution of sums of exponential vari-
ables obey the gamma-type distribution.
Figure 15. For example, the third stage uses the
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inequalities dy +dg <C, dj +dg +dg 2C, and d3 z D, which can be reduced to x < C,
X+y2C,andy 2D, in which x =d; +dg andy = d3. In this way, the probability of
fitting into the nth glot 1s given by

> C n-1_n-2
- Ay A X -Ax
Py IC'[;) remty m-2)7 © dx dy
Cc C
O an-1,n-2
+ ! re~ MY X — dx dy (25)
"D *C-y n-2)!

So far the constraints mentioned 1n the other parts of this paper have not been applied
to Eq. 25. It appears that the best way to proceed from this pownt would be to use pro-
gramed digital computers to analyze and compare the various approaches proposed 1n
this paper, and hope to present further results 1n this direction. Meanwhile, the analy-
s1s does not seem to have been completely worn out, and the authors wish to encourage
other workers to carry 1t further.

REVIEW OF MERGING LITERATURE

There have not been many studies of merging as a distinct model from delay at traf-
fic Lights to stop signs. The game-theory aspect of the problem, 1n which the merging
driver 1s able to control to some extent the process in which he wishes to merge, has
been recognized by Huemer (2) but not carried far except by computer simulation.

As long ago as 1954, Ho (D proposed a primitive merging model in which ng cars
in the merging lane are waiting to merge with ny cars i the flow lane separated ran-
domly with mean headway 1/ A. If T 1s the time required for a single car to merge,
then Ho gives the density function of the total time to complete the merging by

f(t) =Ce -)\tZal (t +b1)n (26)

in which C, a}, b, and n are functions of the parameters defining the system. When

nj and ng are equal, and some approximations are used, Eq. 26 simplifies drastically to
n-1 n-2

£(t) =2 (ét_'zr)",r) exp [- (t - nT)A] (27)

Lattle (i) compares the advantages of merging just before and just after the main
stream has passed through a signalized intersection, and obtains formulas for the aver-
age delay i each case. He also treats a number of other maneuvers in Poisson traffic
near intersections.

By far the best mathematical treatment of merging 1s due to Olwver (5). He first
considers equally important lanes merging with each other and allows the possibility of
queues m either branch. He then develops the classical queue probability equations
for both branches and solves these to obtain the steady state queue levels. The system
considered here 1s called by Oliver "'priority merging,' in the sense that vehicles 1n
the merging lane are always at the mercy of traffic in the flow lane. In this case, Oliver
finds both the stationary queue length probabail:ities and the distribution of delay.
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A High-Flow Traffic-Counting Distribution

ROBERT M. OLIVER and BERNARD THIBAULT, Respectively, Associate Research
Engineer and Graduate Research Engineer, Institute of Transportation and Traffic
Engineering, Unwversity of California, Berkeley

Although many observations have been made on intervehicle headways
and traffic volumes, it is important to improve the theoretical bases for
predicting a number of flow and density characteristics from a limited
number of observations. Whereas considerable attention has been given
to the theoretical and experimental evaluation of the statistical distribu-
tions of intervehicle spacings, there has been much less information
available about the discrete counting distributions. The principal effort
has been devoted to Poisson-like counting distributions.

The purpose of this paper is to review and present counting distribu-
tions which take into account two fundamental characteristics of medium-
and high-density traffic flows: (a) platooning or bunching, and (b) mini-
mum spacing, jam-density of the so-called maximum-pack situations.
These counting distributions are dérived from intervehicle spacing dis-
tributions, which have been studied both theoretically and experimen-
tally; in the low-density or low-flow case 1t is shown that these distri-
butions have the limits of the well-known Poisson case.

*IN AN ATTEMPT to understand conditions that affect traffic flow, engineers have
applied probability theory to the analysis of many traffic-counting problems. Although
it has sometimes been difficult to predict the exact behavior of any one vehicle or
driver, experiments have demonstrated that departures from an average behavior may
follow predictable and relatively stable patterns.

In the theory of traffic flow, several authors have studied the probability distributions
of spacings between vehicles and the related problem of the distribution of vehicle counts
in an interval of time or space. With a reasonably accurate description of intervehicle
headways and the distribution of vehicle counts, it should be possible to answer a large
number of flow and congestion problems that arise in and around traffic streams. The
relations between flow, density, road capacities, delays, and the effect of queueing on
the velocity distributions of free-moving vehicles will undoubtedly depend on the basic
assumptions about intervehicle spacings.

In studying the arrangement of cars on a road, early writers discussed the combina-
torial aspects of random arrangements of points on a line. The well-known Poisson
counting law was then derived as a miting (low-~density) case. More recently, the
counting problems have been studied as time-dependent processes. By formulating the
probability that an intervehicle spacing lies between certain himits, it is theoretically
possible to find the probability distribution of spacings between nonadjacent vehicles and
from them the discrete distributions of vehicle counts in an interval of time or space.

A cursory review of the literature suggests that the theoretical as well as the ex-
perimental work in this area has focused on at least two major problems. The first of
these 1s the effect of bqp\ching or queueing within the traffic stream. It is not uncommon
to find several vehicles ‘?llowing a slow or unusually large vehicle; the probability that
spacings between cars hié between limits that are of the order of several car lengths has
been observed to be higher than that predicted by the exponential distribution. Equiva-
lently, the probability of counting several vehicles close to one another is higher than
terms of the Poisson distribution would predict.

The second of these problerhs has to do with the size of the vehicles; this size forbids
them from occupying the same road space. To replace cars on a road by points on a

15
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line is not always realistic because high flow or jam-density situations inevitably lead
to the conclusion that there is an upper bound to the number of vehicles that can be
counted 1n an interval. If vehicles also have an upper limit to their velocities this
statement applies as well to time counts as 1t does to counts over a length of road. In
these cases, the probability of finding vehicles within a fraction of their respective
lengths 1s zero and 1s, of course, smaller than the Poisson law would predict.

Although there has not been complete agreement, either theoretically or experi-
mentally, as to the structure of the distributions of intervehicle spacings at their origins,
there does seem to be general acceptance of the exponential shape of the distribution fog
large arguments; that 1s to say, the probability of finding intervehicle spacings greater
than a large value decreases exponentially with the size of the spacing.

This paper 1s divided into seven sections. The second section briefly reviews the
historical background of the statistical analysis of intervehicle headways. The third
section describes a limiting form of Schuhl's double-exponential distribution. The
fourth section reviews some of the mathematical properties of the geometrically com-
pounded Poisson process (Stuttering Poisson); these results are then used in the fifth
section to obtain a discrete counting distribution. The sixth section discusses the proba-
bility of "maximum pack'" and the final section presents some numerical results and a
discussion of qualitative features of these distributions.

HISTORICAL BACKGROUND

As early as 1936 Adams (1) pointed out that the distribution of cars on a road could
be formulated mathematically. By assuming that the vehicles were randomly distributed
points on a line and by making certain limiting assumptions he and at least two other
authors (ﬁ, 1) showed that the Poisson distribution was applicable to some traffic
counting experiments.

By 1955 several distributions of intervehicle spacings had been proposed. One of
these is the double-exponential distribution (see Egs. 1, 2, and 3) derived from geo-
metrical arguments by Schuhl (22, 23, 24). He also obtained certain relations for the
discrete counting distributions associated with an arbitrary distribution of intervehicle
spacings. An important aspect of Schuhl's distribution 1s that one limiting case repre-
sents the exponential distribution, whereas a second limiting case represents the class
of distributions found 1n certain high-density situations.

To study the flow of traffic through a signalized intersection Newell (18) 1n 1956 dis-
cussed a translated exponential distribution for intervehicle headways. The main feature
of this distribution was that 1t could account for the size and finite velocity of a vehicle
as well as some experimental evidence which supported maximum or capacity flow rates.
Under certain medium flow conditions, Kinzbruner (E) obtained further experimental
evidence to support this distribution. Oliver (19) published some theoretical results
for the various counting distributions associated with this translated exponential dis-
tribution. Feller (3) in 1948 had already formulated the basic problems associated with
the count of nuclear particles. The so-called type I counter resulted 1in a counting dis-
tribution which, except for the distribution of spacings to the first count, was in many
respects 1dentical to that one posed in the context of traffic flows.

In 1958 Haight and several collaborators (10) analyzed traffic flow data and came to
the conclusion that realistic distributions could be classified as intermediate between
(a) random and (b) equally spaced models. In the former case, the exponential inter-
vehicle spacings led to the Poisson counting distributions; the second, to a deterministic
count that 1s just equal to the integral part of the interval of mterest divided by the fixed
spacing between vehicles. Haight showed that a family of distributions satisfying certamn
theoretical and experimental requirements were the Erlang or Pearson type III distribu-
tions. Counting distributions which correspond to this assumption for ntervehicle
spacings are the generalized Poisson functions described by Haight (9) or various state
probabilities calculated by Morse (17) and Jewell (11). Whittlesey and Haight (30) have
also obtained certain approximations and numerical results for these counting distribu-
tions.

In 1959 Kell (E) produced experimental evidence to show that the double exponential
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distribution suggested by Schuhl accurately described intervehicle spacings in certain
medium flow situations. An extensive number of experiments was made and four un-
known parameters in the Schuhl distribution were expressed in terms of the flow rate
or volume of traffic. Extrapolation of these parameters for high volumes indicate that
a lhimiting form of the double exponential distribution may be appropriate for high-flow
situations (see Eqs. 4 and 5).

By 1960 Muller (16) had reached the important conclusion that the random variables
describing successive intervehicle spacings might not be independently sampled. He
proposed a model of traveling queues which took specific account of bunching or queueing
effects. Mathematically, this was a generalization of a special bunching configuration
suggested by Bartlett (2) and derived independently from overtaking rules by Oliver (@).
The 1mportant new consideration brought into all of these studies was the dependence of
gaps between adjacent vehicles. Not only 1s it necessary to resolve the distributions of
gaps between queued vehicles, but also one must discuss the spacings between queues,
the distribution of queue lengths, and the formation of queues as the result of flow
around slow-moving vehicles.

