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• GEOMETRICALLY depicting families of relationships is one method for storing 
large amounts of information in very compact form, as, for example, the thermo
dynamic properties of steam in the Mollier chart. Geometric portrayals can also 
suggest and clarify otherwise obscure, or at least not easily recognized, theoretical 
considerations. From relatively abstract geometrical surfaces, Gibbs (2) deducts 
fundamental thermodynamic concepts. As suggested by this classic thermodynamic 
approach, this paper presents similar geometrical treatments of transportation re
lationships in order to provide a convenient method for compact storage of large 
amounts of information and a basis from which new theories may be identified. 

The geometrical schema are a part of a "macroscopic" approach to traffic flow. 
Several concepts characterize this approach. One is that the effectiveness of any 
given transportalion link is to be deduced from measurements made at inbound and 
outbound cordon lines, referred to as boundaries, without making any intervening 
measurements. This boundary-to-boundary treatment is similar to, and in fact was 
suggested by, classical thermodynamic problem solving, wherein energy and mass 
fluxes are measured at boundaries of some abstract system and from these measure
ments state changes of the system are deduced. This particular mode of thermo
dynamic analysis is often referred to as macroscopic; hence, the same term is used 
to describe the analogous approach to traffic flow. As demonstrated presently, the 
purposes of this macroscopic formulation are to provide bases for making traffic flow 
theory more readily applicable to operational problems and to link traffic flow theory 
to the larger picture of urban and regional planning. 

SOME CONCEPTS RELATED TO MACROSCOPIC THEORY OF TRAFFIC FLOW 

The Moving Unit 

It is convenient to consider the transportation function in an urbanized region as 
the movement of a collection of units from node to node. A given transportation prob
lem might optimally have the moving unit defined in one way; another problem might 
require a different definition. In traii1c anaiyses, the vehicie wouid seemingiy be the 
most appropriate unit. In transit studies, it might be the person being moved. In the 
movement of goods, it might be some amount of mass, or some amount value of volume. 
For purposes of developing the conceptual framework, the moving unit will first be 
limited to a single vehicle. Later, the moving unit will be groups of vehicles. 

The System 

Transportation links interconnect the nodes in the urbanized region. With the ve
hicle as the moving unit, the transportation link of interest will be a segment of road, 
street, or freeway over which vehicles normally travel. Each of these "real" trans
portation links is to be mapped into one or more abstract systems. Each system (SYS) 
is defined by at least one input boundary (INB) and by at least one output boundary 
( OUB). The boundaries may be arbitrarily located to coincide with any point in the real 
network. 
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A moving unit is "in" a link or system when it crosses an input boundary; it is "out 
of" a system when it crosses an output boundary. Every boundary is considered to be 
infinitely thin in the dimension parallel to the direction of travel. The moving unit is 
also considered to be infinitely thin in this dimension. Thus, at any instant, a unit is 
either "in" or "out of" a given system. Also, it must be in one, and only one, system 
at any given instant. 

A system may have more than one input or output boundary, but it must have at 
least one of each. A given combination of an input and an output boundary will define a 
path (PTH). Thus, a system having multiple input or output boundaries will have multi
ple paths. This multiple path formulation characterizes real-world situations wherein 
a moving unit at a given point in a network may move in any of several alternative di
rections. These cases are shown in Figure 1 by a unit at INB 3A which can proceed 
either to OUB 3A or OUB 3B, or by a unit at OUB 3B which could have come from INB 
3A or INB 3B. 

To simplify the presentation, the path whereby a moving unit is to negotiate a sys
tem is considered fixed once the unit crosses an INB; it will not change its path through 
a system because of conditions inside the system. Stated another way, the intrasystem 
feedback to the moving unit is not treated in this paper. Another simplification is that 
each moving unit that enters a system continues through and clears the system. The 
variation of a moving unit terminating its travel in the system being analyzed is not 
considered here. 

Properties of Systems 

A fundamental concept advanced here is that each system has properties related to, 
and measurable by, the performance of moving units traversing it. These newly
defined properties are in addition to conventional geometric and materials properties 
such as width, length, curvature, superelevation, and surfacing. Travel time (i.e., 
delay) exemplifies a class of the new properties that are evaluated solely by measure
ments at boundaries. For the Ith moving unit traversing the Kth system, 

TRT(I. K) = CLT(I. OUB K) - CLT(I. INB K) (1) 

OUB 3A -------

! IN :y:u,e I ! .-' N_e_2 __ S_Y_S_:_u_s_..,2 ! f"IN.._8_3_A __ ...,c;__ s_v_s_3 __ ,..0_U_B __ 3 yS·Y: 
4 

I I 
MOVING UNIT INB 38-__ _, 

THE LOADING OF SYS 3 AT POINT X 
IS THE SUM OF THE LOADINGS ON 
PATHS (INB 3o-OUB 3o) AND 
(INB 3o-OUB 3b). 

