A portion of an arterial project in New York was planned to cross an existing city refuse fill. Because of the inherent nature of the material making up this refuse fill, it was felt that if the usual methods of design and construction were applied to this project, the completed highway would prove to be highly unsatisfactory and possibly quite costly. Of the many methods considered, for a proper solution, the one investigated in detail involved the use of a heavy pneumatic-tired roller to compact the refuse fill from its surface. The method is predicated on the belief that such a roller rolled over the area a sufficient number of times would furnish a compacted crust of such thickness to support a light fill and permit the construction of an adequate pavement.

The pneumatic-tired roller, variable in weight from 12 to 50 tons, was used to roll seven test strips under controlled conditions. In general, it was found that the method is practical. Best rolling results were obtained when the area was rolled in two stages, the first stage required no more than 8 passes of the roller weighing approximately 30 tons, the second stage required up to 30 passes of the 50 ton roller. An average of 2 to 2-1/2 ft. of settlement was observed in the areas rolled completely.

Novel methods were used to measure the effects of rolling on the density of the refuse fill material in place, and on the depth to which rolling was effective. Because of the nature of the material, the taking of samples to measure natural densities in place was not practicable. Two methods used as a substitute were: (a) the electrical resistivity method, and (b) the use of probing rods to measure change in resistance to penetration. The electrical resistivity apparatus showed that rolling with the 30-ton roller was felt to a depth of 6 ft., and that rolling with the 50-ton roller was felt to a depth of 9 to 10 ft. The results of the rod probings showed an increase in resistance to driving to an average depth of 8 ft.

The investigation was conducted at the site of a proposed arterial project in Binghamton, New York. The present foundation for approximately 4,500 feet of the length of this project consists of a city refuse dump fill, varying in age at the time of the investigation from approximately 1 to 15 years, and extending to a depth variable from 5 to 25 feet.
procedure of field construction, to prepare estimates of quantities, and to formulate specifications covering the work.

DESCRIPTION OF SITE

The refuse dump-fill site within the limits of the arterial project extends for approximately 4,500 lineal feet along the proposed alignment. The fill is made up of the usual material found in such refuse areas: food refuse, paper and wood, glass, metals (such as tin cans and bed springs), ashes, rubber tires, rags, and other miscellaneous matter. The various percentages of these materials vary widely with depth and in horizontal directions, depending upon the season of the year placed and the rate of dumping. Following the usual practices of land fill construction, a light cover of earth blankets the entire fill. This was placed with no specific effort to obtain compaction. The area consequently is a random, irregular fill, with wide variations in density and load carrying capacities. No record is available of the exact ages of the sections of this fill. The ground water is generally found from 7 to 15 feet below the surface.

Prior to the construction of the refuse fill, this area was the location of a meandering creek in low, flat lands. The material underlying the fill includes layers of partially consolidated muck, silt and clay, over a deep bed of silt, which is interspersed with pockets and layers of sand and gravel. Figure 1 shows the thickness of the refuse fill, and the underlying soil profile within this area.

A review of the existing literature on the characteristics of land refuse fills indicates that the settlement expected in such fills is due to two separate factors. The first of these is the settlement due to physical factors and mechanical adjustments and accounts for the major portion of the settlement.

This physical settlement can be subdivided into two components. The first component is the settlement due to the weight of the fill itself. This value is approximately 30 percent of the height of fill, with 20 percent taking place during the first 6 months, and the remaining 10 percent during the following 18 months. The fill generally reaches stability under its own weight in approximately 2 years. The second component of the physical settlement is that which takes place due to a superimposed load on the fill, such as a highway fill or a structure. This settlement will continue for a period following construction, with the actual amount and rate being a function of the nature of the local fill material and the superimposed load.

The second factor contributing to settlement is that due to decomposition of refuse material in the fill. The amount of this settlement is relatively small, compared to the physical settlement, but it continues to take place for 30 or more years. However, experience has shown that, because of the minor value of this settlement, it is not necessary to wait until ultimate stability is reached before proceeding with the use of the filled area.