In 1960 May and Wagner (14) published an extensive list of data gathered 1n the vi-
cinity of Detroit and Lansing, Mich. In the case of extremely high flow rates, the proba-
bility density distributions of intervehicle headways showed a marked tendency to rise
sharply from zero and then decrease exponentially from this peak or modal value.
Mimimum headways were seldom evident for flow rates exceeding 30 per min but were
almost always present for flow rates less than this value.

In the same year Weiss and Maradudin (24) published some new results in the theory
of vehicle delays at the stop-sign type of intersection. In deriving numerical results
they made use of a probability distribution of intervehicle spacings which was a trans-
lated version of the geometric-exponential distribution discussed by Jewell (11) and
which, as shown later, 1s the same limiting case of Schuhl's distribution observable in
some high-volume samples of Kell's data.

Although vehicles 1n a dense traffic stream are obviously restrained by each other's
movements and although the independence assumption of spacings between successive
vehicles may be unrealistic 1n some respects, a large body of theoretical and experi-
mental research has supported Schuhl's distribution. Either 1n its own right or as a
himiting version of more general cases, the mixture of two exponentials has been used
to describe vehicle behavior in medium density traffic streams. A limiting version of
Schuhl's distribution 1s discussed 1n the following section. The counting distributions
that correspond to it are the major subject of the remainder of this paper.

DISTRIBUTION OF INTERVEHICLE SPACINGS

Schuhl obtained a description of the distribution of spacings between vehicles on
purely theoretical grounds. By considering two types of vehicles—slow and fast— and
by requiring that the sum of their respective flow rates equal the total vehicular flow
rate, he obtained the probability distribution of the spacings between adjacent vehicles
as the mixture of two exponential functions, each with its own decay constant. An ob-
server picks a fast vehicle with probability & and a slow vehicle with probability 1 - o;
if the choice results 1n a fast vehicle the probability that the spacing to the next vehicle
(either slow or fast) 1s greater than t 1s just e~ 1t if the choice results 1n a slow ve-
hicle the probability that the spacing to the next vehicle 1s greater than t being equal to
e *2t, The muxture of these probabilities results 1n

A(t) = ae Mty (1- oz)e-AZt (1)

for the probability that the spacing between any two vehicles 1s greater than or equal to
t. Though the words "'slow' and "fast' may not be appropriate in the sense that vehicle
velocities may themselves be distributed over a wide range of values, 1t may be helpful
to think 1n terms of retarded and unretarded vehicles. That 1s to say, the slow vehicles
travel at their free or desired speed, whereas the fast are restricted in their abibity to
maneuver; because of heavy flows 1n an adjacent lane, the latter may not have oppor-
tunities to perform the passing maneuvers that lead to unrestrained flow conditions.
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Morse (_11) has called the distribution of Eq. 1 the hyper-exponential distribution, and
one of its counting distributions the hyper-Poisson.

Although Eq. 1 might apply to a set of points with restricted motion along a line, it is
clear that vehicles occupy a finite amount of space in a traffic stream; if there is an
upper bound to the free velocity then there 1s at least this same upper limit to the ve-
locity of the constrained or retarded group of vehicles and the minimum time or head-
way between successive vehicles is simply the ratio of the minimum spacing between
vehicles to the maximum velocity at which they can travel. Even if the domain of defini-
tion of velocity values were (0, =) and the lower bound on intervehicle headways were
zero, many experimental results indicate that near-zero headways are highly improb-
able; hence, the assumption of a lower bound on ntervehicle headways serves as an
approximation of a real probability distribution where the density function is small for
small headways, increases sharply to a maximum, and then decreases exponentially
for large values of the argument.

To account for this feature of minimum headways, Schuhl modified Eq. 1 to include
a term for minimum separations between vehicles. In this translated version,

Ay =1 0<t<A

cqe M) g gyeralt-A) 4y @)

o)
Arefers to the minimum headway or spacing between vehicles. By a simple change of
the constant terms in Eq. 2, 1t is possible to write the translated probability distribu-
tion as

A2w) =1 0<t<A

—e e Mt yge et agt (3)

The constants c; and cz must add to a number greater than one.

Experiments by Kell (12) and May and Wagner (14) indicate that as traffic volumes
increase there will be an increase in the fraction of restrained vehicles relative to the
free-moving group. This seems reasonable because passing maneuvers generally be-
come difficult as traffic volumes and densities increase. With very high-flow conditions
the constrained vehicles travel closer and closer to the free-flowing leader of a platoon
or bunch. Kell's data indicate that the exponential decay constant, A1 in Eq. 2, 1mn-
creases sharply with increasing flow rates, whereas that of the free-moving group
(X2 1n Eq. 2 is less than A;). The composite curve AA(t) tends to look like an exponen-
tial with a large decay constant for small headways and like an exponential with a much
smaller decay constant for large headways.

In the limit as A1— = and A:-—> 0 one obtains a probability distribution of interve-
hicle spacings

Alw =1 O<t<A

-t - 4)

=(1 -a)e A<t (4)

where X replaces Az 1n Eq. 2. The probability density distribution

aA(t)=-%£t) =oz6(t-A)+)\(1-a)e-Mt-A) (5)
also points out the fact that the probability of finding vehicles queued at the minimum
separation 1s «.

The probability distribution of Egs. 4 and 5 forms the basis for the counting distri-
butions obtained in this paper. When A =0, one obtains the special case—called the
geometric exponential distribution (1_1)—of the hyper-exponential distribution which has
been discussed by Jewell (11). Although many results have been published on the count-
ing distributions associated with this special case, it may help to review some of their
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properties in the following section. It is important to point out that many of the analy-
tical expressions obtained for the A> 0 case can be obtained in terms of those obtained
for the A =0 case; hence, numerical computations made for the A =0 case can be used
as building blocks for the A > 0 cases.

The mean spacing, vp, of the translated distribution of Eq. 4 is Aplus the mean
spacing of the untranslated case, and the variance, ¢ Az, of the former is identicaltothe
variance of the latter. If constants in Eq. 4 are renormalized so that g =X/1 - a,

vp = jo Abd(t)dt =A+ ! (6a)

1 +o

N =J‘o 20t - DAM) ot =y (6b)

It has been shown by several authors (11, 24, 25) that if one randomly selects a point
in time, the probability density distribution of spacings to the first car, uA(t), is the
product of the stationary flow rate and the probability that the spacing between two cars
is greater than t. Because the stationary flow rate, pp, is the reciprocal of the aver-
age intervehicle headway in Eq. 6a the "starting-at-random' density distribution 1s ob-
tained:

ub(t) = uy 0gt<A (7a)

H’A(I = d)(t = A)

=(1-a)u,e 1-Apy Ast (Tb)

u is the stationary vehicle flow rate for the special case where minimum headways are
zero. The expected wait to the first vehicle from a random origin 1s

2 2
Ta_+¥A

_[ tu®(t) at = 5
o A

GEOMETRICALLY COMPOUNDED OR STUTTERING POISSON PROCESS

Several authors (4, 5, 11) have studied the geometrically-compounded or Stuttering
Poisson process which corresponds to the special case A =0 in Eq. 4. As already men-
tioned, the mathematical structure of the discrete counting distributions which corre-
sponds to the more general case A >0 is similar to that of the Stuttering Poisson.

The Stuttering Poisson distribution may arise in the following way: consider vehicles
replaced by points on a road. One group of these vehicles is a free-flowing or unre-
strained group, the probability density distribution of spacings (headways) between ve-
hicles in this group 1s exponential with mean value A"l This 1s equivalent to the state-
ment that the count of vehicles in an interval is Poisson-distributed with average flow
rate equal to A. The second group of vehicles are queued behind unrestrained vehicles.
The probability that the queue of restrained vehicles is of length n-1 is a geometric
distribution;

an=(1-oz)ozn'1 n=1, 2, ... (8)

in which (1 - «) is the probability of no restrained vehicle following an unrestrained one.
The probability p(n/m) of finding n - m restrained vehicles behind m unrestrained ve-
hicles or a total of n vehicles with m unrestrained is the m-fold convolution of Eq. 1,
the negative binomial,

p(n/m) = ( ::1-_11 )(1 -a)™a™"™™ nrmz1 (9a)

=1 n=m=0 (9b)
Consequently, the probability gp (t) of finding n vehicles in an interval t chosen at
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random 1s the sum over the possible number of unrestrained vehicles:
n -t m
_ n-1 m n-m e = (At)
n (®) ;n}il (m-l) 1-e) e m'

nxl (10a)

The probability that no vehicles are observed in t 1s just e~ M, the probability that the
spacing to the first unrestrained vehicle 1s greater thant. For n2>1 the distribution
gp (t) can be written in terms of the associated Laguerre polynomials of order 1,

-1
g () =2-ala® At D) la-1)Aty (10b)

in which the Laguerre polynomial of order a is

(a) n (-x)i
I"na (x) =iz=:0 (?:g> 1)'f

(11)

The distribution of Eqs. 10a and 10b corresponds to the case where the counting of traf-
fic begins at random. If one starts to count just after one vehicle has passed, the dis-
crete counting distribution differs only slightly from g (t). This new distribution 1s
labeled hy (t); it can also be derived by arguments similar to those used for Eq. 8
through 10.

