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This paper reports on a study of the effect of slow vehicles or 
trucks on flow, density, and travel time characteristics of 
multiple lane freeways. It is assumed that trucks travel in the 
outer of two lanes at an average speed that is lower than the 
average speed of cars. Cars traveling in the outer lane queue 
behind slower moving trucks until they find suitable passing 
gaps in the inner lane. The formation and dissipation of these 
moving queues are discussed as a function of velocity, density, 
and passing criteria. 

• SEVERAL theoretical and experimental studies of the effect of trucks were made on 
multiple lane roads during the summer months of 1962. The problem originated from 
the widespread belief that one truck, by virtue of its lower velocity, effectively re
places a large number of cars in the traffic stream. As a result, flow 'rates of the 
traffic stream may be reduced and delays may be added to the travel times of those 
cars unfortunate enough to get caught in queues that form behind the slower moving 
trucks. 

In making mathematical models of the traffic stream, it was decided to study the in
teractions between two lanes of traffic where cars travel in the same direction in both 
lanes but at a lower speed in the outer lane than in the inner lane. It was also assumed 
that trucks traveled slower than cars and only in the outer lane; on overtaking a slow 
truck in this lane, a car could pass around it, provided there was a sufficiently large 
gap in the adjacent (inner) lane. 

Earlier theoretical studies of the appearance of large gaps in the traffic stream by 
Weiss and Maradudin (1), Herman and Weiss (2), and Oliver (3) made it possible to 
calculate the probability that a car, caught behind a truck, could immediately merge 
into the inner lane and complete his passing maneuver. The major addition to earlier 
theoretical findings is (a) the introduction of simple speed assumptions for cars and 
trucks, (b) the experimental verification of these results in terms of freeway grade, 
and (c) numerical calculations of lane flow rates which would give a desired probability 
of being able to make an immediate passing maneuver. It was felt that quality of service 
could be specified in terms of this probability. 

An important concept in all of these studies is the formation of blocked and unblocked 
periods in a traffic stream. Essentially, cars or trucks can be divided into two groups
those which are closer together than some constant (e.g. , r) and those which travel 
farther apart than this constant. By varying the size of this constant, different fractions 
of the car population can be included in one group or the other. Figure 1 shows an ex
ample of the blocked and unblocked periods in a traffic stream where all cars closer 
together than some constant amount lie within the shaded or blocked region. In the 
models, the large gaps or openings in the traffic stream represent those regions where 
passing and weaving from adjacent lanes can occur. It is even possible to include the 
wishes of different drivers by constructing several pictures of the traffic stream and 
assigning a distribution of values to the size of unblocked periods which will be accepted 
by a large sample of drivers. 
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Figure 1 . Bl ocked and unblocked periods . 

The findings reported in ·this paper are primarily concerned with the probability 
that a single test car will or will not be able to find passing opportunity at an arbitrary 
point in time. There seems to be fairly general agreement that the probability of 
being blocked (i.e. , not being able to make a passing maneuver) is directly related to 
acceptable flow rates along the highway. In some cases the probability of being blocked 
offers a quantitative measure of service of the highway. As more refined mathematical 
models are developed and experiments strengthen or refute earlier findings, changes 
can be expected in the specific conclusions obtained in this paper. 

RELATIVE VELOCITY VS GRADE 

The average speed of cars relative to trucks enters as an important parameter in 
the mathematical models. Fairly simple expressions were also found for relative 
velocity in terms of freeway grade. Assuming v1 and v2 (v1 > v2) are the cons tant 
speeds of cars in lane 1 (inner) and lane 2 (outer), if the truck velocity in lane 2 is vL 
the velocity of cars in lane 1 relative to trucks in lane 2 is v1 - v;. The parameter 

I 
Ki = V1 - V2 

V1 
(1) 

measures this relative velocity as a percentage of lane 1 car speeds. In particular, 
the flow rate of cars in the inner lane measured by an observer moving with the truck 
is 

(2) 

in which A1 is the flow rate in lane 1 measured by a fixed observer. 
Experimental measurements of the parameter K1 (Fig. 2) showed that it was a linear 

function of grade y (i.e., K1 = a +by), and for a large group of California data it was 
found that 

Ki = 0. 30 + 0. 075)' (3) 
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Figure 2. Vehicle speeds on grades: (a) California data (5), (b) Highway Research 
Board data (.!!.). -

Substituting Eq. 3 into Eq. 2 

a1 = 0. 30A1 + 0. 075yA1 

PROBABILITY OF IMMEDIATE PASSING 

Simple expressions having been found for relative flow rates in terms of grade, 
equations that relate the probability of being blocked to the relative flow rates can 
now be found. H 'Tis the minimum passing headway required by a car in lane 2, 

(4) 

a(t) is the probability density distribution of headways between cars traveling at speed 
v1 in lane 1, and II is the average headway, it can be shown that 
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U(T) = v-l J i a(t) dt 
'T "t 