Figure 1. Point and path loadings in contiguous systems . 
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in which 

TRT(I. K) = travel time of Ith moving unit traversing Kth system; 
CLT(I. INB K) = clock time at which Ith unit arrived at input boundary of Kth system; 

and 
CLT(I. OUB K) = clock time at which Ith unit arrived at output boundary of Kth sys-

tem. 

Smog, on the other hand, exemplifies another class of the new properties that would 
be measured best by integrating the performance of the moving unit over the entire 
length of the system. 

in which 

SMG(I. K) = LSMG(I. k) 
k 

SMG(I. K) = smog performance of Ith moving unit traversing Kth system; 

(2) 

SMG(I. k) = smog performance of Ith moving unit traversing subsystem k which is 
very small relative to overall Kth system, but very large in relation to 
domain over which SMG measurement is made; and 

K=Lk. 

The performance measures may be summed over all moving units, which is the case 
of interest now. In a later work, the summation will be over all systems, which make 
up a path, thus permitting the value of the property for the path to be synthesized from 
the properties of the systems that comprise the path. For TRT and SMG, respectively, 

L TRT(I. K) = TRT(ALL I. K) 
I 

LSMG(I. K) = SMG(ALL I. K) 
I 

(3) 

(4) 

Although the geometric and materials properties of a system are deterministic, the 
properties of the system due to the performance of moving units are probabilistic be
cause, for one thing, the performance of each unit in the set ALL I need not be the 
same with regard to a given measure. 'I:herefore, the system property might better 
be described by the statistical distribution of the values associated with the separate 
I's. This distribution might be described by any of several measures of central tend-
1:mcy; !'luch as its mean, median, and mode. Thus, the smog property of a system 
might be the mean smog output of all moving units traversing the system, if the mean 
is selected as the convenient parameter for describing the property. Possibly some 
measure of dispersion, such as the standard deviation or range, might be used. 

To simplify discussion, the ALL I will usually be dropped from expressions such 
as Eqs. 3 and 4, leaving SMG(K) and TRT(K), respectively. This latter usage em
phasizes the fundamental concept of assigning to a system properties whose measure 
arises out of the performance of moving units in traversing the system. 

Macroscopic Moving Units 

Also fundamentally related to the proposed macroscopic approach to traffic flow 
is the performance of groups of vehicles as distinct from individual vehicles. Two 
types of vehicle groups are defined here: the ensemble and the loading. 

Ensemble. -At the instant that the Ith car crosses the input boundary of the system 
[CLT(I. INB ], there exists in the system some set of vehicles. As the Ith car proceeds 
through the system, the set of vehicles ahead of it changes; some vehicles in the original 
set leave the system at the output boundary or at intervening off-ramps, and others join 
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the set from intervening on-ramps. The hypothetical summation of the set of vehicles 
ahead of the Ith car at all instants between CLT(I. INB) and CLT(I. OUB) is defined here 
as its ensemble [ENS (I) J. Although a random variable, the ENS(I) is not treated in 
this work as a performance measure per se of the system, but rather as a covariate 
that must somehow be taken into acount in interpreting any measurement of a per
formance variable of interest, such as travel time. 

Loading. -During a specified interval of clock time, a group of vehicles will arrive 
at and enter a system at each input boundary. There will be a separate group for each 
input boundary, but all groups defined by the same clock time interval will be col
lectively referred to as the loading (LDG). 

The clock time boundaries can be varied at will to reflect any given operational prob
lem or situation. For example, the period from 4 to 6 PM on a weekday generally coin
cides with the afternoon travel peak, and thus can be referred to as the afternoon peak 
loading. Another reason for formulating the loading concept around clock time boun
daries is the belief that loadings defined in this manner are closely correlated with com
munity activities, and because community activities are highly predictable with time 
of day, the loadings would also be highly predictable. For example, the loading on an 
input boundary described around the parking lot of a company will be closely linked with 
the quitting time of the company. Further, the loading on some nearby system will have 
a high auto-correlation with the loading at the parking lot. 