The distinction between these two cases can be well 1llustrated by means of their
generating functions. In the "starting-at-random' case, the generating function

G(z,t) =n2=:0 g, t)z
of the Stuttering Poisson 1s just that of the geometrically compounded Poisson process
discussed by Feller (3). By substituting the generating function of Eq. 8 for the variable
z in the generating function e At(l - Z) of the Poisson process,

_At(1 - z)
G(z,t) =e 1-az (12)

Expansion of Eq. 12 1n powers of z leads to formulas for the counting distribution. By
substituting the stationary vehicle flow rate p = A/1 - a,

go(t) =e Kt - @) (132)
g (t) = pt(1 - ) e Mt - ) (13b)
ga(t) = [a(l -a) ut+ gl;azw]e_ ut(1-o) (13c)

These are identical to the expressions already obtained in Eq. 10a and 10b.
When the counting experiment starts with the passing of a vehicle, the generating
function

H(zt) = T, h (02"

1S obtained by a slight modification of the geometrically-compounded Poisson process

previously discussed. The total count can now be expressed as the sum of two random
variables X and Y. X 1is the number of vehicles 1n the first bunch exclusive of the ve-

hicle which begins the counting experiment. Hence, from Eq. 8

Pr{x=n}=an+1 nz0 (14)
Because the first bunch of vehicles is located at the origin, Y represents the remaining

count with probability distribution g, (t). Hence, the distribution of X + Y 1s the con-
volution of Eq. 14 with g, (t) m Eq. 10:
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h©= E 0-adg ) nz0 (15)

Its generating function is therefore equal to the product of the generating function of Eq.
14 and G (z;t):
_pt@ -a)(1 - 2)

H(zt) =1 e 1-oz (16)

By summing Eq. 15 or by expanding H(z;t) in powers of z, the coefficient of z" becomes

o0 omzl omels (1 - )2 nei-lp, 4l SRt n_-At
hn(t) -mE=1 1=EO ( i )W o (xt)" e +{l-a)a e (17a)

By making use of Eq. 11 hn (t) can also be expressed in terms of Laguerre polynomials
as

h (t) = o1 - a) ekt - “)Lflo) (— (i-'—g—)zﬂ ) (17b)

These discrete counting distributions can also be obtained by considering the proba-
bility distribution of spacings between nonadjacent vehicles. If a(t) 1s the probability
density distribution of intervehicle spacings, ap(t) 1s used to denote the probability den-
sity distribution of spacings between every nth vehicle. (Throughout this paper the ab-
sence of the subscript n 1s identical to the n=1 case.) The probability that the spacing
between every nth vehicle 1s greater than or equal to n will be denoted by Ap(t). Itis
fortunate that the discrete counting distribution, hn(t), can always be expressed in
terms of Ap(t) and Ap,1(t). Arguments formally developed by Feller (3) show that

h () =A, -4 (182)
Because this 1s a linear first-order difference equation in n,

n
An+1(t) = iEO hl(t) (18b)

provided one starts with the boundary condition hg(t) = Ai(t) = A(t). This last equation
again points up a result that can be obtamned by a direct line of argument: the probabuility
that n or fewer vehicles are observed in t equals the probability that the spacing between
n+1 vehicles is greater than or equal to t.

Further, the random variable that measures the spacing from the time origin to the
nth vehicle 1s the sum of the spacing to the first vehicle plus the spacing between the
first and the (n-1)th. The probability density distribution a,(t) is therefore the con-
volution of the probability that the first lies between r and r+dr with the probability that
the spacing to the (n-1)th vehicle hies between (t-r) and (t-r+dt). Hence,

®t
A® =] [ al)a _ (t-r)drat (19)
to
Equating the Laplace transform of AqD),
-]
~ _ -st
X (s) = jo e A (t)dt (20a)
to the Laplace transform of the right-hand side of Eq. 19 gives

~ 1 - [a(s) n
A (s) =—[—s-]— (20b)
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in which a(s) is the Laplace transform of the intervehicle density distribution. When

A=0in Eq. 4,
a(s) = I a(t)e-s't dt =a+ s—% (21)

[s

Expressing the nth power of a(s) by the binomial expansion and making use of the trans-
form pair,

ift) =c¢ %
J=n I

ne e CHet)
e <
_1 1
fls)= s G+ob
one can invert Eq. (20b):

R N G R e

Ap(t) can be expressed in several alternate forms: (a) in terms of Laguerre polynomials

of order (0)

An(t) “(1 - ) ™1 jgo <n+j-1> (0: - 1>n-j Céje_“t(l - a) L(O). [pt(l _ oz)] (22b)

o n-j

or (b) 1n terms of an incomplete integral, of the Laguerre polynomial of order (1)
L)
An(t) =(1 - a)a! I e™® Lfll—)l [g—a%)x]dx (22¢)
pt(l-a)
Substitution of Eq. 22a into 18a and use of Eq. 11 and the 1dentity

HOREGHEE 1 2
again leads to Eq. 17b.

COUNTING DISTRIBUTION

In this section the discrete counting distributions that correspond to the intervehicle
distribution of Eq. 4 are derived. If AA(t) is labeled as the probability distribution of
intervehicle spacings greater than or equal to t when the minimum headway is A, and
Ap(t) for the A =0 case, Eq. 4 can be rewritten

A%w =1 0<t <A (23a)
=A(t - A) Ast (23b)

It follows from the defining Eq. 19 for the distribution of spacings between nonadjacent
vehicles that

A%0 =1 0Ost<na (242)
=An(t - n4) nAct (24p)
Hence, the discrete counting distribution
- A
p, ®) =A_,(t)-A () (24c)

which is obtained by substituting P, (t) for h (t) and A:(t) for Am(t) in Eq. 18a can be
written in terms of An (t):
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pn(t)=0 0Os<t<nA (25a)
=1-A (t-na) nAst<(n+1)A (25b)
(- (n+1) A) - A (t -na) (m+1)A<t (25¢)

By substituting the translated versions of Eq. 22a nto 24

A (t) z 7_‘, <“>(1 )j on-l Cu( - ozi)!(t -nA) 1 e-u(l - o)t -nd) (26)

and
pn(t) =0 0ct<nA (27a)

_ 1 n j _n-jl p(1-a)(t-n4) b o~H(1-0)(t-n4)
_1-]§11=0< >(1 ) it

nA<t <(n+1)A (2Tb)

n+1] -1 <n+1>(1 i SAt1- il p(l-o)- (n+1)A) 1 -p(l—a)[t (n+1)A] _
1'1 1- i

n jz1 rn j n-jl u(1-o)t-nA) ] -p(l-a)t-nd)
jEl <j>(1'a) o il €

(n+1)A<t (27¢)
There are, of course, many equivalent ways of writing these counting distributions.
One of the simpler analytic forms, and possibly one that will be computationally useful,
expresses the counting distribution in cumulative form:

P (t) = ].z%o Pt
P,(t) is the probabulity that n or fewer vehicles are counted 1n the interval t. From

Eqgs. 18 and 24,

Pn(t) = (t) = t - (n+1)A)

n+1 n+1[

can be written in the form of Eq. 26. By making use of the incomplete gamma function
notation,

x .
y(ux) = [ ety = ;Ene x
0

one can write Pn(t) in the form

p (t)_n +1 ] -1 <n+1>(1 )] n+1- ]x_' X
<n+1)(1_ )n+1 -k k y(n+_i{l'{x) + o +1 (28)

m which x = p(l-e)(t-(n+1) A) This alternate form for the counting distribution may
be useful in view of the well-known properties of the incomplete gamma function and
programs which are currently available for high-speed computation (30).

PROBABILITY OF MAXIMUM-PACK

The probability of maximum pack equals the probability that 1n an interval chosen at
random the maximum number of vehicles are counted 1n that interval. The probability
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that exactly N vehicles are counted in an interval t = NA, which begins just after the
passing of a vehicle, equals aN. This 1s the probability that a queue of N restramed
vehicles follows the car that began the counting experiment. This probability falls off
rapidly with small «. However, if one randomly picks the origin of an interval N A units
long and asks for the probability that exactly N vehicles will be counted, a number which
1s larger than o' is obtained because the first vehicle can occupy any position from the
moment after counting begins to an instant just before the end of the first interval A.
From the definition of the starting-at-random density distribution mn Eq. 7 the proba-
bility of counting n vehicles in a randomly chosen interval of length t is

t
q,® = jouA(r)pn_1 (t - r)dr (20)

Because p,(t) and uA(t) can be expressed in terms of A (t) for the A =0 case, one can
rewrite qy(NA), the probability that N vehicles will be observed in a randomly located
interval exactly N A units long as

A
qy (NA) = #A'[o [1 - Ay (A= t)] at
The probability of maximum-pack 1s obtained by substituting Eq. 22a for 1 - Ay_ (A-t):

__wA 1 N-1 j1 = Na _\j N-1-j e~ Bk
qN(NA) “"1+pA T 1-a+8 j'=’1 iz'o k=‘iz+1< j >(1 ) e k! (30)

in which 8 = pA(1 - ). When N =1 one obtains the probabuility that a vehicle is ob-
served in an interval equal to the minimum spacing:

=4 _
9 (a) 1+uA
'I‘hf's 1s equal to the average flow rate of Eq. 6a divided by the maximum flow rate
A™" which would be observed 1if all vehicles were spaced regularly Aunits apart.

SUMMARY

Figure 1 shows the fraction of intervehicle headways greater than or equal to the
values indicated on the horizontal scale. In Figure la the experimental data are de-
noted by the circled points and the solid line 1s a plot of the theoretical curve of Eq. 2
with parameters calculated from observed flow rates. These data were observed and
fitted to Schuhl's distribution by Kell (12) 1n experiments that observed single-lane flow
rates ranging from 150 to 1,200 vehicles per hour. In Figure 1b the theoretical curve
1s decomposed in two separate exponential terms; the large decay constant refers to the
restrained vehicles and the smaller decay constant refers to the free-moving group.

Figure 2 shows the probability distribution pn(t) of Eq. 28 for several values of o
when t =104; i.e., 1f the mmimum headway were A = 2 sec, the period of observation
would be 20 sec. In Case a, the probability of finding no restrained vehicle following a
free-moving vehicle 1s 0.1, 1n Case b, 0.3 and 1n Case ¢, 1.0. Case c 1s also the
counting distribution which corresponds to the translated exponential distribution dis-
cussed earlier by Newell (18) and Oliver (19).