(5) 

is the probability of not being blocked; i.e., the probability that a single test car can 
immediately pass around a slower moving truck in lane 2. If the specific assumption 
is introduced that intervehicle headways have a translated exponential distribution 

a(t) = 0 

l:J.<t 

in which l:J. is the minimum headway between cars , Eq. 5 gives 

O!l ( 'T - d.J 
U( T) = ( 1 - Cl'.ui) e - l - Cl'.i t,,. t,,. < 'T 

( 6) 

(7) 

when the minimum acceptable passing gap is greater than the minimum headway, a, 
between cars. In the case of Poisson traffic in lane 1, t,,. = 0 and U(T) = e -0'.i T which is 
simply the probability that the spacing from any point to the next car is greater than T. 

Eq. 7 can also be expressed in terms of the grade by substituting Eqs. 1 and 2 for 
Ki and Q'.1: 

U(r) =(l-Ki.>..11:J.)e 

K1 >..1 (r -1:J.) 
1 - K1 >..1 l:J. ( 8) 

As the flow rate of cars in lane 1 increases, the probability of finding an acceptable gap 
between cars (i.e., an unblocke d period) becomes smaller. As the flow rate >..1 ap
proaches (K1 t,,.)-1 cars are s paced more r egular ly and closer to one another; as a re
sult the probability of finding an opening approaches zero. 

Recent experiments by Herman and Weiss (2) have shown that not all drivers will 
use the same minimum gap. In fact, the density distribution of minimum acceptable 
gaps can also be represented by a translated exponential function 

g{r) = 0 0 < r < T 

T' - T 
- II - T 

= (v - T)-1 e g 
g 

T e;; T (9) 

in which v g is the a verage value of the distr ibution and Tis the s mallest gap acceptable 
by any driver on the r oad. Typical values for the flow rates these are T = 2 sec 
and vg = 5 sec. 

Multiplyiug g( T') by U( r) and integrating overall values of r gives the unconditional 
probability that an arbitrary driver will not be blocked by the adjacent stream. The 
mathematical result is 

Po = Pr (not being blocked) 

00 

f (1 - Cl'.1 l:J.) (vg - T)- 1 e 
T 

T - T 
Vg - T 

e dT 



0(1 (T - A) 
1 - 0!1 A 

71 

= (1 - m.6.)2 [(1 + 0!1 (vg - T - A) rl e (10) 

The exponential term is similar to Eq. 7, obtained for constant gap acceptance criteria. 
As the relative flow rate increases, the denominator of the exponent decreases while 
the numerator increases; because of the negative sign in the exponent, the right-hand 
term becomes smaller. 

The first factor in Eq. 10 can be rewritten in the form 

( 1 - 0!1 .6.) 2 - 0!1 1 - 0!1 .6. 
1 + Q1 (vg - T- .6.) - (a1- 1 - .0.) + (Vg - T) 0!1 (11) 
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Figure J. Flow rate vs probability of zero wait. 
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Because a-1 (>.:l) is the average relative headway between cars and Ilg (>T) is average 
desired gap, the fraction is always positive. As average spacings become larger than 
the minimum values, the variability of the distributions also increases, and the proba
'bility of zero wait decreases. The interpretation of this result is clear: as the driver 
demand for large gaps increases or as their supply in the traffic stream decreases, the 
probability of being blocked increases. 

Experimental curves for low flow rates would probably lie below the solid line in 
Figure 3. For example, a flow rate of 400 vehicles per hour in the inner lane (mea
sured by a fixed observer) gives about a 20 percent chance that a test vehicle in the 
outer lane is blocked behind a truck and must wait before passing can begin. In actual 
practice, this probability may be lower because vehicles may see the truck long before 
the passing maneuver takes place. An experienced driver in the test vehicle, on seeing 
the slower-moving truck, would move over into the inner lane before he became blocked. 
Thus, the probability of being blocked should also include the important effect of lane 
changing, which anticipates being blocked. 

Again, the situations described only consider the probability of immediate passing 
for a single car tl1at arrives behind a truck. Even when the possibility of queue forma
tion behind the truck is included, it is still possible that this probability, Po, repre
sents the probability of not being trapped in the' queue. If both lanes are traveling in 
the same direction, the service mechanism of the queue may be one known as last
come, first-serve. This explains the way in which cars at the tail of the moving queue 
get the first opportunity to use large openings in the adjacent lane and thereby preempt 
the service of earlier cars which have been waiting for gaps to appear. 

On the other hand, if a first-come, first-serve priority mechanism which guaranteed 
the more democratic policy that the earliest cars in line get the first opportunity to pass 
were insisted on, the probability of immediate passing would be the product (i.e., the 
joint probability) of Po and the probability that, on arrival, the test car finds an empty 
queue behind the truck. 

Some of the restrictions imposed on lane changing will be relazed in future works 
and the effects of queues in the outer lane will also be included. 
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