Symbolically, the loading for the interval CLT(INB) = a and CLT(INB) = b is com
prised of all vehicles meeting the requirement that 

a ,,; CLT(I. INB) ,,; b ( 5) 

If there are, in all, m input boundaries to a system, the number of units in the sys
tem loading for the a to b interval is 

m 

1 J """"' 1 ' N ! LDG {SYS a-b] = ~ N LLDG { (INB = i) · (a-b) } j 
1=1 

( 6) 

The loading at each INB can be factored according to OUB, which would be identically 
a path description. For n possible output boundaries for vehicles entering the system 
at INB 1, 

n 

N[ LDG { (INB = 1) (a-b) }] = r: N [ LDG ( (INB = 1) · (a-b) · (OUB = j) } l 
j=l J 

(7) 

The loading may be described according to criteria other than path; for example, 
wheelbase classification, nodal point of origin in the region, and nodal destination in 
the region. Double, triple, and even higher order summations are possible on various 
combinations of these and other appropriate descriptive criteria. 

The loading and the ensemble represent groups of vehicles that are closely related, 
and which can be mapped into each other, on appropriate adjustment for phase relation
ships in clock time. Nevertheless, there are basic differences between them. The en
semble is a group of vehicles that is an impedance to travel of the moving unit; studies 
of these groups appear to be particularly well suited for examining unusual "within sys
h,m" costs of movement. The loading, on the other hand, is a group of vehicles that 
comprise the demand made on the system for service; studies of these groups appear 
to be particularly well suited for examining the interaction of transportation with con
tiguous land usage. 

In the same sense that a (performance) property of a system is to be quantified by 
measuring the performance of a single moving unit traversing the system, the quantifi
cation may be based on the performance of some group of moving units (e.g., the load
ing) traversing the system. How the measurement should be made of performance of 
the group is a matter of choice-summation of performance of each unit in the group 
vs some mathematical manipulation of the performance of the first and last units 
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of the group. In the following presentation of the geometrical schema, to a system 
performance measure based on the performance of a single moving unit is considered 
the lower bound of a group measure, that is; it is the measure on a "group of 1." 

GEOMETRICAL SCHEMA 

The Fundamental Space 

It is proposed that a fundamental space for transport phenomena be defined by the 
following cartesian coordinates, referred to as the fundamental coordinates: 

Coordinate X = some characteristic of the loading F(LDG). 
Coordinate Y = some property P(K) which is a performance measure for the Kth 

system. 
Coordinate Z = some characteristic of the system. 

The space is shown in Figure 2; the projections on the ZY and XY planes are shown 
in Figures 3 and 4, respectively. 

The X-coordinate may be any characteristic of the loading, some examples being 
the number of moving units arriving at a given INB in unit time, the make-up of this 

y 

PERFORMANCE MEASURE 
P(K) 

PRIMITIVE SURFACE 

' / -..v 
0 " 

X 
/ 

/ 

X z 
SOME CHARACTERISTIC 
OF THE SYSTEM F(SYS) 

SOME CHARACTERISTIC OF 
THE LOADING F(LDG) 

Coordinate X: Some characteristic of the 
loading upon the Kth system. 
Example: 

F(LDG)= N(CLT 1 - CLT 2) 

Coordinate Y: Some performance measure 
expressed as property of the 
Kth system - - P(K). 

Coordinate Z: Some characteristic of the 
system F(SYS), 
Example: 

Length of the system 

Figure 2, Proposed fundamental space. 
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Figure J , Fixed loading argument for fundamental space , 
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collection of vehicles according to type of vehicle (private cars, trucks, buses , etc.), 
and the OUB to which the moving unit is heading. 

The Y-coordinate is to be any newly-defined system property that is a performance 
measure of the system. In this work, travel time is used. Other measures such as 
smog, dollars, and accidents might also be used. The expression P(K) is used as a 
generic description of any performance property, and the concern is to develop a 
geometry that portrays the fluctuation of this measure in the defined space. 

The Z-coordinate may be any characteristic of the system. The distance between 
INB and OUB might be used. Other geometric dimensions also might be used, such as 
curvature, superelevation, number of lanes, and number of intervening on-ramps in 
the case of a freeway network. The dimension, traffic signals per mile, used by Irwin, 
Dodd, and von Cube (~) is used similarly in this context. 