In comparison to the Poisson law, thesa:ountmg distributions point up at least two
distinct effects. The first of these is the finite number of terms in the distribution.
The probability of a count which exceeds the integral part of tA™! is 1dentically zero.
For high flow rates and more particularly for average counts which are close to the
integral part of t A’ the difference between these and the Poisson distribution 1s pro-
nounced.

A second feature 1s due to the effects of queueing. As the fraction of constrained
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vehicles increases, the average count in Average Count

a small interval increases even though
the stationary flow rate remains constant.
This effect is due to the increase in the
average size of the first bunch of re-
strained vehicles located at the counting origin.

Figure 3 shows the variance, Var n(t), as a function of the average count, m(t), for
several values of the fraction of constrained vehicles andt =54, 10A. The parameter
pArather than « is varied. With each curve, specification of a minimum headway, A,
automatically specifies the counting interval, a value of u, and the steady-state flow
rate, u/1 + uA. At least one author (16) has argued that in certain regions traffic
counting distributions should have a larger variance than the Poisson due to the vehicles
which concentrate in random queues. This feature can be observed in Figure 3 because
a straight line Var n(t) =f(t) would intersect the peaked curves corresponding to t =10 A.
In those cases where small average counts are observed, the variance approaches that
of the Poisson distribution. For average counts close to the integral part of t A™! the
variance decreases because the probability of maximum-pack increases. In the limit,
this probability equals one, vehicles are spaced regularly Aunits apart, and the vari-
ance is zero. The slanted lines in Figure 3 indicate that it is not possible to obtain cer-
tain average counts for the given values of yand A. This should not be interpreted,
however, as a statement that small average counts cannot be observed in t, but rather
that the probability of queueing must lie below certain values if small average counts
are observed.

Q

Figure 3. Variance vs average count.
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Analyzing Vehicular Delay at Intersections
Through Simulation

JAMES H. KELL, Assistant Research Engineer, Institute of Transportation and
Traffic Engineering, University of California, Berkeley

The first section of this paper describes the development of a simula-
tion model for the intersection of two 2-lane two-directional streets,
with one street being controlled by stop signs. The lack of adequate
mathematical distributions describing traffic behavior and the field
studies performed to obtain these distributions are discussed. The
elaborate techniques used to test the logic of the model before beginning
the analysis are also reviewed.

The second portion of the paper presents the simulation results.
The variability of vehicular delay under constant traffic conditions 1s
described and the relationships between vehicular delay and individual
approach volumes and turning movements are formulated.

A brief discussion of the value of this research and the general ap-
plicability of simulation techniques to solving traffic problems is also
presented.

*A GREAT MANY traffic engineering decisions are made on the basis of experience
and engineering judgment at the present time. In this growing profession, there 1s an
increasing need for factual information concerning the effect of these decisions. The
simulation of traiffic situations on high-speed digital computers can be used to provide
a large amount of data under controlled laboratory conditions which would be difficult,
if not impossible, to obtain through field studies. The techniques and methods of ve-
hicular simulation on computers are relatively new, and the lack of basic mathematical
distributions describing traffic behavior has slowed progress. As these techniques are
established, simulation can become one of the more valuable research tools available
to the profession.

Almost any traffic situation is capable of simulation and, as techniques improve, can
be rapidly programed. Variables or controls can be changed and their effects analyzed.
Before-and-after studies can be performed in hours or days without disturbing traffic n
the field. Situations can be simulated and observed which could not be risked 1n field
installations. Peak traffic flows can be simulated for hundreds of hours under the pre-
cise conditions desired instead of obtaining one or two hours of data per day 1n the field
under uncontrolled conditions.

One of the most important problems facing traffic engineers 1s congestion on city
streets. There has been much discussion in the last few years concerning network
analysis of street systems to provide maximum efficiency in moving traffic. This cer-
tainly is an ultimate objective and will use computers to solve the problem. But, con-
gestion begins primarily at intersections. A network analysis combines a great number
of intersections and studies the over-all operation of the system. To do this, even on
large computers, the individual intersection must be analyzed in a macroscopic manner.
In other words, only the significant features of intersection operation can be included
in the analysis 1f it 1s to be accomplished 1n a reasonable time. To determine which
operational features are significant, 1t is necessary to study intersection operation in
fine detail or microscopically. The microscopic simulation of vehicular traffic at in-
tersections is the subject of this paper.

The current research in simulation at the Institute of Transportation and Traffic En-
gineering 1s divided into two phases—intersections controlled by stop signs and
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intersections controlled by traffic signals. The first phase is nearly complete and the
second phase has begun. Numerous objectives are to be obtained from this research
project, including the following:

1. Development of '""models'" by which vehicular traffic at intersections can be simu-
lated on high-speed computers.

2. Determination of the total vehicular delay experienced at intersections with re-
spect to approach volumes and turning movements. In the case of signalized intersec-
tions, signal timing is the third major variable.

3. Evaluation of the effect of installing a signal at an intersection on vehicular delay
which will provide a basis for examining and refining existing traffic signal warrants.

4. Determination of the effect of turning movement restrictions (and signal timing
in the second phase of the research) on intersection operation.

STOP INTERSECTION

The programing for this phase of the research is essentially complete. The model
described was coded for an IBM 701 computer available at the University of California.
Unfortunately, this computer has been out of operation since July 1, 1961. Programs
coded for the 701 computer are not readily translated for use on later generation com-
puters and, due to the complexity of this simulation program, no attempt has been made
to recode the model for another computer. The 701 is expected to be in operation by
January 1962. This phase of the research has, therefore, been tabled temporarily
pending the availability of the computer.

Model Description

The programed model for the first phase of this project consists of the time simu-
lation of an orthogonal intersection of two two-lane, two-way streets with the minor
street being controlled by stop signs. The model (shown in Fig. 1) includes the ap-
proaches to the intersection for sufficient length that vehicles enter the system before
they are influenced by any condition existing at the intersection.

Vehicles entering an approach are gen-
erated randomly by Monte Carlo techniques
from a given distribution at a preselected

M hourly volume. Each of the four approaches

B .l has a preselected volume and is generated
ﬁe;eor;r;ce Y independently. As a vehicle is generated,
N it 1s randomly assigned a turning move-
THRU STREET A\ | ment (right, left, or thru) based on a re-
b [ . ?\/‘f AR _Lanez quested distribution of these movements.
" X Lane 4 : ] Vehicles travel from the point of genera-
g 20 sECONDS_y  (2200fcer) ] 5\ AN " tion to the intersection (or to a point where
8 they must decelerate) at a predetermined
i\n 3 velocity.
ASSUMPTIONS | tl o3 Minor street vehicles decelerate to a
Speed - 30 mph b oS stop either at the mtersection or in queue
Deceleration — 5f1/sect | @ 38 .
Acceleration — 5f./sect RENE: § (in wh1.ch case they move f(_)rward as 'fhe
Right turns slow 1o 8mph | 0 §< queue is released). A vehicle at the inter-
Left turns siow to 9 mph LR section accepts or rejects available gaps
| E J in conflicting traffic streams from given
/M 0 N acceptance distributions based on their re-
| spective turning movements. On accept-
Reference i g a gap, the mnor street vehicle accel-
Pont | Y erates to recovery driving velocity.
ot Major street vehicles are given the

right-of-way over minor street vehicles
when conflicts 1 turming movements and/or

Figure 1., Simulatior: model for stop sign N .
time exist. Through major street vehicles

intersection.
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are also given the right-of-way over opposing left-turning major street vehicles when
conflicts in time occur. Major street queues, due to stopped left-turning vehicles, and
delays caused by vehicles slowing to make turns, are also included in the model.

Briefly, the simulation is accomplished as follows. Each time a major street ve-
hicle enters the intersection, the model is analyzed. If the major street vehicle is not
delayed, the minor street traffic is brought up to this time (vehicles delayed or released
as appropriate) and the major street vehicle is released. If the major street vehicle is
delayed, the minor street traffic is also delayed and the system is checked to see when
the major street vehicle might be released. This process is repetitive, generating new
traffic as necessary.

Acceleration, deceleration, slowing, stopping, and queueing delays are computed for
both major and minor street vehicles. Stopped time delays for minor street vehicles
while waiting for an acceptable gap are also computed. All delays are accumulated and
stored for each simulated hour of real time.

At the termination of each simulation run, the results of each simulated hour are
printed and include the following items for each approach, for the minor street, for the
major street, and for the entire intersection: elapsed real time, vehicular volume
entering the system, vehicular volume released from the system, turning movement
counts, turning movement percentages, number of vehicles delayed, percent of vehicles
delayed, total vehicular delay, average delay per vehicle, average delay per delayed
vehicle, and maximum queues experienced.

Vehicle Generation

As mentioned earlier, vehicles are generated randomly from a given distribution for
each approach independently. One of the first problems encountered in the development
of the simulation model was the absence of a satisfactory mathematical distribution de-
scribing gaps or headways in a traffic stream. The Poisson distribution which has been
used in the analysis of other traffic problems does not adequately describe the headway
distribution. A number of theoretical distributions have been proposed by various
authors but no information could be found to indicate that these distributions had been
tested over an extensive volume range or that the parameters had been solved in terms
of volume. It was necessary, therefore, to select a distribution, test it, and solve for
its parameters.

A composite distribution proposed by Andre Schuhl (1) was selected. He theorized
that a traffic stream is divided into two groups. A certain proportion of the vehicles in
the stream travel as they wish and are not influenced by the vehicle in front of them.
For convenience, this group shall be referred to as the free-flowing vehicles. The re-
maining vehicles have been influenced by the vehicle in front of them and shall be called
the restrained vehicles. Each of these groups has a distinct mean and obeys some
Poisson-type law. The theoretical distribution for the total stream is a composite or
summation of these two subdistributions. Figure 2 shows this composite distribution
along with the two individual curves which have been summed. Figure 3 shows the
same curves replotted so that the ordinate p is the probability of a headway or gap that
is less than or equal to the time t indicated.

