THE PREPARATION OF SOIL-ENGINEERING MAPS FROM AGRICULTURAL REPORTS

Thomas H. Thornburn, Research Assistant Professor in Civil Engineering, University of Illinols, J. R. Bissett, Assocıate Professor of Civil Engineering, University of Arkansas

In most states possessing land of agricultural value, there is generally available a large amount of information about surface solls contained in county agricultural reports prepared by the State agricultural experiment stations and published jointly by the stations and the U.S. Department of Agriculture. A contribution to the field of soil engineering presenting the usefulness of these reports has been published by the Hıghway Research Board as Bulletin 22, "Engineering Use of Agricultural Soil Maps."

In spite of the avallability of county agricultural reports, the state highway departments have, in general, neglected to utilize them. The reasons for this are readily apparent to any civil engineer who has ever consulted one.

Although the method of soil classification used in the reports is scientific, being the realm of pedology, the reports themselves are full of agricultural terms and interpret the soil conditions in the light of agricultural usage. Few highway engineers have the time to read through the extraneous information contained in these reports in order to find soil information which can be utilized for engineering purposes.

Nevertheless, the information is there and can be used to advantage, as is evidenced by such valuable publications as the 'Field Manual of Soil Engineering,' of the Michigan State Highway Department; "The Formation, Distribution and Engineering Characteristics of Soils" by Belcher, Gregg, and Woods; and the "Soils Manual" of the Missouri State Highway Commission. In a state where a large number of up-to-date agricultural reports are available these publications have their greatest usefulness. However, therr overall value to highway engineers decreases wath a decrease
in the quality or quantity of county agricultural reports.

Up-to-date county reports usually contain maps showing much more detalled variations in soil type than is necessary for engineering purposes. Although this is no great disadvantage, the number of soil types mapped usually increases each year as new county reports are prepared. Furthermore, in states where mapping has been in progress for a period of 30 years or more there is a considerable difference between the nomenclature and mapping techniques used in the early reports as compared to those published in the last 10 to 15 years. This variation in quality of agricultural soil maps in a very real impediment to the use of pedologic information by the highway engineer.

All of the county agricultural reports for Illinois have been prepared and pub11shed by the University of Illinois Agricultural Experiment Station. Reports prepared during the period 1911 to 1929 , of which there are about 45 , use an old type of descriptive nomenclature for the soil profile which does not lend itself to interpretation for engineering purposes wi thout considerable study. The 10 reports published in the period from 1930 to 1933 might be termed transitional reports, since the method of description and classification of the sonl profile $1 s$ better than the one used in the early reports but does not involve the use of soil-series names. The remainder of the reports published since 1933 use the most modern techniques of pedologic survey. These reports, about 20 in number, utilize soil-series names which could be directly correlated with engineering properties.

In order to utilize county agricultural reports for relating engineering properties to soil-series or type nanes, at least two

Figure 1. Highway Districts and Counties in Illinois
and possibly three different systems of correlation would have to be devised. On the other hand, if a soils manual of the type utilized so successfully by the Michigan State Highway Lepartment were prepared, $1 t$ could be used directly in only 20 of the 102 counties in Illinors. It would also require constant additions as new counties were mapped. In order to apply the available data to counties having no up-to-date reports it would be necessary to train the soils engineers of the Illinols Division of Highways in the techniques of pedologic survey. This would he a time-consuming operation, however desirable it might be.

In the spring of 1949 it was decided to inaugurate a project on the preparation of a soil manual for District 5, Illinois Division of Highways, as a part of the Cooperative Research Program on General Highway Prohlems. This program is directed by a joint committee representing the Illinois Division of Highways and the Department of Civil Engineering of the University of Illinois, Engineering Experiment Station. The program 15 sponsored by the

Illinois Division of Heghways and the work carried on ly members of the university staff in the field and in laboratories.

District 5 comprises the 12 counties in east-central Illinois, indicated on Fig. 1. In this district up-to-date county reports were avallable for 4 counties, transitional reports for 1 county, and old-type reports for 6 counties. There was no purlished report for Cl ark County, but an old unpublished map was available.