Primitive Surface and State Function 

The existence of some optimum value P '(K) of the performance measure P(K) is now 
posited for a given loading on a given system. The primitive surface is defined as the 
locus of this optimum value for all combinations of loading and system; that is, all ad
missible pairings of X, Z values. The optimum value might not be capable of ever 
being realized. For example, with travel time as the performance measure, the cri
terion for the primitive surface might be that the moving unit be traveling at the speed 
of light, and if the characteristic of the system was its length, the primitive surface 
would describe the time for light to cover the distance Z. A more practical criterion 
for the primitive surface might be some defined maximum operating speed, or, as 
presently discussed in more detail, the primitive surface might be the lower limit of 
some confidence interval derived from purely empirical considerations. It suffices 
now to assert the existence of some such optimum surface. 
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NOTE 
2. 

P(K) 

EXISTING
11
STATE

11 

OF SYSTEM 

P(K) 

NOTE I. MAXIMUM INCREASE IN F(LOG) AT F(SYS) =S 
WITHOUT CHANGING P(K). 

F(LDG) 

NOTE 2. MAXIMUM REDUCTION IN P(K) AT F(SYS) =S 
WITHOUT CHANGING F(LOG). 

Figure 4, Fixed system argument for fundamental space, 

The system, its loading, and its performance value are represented by a single 
point o in the X, Y, Z space, called the state point. The line through the state point 
and perpendicular to the XZ plane will intersect the primitive surface at o ', which, by 
definition must be the optimum performance value for the given system-loading com
bination (X, Z). In Figure 2, the state point approaches its optimum o' from above 
and would be the case for a performance measure such as travel time having some 
minimum value for its optimum. Other performance measures (e.g., some speed 
function) might have a maximum for the optimum, in which case the state point would 
approach its optimum from below. The former case appears to be more widely appli
cable and is used in presenting the concepts. 

For some performance measures, the primitive surface might be defined negatively; 
that is, the state point might have a zero optimum and the primitive surface might be 
some undesired performance level. Number of accidents or the likelihood of accidents 
exemplifies a performance measure of this sort. Of course, the state point would ap
proach such a primitive surface from below. The proximity of the state point to the 
surface would measure the relative hazard associated with negotiating the particular 
hypersystem. 

There are basic differences in the ways in which the state point can shift in the fund
amental space. The system change t.F(SYS) is an independent argument which is 
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deterministic in that the system boundaries can be varied at will. The loading change 
.1.F(LDG), and any performance change .1.P(K), would be stochastic. Any of these 
changes in a fundamental coordinate can take place with one, both, or neither of the 
other coordinates remaining fixed. Several interesting cases are briefly presented 
here. 

The fixed loading argument for the fundamental space is shown in Figure 3. The 
line o 'z' represents the intersection of the loading plane F(LDG) = L with the primitive 
surface. The existing state of the system is at o, and the line oz is everywhere in 
plane F(LDG) =Land has dP(K) = 0. If the primitive surface is a minimum, the line 
oz' represents the maximum increase possible in F(SYS) at F(LDG) = L without chang
ing performance P(K). If, for example, F(SYS) is the distance between INB and OUB 
of SYS(K), then oz' represents the maximum theoretically possible increase in length 
of system without changing the P(K) for fixed loading. In actuality, the state point 
would not move along oz', but rather along some curve oz. 

The point o' is the intersection of the locus of the state point with the primitive sur
face. The line oo' is the maximum theoretically possible reduction in P(K) at F(LDG) = 
L for F(SYS) = S. 

The fixed system argument is shown in Figure 4. The line o 'x' is the intersection 
of the system plane F(SYS) = S with the primitive surface. The line ox' is everywhere 
in plane F(SYS) = S, and has dP(K) = 0. Then, ox' represents the maximum theoretically 
possible increase in F(LDG) without changing the P(K) for the fixed system F(SYS) = S. 
In actuality, the state point would not move along ox', but rather along some curve ox. 

The actual state function is shown as the surface zox in Figure 5, and every point 
on it is above its vertical projection on the primitive surface. For most applications, 
the state function should prove to be useful by itself; that is, without reference to the 
primitive surface. The primitive surface is interesting insofar as it can be, by defini
tion, the boundary of the state function, and from it the maximum possible coordinate 
changes can be deduced for the state point. 