CONSTRUCTION METHODS CONSIDERED

A number of methods were considered to permit the construction of the proposed highway across this area. Most of these methods were thought to be too expensive, or inadequate in other respects. Among the methods considered in detail were the following:

1. Removal of the unsuitable material by excavation and backfilling with acceptable borrow. This method was considered very expensive and impractical due to: the large quantities involved; the problem of finding a suitable waste area well beyond the city limits, and its consequent long haul; and the sanitary precautions necessary for handling the material at the site and through the city streets.

2. Building the fill on the foundation in its present state, without any excavation, and untreated in any manner. It was felt that this procedure would result in a pavement reflecting considerable unevenness and local differential settlement, and which would require large expenditures for maintenance after construction. In addition the pavement would generally be rough riding and dangerous.

3. Stabilizing the foundation by the injection of chemicals or grouting mater-
This method was considered to be uncertain and expensive due to the large number of close-spaced holes required for adequate coverage.

4. Surcharging the area with a temporary fill to obtain compression in the refuse material and increase its bearing capacity. Due to the lack of easily available borrow in the vicinity, this method was not considered feasible.

5. Compacting the foundation in place to a greater density and a higher bearing value to the maximum obtainable depth, by a heavy impact or rolling load. Of these, it was felt that a heavy rolling load would be the more practical and economical, and was the method developed and covered in this investigation.

SCOPE OF INVESTIGATION

Preparations for the investigation were predicated on the belief that a heavy pneumatic tired roller rolled over the area a sufficient number of times would compact the upper portion of the refuse fill to furnish a satisfactory bearing value and designate the local weak spots, which might be treated separately. It was felt that this method would develop a compacted crust several feet in thickness as the upper layer of the foundation, pre-consolidated by the rolling to reduce the settlement expected due to the superimposed fill load. On this would be added several feet of well compacted fill. The combination of these would support satisfactorily a flexible pavement, so as to eliminate abrupt differential settlements and minimize the gradual settlement covering long stretches.

To determine the feasibility of such a method, and to obtain specific information with which to prepare the necessary plans and specifications, field data was required to cover: (1) The effective weight of roller needed to compact the foundation to a satisfactory density; (2) the order of increasing the roller weight to obtain satisfactory rolling without causing too much lateral displacement or deep ruts that would interfere with the rolling operations; (3) the number of roller passes required, (4) the effect of these operations on the refuse fill areas of different ages; (5) the depths to which the rolling was effective in contributing to a compacted crust, (6) the average amount of settlement expected.

![Figure 1. Plan and Base Line Profile](image-url)
EQUIPMENT USED

Before the investigation was started, some thought was given to the possible type and weight of equipment which could be used to meet the developed requirements. At this time, the William Bros Boiler and Manufacturing Company of Minneapolis, Minnesota, offered the use of their new 50-ton compactor. It was decided to use this heavy pneumatic-tired roller for the investigation, as it was felt that it met the requirements.

The roller consisted of a large, metal box, approximately 17 ft. long by 8 ft. wide, under which were centered two axles in line, each with two rubber tires of size 18:00 x 24-24 ply. A tongue neck extended from the box to two front dolly wheels and a tie-bar connected the dolly wheels to the tractor. The empty weight of the roller was 12 tons, and the box was of such capacity that it could be loaded with saturated sand to a total weight of 50 tons. For this experiment the roller was used at three different weights: empty weighing 12 tons, loaded to half load at 31 tons, and finally loaded to full capacity at a total weight of 50 tons. During the tests, the roller was pulled first by a D-7 Caterpillar tractor, and later by an HD-19 Allis-Chalmers tractor.