The equation for this composite distribution is

LR -7
phzt) =1 -a)e Ti-X ge T2-7 (1)
in which
p(h 2t) = probability of a headway (h) greater than or equal to the time (t);
o = proportion of the traffic stream in restrained group;
(1 - &) = proportion of traffic stream in free-moving group;
T = average headway of free-moving vehicles;
Te = average headway of restrained vehicles;

A = minimum headway of free-moving vehicles;
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T = minimum headway of restrained vehicles; and
e = natural or Naperian base of logarithms.

In this equation, there are five parameters—a, T, T2, X, and T —which are functions
of the traffic volume. These can be reduced to four unknowns by transforming Eq. 1
to give

t t
a- = ¢ - o
plh 2t) =e Kiie K (2)
in which
_ A
a —Tl_k+1n(l-a) 3)
Ki=T:-2X 4)
T
¢ =g o7 thna (5)
Ke=Tz-T (6)

The problem, therefore, is to find these four unknowns in terms of volume. For-
tunately, Eq. 6 still describes the two subdistributions separately. Returning to the
plot of the composite curve (Fig. 2), the restrained subdistribution does not affect the
composite curve for larger headways. Therefore, the unknowns corresponding to the
free-moving subdistribution can be determined by fitting an exponential curve to the
equivalent portion of field data. Once these two unknowns are determined, the contri-
bution of the free-moving vehicles in the lower portion of the curve can be calculated
and subtracted from the original data. The residuals form the distribution of the
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restrained vehicles and, therefore, the remaining unknowns can be determined by
fitting a second exponential curve to these points.

To evaluate these unknowns, extensive field data were collected. These data, ob-
tained on two-lane urban streets, resulted in 585 samples with volume rates ranging
from a little over 100 vph to almost 1,200 vph. Eighteen different fits were computed
and tested by means of x? tests for each sample.

To indicate the magnitude of the computations involved, a man with a desk calculator
and a book of log tables requires from 12 to 14 hr to compute the values for one data
sample. Needless to say, these computations were done on a computer which performed
the same operations 1n approximately 18 min.

Equations for the unknowns in Eq. 2 have been made:

_4827.9 8.48 ~ 0,024 InV

Ki =ior = (7)
~ v
a =-0.046 - 0.0448 m (8)
Kz =2.659 - 0.120 -V~ 9)
. -120 150

[e-m.sos +2.80 InV - o, 173(In V)z:l -2

c = (10)

Whereas the parameters of Eq. 2 have been solved m terms of volume, the simula-
tion model requires the use of Eq. 1. It is impossible to transform Eq. 2 back directly
to the form of Eq. 1 because &, A, and 7 are dependent on one another. The assign-
ment of a value to one of these three parameters determines the other two. The equa-
tions of these parameters are

A =K, [a-In(l - o) ] (11)
T =Kz (c -lna) (12)
and a__>‘_
1-0=¢e K (13)
or
c--L
o =e Ke (14)

A and 7 are the minimum headways of the subdistributions and, because negative head-
ways are impossible, as these minimum headways approach zero, they define the two
boundary conditions. In fact, these parameters cannot even approach zero because ve-
hicles have a finite length. A more realistic minimum headway is 0.5 sec which, at
30 mph, is a distance of 22 ft between the front bumper of the lead car and the bumper
of the following car.

Figure 4 is a plot of the two conditions where A and T equal 0.5 sec. When t is
greater than the largest A or 7, the summation curve is identical. The only problem
is the shaded area on Figure 4 between X and 7 or 7 and A as the case may be. To solve
this problem, the original field data were analyzed by first grouping the data into
volume ranges and then examining the leading portion of the cumulative curve for each
volume range. It became apparent that X and T were relatively constant throughout the
volume range. Best agreement between the theoretical curve and the observed data
occurred where 0.9 <X <1.0and 1.20 <1 <1.386.

Once the parameters of this distribution are determined for a given volume, the next
step is to generate headways that fit this distribution randomly. This is accomplished
by a technique similar to that described in an earlier paper by Gerlough (2). A flow
diagram of the random generator used in this simulation model 1s shown in Figure 5.

A separate random generator is used for each approach.

Using these random generators to generate many consecutive hours of traffic at a
particular volume yields a distribution of volumes that has some spread on either side
of the requested volume. This spread becomes larger as the volume increases. Because
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of this variation in generated volumes, the analysis of the simulation output becomes
more complex. This problem can be overcome if the random number used to begin
each hour of simulation is known to produce a volume within a small tolerance of the
desired volume. To obtain random numbers that would produce the desired volumes,

a separate computer program was developed, incorporating the same random generator
as used mn the simulation, to pregenerate vehicular volumes. As each hour is gener-
ated, the generated volume 1s compared to the desired volume. If the generated volume
18 within the tolerance (presently +2 percent and -1 percent), the generated distribution
is tested against the theoretical distribution by means of the Komolgorov-Smirnov test
of goodness of fit (3). When this test is successful, the computer prints the random
number used to start the hour of generation, the time into the next hour of the last ve-
hicle, and the time preceding the end of the hour of the last twelve vehicles. These ve-
hicle times are used in ordering the random numbers for the simulation to ensure con-
tinuity and volume accuracy. Essentially, the time over the hour of the last vehicle in
the preceding hour 1s an offset for the new hour of generation. This may result in the
loss of one or more vehicles in the new hour of generation (i.e., the simulation hour
may end before all vehicles in the expected volume are generated). This is the reason
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Figure 5. Random headway generator using Monte Carlo technique.

for using a larger plus than minus tolerance in the generation. Sufficient random num-
bers for a particular volume are ordered and used as simulation input to provide the
desired number of hours of simulation.
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Figure 6. Gap acceptance distributions

for vehicles passing a stop sign.

Gap Acceptance

Vehicles waiting at the stop sign in the
simulation model accept or reject available
gaps in conflicting traffic streams based on
a gap acceptance distribution for their re-
spective turning movement. These gap ac-
ceptance distributions had to be determined
from field data. Howard Bissell, a gradu-
ate student at the Institute, undertook this
study as a graduate research project (4).

He collected and analyzed data for over
10, 000 gaps and found that the gap accept-
ance distribution was of a lognormal form.
The distributions found are shown in Fig-
ure 6.

The validity of using a lognormal dis-
tribution to describe gap acceptance was
confirmed when this distribution was fitted
to some data obtained in an independent
study 1n Austraha. The fit was exception-
ally good. The only difference between the
United States' data and the Australian data
was the mean gap accepted. Apparently,
Australian drivers accept shorter gaps on
the average than drivers in this country.

The time required by the computer to
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generate individual values of a lognormal distribution was considered excessive. There-
fore, the distributions are inserted in the simulation program in tabular form and a
table-look-up procedure is used to determine gap acceptance. This is accomplished in
the following manner: A gap of size x is available. The probability of accepting a gap

of size x 1s obtained from the table. A random number (between 0 and 1) is generated
and compared with the probability value. If the random number is larger, the gap is
rejected. Otherwise, itis accepted. With this method, there is a possibility of a ve-
hicle rejecting a gap of a certain size and then accepting a shorter gap later. Bissell

(g) found that this occurred for approximately 5 percent of the vehicles observed.

Simulation Procedure

To utilize the simulation model to provide data (in this case, vehicular delay), a
number of simulation''runs' were performed. A simulation run consists of simulating
a predetermined number of hours of traffic under constant conditions. After the model
has been programed and tested on the computer, the first step in any simulation project
is to determine the number of simulated hours under constant conditions that are re-
quired to obtain valid estimates of the output factors. In this project, vehicular delay
is being measured. Sufficient hours of traffic are simulated with constant approach vol-
umes and turning movements to analyze the delay pattern and determine the variance
that occurs. On the basis of this analysis, the length of a simulation run is determined.

A series of runs are then established to begin the analysis of vehicular delay. The
approach volumes used in the first 15 runs of the first seriesaregivenin Tablel. Turn-
ing movements from all four approaches are held constant with left and right turns
being 10 percent each. The first five runs of this series have approach volumes which
correspond to the minimum vehicular volume warrant for traffic signal installation (§).

An evaluation of the results of this first series of runs provides an insight into the
relationship between delay and approach volumes and indicates the additional runs nec-
essary to obtain sufficient data to define this relationship.

TABLE 1
SIMULATION RUNS, SERIES 1

Approach Volume?

Nt?;ger Major Street Minor Street V?lﬁ?xie
Lane 2 Lane 4 Total Lane 1 Lane 3 Total

1 250 250 500 150 100 250 750
2 300 200 500 150 100 250 750
3 200 300 500 150 100 250 750
4 400 100 500 150 100 250 750
5 100 400 500 150 100 250 750
6 200 200 400 150 100 250 650
l 300 100 400 150 100 250 650
8 300 300 600 150 100 250 850
9 400 200 600 150 100 250 850
10 500 100 600 150 100 250 850
11 400 200 600 200 100 300 900
12 400 200 600 100 200 300 900
13 400 200 600 200 200 400 1,000
14 400 200 600 300 100 400 1,000
15 400 200 . 600 400 100 500 1,000

al‘urnlng movements 1n this series are constant with 10 percent right turns
and 10 percent left turms.
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After the volume relationship is determined, a further series of runs is made to
evaluate the effect of turning movements. Approach volumes are held constant at
various volume levels for both the major and minor streets while the percentage of
turns is varied. The results of the initial runs, when analyzed, determine areas where
further data are needed. This defines the runs to be included in the next series.

This procedure is continued until the various relationships under investigation are
determined for the range of variables desired.