There is additional motivation for the primitive surface. The actual state function 
shown in Figure 5 is surface zox. But the value of P(K), defined as a parameter of the 
Kth system, will have some probability distribution, and its variance will have both 
F(SYS) and F( LDG) variance components. Thus, the surface itself will be shifting with 
respect to the fixed primitive surface z 'o 'x '. The length z" represents the actual 
performance P(K) of the Kth system at F(SYS) = z" and F (LDG) = o ". This length can 
be divided into two segments, z "z' and z 'z. By definition, z "z' is a constant at 
F(SYS) = z ", and F(LDG) = o ", leaving z 'z as a stochastic segment reflecting the ran
dom fluctuation of P(K) at F(SYS) = z" and F(LDG) = o ". The primitive surface thus 
serves as a base from which the nonrandom contributions can be partialed out of the 
measured performance of the system. 

The vertical distance from the primitive surface to the actual performance surface, 
typified by segment z 'z, can be used in operational decision making involving several 
different performance measures. If the performance measure P(K) in Figure 5 is 
travel time and Q(K) is another performance measure such as "smog" output, for sys
tem F(SYS) = z ", F(LDG) = o", there would be a value Q(K) describing the performance 
of the system on the Q-dimension. Similarly, each other system could be described by 
a set of performance measures P, Q, R,.... For each such measure, there would be 
its unique primitive surface (similar to z 'o 'x '), its actual surface (similar to zox), and 
finally a stochastic segment (similar to z 'z). The expected values of these segments 
provide a basis for comparing the consequences of one operational decision on all per
formance measures. 

To illustrate this comparison, if operation decision A causes SYS(z "'o ") to prevail 
instead of SYS(z "o '1 with the accompanying changes A(P), A(Q), A(R), ... , with A(P) 
being the change in the stochastic segment z 'z in the zxP space, A(R) in the zxR space, 
etc. , and further, if operational decision B produces changes B(P), B( Q), B(R), ... , 
the criteria for selecting decision A over B, or vice versa, are as given in Table 1. 

The dimensions of these various decision consequences need not be the same. The 
measure P, being travel time, would be in minutes; Q, representing "smog," might be 
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MAXIMUM PERFORMANCE 
CHANGE 

MAXIMUM SYSTEM CHANGE 

Figure 5, Maximum changes in state from actual state function to primitive surface, 

TABLE 1 

DECISION CONSEQUENCES 

Decision A Decision B Criteria 

expressed in mass of hydrocarbon; and R, 
as a measure of safety, might be expressed 
in probability units. Nor would the signs of 
the various consequences have to be the 
same within the same decision. For ex
ample, a reduction in travel time might be 
accompanied by an increase in accident 
likelihood. 

The analysis might be continued into the 
subjective realm by assigning value to the 
different performance measures. If unit 

values of performance measures P(K), Q(K), R(K), ... , are p, q, r, ... , respectively, 
the decision consequences are [A(P)J [p], [A(Q)J [q], .... Although such applica-

A(P) 
A(Q) 
A(R) 

B(P) 
B(Q) 
B(R) 

A(P) - B(P) 
A(Q) - B(Q) 
A(R) - B(R) 

tion of relative values might be required for nontechnical reasons (e.g., political 
pressure or public relations), objective analyses seemingly should be limited to identi-
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fying A(P), A(Q), ... B(R), but not to treating them in functional combinations. 

Critical Surface Concept 

In the preceding section, some function of loading F(LDG) is treated as a fundamen
tal coordinate, and the performance coordinate P(K) relates to the performance of this 
loading in negotiating the Kth system. In this section, the loading coordinate will be 
replaced with an ensemble coordinate F(ENS), and the performance coordinate will 
become a variable related to the Ith vehicle, P(I. K). The Ith vehicle might well be 
some parameter of the loading, and the F(ENS) would no doubt have some functional 
relationship to F(LDG). But, as stated before, the limitations of graphic representa
tion on a two-dimensional drawing of a multidimensional spac_e necessitate the separate 
expanded treatment. 

The expression, ensemble of the Ith car ENS(I), describes the hypothetical summation 
of the set vehicles ahead of the Ith car at all instants between CLT(I. INB) and CLT 
(I. OUB). One way of classifying the vehicles in the ensemble is according to path. 
For example, the N(INB. OUB) and the N(LON. OUB) vehicles are in the ENS(I), but the 
one group takes one path (INB. OUB) in getting through the system, whereas the other 
group takes the path LON. OUB. Another classifying scheme is by wheelbase; for ex
ample, N(WBC 4) represents the number of vehicles in wheelbase category 4. 