TEST PROCEDURES

For the investigation, seven test strips were prepared in various locations on the refuse fill in such a manner that fills of different ages and composition would be included. Each test strip was 200 ft. long and 20 ft. wide. The relative locations of these test strips are shown in Figure 2. After they were laid out, the strips were cross-sectioned and referenced to established bench marks. During the rolling, additional cross-sections and profiles were taken periodically in every test strip to measure the amount of settlement or displacement taking place as a function of the number of roller passes and the weight of roller used.

In the first five test strips, the compaction tests were made in three separate stages. The first stage consisted of rolling the area with 12 full passes of the empty roller, which weighed 12 tons. In the second stage, the roller was loaded to a total weight of 31 tons, and the areas were rolled 12 additional times. Finally, with the roller loaded to its capacity of
50 tons; this rolling was continued until no measurable settlement was noticed in these test strips. During these operations, local weak spots developed, into which the roller sank as much as 4 feet. These areas were backfilled and leveled off with a thin layer of sand and gravel before the rolling was continued.

The last two test strips were compacted only with the roller loaded to a total weight of 50 tons. It was thought advisable to compare the behavior of the roller fully loaded on material not previously compacted to that on material previously compacted by light rolling and to notice the number of depths of local depressions by a comparison of the two methods.

Figures 2, 3, and 4 show the roller used and the appearance of one of the test strips during the rolling operations.

TEST RESULTS

The test results obtained during the investigation were computed, analyzed, and plotted in several ways to show the required relationships. Each test strip included six control sections across which profiles were taken at 2-ft. intervals within the compacted width of 20 ft. These profiles were taken periodically during the rolling operations and were correlated with the number of passes and the various weights of roller used. Centerline profiles and additional sections at some of the weakest locations between these standard sections were taken as the investigation developed.

To maintain control during the rolling operations, the average settlement across each of the six control sections for each test strip was plotted directly in the field against the number of passes given.

In the rolling operations one pass was taken to represent two trips of the roller, each trip offset from the other the width of the one tire to obtain complete area coverage.

Figure 5 shows typical curves of the average settlement obtained across each control section, plotted against the number of roller passes and the corresponding weights of roller. In general, the data show that the 12-ton roller gave an average settlement of 0.3 ft. after 12 passes. The major portion of this settlement developed during the first four to six passes. The
twelve additional passes of the 31-ton roller gave from 0.6 to 0.7 ft. of additional settlement, for an average total of approximately 1 ft. The major portion of the settlement developed with the 31-ton roller was obtained during the first eight passes. The 50-ton roller further increased the settlement to an average of 2 ft. The major portion of this settlement was realized during the first twenty to twenty-five passes of the roller. Further rolling with the 50-ton roller resulted in additional settlement, but the actual amount was relatively small.

Because of the wide variability of the material making up this refuse fill, there developed with the rolling considerable differential settlement and displacement in relatively short distances longitudinally and transversely. The maximum depressions or local settlement obtained in the weak spots ranged from 50 to 100 percent greater than the average values for each section. Figure 6 represents a cross-sectional profile at a typical control section. The bulk of this variation in profile developed as the rolling progressed and was due to the variability of the material and the existence of many local weak spots. There was, however, a definite tendency to develop greater settlements along the centerline of the test strips than toward the outside edges. This accentuation may have been due to the overlapping effects of the rolling, since one coverage over the full width of the test strip was composed of two passes, one pass covering each side of the centerline.
This variability of material encountered and the abrupt variation in settlement obtained during rolling is also represented by Figure 7. This figure shows a center-line profile of settlements for one of the test strips, which is typical of the others.

Two of the strips tested were rolled directly using only the roller loaded to 50 tons, without prior rolling with a lighter weight roller. In general, the amount of settlement obtained after rolling was of the same magnitude as for the strips initially prepared by lighter rolling. However, the direct use of the 50-ton roller on unrolled strips caused severe rutting in the weak spots which bogged down the roller. In these areas, rolling could only be continued under extreme difficulty. Figures 8, 9 and 10 represent three views of an area which was rolled only with the roller loaded to 50 tons.