SIGNAL INTERSECTION

Programing of the second phase of this research is underway. The completed pro-
gram will be coded in computer language for use on any of the later generation compu-
ters to avoid any repetition of delays experienced in the first phase of this project. A
grant of $3,250 has been received from the Technical Development and Research Fund
of the Institute of Traffic Engineers to support this project. These monies are to defray
the cost of computer time for simulating the signalized intersection.

Model Description

The signalized model 1s quite sumilar to the first model. Physical conditions are the
same—an orthogonal intersection of two two-lane, two-way streets. Vehicles are gen-
erated in the same manner as previously described. In programing the second phase,
care is being taken to insure that the exact same traffic generated in the stop sign model
can be reproduced in the signalized model.

Intersection control in this model is programed as a separate subroutine. There will
be at least three different types of signal controllers programed as subroutines —fixed-
time, semi-actuated, and full-actuated. During any simulation run, the model is pre-
set to select the proper subroutine for the type of signal being simulated.

The signal sequence is main street (lanes 2 and 4) green, main street amber, all red,
cross-street green, cross-street amber, all red. The all-red intervals will normally
be set equal to zero. They have been included 1n the model to permit the analysis of
all-red clearance periods and also to allow the inclusion and evaluation of separate pe-
destrian phases (scramble system). It may also be possible to include additional phases
for left-turning vehicles during these intervals.

An optional feature to be incorporated into the program is the ability of vehicles
waiting on a red phase to make right turns. This maneuver is legal in several western
States and 1its inclusion in the model will permit an evaluation of 1its effect on vehicular
delay. Vehicles permitted to make this turn will accept gaps 1n the cross-traffic m a
similar manner as right-turning vehicles at a stop sign.

Operation of the model 1s quite similar to the through street in the stop sign model.
Vehicles are generated at the reference point and approach the intersection. If no
barrier (red signal, queue, or turning vehicle) impedes 1its progress, the vehicle con-
tinues through the intersection. Otherwise, it decelerates and stops, if necessary, un-
til such time as 1t can proceed. Left-turning vehicles accept gaps 1n the opposing
stream based on a gap-acceptance distribution. If left-turning vehicles are waiting as
the signal changes, a maximum of two will be permitted to turn after the signal change.

Each street will be analyzed in detail during its green and amber phase. Vehicles
are generated and brought to the intersection until the arrival time of the next vehicle
is later than the end of the amber phase. In the case of an actuated signal, this last ve-
hicle 1s used to "'call the green'" back to that phase. The cross-street is then brought
"'up-to-date" through the preceding red phase and the current green and amber phases.
At the conclusion of each sitmulated hour, results are tabulated and stored until the
completion of the run, when they are printed. The same items are obtained in this out-
put as were obtained 1n the stop sign simulation to facilitate analysis through direct
comparisons.

Vehicular Approach

As previously stated, vehicles are generated at the reference point and proceed
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through the intersection unless a barrier
impedes their progress. When a prior ve-
hicle is already stopped in the approach,
there is no question--the approaching ve-
hicle stops in queue behind the stopped ve-
hicle. Neither is there any question when
the signal 1s red as the vehicle approaches
and remains red until the vehicle stops,
nor when the signal is green and remains
green until the vehicle enters the intersec-
tion. But, there are two situations where
an approaching vehicle's behavior is
varied: (a) where the signal changes from
red to green as an approaching vehicle is
decelerating, and (b) where the signal
changes from green to amber before an
approaching vehicle reaches the intersec-
tion.

The first case is fairly simple to re-
solve. As a vehicle approaches an inter-
section where a red signal is displayed,
there is some point (in distance and time)
where the vehicle begins to decelerate to
a stop. If the signal turns green before
this point (in tume), then no deceleration
occurs. Similarly, if the signal does not
turn green before the vehicle arrives at
the intersection, the vehicle stops. There-
fore, two boundary conditions have been
defined. If a vehicle is between these two
boundaries when the light turns green, he
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is decelerating but has not stopped. After reacting to the light change, he accelerates
and returns to normal driving speed. This critical interval of a vehicle's approach is
shown in Figure 7. If the signal turns green during this interval and there is no other
delaying factor, the vehicle proceeds without stopping and has a slowing delay propor-
tional to the time spent in deceleration.

The signal change from green to amber (or yellow) is more complex. In this case,
only one boundary condition is fixed—when the amber light appears after the vehicle
arrives at the intersection (in which case, there is no delay). But, if the light changes
to amber as a vehicle approaches, then the driver must decide whether he is going to
stop or not. To simulate this in the model, a probability distribution must be used.
Initially, a distribution curve presented by Olson and Rothery (6) will be used (see Fig-
ure 8). These curves are based on data from five intersections 1n Michigan. Additional
data will be gathered in California to refine the distribution. Also, an attempt will be
made to evaluate the difference in the legal definition of the yellow light. In Cahfornia,
the yellow is a "warning" period, whereas in most other States it is a "clearance™
period. * It may be necessary to use two different distributions.

The procedure 1s similar to that using gap acceptance distributions except that in-
stead of using a gap to enter the probability table, the distance the vehicle is from the
intersection is used. A random number (between 0 and 1) is generated and compared
with the probability value from the table. If the random number is greater, the vehicle
proceeds; if less, it stops.

CONCLUDING REMARKS

Originally, this paper was to include results from the first phase of this research.
The unfortunate shutdown and continued lack of operation of the particular computer for
which the program was coded has prevented this. However, the techniques presented
should be of value to other researchers concerned with intersection simulation.

A generation routine has been provided which will result in a realistic and random
distribution of traffic that can be reproduced as often as required. A technique has
been described by which it is possible to control the volume per hour to values within
a small tolerance of the requested volume in order to simplify analysis of the simula-
tion output. Gap acceptance distributions based on field data have been presented along
with a technique for utilizing the distributions.

Two intersection models and their general operation have been described to illustrate
some of the possibilities that are available through the use of simulation. As simula-
tion techniques improve and mathematical distributions become available, almost any
situation will be capable of simulation. The potential of this tool in evaluating the effi-
ciency of any system of control is practically unlimited.
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Computer Simulation of Traffic on
Nine Blocks of a City Street

MARTIN C. STARK, National Bureau of Standards, Washington, D. C.

A computer model has been constructed which simulates the volume
and movement of traffic on a mmne-block section of a city street. The
simulated cars are reviewed every quarter-second and are moved
according to rules for movement which have been built into the com-
puter program. The simulation run on the computer produces two
outputs. The quarter-second car positions are plotted on an oscil-
loscope and photographed. The result is a moving picture which
can be shown in real time. The effect is comparable to viewing the
traffic flow from a helicopter. The other output 1s a series of tables
that catalogs all vehicles as they enter the model, clock and count
them as they pass a key intermediate point, and, finally, check them
out at the end of the course, counting them again and noting their
individual running times. Other information 1s also furnished, such
as type of vehicle, speed, and lane use. The tables thus furnish an
abundance of quantitative data for measuring and evaluating the per-
formance of the model.

¢ THIS is a report on a digital computer simulation of automobule traffic at an existing
location on city streets. The study was made for the Bureau of Public Roads by the
Data Processing Systems Division, National Bureau of Standards, over a period of three
years from July 1958 to June 1961.

PURPOSE OF STUDY

The purpose of the work was to simulate the volume and movement of cars with a
digital computer, using as the test site a real location where abundant field data were
available for control and checking purposes. The test course selected was a nine-block
section of 13th Street, N. W., Washington, D. C., from Euclid Street to Monroe Street,
2n the after;mon rush-hour period when all four lanes are operated one-way northbound

see Fig. 1).

A standard computer-simulation technique involving the use of random numbers ''gen-
erates' cars at each entering lane in such a manner that the total number entering at
each point over a period of time has an assigned expected value. Cars are moved each
quarter-second according to detailed "rules of the road" built into the computer pro-
gram.

Successive car positions have been plotted on an oscilloscope and photographs taken
so that the simulated operation can be viewed from moving pictures. Printout tables
furnish detailed quantitative data about the volumes, running times, and characteristics
of the cars involved.

To the extent that the simulated model can be made to reproduce the known real con-
ditions truly, the volumes and characteristics of traffic and the operating rules then can
be changed and the results of a run will represent a prediction of what would happen on
the street if the indicated changes were really made. The immediate area of applica-
tion relates to the use and timing of traffic signals. Simulation runs can be made to
study the sensitivity of the traffic flow to altered signal settings, to measure the effect
of changed offsets, cycle length, and splits witha view to arriving at optimaltiming and to
explore the capacity of the signal system to handle increased volumes of traffic. The use

ko




of a generalized model can be extended to
many other traffic engineering situations.

ANALYSIS OF RESULTS

Several simulation runs have been
made. One 4-min real-time run (three
complete 80-sec signal cycles) has been
selected and is the basis for most of the
detail that is to follow.

A moving picture was made of the os-
cilloscope display. The computer issued
printout sheets furnishing detailed nu-
merical data to permit analysis of the be-
havior of the simulated cars. From this
information three summary tables were
made.

Tables 1 and 2 summarize the count of
cars generated during each cycle for each
of the entry points. The figures are
shown by cycle, summed for the 4 min,
and expanded to an hourly volume. These
tables represent the traffic "inputs",
whereas Tables 3 and 4 represent "out-
puts" and are the means for measuring
the performance of the simulated cars.

Table 3, the Station B count, givesthe
results of a count about two-thirds of the
way along the 13th Street course, at the
maximum load point. In the model, the

TABLE 1

SUMMARY OF CARS GENERATED BY
STREET AND BY HOURLY RATE?

Hourly Rate (no.)