It dad not seem possible to reconcile the nomenclature used in the three different classes of reports in one sorls manual. Consequently the decision was made to prepare new engineering soils maps for the district. Ohviously, it would not be possible to remap on a strict perdologic basis each county for which only old-type reports existed without a tremendous amount of field work. Since time is an important factor in the preparation of the manual, this approach was ruled out. Furthermore, almost 300 different soil-type names have already been used in the preparation of the up-to-date county agricultural reports.

TABLE 1

engineering classification of the pedologic profile

SYMBOL	SUBSURFACE PLASTICITY	SUBSOIL PLASTICITY
A	None to very slight	None to very slight
B	Slight to moderate	None to very slight
C	None to very slight	Slight to moderate
D	Slight to moderate	Slight to moderate
E	High	None to very slight
J	High	Slight to moderate
W	None to very slight	High
X	Slight to moderate	High
Z	High	High
0	Highly organic materigls	

PARENT MATERIAL SYMBOLS

[^0]TABLE 2

ILLINOIS SOIL TYPE DESCRIPTION. SHEET

1.- Number and Name - 146 Elliot Silt Loan
2. Descriptive Name - Bromn silt loan on compact, medium plastic till
3. Location in State - East-central, north-central Illinozs
4. Rating: General Crops - 4 Pasture - Timber -
5. Topography - Gently rolling to rolling - slopes 1 to 5 percent'
6. Drainage Surface - moderate Under - slow Outlets - good
7. Native Vegetation - Grass
8. Parent Material - Thin loess on compact, med. plastic Wisconsin till

SOIL CHARACTERISTICS

SURFACE

1. Texture - Silt loam Structure - Fine granular to crunb
2. Color - Brown to dark brown Organic Content - mediun
3. Thickness - 7 to 8 inches
4. Reaction - Hedium acid Available Phos. - low Nitrogen - Mediur to low Available Potash - aediua
5. Workability - Fair but becoming poorer as organzc matter decreases

SUBSURFACE

1. Texture, Heavy silt loam or silty clay loan Structure - Weakly coarse-granular
2. Color - Yellowish brown to dark grayish yellow
3. Thickness - 6 to 12 inches
4. Reaction - Slight to mediua acid Available Phos - low

SUBSOIL

1. Texture - Clay loam Structure - Subangular to angular aggregates

2 Color - Pale brownish yellow to dark grayish yellow with rusty brown spots
3. Consistency - Compact and plastic
4. Thickness - 8 to 12 inches
5. Reaction - Slightly acid to neatral Available Phos. - Substrata Nature and composition - sloøly pervious Wisconsin till, highly calcareous at 30 to 35 inches, igneous pebbles, not abundan:

For engineering purposes many of these soil types can be grouped together, since they have simlar engineering characteristics. In order to utilize all of the pedologic information available and yet present it in a usahle manner, the classification system shown in Table 1 was developed.

On the basis of this classification, each pedologic soll type mapped in a given area was assi gned a two-letter group symbol. The first letter represents the plasticity of the subsurface and the subsoil; that is, the lower part of the A - and the P -horizon respectively of the redologic profile. The classification was arranged so that letters at the beginning of the alphahet represents granular or slightly plastic materials, whereas those at the end of the alphabet
represent highly plastic soil materials.
The second letter of the symbol designates the character of the parent material; for example, H represents highly permeable granular materials; M, moderately permeable, predominantly silty materials; S, slowly permeable clayey materials, and A, with a suitable subscript, represents bedrock, the subscript denoting whether $1 t$ is shale, Imestone, or sandstone.

The authors have no illusions that this system represents the acme of soil-classification systems but do feel it utilizes, to the best advantage, soils information already available. Furthermore, it provides a hasic system with which engineering properties of soils in any part of the state may be directly correlated. Its
form depends more upon the type of information avallable rather than upon the desirable ideal.

Table $21 s$ an illustration of a typical soll-type information sheet used by the Department of Agronomy of the University of Illinois in pedologic mapping. It can ke seen that definite information in regard to the plasticity of the various horizons is not always given. In many instances it was necessary to deduce the plasticity characteristics from the information on tecture and permeability. The chart shown in Tarle 3 was used for thas purpose.