Attempts were made to measure the effects of rolling on the density of the refuse fill material in place, and on the depth to which the rolling was effective. Taking of samples to measure natural densities in place was not practicable because of the nature of the material. Two other methods, however, were used to obtain a measure of the relative change in density with depth. The first of these was the use of the electrical resistivity apparatus. The second method was the use of probing rods driven into the ground under standard conditions, and recording the number of blows for each foot of penetration.

Electrical Resistivity - The use of the electrical resistivity apparatus in itself was an experiment, insofar as it is not known if this method had been used before for such work. The theoretical aspects in the use of this apparatus have been covered in the existing literature and will not be mentioned here. However, the apparatus measures the resistance of an electrical current flowing through the soil material. It is known that, all other factors remaining constant, this resistance is lessened with an increase in the density of that material. In this experiment, two types of tests were used: The first was the point test, in which the electrode spacing at one location, which controls the depth to which measurable effects are produced, was changed progressively from 1 to 20 ft.; the second type of resistivity test made was the traverse test, in which the electrode interval was maintained constant and was progressed across the length of the test area. The point test gives a picture of changing resistance with depth, while the traverse test indicates the horizontal changes at a uniform depth.

Figure 11 is typical of the results obtained from the point tests. The various curves represent the resistance values obtained at the same location prior to rolling, and during the various phases of rolling. Typical results of the traverse tests, which indicate the horizontal changes in resistance at a uniform depth, are given in Figure 12 for an effective depth of 5 ft. and in Figure 13 for an effective depth of 10 ft. It should be pointed out that
Figure 8. Test Strip 7 Before Rolling

Figure 9. Test Strip 7 Showing 50-Ton Roller Bogging Down During First Pass. No Prior Rolling given.
the results of this portion of the investigation are only qualitative, insofar as the relationship between the values of the resistance of the material to the passage of an electrical current and the corresponding density is not known. In general, the resistivity work was performed at the same locations within the test strips before and following each sequence of rolling. However, due to the lapse of time between these groups of tests, other variables may have come into being, such as rainfall which occurred during that period and which affected the resistance of the material. Due to local variations, and the methods of analysis used, the data showed that the effects of the decreased resistance were felt to depths up to 14 to 18 ft. However, from a final review of the data, and the conditions under which they were obtained, it was concluded that rolling with the 12-ton roller was effective to an average depth of approximately 4 ft. Rolling with the 31-ton roller was effective to an average depth of approximately 6 ft., and rolling with a 50-ton roller was effective to an average depth of approximately 9 to 10 ft. Probing Rods - The relative increase in density due to rolling, measured by the use of probing rods, was done by driving into the ground 1-5/8-in. rods with a 250-lb.
Figure 12. Resistivity Traverse Test
At 5 Ft. Depth - Test Strip 4

Figure 13. Resistivity Traverse Test
At 10 Ft. Depth - Test Strip 1

Hammer, dropped through a height of 6 in. The number of blows required to drive the rods for each foot of depth was recorded. The variation in the number of blows was considered a relative measure of the change in density of the material. The probing rods were driven at various locations to include the portions of the fill which had not been rolled, and also others which had been given complete rolling coverage. By comparing the results of these two areas, the increase in resistance to penetration was attributed to an increase in density due to the surface rolling operations. The values of resistance to penetration as a function of the depth below the surface were averaged for the points within each test strip, to obtain a more representative relationship. A group of such average values is shown plotted in Figure 14.

All the work done with probing rods was undertaken after the rolling operations were completed. Consequently, in order to correlate the effects of rolling on the density as measured by the increased resistance to penetration of the rods, two groups of holes were driven in the area tested. The first group of holes was located adjacent to the test strips on material that had not been rolled, and represents the area before rolling. The second group was located along the same stations, but within the rolled test strips, and represents the area after it was rolled. This difference in locations introduced additional variables due to the heterogeneous nature of the material, which were evident in the test results. However, an analysis of the test data showed that the number of blows required to drive the probing rods into the ground in the rolled test strips was generally greater than those driven outside of the rolled test strips. The variation in the number of blows required to drive the probing rods for the first 10 ft. has been averaged and is shown summarized in the table.