The formulation here treats the effects that the ensemble and two of its component 
subsets have on the value of P(I. K). The subsets considered are the number of com
mercial vehicles; i.e., trucks in the ensemble, and the number of on-ramp vehicles 
in the ensemble. The same methods can be used for other subsets as well. 

Were there no vehicles in its ensemble, the Ith vehicle would perform at some opti
mum of its own selection. As the number of vehicles in each subset of the ensemble 
becomes larger, performance of the Ith vehicle is affected, presumably unfavorably. 
Different decrements in performance are to be expected with differently-constituted 
ensembles. The characteristic decrement pattern proposed here is that for any subset 
of the ensemble, the performance varies monotonically as the number of vehicles in 
the subset increases. For all sizes up to a given size of subset, the second derivative 
of performance with respect to size of subset is considered to be zero. At this point, 
it becomes positive, and may continue positive therefrom with increasing size of sub
set. This pattern is shown in Figure 6, in which the argument is the percentage of the 
ensemble that is on-ramp traffic. In Figure 7, the argument is the commercial vehicle 
percentage. In each case, the locus of the state point is shown for constant size of 
ensemble, and is referred to as a constant volume curve or simply "isovol." 

Point Bin Figure 6 represents the point for ISOVOL N(ENS) = Nat which o 2P(I. K)/ 
a(ONR) 2 changes from zero to positive. The locus of point B over all isovols is defined 
as the "critical on-ramp curve." The significance of this curve is that all points to the 
left of it represent the states in which performance is changing relatively slowly, with 
increasing on-ramp traffic. Beyond the critical curve, the change is much more rapid 
and possibly nonlinear as well. The set of points to the left of the curve might be con
veniently described as being in the "stable" region, and those to the right in the "un
stable" region. 

This pattern is offered largely on intuitive bases, although there has been some sup
porting empirical evidence in the work of others as well. Irwin et al. (3) present a 
family of curves of this nature. In each curve, travel time is depictedaccording to a 
basic capacity function: 

(8) 

in which 

F v = link volume ( cars per hour per lane); 
F c = critical volume = practical capacity of link above which flow becomes unstable 

and travel time rises rapidly (cars per hour per lane); 
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P(I.K) 

PERFORMANCE OF THE rth 

IN THE Kth SYSTEM 

ON-RAMP 

N(ENS) =10 

CONSTANT VOLUME 
CURVES (ISOVOLS) 

.__ ______ .....__ _ _ ______ (ONR) 

B 

(ONR) = On-Ramp Percentage 
N(ENS,ONR) 

" N(ENS) 

N(ENS, ONR) .. Number of on-ramp cars in the ensemble 
N(ENS) • Number of all vehicles in the ensemble 

The critical on-ramp curve is defined as the locus of point B, 
where: 

[<oNR) > B ]- a2P(I. K) ) > 0 
El (ONR )

2 
N 

Figure 6. Effect of on-ramp traffic on performance of Ith car in Kth system. 

Tv = link travel time at volume Fv (minutes); 
ti = link travel time per mile at critical volume Fe (minutes per mile); 
L = link length (miles); and 
d = delay parameter (minutes per mile) = d1 for Fv !5: Fe and d2 for Fv >Fe. 

Irwin etal., point out that different values may be assigned for each category of 
link, and further report that their observations could be adequately fitted with the values 
d1 = 0. 5 and d2 = 10. 0. This capacity function coincides in form with that proposed 
here . Up to the critical volume Fe, the travel time curve rises comparatively slowly; 
beY,ond Fe, the slope is much greater. 

The idea of Irwin et al. of unique delay parameters for each of their ten categories 
of links closely parallels the concept implicit in the linear model of travel time as given 
in the background work (! ). It also closely corresponds to the concept of a stable array 



p (I. I<) 

A B 
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(REFER TO FIGURE ) 

(COM) • Commercial Vehicle Percentage 
N(E1'TS, COl\T) 

"' N(:CNS) 
N(ENS. COl\t) • Number of commercial vehicles in the ensemble 

N(ENS) " Number of all vehicles in the ensemble 

The critical commercial vehicle curve is defined as the locus of 
point A, where: 

[ (COM) 5 A]- a
2
P (t. K ) ) • 0 

- o(COM)2 
N 

[ (COM) > A] 
32

P (I. K) ) > O ~ o(COM)2 
N 

Figure 7. Commercial vehicle effect on performance of Ith car in Kth system. 
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of performance constants for describing the network of systems. Their link categories 
are defined according to speed limit and number of signalized intersections per mile. 
Somewhat more general categories of systems are proposed here: tangent sections, 
curves, intersections, freeway lengths, etc. 