Street Cycle Cycle Cycle Total
1 2 3 Period
13th 3,060 3,105 2,565 2,910
Fairmont 90 90 45 5
Girard 45 90 90 5
Harvard 270 630 90 330
Columbia 540 630 630 600
Irving 360 360 180 300
Kenyon 450 180 90 240
Lamont 0 90 0 30
Park 1,035 630 675 780
Monroe 135 315 45 165
aSlgna.l cycle length is 80 sec. Cycle 1

represents 320 quarter-seconds from
simulation-run time 1,036 to 1,355;
cycle 2, from time 1,356 to 1,675; and
cycle 3, from time 1,676 to 1,995.
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expansion of the 4-min count at Station B
produced an hourly volume of 3, 330 simu-
lated cars. This is comparable to the av-
erage field volume of 3,168 cars per hour.

Table 4, the vehicle retirement table,
relates to cars leaving the end of the 13th
Street test course north of Monroe Street.
Again, the simulated cars are counted by
cycles and by lanes, and are expanded to
an hourly rate. Table 3 also records the
running times of those cars which have
traversed the full length of the test course
from Euclid Street.

The distribution of running times of the
simulated cars showed that some of the



42

TABLE 2
SUMMARY OF CARS GENERATED BY GENERATION POINT AND BY CYCLE

No. of Cars Generated

. Generation
Street Lane Signal Point Cylc le Cygle Cy§ le Total
13th 1 Green 1 17 15 9 41
Red 2 2 2
2 Green 3 19 23 15 57
Red 4 1 2 3
3 Green 5 19 18 16 53
Red 6
4 Green 7 10 13 15 38
Red 8
Fairmont 1 9 1 2 1 4
2 10 1 1
Girard 1 11 1 1
2 12 1 2 1 4
Harvard 1 13 3 8 1 12
2 14 3 6 1 10
Columbia 1 15 4 7 8 19
2 16 8 7 6 21
Irving 1 17 3 5 1 9
2 18 5 3 3 11
Kenyon 1 19 6 1 2 9
2 20 4 3 7
Lamont 2 21 2 2
Park 1 22 13 8 11 32
2 23 10 6 4 20
Monroe 1 24 1 3 4
2 25 2 4 1 i

cars were able to stay in pace with the signal progression but many fell behind. Tables
1, 2, 3, and 4 are summaries of voluminous, full computer printouts which i1dentify in-
dividual vehicles, thus making it possible to trace through the movement of any particu-
lar vehicles.

CONCLUSIONS

A working simulation model of an existing, fairly complex traffic location has been
constructed. A computer program causes the cars to behave in what seems to be a
realistic manner. The cars stop at red lights, they yield the right-of-way at stop signs,
they maneuver 1nto correct positions for turns, they move at different speeds, they
accelerate and decelerate, faster cars shift lanes to overtake slower cars, they form
queues, and they do most of the definable things that cars can be expected to do in
city traffic.

The results in no sense indicate a rigorous validation of the model. Up to the pres-
ent point, reasonableness 1s the only criterion for judging the performance. Approxi-
mately the correct number of cars are accounted for at key points; their characteristics



TABLE 3
SUMMARY OF STATION B COUNTS?

Cars Passing Station B

Lane
Cycle Cycle Cycle
1 9 3 Total
1 20 22 23 65
2 13 18 24 55
3 11 15 21 41
4 18 17 20 55

Total 82 T2 88 222
Hourly rate 2,790 3,240 3,960 3,330

®Station B is located on 13th Street
Just north of Lamont Street. Cycle 1
1s from simulation-run time 1,036 to
1,355; cycle 2, from time 1,356 to
1,675; and cycle 3, from time 1,676
to 1,955.

as to speed category, type of vehicle, and
intended turns correspond with known in-
put data; their average running times are
expectedly somewhat slower than that re-
quired to keep up with the progressively
timed traffic lights. (see Fig. 2)

To get more mformation bearing on
the validity of the model, two steps may
still be done. One is to study the movie
display carefully to see whether a "heli-
copter' view of the cars verifiesthat they
are performing correctly. The other is
to compare the simulation running times
with actual running times from the field.

A point worth bearing in mind is that
even though the simulated running times
may not be entirely valid in total, a dif-
ference in running time to reflect a
changed parameter may be highly signifi-
cant. The reverse is also true. A par-
ticular detail of the simulation may not
check completely with reality and yet the
total result can still furnish a useful
measure. Ideally, the simulation would
correspond with reality both in detail and
in total, but it has value even if one of
these objectives is not immediately ac-
complished.

AREAS FOR FURTHER RESEARCH

The question remains: What consti-
tutes validation of the model? So far, the
test of reasonableness is the only criteri-
on that has been applied. When the

TABLE 4

SUMMARY OF VEHICLE RETIREMENT DATA

Distribution of Running Times in % SecP
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Cars

200-249 250-299 300-349 350-399 400-449 450-499 500-549 550-599 600-649

Hourly
Lanel Lane2 Lane3 Lane4 Total Rate

Cycle

365
444
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Of cars traversing entire 13th Street course.

Of cars retiring at end of 13th Street.

.,
b
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Figure 2. 13th Street signal timing diagram.

performance of the model is accepted as corresponding reasonably closely with actual
field conditions, it will be possible to change the parameters and study the new results.
From a practical point of view, it is the ability to test untried conditions and to make
predictions of likely results that will be the real payoff of simulation as a tool to traffic
engineers.

Apart from the immediate objective of getting practical answers for 13th Street are
several broader objectives. Study should be made of how to generalize the model in
various ways. A model should be made where the main street is two-way rather than
one-way. Additional features should be added such as random delay factors, standing
vehicles, bus stops, wider range of speeds and acceleration rates, pedestrians, and
additional count stations.

Study should be made of what 1s required to make the model applicable to other loca-
tions by "plugging in" different basic data at key poimnts in the program.

Another area of study is the question of how fine the model needs to be to furnish
good answers. The present model is very fine. The basic time unit is one-quarter
second and the basic distance unit is one-hundredth part of 12 ft (1.44 in). These smail
units lead to an enormous number of computations even for a high-speed electronic com-
puter. To what extent, if at all, would the usefulness of the results be jeopardized if
the model used larger time and distance units? To answer this important research
question, it is necessary to use a model that is capable of a fine breakdown. To seek
an answer to this question using a coarse model would be 1mpossible.

HISTORY OF PROJECT

The late Professor H. H. Goode of the University of Michigan was one of the first
persons to stress the possibilities of digital computer simulation as an aid to engineers
in solving traffic engineering problems. He gave a paper on this theme before the
Highway Research Board in 1956 (1).

A simple model was constructed under his direction. Each street carried a single
lane of traffic in each direction. When cars moved, they all moved at the same speed.
In the computer model each car was represented by a single bit. Thus, all cars were
regarded as alike and were processed uniformly.
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Concept of More Sophisticated Model

It was Goode's 1dea that instead of describing each car by only one bit it would be
possible to represent each car by a whole computer word. In this way the car could be
assigned 1individual characteristics as to speed, type, and destination.

The Bureau of Public Roads entered into an initial agreement with the National
Bureau of Standards in July 1958 under which NBS would develop a considerably more
advanced simulation model, utilizing several of Goode's concepts.

Selection of 13th Street Site

The 13th Street test site selected 1s 3,240 ft in length and comprises nine blocks.
Seven of the intersections are controlled by traffic lights andthreeby stop signs. The op-
eration relates to the peak hour of the afternoon rush, when the four lanes of 13th Street
are operated one-way northbound.

DESCRIPTION OF METHOD

Each lane of each street 1s divided into 12-ft sections called unit blocks. Computer
storage reserves a place for information about each unit block (UB). If there is a car
1n a UB, full information about its exact location and its physical characteristics 1s
stored. Another portion of the storage word furnishes any necessary information about
the road at that point.

The time cycles for searching all UB's for cars, moving the cars, generating new
cars, and preparing any outputs 1s one quarter-second of simulated real time.

COMPUTER PROGRAM

The basic working program for the IBM-704, including working constants and the in-
put parameters, contains about 6,000 instruction words. The program searches me-
thodically for cars to be processed. Starting at UBO, the first UB 1n lane 1, the search
continues through lanes 1, 2, 3, and 4 of 13th Street, then the lanes of all the cross-
streets, and finally the diagonal UB's (for turns).

A Layout and B Layout

The cars are found on what has been called the A layout. To keep matters straight,
because it 1s 1mpossible to process all the cars simultaneously, each car as it is proc-
essed 1s moved to 1ts new position on the B layout. For the remainder of the review
cycle the car continues to appear on the A layout in its old position.

When all the cars found 1n the A layout have been moved to new positions in the B
layout, the scannming is completed. Then the A layout is erased and the B layout becomes
the starting point for the next scan.

Generation

At the end of each cycle, the car generation routmne 1s performed. If a car is gen-
erated, its characteristics are also determined including 1ts destination or "exit." A
newly generated car will be launched if this can be done safely. Otherwise, it will be
retained on a backlog hist for the particular generation point in question until 1t can be
safely launched. Finally the clocks are advanced one quarter-second and the program
is ready to repeat the cycle.

Permissible Speed

When a car 1s found for processing, virtually the first task of the program is to con-
sider the car's desired speed in relation to its present speed and its allowable accelera-
tion rate. Each car carries with 1t an information package describing various physical
characteristics and details.
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Sight Distance

When the permissible speed has been determined (in terms of a jump per quarter-
second), the equivalent of required sight distance 1s determined by a table look-up. The
program then probes ahead, UB by UB, attempting to achieve the "goal points'* neces-
sary to satisfy the sight distance requirement.

Two prime considerations are whether there is a car ahead and whether there is any
irregularity about the roadway (such as a traffic signal or a turn). In every case, the
key to the information appears in the UB word format (Fig. 3) and can be found by sys-
tematic checking of every UB wnvolved (ahead, behind, right, or left as required).

If the goal points can finally be verified, the stated jump can be made (onto the B lay-
out). If the goal points are not adequate, then a table 1s consulted to determine what
reduced jump can be made safely.