The curves generally show that an increase in resistance to penetration has been realized to a depth of approximately 8 ft. The number of blows required to drive the rods through the top 5 ft. in

<table>
<thead>
<tr>
<th>VARIATION IN NUMBER OF DRIVING BLOWS REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>In areas not rolled</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Cumulated number of blows to drive probing rods from 0 to 5 ft.</td>
</tr>
<tr>
<td>Average number of blows per ft to drive rods from 0 to 5 ft</td>
</tr>
<tr>
<td>Cumulated number of blows to drive probing rods from 5 to 10 ft.</td>
</tr>
<tr>
<td>Average number of blows per foot to drive rods from 5 to 10 ft.</td>
</tr>
</tbody>
</table>
SUMMARY AND RECOMMENDATIONS

From the results of the investigation, the following summary and basic recommendations were made to aid in the detailed design, quantity estimates, and preparation of specifications for the portion of the arterial project within the limits of the refuse fill:

1. The refuse fill within the limits of the arterial project can be pre-consolidated by rolling with a heavy pneumatic tired roller. This rolling should develop a compacted crust sufficiently thick to offer relatively uniform support to a light fill and permit the construction of a servicable pavement.

2. The settlement obtained in the foundation due to rolling with the empty roller weighing 12 tons was relatively small. This value averaged approximately 0.3 ft. over the entire area. It is felt that the 12-ton roller is too light for effective rolling, and should not be used during construction.

3. Rolling the foundation directly with the roller fully loaded to 50 tons without prior rolling with a lighter roller developed many deep ruts and holes with the first few roller passes. In addition to tearing and loosening the material, this method slowed down operations considerably, insofar as too much time was spent in pulling the roller out of these depressions. The 30-ton roller, however, did not cause too much difficulty in this respect.

4. The major portion of the settlement due to the 31-ton roller was realized within the first six to eight passes. The few additional passes increased the amount of settlement very little.

5. Using the 50-ton roller, the major portion of the settlement was obtained in approximately twenty to twenty-five passes. Additional minor settlement was obtained with further rolling.

6. Consequently, for the actual construction, the foundation rolling operations should be carried on in two stages. The first stage should include complete coverage with an average of eight passes of the roller weighing approximately 30 tons. The second stage rolling should then follow using an estimated thirty additional passes of the roller weighing approximately 50 tons. The rolling should cover the area from toe to toe of slope.

7. The rolling operations proceeded most smoothly when all ruts and local depressions which developed during rolling were backfilled with granular material. It was observed during the investigation, however, that if too thick a layer of sand and gravel were spread, it reduced the effectiveness of rolling and prevented additional settlement.

8. Consequently, for the actual construction, the depressions developed in the foundation during rolling operations should be backfilled with selected granular borrow. The quantity should be the minimum required to level off the area and permit continued easy rolling. It is estimated that there may be needed approximately
12 in. of granular borrow over the entire area, with the actual quantity at any location varying with local conditions.

9. The electrical resistivity apparatus showed that rolling with the 30-ton roller was felt to a depth of approximately 6 ft. and that rolling with the 50-ton roller was felt to a depth of 9 to 10 ft. The results of the rod probings showed an increase in resistance to driving to an average depth of 8 ft. There were some areas which showed no change in resistance, while others showed change to a greater depth. Although it is not known what the direct relationship is between the change in resistance to the flow of an electric current and the change in density, nor the relationship between the number of blows on the rods and the density, it has been concluded that a crust has been formed on the surface of the refuse fill which has a greater density and bearing value than before rolling, and which is affected to a depth of at least 5 ft.