In the mapping of District 5, 99 different pedologic soll types have been encountered. All of these have heen classified into 13 engineering groups. The number of types in each proup is indicated in Table 4 along with a brief description of the group. With the classification as presently devised it would he possible to have as many as 37 different groups, however it is expected that the actual number required to map the whole state will not exceed 20.

TABLE 3

CLASSIFICATION OF PLASTICITY FROM TEXTURAL CLASS

TABLE 4

GROUPING OF PEDOLOGIC SOIL TYPES IN DISTRICT 5 ACOORDING TO ENGINEERING CLASSIFICATION

NUMBER OF			
PEDOLOGIC	GROUP	SUBSURFACE	SUBSOIL
TYPES	SYMBOL	PLASTICITY	PLASTICITY
7	AH	None to very slight	none to very slight
11	CH	none to very slight	slight to moderate
8	DH	slight to moderate	slight to moderate
4	XH	slight to moderate	high
1	CM	none to very slight	slight to moderate
26	DM	slight to moderate	slight to moderate
6	XM	slight to moderate	high
4	ZM	high	high
2	CS	none to very slight	slight to moderate
15	XS	slight to moderate	high
13	ZS	high	high
1	DR	slight to moderate	slight to moderate
1	00	muck and peat	
99	13	total	

Figure 2. Agricultural map of Moultrie County

Once the new classification system had been worked out, the process of preparing an engineering soils map for counties having up-to-date agricultural reports was relatively simple and direct. It consisted of the following steps: (1) classification of each pedologac soil type mapped in the county according to the engineering symbols (Table l) using the information contained in the soil information sheet (Table 2) and the plasticity-texture correlation (Table 3); (2) designation by a distinctive color of each engineering soil area on a photographic reproduction (scale: lin. equals 1 mi .) of the county agricultural map; (3) tracing of the boundries of each engineering soil area on a vandyke positive of the county highway planning map; (4) preparation of a vandyke negative of the completed soils map; and (5) reproduction of the engineering soils map.

In the counties where up-to-date agricultural reports were not available, the first step was preceded by a reclassification of the descriptive type names in terms of type names for which soil description sheets were available. This was frequently a time-consuming procedure and involved consultation with members of the agronomy department of the university; considerations of the correlation between topographic position, geology of the parent material and pedologic classification, and the use of aerial photographs to check soil boundries.

The relationship between the agricultural maps and the resulting engineering maps is illustrated in Figures 2 to 5.

In conjunction with the preparation of the basic maps, the soils engineer of District 5, assembled all reliable sampling and test data in the form shown in Figure 6. The location map was prepared on tracing

Figure 3. Engineering Soils Map of Moultrie County
cloth to the scale of 1 in . equals 1 mi ., and the position of each exploratory boring was plotted as accurately as possible. The location could then be spotted readily on the preliminary soils map, and the test data used as a further check on the engineering classification. Unfortunately, the amount of reliable test data which could be correlated with a specific location and depth was found to be small. The data which are available will be, however, of further value in estimating the physical properties of each engineering soil group when a soils manual is prepared for the district.

At the present time basic engineering maps have been prepared for all 12 counties which comprise District 5 , but only 4 have been reproduced in final form. This represents the effort of one staff member halftime during one academic year and full-time for three months. In addition, two under-
graduate students have been employed about half-time for two months in preparing maps for reprorluction. Now that the system has been formulated, it is felt that the average highway district comprising 10 to 12 counties could be mapped in a period of from 6 to 8 months using the same staff which has been available in the past.

The preparation of the engineering soil maps represents only the first phase of the project on the preparation of the soils manual. However, in order to make the maps of immediate use, each one will be accompanied by a krief summary of the geology, major soil types, and associated engineering problems of each type. In addition, a map showing the important geologic features of the district will be prepared for inclusion in the manual.

The authors wish to acknowledge the assistance received from the engineers of the Illinois Division of Highways, espec-

Figure 4. Agricultural map of Cumberland County

Figure 5. Engineering Soils Map of Cumberland County
ially from H. H. Russell, engineer of materials, who supervises the Cooperative Research Program on General Highway Problems for the sponsors; F. N. Barker, engineer of blghway research, who turnished reproduction negatives of the highway planning maps; and Martin Zogg, engineer of materials, and Walter Lyon, soils engineer of District 5, who supplied much useful data and many helpful suggestions. The assistance pro-
vided by H. T. Odell, associate professor of soil physics, University of Illinois, in furnishing original county soil maps and in the interpretation of old county soil reports has been invaluable. Special acknowledgement is due to W. S. Pollard, Jr., instructor in civil engineering, University of Illinois, for has part in the preparation of the engineering maps and in the interpretation of aerial photographs.