Irregular Unit Blocks

During the processing, the program is constantly on the alert to comply with the
requirements of any of the roadway "irregularities.”" If a UB 1s responsive to a traffic
signal, the program must check the signal indication. If there 1s a turn ahead, the pro-
gram must test whether the car is intending to turn. If the car passes a count station,
it must be properly tallied and clocked. If the car reaches the end of a lane, 1t must
be checked out. A number of other special situations may occur, singly or together.

In general, each situation has one or more subroutines which can be called on to deter-
mine the proper move. There are 37 main routines, subroutines, and table look-up
routines.

ASSUMPTIONS AND PARAMETERS

In many instances, in the absence of specific answers from field data, 1t was neces-
sary to make certain assumptions or to assign certain arbitrary values to parameters.
In most cases, these can be readily changed if desired. These assumptions relate to
either one of two areas: the characteristics of the car or the rules governing the move-
ments. Examples of these parameters are the mtial lane distribution, the assignment
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of desired speeds, acceleration and deceleration rates, clearances, criteria for over-
taking, reduced speed for going around turns, acceptable gaps, and reaction time.

It is not presumed that this is a validated model but it is a device that works me-
chanically and, in general, it would be very easy to change any of the parameters when
there are authoritative values to substitute.
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A LaGrangian Approach to Traffic

Simulation on Digital Computers

J. R. WALTON, Instructor, Department of Civil Engmeering; and
R. A. DOUGLAS, Associate Professor, Department of Engineering Mechanics
North Carolina State College

A technique for simulating traffic movement on digital computers 1s de-
scribed. In this technique computations are performed on an as required
basis rather than on an incremental time basis. This treatment of the
time parameter may reduce the computational effort required to simulate
traffic movement.

¢SINCE PUBLICATION of the traffic simulation studies of Gerlough (1) and of Goode,
Pollmar, and Wright (2) in 1956, there has been mcreasing interest in the simulation
method of analyzing traffic flow. Subsequent nvestigations (3 4) 1n this area have been
concerned with the simulation of increasingly complex traffic situations, based on the
simulation techniques presented by Gerlough and by Goode, et al.

Briefly, techniques employed heretofore may be classified according to the way in
which vehicles are represented 1n a computer, and from the manner 1n which motion
and the time parameter are handled.

In the technique of physical representation a roadway or system of roadways 1s rep-
resented by a group of storage locations within a computer. Individual vehicles are
represented by binary ones and the spacing between vehicles by binary zeros. The
binary ones, representing vehicles, are moved stepwise along the simulated roadway
by simple mathematical operations. Before each movement of a simulated vehicle, the
existing "traffic" and "roadway' conditions are examined to determine the permissible
movement. The result of repeated application of the process 1s a flow of bmary ones
along a system of computer locations 1in a manner analogous to a flow of vehicles along
a roadway.

In the memorandum method each vehicle 1s represented by information stored 1n a
computer word or words. This information includes the vehicle's velocity, its location,
its desired velocity, and any other characteristics attributed to an individual vehicle
and driver. The parameter of time 1s treated as an incremental function so that move-
ment 1s simulated by adjusting, at specified increments of time, the position of each
vehicle and such other characteristics attributed to the vehicle that may be influenced
by time and position.

Both the memorandum method and the method of physical representation, as used,
have been based on an Eulerian viewpoint of motion 1n that traffic 1s represented 1n each
as it would appear to outside observers in positions fixed with respect to the roadway.
Such observers would see each vehicle moving along the roadway and could describe
the phenomena by recording, at successive instants of time, the position, velocity, and
attitude of individual vehicles.

LAGRANGIAN APPROACH

In a LaGrangian approach to the simulation of traffic flow, the traffic 1s describedas it
would appear to an observer in each vehicle. By moving the observer from outside to with-
1n the moving traffic system, the necessity of considering the behavior of each vehicle at
each of regular intervals of time 1s eliminated. Computer programs writtenfrom the
La Grangian viewpoint needbe concerned only with those values of thetime parameter when
the behavior of a vehicle would change and only with those vehicles actually affected by the
change 1n behavior. 48
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As employed by the authors, (5), the LaGrangian treatment of the time parameter
has been incorporated in the memorandum method of simulation. The following infor-
mation 1s stored for an individual vehicle:

1. The characteristics assigned to an individual vehicle and its driver.

2. An index number corresponding to the vehicle's relative position 1n its lane
of travel.

3. The equation of motion of the vehicle.

4. The value of the time parameter at which the equation of motion may change.

Boundary conditions at the beginning of a simulation period may be established with the
roadway system either empty or bearing vehicles. If vehicles are in the system, their
equations of motion and their individual characteristics will be stored in appropriate
storage locations. Also stored will be a value of time, Tg, when the first additional
vehicle 1s to enter the roadway. These additional vehicles are introduced into the sys-
tem by means of a function generator sub-routine of either random or controlled nature.
In the remainder of the discussion, 1t is assumed that vehicles are on a roadway when
simulation begins.

The beginning of a period of simulation is taken as time zero, To. At To, each ve-
hicle's equation of motion is solved for the time, Tj, when the first condition will exist
that will require a change in the vehicle's behavior. The computations required involve
the solution of each vehicle's equation of motion to determine the time a certain posi-
tion will be reached; and/or the time at which the vehicle's velocity or acceleration
reaches some critical value; and/or the simultaneous solution of several equations of
motion for the time when the distance between the vehicle and other vehicles attains
some preset critical value. When more than one of these computations is performed
for a single vehicle, the resulting set of times 1s examined and the least value taken as
T,.

! The value selected as T, 1s stored with the nformation pertaining to a particular ve-
hicle, and represents the time at which, under the existing traffic and roadway condi-
tions, something may cause the behavior of the vehicle to change.

The least value, T, of the stored times, considering T and all the T, then deter-
mines the first event that will cause a change to be made in the stored information re-
lating to the individual vehicles. To determine the changes required, the situation cor-
responding to time T must be 1dentified, either by assigning, at the time of the origmal
computation of the T,, code numbers 1dentifying the events predicted, or by examining
the equation of motion and desired behavior pattern of the vehicle whose Tj became T.

If, at T, the event is a vehicle entering the system, the individual characteristics of
the vehicle are generated and its equation of motion formed. This new equation of mo-
tion then 1s solved for the T, of the vehicle. Also determined and stored is a new
value T, which, with the new T, 1s compared with all the previously determined T; to
find the time T of the next event.

When the event at T is a vehicle leaving the system, any desired information relating
to that vehicle 1s stored for compilation or print-out and remaining information 1s re-
moved from further consideration.

If, at time T, any event other than a vehicle entering or leaving the system is to take
place, the change called for 1s mntroduced into the vehicle's equation of motion and a
new time, T, determined and stored for that vehicle.

Any vehicle entering the roadway, leaving the roadway, or changing its behavior,
may cause changes in the times when other vehicles are to alter their behavior. These
changes will effect any vehicle for which the computation of T; involved the previously
affected vehicle. Frequently, only the immediately following vehicle and the immedi-
ately oncoming vehicle are involved. In any case, the values of T; of the vehicles af-
fected are recomputed and stored.

The behavior of all vehicles, as defined by the new set of equations of motion, re-
mains constant in the mterval from the original value of T until the least value of the
new set of stored times. The event associated with the new T 1s 1dentified and, again,
any required changes are made in the equations of motion of the affected vehicles. The
process of determining the time of occurence, T of an event, of adjusting equations of
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motion dependent upon that event, and determining a new value, T, 1s continued until
the value of T exceeds some predetermined time of simulation and the process is
stopped.

SUMMARY

The LaGrangian approach to the simulation of traffic may be recognized as an inspec-
tion of events rather than a continuous survey of traffic. Here, computations are per-
formed only for those times when interactions occur, and only for those vehicles affec-
ted by the interactions. K the traffic situation being simulated is extremely complex
(i.e., a large number of interactions 1s involved), the computational effort required by
this technique approaches that of the Eulerian techniques. X, however, the number of
interactions is reduced, as is the case with either moderate or very high traffic density,
this technique is indicated.
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HE NATIONAL ACADEMY OF SCIENCES—NATIONAL RESEARCH COUN-

CIL is a private, nonprofit organization of scientists, dedicated to the

furtherance of science and to its use for the general welfare. The
ACADEMY itself was established in 1863 under a congressional charter
signed by President Lincoln. Empowered to provide for all activities ap-
propriate to academies of science, it was also required by its charter to
act as an adviser to the federal government in scientific matters. This
provision accounts for the close ties that have always existed between the
ACADEMY and the government, although the ACADEMY is not a govern-
mental agency.

The NATIONAL RESEARCH COUNCIL was established by the ACADEMY
in 1916, at the request of President Wilson, to enable scientists generally
to associate their efforts with those of the limited membership of the
ACADEMY in service to the nation, to society, and to science at home and
abroad. Members of the NATIONAL RESEARCH COUNCIL receive their
appointments from the president of the ACADEMY. They include representa-
tives nominated by the major scientific and technical societies, repre-
sentatives of the federal government, and a number of members at large.
In addition, several thousand scientists and engineers take part in the
activities of the research council through membership on its various boards
and committees.

Receiving funds from both public and private sources, by contribution,
grant, or contract, the ACADEMY and its RESEARCH COUNCIL thus work
to stimulate research and its applications, to survey the broad possibilities
of science, to promote effective utilization of the scientific and technical
resources of the country, to serve the government, and to further the
general interests of science.

The HIGHWAY RESEARCH BOARD was organized November 11, 1920,
as an agency of the Division of Engineering and Industrial Research, one
of the eight functional divisions of the NATIONAL RESEARCH COUNCIL.
The BOARD is a cooperative organization of the highway technologists of
America operating under the auspices of the ACADEMY-COUNCIL and with
the support of the several highway departments, the Bureau of Public
Roads, and many other organizations interested in the development of
highway transportation. The purposes of the BOARD are to encourage
research and to provide a national clearinghouse and correlation service
for research activities and information on highway administration and
technology.
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