The same pattern is found by Lehman ( 4) in a context that is even more relevant to 
this work. During the course of testing Wingo's (5) ingression treatment of traffic, 
Lehman obtained data from which the r egression of TRT(I) on N(ENS) was obtained 
(Fig. 8). In this figure , travel time of the Ith car over the Kth system is plotted as 
a function of its ensemble ENS(I). The Kth system, in this case, is a 4-mi stretch 
of two- lane street used very heavily by commuters between the San Fernando Valley 
and West Los Angeles. The input boundary was at a point beyond which no additional 
traffic entered the system. The output boundary was at the top of a very steep hill 
(Roscomare Road and Mulholland Drive). All traffic of interest was northbound of 
Roscomare Road, and had to come to a complete stop at the intersection with Mulhol
land Drive. 

The results show that, up to an ensemble of approximately 155 vehicles, the travel 
time function is increasing fairly slowly, with increasing N(ENS). At the "critical" 
N(ENS) = 155, the slope changes very sharply. 
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Figure 8. Regression of travel time on size of ensemble for travel over 4-mi length of 
surface street with severe choke at output boundary, 

Winiro's exoression for the inirression loss due to a choke (the choke here was the 
stop sign) is of the form: -

in which 

T = travel time; 

N 
T = T0 +2C 

C 
(9) 

T0 = travel time of vehicle in system when that vehicle is only one making a demand 
on system; 

N = number of vehicles making demand on system [essentially, N(ENS)]; and 
Cc = choke capacity. 

Lehman suggests a modification of Wingo's expression, proposing "that there is a 
number x such that x vehicles may be accommodated by the system without there being 
any instantaneous demand on the system resulting in an ingression loss." The result
ing equation is 

T=To+A(N~cx) (10) 
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in which A = 0 if N ,,; X and A = 1 if N > X. 

Lehman's data were randomly split into two samples. From examination, no points 
occurred in the range 140 < N(ENS) < 150. Consequently, the value N(ENS) = 145 was 
selected as the critical N(ENS), [the point x in (9. 2)]. The regression functions were 
found to be 

For N(ENS) > 145 vehicles: 

Sample A: 

TRT(I) = - 8. 882 + 0. 10 58 [ N(ENS)] 

Sample B: 

TRT(I) = - 8. 197 + 0. 1024 [N(ENS)] 

For N(ENS) < 145 vehicles: 

Sample A: 

TRT(I) = 7. 139 + 0. 0026 [N(ENS)] 

Sample B: 

TRT(I) = 6. 832 + 0. 0057 [N(ENS) J 

(11) 

(12) 

(13) 

(14) 

The two regression lines for Sample A of the data are shown in Figure 8, and sup
port the belief that there is a critical size of ensemble beyond which travel time rises 
rapidly. 

Many other reported works show this pattern of a critical point up to which traffic 
performance changes gradually, and beyond which it deteriorates very rapidly. Es
sentially, this pattern is also being proposed here. Up to a given on-ramp percentage, 
travel time over the system for a given size ensemble is not seriously affected; beyond 
this point, travel time rises very rapidly. Up to a given percentage of commercial 
vehicles, the effect of commercial vehicles on other traffic is not serious; beyond this 
point, the performance of .other traffic is sharply affected. 

It is doubtful that, in actual traffic, the characteristic pattern is maintained insofar 
as the sharp discontinuity at which the second derivative goes from zero to positive is 
concerned. A more precise treatment would describe the transition as taking place 
over some domain rather than at a point. Instead of the critical curve, there would be 
a critical bandwidth which probably would change from one isovol to the next. Instead 
of being divided solely into a stable and an unstable region, the space would also have 
this bandwidth as a metastable region. 

However, the concept of the space being divided into a stable and an unstable region 
holds, regardless of whether the demarcation is by the line or bandwidth. The line is 
used here to simplify the presentation. 