CLARK COUNTY DISTRICT 5

$$
\text { R. } 13 \text { W., } 2 \text { P.M. }
$$

NO.	$\begin{aligned} & \text { DEPTH } \\ & \text { FEET } \end{aligned}$	COLOR	SAND	SILT	CLAY	LL.	PL.
1	0-1/2	Gray	9	60	31	27	11
	1/2-3	Yellow	4	51	45	30	14
	3-5	Yellow	8	57	35	30	17
	5-10	Yellow	24	44	32	29	21
2	0-1/2	Brown	8	59	33	34	15
	11/2-3	Yellow	8	57	35	43	24
	3-4	Yellow	6	52	42	55	42
	4-5	Yellow	7	58	35	41	25
	5-51/2	Yellow	4	54	42	52	38
3	0-1	Yw.-Bn.	10	55	35	32	12
	1-21/2	Yellow	6	52	42	61	45
	21/2-5	Yellow	16	49	35	43	31
	5-8	Yellow	25	43	12	35	22
4	0-1/2/	Gray	12	56	32	32	12
	$11 / 2-31 / 2$	Yellow	6	45	49	42	31
	31/2-6	Yellow	13	49	38	32	18
5	0-1/2	Gray	32	48	20	26	8
	1/2-1/2	Yellow	10	53	37	45	26
	$11 / 2-31 / 2$	Yellow	11	50	39	53	36
	$31 / 2-41 / 2$	Gray	10	50	40	46	30

Figure 6.