10. The results of the investigation show that an average area settlement of 2 to 2-1/2 ft. may be expected due to the foundation rolling. Consequently, sufficient additional common borrow should be provided in the quantities to compensate for this settlement.

11. The age of the refuse fill was not a factor in influencing the results of the rolling. The type and quality of refuse in the fill, on the other hand, controlled the amount of settlement, and the rutting and depressions developed.

12. Wherever local conditions permit, grade elevation should be established a minimum of 4 ft. above present ground line.

13. In cut sections, it was recommended that the area be excavated to 1 ft. below subgrade level before the foundation rolling was started.

14. The rolling operations will be more efficient and economical if the individual areas for rolling are planned of sufficient length to reduce to a minimum the relative time required for turning. The stretches laid out should be approved before rolling to obtain as long a section as field conditions permit. Turn-around areas at the ends of the rolling section should be wide and satisfactorily prepared to reduce the time for turning around, and eliminate the attending side shearing and rutting.

RECOMMENDED TENTATIVE SPECIFICATIONS
SPECIAL EMBANKMENT FOUNDATION ROLLING

Work - Under this item the contractor shall roll the embankment foundation with an approved pneumatic tired roller as directed by the engineer. Approved pneumatic tired equipment for rolling shall be of such capacity that the load may be varied from 30 to 50 tons. This load must be transmitted through two axles acting in a line perpendicular to the centerline of the roller to permit oscillating action. The total axle load shall be transmitted to the ground on four pneumatic tires. The pneumatic tires shall be evenly spaced across the entire width of the roller, and shall be attached two to each axle. The axles shall be so attached to the body of the roller that oscillation will be obtained in each set of two tires. Rollers which permit the individual oscillation of each tire under a proportionally maintained load will also be acceptable.

The rolling shall cover the entire foundation area between the toes of slope between the stations shown on the plans. These stations are approximate and may be varied in the field depending on local conditions. Preliminary rolling shall be done with a 30-ton axle load. It is expected that the amount of preliminary rolling required will be approximately 8 passes over the entire area. The axle load shall then be increased to a total load of 50 tons. Final rolling shall be done with the 50-ton axle load. This rolling shall be continued until the degree
of stability of the foundation as required by the engineer has been obtained. It is expected that the amount of rolling required with the roller loaded to a total weight of 50 tons will be approximately 25 to 30 passes over the entire area to be covered.

In rolling, one pass shall be taken to represent two trips of the roller, each trip offset from the other the width of one tire to obtain complete area coverage.

As the rolling progresses, the irregularities between tire marks shall be leveled off to facilitate compaction and to permit complete area coverage by the tires. All local depressions which interfere with the rolling operations shall be backfilled with selected granular borrow. The amount of backfill to be used for these operations shall be kept to the minimum required to permit easier rolling operations. When the condition of the foundation is satisfactory for normal rolling, the speed of the roller shall be not less than 2-1/2 mi. per hr.

Payment - The quantity to be paid for under this item shall be the number of hours of rolling performed by the special rolling equipment. No payment will be made for idle equipment due to repairs, bad weather, wet subgrade, or for any other reason.

The time of rolling shall be recorded to the nearest minute by the contractor. This time shall be checked daily by the engineer.

The unit price bid for this item shall include the cost of furnishing all labor, materials, fuel, equipment, and repairs necessary to complete the work, except the selected granular borrow used during these rolling operations will be paid for under its respective item.

ACKNOWLEDGMENTS

The author wishes to acknowledge the helpful assistance received in the development of this investigation and the preparation of the report, and wishes to express appreciation to: Mr. F. W. Donovan, district engineer of District No. 9, Binghamton, New York, who directly supervised the work; Mr. P. H. Bird, senior engineering geologist, who was responsible for the electrical resistivity work; Mr. J. N. Currier, senior soils engineer, who offered valuable help during the field investigation; Mr. R. J. Hasbrouck, of the Bros Manufacturing Co., for his help in providing the roller and expediting field operations; and, to the many others who made this investigation possible.