Identification of the stable, unstable, and metastable regions of a space would pro
vide (among other benefits) macroscopic warrants for operational decisions. A state 
point in the stable region would signify that not much of a performance betterment was 
to be achieved as contrasted with the potential achievement if the point is in the un
stable region. The metastable region would be an inconclusive domain. In this way, 
the proposed geometrical schema offer one approach to a type of sensitivity analysis 
pursuant to operational decision making. 

CONCLUSION 

One of the several objectives of traffic flow theorists is to discover and validate 
analytical equations that describe traffic flow phenomena. Such equations lead to 
deeper insight into the problems and, hopefully, solutions that will be of value to 
practitioners. 

Similarly, analytical equations have been widely used to describe thermodynamic 
properties of matter, and how these properties change with various thermodynamic 
processes. In the treatment of gas problems, for example, the perfect gas equation, 



58 

PV = RT, is almost always used for first approximations. It can be sufficiently ac
curate for some applications, but not for others. One form of first-order correction 
is to use the van der Waals equation; a higher order correction is attained through use 
of virial equations. 

Regardless of which equation is used, there is always the question of how well it 
represents the data. Tribus ( 6) states that from the point of view of the scientist the 
important question relates to ffie theoretical significance of the equation of state, (for 
example, the van der Waals equation purportedly corrects for the effective volumes 
of the molecules themselves and incremental pressure due to intermolecular forces), 
whereas from the point of view of the engineer, the question is how convenient the 
equation is to use and how badly it can be in error. 

From Tribus' remarks, it can be inferred that although empirical data are not 
necessarily a beginning point from which theories are developed, sooner or later 
theoretical work must be validated against such data. Thus, some of the most important 
thermodynamic knowledge is empirical information, carefully organized in various 
tabular or geometric forms. 

Similar arrangements of empirical data in geometrical spaces are proposed here to 
portray transportation relationships among selected coordinates. Seemingly, if em
pirical methods produce the standards by which analytical treatments are appraised 
in as rigorous a discipline as thermodynamics, similar empirical methods should be 
at least as important for evaluating analytical results in a less rigorous, newly
emerging discipline such as traffic flow theory. 

Most traffic flow theorists would quickly grant the importance of empirical methods 
to their work, but would also point out, and with reason, that most existing traffic data 
are not suitable for their purposes. Although numerous traffic studies are published 
every year (and untold thousands of additional studies remain unpublished in the files 
qf operational traffic departments), there is no evidence that the vast amount of data 
was collected under anything approaching similar field conditions. The data in trans
portation literature, save for isolated cases, can only be regarded as a very large 
collection of anecdotal information, independently meaningful, but certainly not suit
able for testing any general hypotheses. 

Yet the existence of these numerous data is evidence of a vast traffic measurement 
capability which, if organized, could provide for the needed empirical validation of 
theoretical findings. The proposed fundamental space and related geometrical schema 
might well provide a formalism for organizing these empirical data, and for standard
izing the conditions under which such data would be collected in the future. 

The benefits in having empirical traffic data in an organized fashion are readily 
recognized. They immediately provide for putting theoretical findings to Tribus' 
test of how badly they can be in error and .how well they portray the real world. There 
is also the possibility that when organized in geometrical schema, new avenues of 
th,:,nr,:,til"<1 l i::hulv will h<>l"nm,:, <1nn<1r<>nt whil"h """ nnt ""' v,:,t r<>l"n<Tni7.<>n frnm <1hi::tr<1 l"t 
------ ------ -----J ··--- ~-------- -.1..1.--- ---- · · ------ -- - ---- --- J -- - ---o------- -- ---- - ---------

reasoning. 
Finally, there is the possibility that the geometrical schema will increase the use

fulness of empirical data to the applied practitioner. The usefulness of Mollier charts 
for applied purposes is obvious. Similar representations should be equally valuable in 
traffic applications. More specifically, the geometrical schema advanced here are 
deliberately constructed to reduce the variance of estimates of traffic parameters. 
In the examples given in this paper, the schema eliminate two major variance com
ponents of the performance measure; namely, system characteristics and the loading 
on the system. Thus, measurements of performance of a curve are not to be grouped 
with those of a tangent section or with those of an intersection. Nor are measure
ments of performance of a system having a light loading to be grouped with those for 
a heavy loading. It seems perfectly natural from the standpoint of practical operations 
to keep dissimilar elements of a road network separated, and this is, in fact, the ap
proach of most practitioners in the field. In this sense, the geometrical schema may 
be formally defining practices that engineers are already following informally. 
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