TOPOGRAPHIC MAP SYMBOLS
VARIATIONS WILL BE FOUND ON OLDER MAPS

ROADS		MINE SYMBOLS		
Hard surface，heavy duty，four or more lanes		Open pit or quarry	\wedge	
Hard surface，heavy duty，two or three lanes wide		Shaft－Tunnel entrance		
		Prospect	x	
Hard surface，medium duty，four or more lanes wide		CONTROL DATA		
Hard surface，medium duty，two or three lanes wide		monumented with spirit level elev． with vertical angle elevation	BM $\triangle 1062$ VABM $\triangle 2240$	
Loose surface，graded，and drained or hard surface less than 16 feet in width		with other checked elevation	$\triangle 568$	
		Monumented bench mark with spirit level elev． with vertical angle elevation	$\begin{gathered} \text { BM } \times 958 \\ \text { vABM } \times 1254 \end{gathered}$	
Unimproved dirt		Less permanently marked bench mark with spirit level elevation		
Trall			Checked spot elevation	$\times 5924$
Dual highway with dividing strip 25 feet or less in width		${ }_{\times 665}{ }^{870}$		
Dual highway with width of dividing strip exceeding 25 feet		Unchecked spot elevation－Water elevation HYPSOGRAPHIC FEATURES		
Under construction－If classification is known appropriate width and red fill are shown		Index contour Intermediate contour		
		Intermediate contour Supplementary contour		
Private roads are sometimes labeled for clarity	pevare	Depression contours		
Traffic circle－Clover leaf	図			
RAILROADS		Cut	गाI	
U．S．Standard Gage		Fill		
Single track		Levee		
Multıple main line track If more than 2 tracks，number is shown by labeling		Levee with road		
Abandoned track		Large earth dam or levee		
Track under construction		Wa		
Yards－SIding	是	Tallings	\％	
Narrow Gage		Tallings pond	－xasas	
Single track		Strip mine，waste area		
Multiple track		Mine du	，	
Abandoned trackMiscellaneous		Mne dump		
		vel beac	\％－	
CarlineRalroad in street		Distorted surface area	造	
Dismantled railroad or carline		FORESHORE－OFFSHORE FEATURES		
Turntable and roundhouse	酳			
BRIDGES－TUNNELS－CROSSINGS		Foreshore flat	Crem	
Bridge，road		coral	为事边	
Drawbridge，road		Piling，dol Phin，stump，snag		
Footbrige		Rock bare or awash at low tide		
Tunnel，road		Rock bare navigation		
Brige，rallroad		Exposed wreck		
Drawbridge，railroad	10	Sunken wreck with masts exposed		
Tunnel，rallroad		Depth curve		
Overpass，underpass	＋+	HYDROGRAPHIC FEATURES		
		Perennial streams		
Ford，road		Intermittent streams Stream disappearing at definite point	\geqslant	
ery	Ferr	Intermittent lake or pond		
DAMS－PIERS－BREAKWATERS		Dry lake or pond		
Important small masonry or earth da		Canal，flume，or aqueduct		
		Aqueduct tunnel		
masonry dams		Elevated condur		
Dam with lock				
Dam carrying road		Large rapids	Tren	
Breakwater，elty，pler，wharfCovered pier or wharf		Small rapids		
CoveredSeawall			Large falls	
Canal with lock		Small falls		
MISCELLANEOUS CULTURE SYMBOLS Buldings（dwelling，place of employment，etc ）．＝－＝		Channel in water area	E＝E	
		Glacier or permanent snowfield	\％	
Bulding（dwelling，place of employment，etc）．－－－				
Buldings（barn，warehouse，etc）		Marsh or swamp	或	
Cliff dwelling		Woded	Onem	
		Wooded marsh or swamp		
		Submerged marsh or swamp		
Telephone，telegraph，tramway，pipe line，etc （labeled as to type）		Land subject to inundation		
Wells other than water（labeled as to type）		Mangrove		
Tanks，oll，water，etc（labeled as to type） Located or landmark object Windmill－Gaging station BOUNDARIES		OVERPRINTED AREAS Area in which only landmark buildings are shown		
		Woods－brushwod		
BOUNDARIES			Orchard	
State				
County，parsh，muncipio		Vineya		
Civil township，precinct，town，barrio		Scrub		
Incorporated city，village，town，hamlet		LETTERING STYLES		
Reservation，national or stateLand grant		Place，feature，boundary line，and area names		
Small park，cemetery，airport，etc		Richview，Union Sch，MADISON co，C E D A R Public works－Descriptive notes		
Township or range line．location doubttul		ST LOUIS，roan．aelle steget，Tunel－Goff Co	Surse，Radio Tower	
U S．land survey section line		Control data－Elevation figures－Contour numbers		
		Forey Knob，BM 1333 ，VABM 1217 －5080－ 5500Hypsographic names		
Township line（not $U S$ ．land survey）				
Section line（not U S．land survey）		man Island，Burton Point，HEAD MOUNTAIN Hydrographic names Head Harbor，Wood River，NIAGARA RIVER		
Found section corner－Land grant monument	＋			
Boundary monument－U．S mineral monument				

TOPOGRAPHIC MAPS

The United States Geological Survey was created by an Act of Congress in 1879, for the purpose of making a systematic study of the geology and natural resources of the United
States, and the classification of the public lands From the very beginning of this work 11 States, and the classification of the public lands From the very beginning of this work it
was evident that no adequate classification of lands or conclusive geologic determinations could be made without suttable base maps This led to the organization of the Topographic Division, which, since 1882, has been engaged in making a series of standard topographic maps to cover the United States, Alaska, Hawant, and Puerto Rico

MAP SCALE

Under the general plan adopted each published map covers a quadrangle of area, bounded by parallels of latitude and meridians of longitude, and hence the maps are some times referred to as quadrangles, or quadrangle maps The map boundaries of parallet
and meridians are based on the international system of latitude and longitude by which the location of any point on the surface of the earth is readily fixed The quadrangle maps are published on different scales, the map scale selected for each section of the country being, for economic reasons, the smallest scale adequate for general use in the development of each part of the country On the lower margin of each map are printed graphic scale
showing distances in feet, miles, and kilometers In addition, the scale of the map is shown by a fraction expressing a fixed ratio between linear measurements on the map and cor responding distances on the ground For example, the scale of 162,500 means that one unit (such as 1 inch. 1 foot, or 1 meter) on the map represents 62,500 of the same units on the earth's surface The scale of " 1 inch equals 1 mile" means that 1 inch on the published map corresponds exactly to 1 mile on the ground
Each quadrangle map is usually designated by the name of a city, town, or prominent natural feature within $1 t$, and on the margins of the map are printed the names of adjoinin
maps that have been published otherwise noted.

FEATURES OF A TOPOGRAPHIC MAP
Topography is the configuration or shape of the land surface A topographic map is it is this distinctive feature that differentiates it from other maps Topography may be shown by several methods The most striking and realistic method is probably the familiar relief model formerly made of plaster or clay, now sometimes made of rubber or plastic The ordinary topographic map is printed on a flat shect of paper, and hence a symbol must be used to depict the topography There are several such symbols in use, including ha chures, shading, and contours The contour method is used almost entirely by the Geo on the contours Contours are superior to other topographic symbols for engineering needs because they generally afford more precise information Contours make it practical to represent the form of the land surface with high precision The height of each hill, the depth of each valley, and, in fact, the elevation and slope of the ground at any point can be determined from a good contour map
A contour may be defined as an imaginary line on the ground, every part of which is body of water, as the sea or a lake, is, in effect, a contour if or falls by any amount, the water's edge conforms to the shape of the land at the new level and traces out a new contour. Contour lines could be drawn at any elevation, but in practice only the contours at certain regular intervals of elevation are shown The contour interval, or the vertical distance between one contour and the next, is selected ac-
cording to the steepness of the terrain in the area being mapped. In flat country it will usually be 5 feet, occasionally less In a mountainous region it may be as great a 50 feet, sometimes more. To make the contours easter to read and follow, every fifth one (usually) is made heavier than the others (accentuated), and is accompanied by figure showing the alttude of the contours above sea level The contour interval used on each map sheet is explained in a note printed in the bottom margin of the map

In addition to the contour lines and elevation numbers, the heights of many identifiable wn on the map in printed figures giving altitudes to the nearest foot, except on the Puerto Rican maps, wher ontour intervals in meters are used, and individual heights are given to the nearest mete These individual elevations are commonly called spot heights, or spo elevations.

1

:Smolioj se parinuaray

SAIzGS dVN DIHdVYĐOdOL TVNOILVN

 umoiq ul deu
sวunว

This small map is inteuded to give a general picture of the areas covered by published topographic maps of the U. S. Geological Survey and other government agencies. Some additional areas have been covered by old reconnaissance surveys which are now considered inadequate. Larger size status maps of the United States covering on application to the U.S. Geological Survey, Washington 25, D. C. State index circulars showing the details of map coverage and the names of map sheets printed for distribution, are also available without charge.

LAND FORMS AS SHOWN ON A TOPOGRAPHIC MAP
This illustration shows the manner in which relief, hydrographic, and cultural features are shown on a topographic map. The upper part of the illustration is a perspective view
of a river valley that lies between two hills. In the foreground is the sea with a bay partly enclosed by a hooked sandbar. On each side of the valley are terraces through which streams have cut gullies. The hill on he right has a gradual slope with rounded and ends in a sharp precipice from which it lopes gradually away forming an inclined ableland that is traversed by a few shallow gullies. The lower part of the illustration hows the same ground forms represented here is 20 feet, which means that the vertial distance between one contour and the next is 20 feet.

Portion of U. S. Geological Survey's Delano, Pa. 7.5^{\prime} quadrangle. Scale 1:24,000 ($1^{\prime \prime}=2000$). Contour interval 20 feet. Topography from aerial photographs by multiplex methods. Surveyed in 1946.

Portion of U. S. Geological Survey's Mahanoy, Pa.15' quadrangle. Scale $1: 62,500$ ($1^{\prime \prime}=$ approximately 1 mile). Contour interval 20 feet Surveyed in 1889.

The maps shown above cover the same ground area. A comparison of the two will show the extensive changes that have been made since the mapping of the Mahanoy quadrangle in 1889. They also illustrate the value of arge scale mapping where culture is dense or where greater detail is needed. Older maps, such as the small on shown above, will be replaced with modern maps as funds become available

PLANE TABLE

A new series of generalized topographic maps, planned to cover the entire area of the United States, on a scale of $1: 250,000$, with contour intervals ranging from 100 feet in the plains areas to 500 feet in the mountains, with relief emphasized by shading, is now in proc-
ess of preparation and publication This series, which will require several vears to com plete, is intended primarily to meet military requirements, and original compilation is being done manly by the Department of the Army An edition for civilan use is planned geographic information and for general planning on a regional basis.
All of the standard quadrangle maps of the United States areas are published on sheet about $16 \frac{1}{2}$ by 20 inches in size, except for the 124,000 scale maps, which are 22 by 27 inches.

AERIAL PHOTOGRAPHS USED IN MODERN MAPPING
The technical procedures of topographic mapping have undergone considerable change in recent years Aerial photographs, and precise plotting instruments for measuring and all topographic mapping operations The use of aerial photographs makes it economically practical to prepare the entire series of standard topographic map sheets in conformance with modern engineering standards of accuracy. Although in using aerial photographs each origınal map sheet is "compiled" in the office, extensive field surveys are still requiredfirst for dithrmining the latitude, longitude, and elevation of a number of control-survey the field Each office-compiled map sheet, if it is to be of standard quality, must be taken to the field, in order to complete all those features which the photographs do not showsuch, for example, as place and feature names, political boundaries and land-subdivision lines, classification of roads and buildings, and numerous small but important features including mines, quarries, cemeteries, large springs, and oil wells it is also necessary
that the field engineer complete the map by conventional surveys whenever the land surface is completely hidden from camera view by dense forest growth

MAP ACCURACY SPECIFICATIONS

Specifications for horizontal and vertical accuracy were adopted in 1942 for the stand ard topographic maps, and those maps which fulfill these accuracy requirements carry notation to that effect in the lower margin The man features of these specifications pro
vide that (1) horizontally, 90 percent of the well-defined planimetric features shall be plotted in correct position on the published map sheet within a tolerance of $1 / 50$ inch, and (2) vertically, 90 percent of the elevations interpolated from the contours shall be correct with in a tolerance of one-half contour interval (The $1 / 30$ inch tolerance for horizontal position accuracy of well-defined planimetric features is equivalent approximately to 40 feet on the ground for maps published on the 124,000 scale, and 100 feet on the ground for the 1:62,500 scale)

STATE PLANE COORDINATE SYSTEMS
State plane coordinate systems have been established for each of the 48 States, under the sponsorship of the United States Coast and Geodetic Survey These are rectangula coordinate systems, or grids, by which engineers and surveyors can readily correlate their plane surveys to the geodetnc survey stations Plane surveys do not take account of the Geodetic procedures are necessary for all surveys extended accurately over great distances. distances. Geodetic stations are monumented points, for which precise latitudes and longi tudes have been determined These geodetic positions, referred to the sphere of the earth can be readily converted into plane, rectangular coordinates of any State system, and vice versa On all recent topographic maps certain of the grid lines of the State rectangular coordnnate system may be drawn, by joining with straight lines the corresponding grid ticks, or short sections of lines, which extend at regular intervals just outside the map border, and
which are labeled with appropriate north and east coordinate values in feet. In cases where State grid zones overlap, two or more systems will be shown on the map, in which case one zone will have its grid tucks indicated by dotted lines

EXTENT OF AREAS MAPPED

For the United States proper, nearly 10,000 topographic maps, and several hundred planimetric maps (maps that do not depict relief), have been published and are availabl to the public Some of these maps were orignally prepared by other agencles, including Service, and the Coast and Geodetic Survey, All of these maps are now distributed by the Geological Survey, and most of them have been edited and published by the Survey

3

モ
 os6t Kent pazuld

GDIASO NOILVWYOANI dVK

S\&VTnDษID XGaNi glvis

 pue

 1 ,

aTgVTIVAV SdVN צGHLO

 eyse рие '

[^0]: Highly Permeable materials (Granular terrace, alluvial or windblown sands and granular outwash)
 Moderately Permeable Materials
 (Leached or permeable till, leached or sandy loess, alluvial salt, and local wash.)
 Slowly permeable materials (Plastic till, modified loess or lacustrine clay)
 Bedrock
 Peat and Muck

