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•WHEN an object is placed near the path of a driver, a lateral movement away from the 
object occurs as the driver approaches. The amount of this lateral displacement has 
been shown to be di:rectly dependent on the distance of the object from the path of travel 
(2, 6). Thus, Taragin (6) has shown that there is a shift in position for objects located 
up to 6 ft to the right of the driver's path of travel. However, the process that the human 
operator must carry out in order to locate himself relative to fixed objects in his path 
has not been specified. The present research was an attempt to isolate the variables 
involved in this location process. 

From a perceptual standpoint, the transverse location of an object in a driver's path 
may be considered a problem in trigonometry. The transverse distance, a, or an ob­
ject may be derived from the simple trigonometric expression: 

a = 1 tan e 

The conditions are shown in Figure 1. 
Thus, at any point in space, the observer may determine the distance, a, by esti­

mating both 1 and 9. For small angles, tan e = e, and therefore, the equation becomes 
simply 

a = 1 e 

However, a problem arises for the driver because of the interaction of distance and 
angle. At long distances, the angle e is so small that errors in estimation preclude a 
solution of sufficient accuracy to determine whether the object is in the driver's path. 
Similarly, at short distances, e increases so rapidly that solutions also become in­
accurate. Therefore, there should be a range of distance for which judgment of the 
angle e has maximum accuracy. On the basis of this angle estimation model, as the 
driver approaches the object, he eventually moves into an optimum range of discrimina­
tion. If the angle is smaller than some critical value he will displace from the object, 
the magnitude being directly related to the size of the angle at the distance at which the 
discrimination is made. According to this model, lateral displacement should begin at 
some fixed distance from the object independent of the absolute location of the object 
and independent of travel speed. 

An alternative model exists, however. Because the driver is moving continuously 
toward the object, the angle as well as distance is changing continuously. If the driver 
tracks the object over a period of time and estimates the rate at which the angle is 
changing, he can also determine the lateral location of the object relative to his path of 
travel. This derivative is a nonlinear function of time and is, furthermore, dependent 
on the speed of travel. If the driver were to operate on this basis, he would be solving 
the equation: 

de av 
cit = a:2 + 12 
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Figure 1. Geometry of object location problem . 

Estimation of the rate of change of the angle between himself and the object in his path has 
several advantages for the driver. First, his judgment very quickly becomes a simple bi­
nary one. lithe rate of change does not exceed a certain critical value, regardless of sight 
distance and object location, the driver can predict a collision course. Second, the driver 
has a physical anchor for speed judgment and one source of error may be minimized. Third, 
vehicle speed must be taken into account in any steering inputs imposed on the vehicle. 

On the basis of the derivative model a set of hypotheses arises which is very differ-
ent from the angle estimation model. The hypotheses may be stated as follows: 

1. The magnitude of lateral displacement will be directly related to vehicle speed. 
2. Lateral displacement will begin at a distance dependent on vehicle speed. 
3. The derivative of the visual angle at the point where displacement begins will be 

independent of speed and object location so long as displacement occurs. 

A final consideration that exists in the displacement effect concerns the spatial char­
acteristics of the stimulus object. In the description of both models, it was implicitly 
assumed that the object was a point in space which served as a simple visual reference. 
Actually, all practically realized displacing objects have some extension. It would 
appear reasonable that the nature of the contours of the object would influence the 
driver's perception of the location of the object. The study of Case et al. (2) did find 
that the size of the object significantly affected displacement. -

It might be expected that the angle would be taken to the contour of the object nearest 
the path of travel. li, however, the shape of the object is of limited extent and has one 
dominant contour, the driver might be expected to use that as a point of reference. An 
example is a triangular object with the base oriented perpendicular to the driver's re­
gard. It may be expected that, when that base is farthest from the roadway (the apex 
being nearest the travel path), there should be less displacement than when the situa­
tion is reversed. Obviously, this is a limited case for there should be a limit to con­
tour effectiveness if the farthermost border has too great an extent. Within these limits, 
it is reasonable to hypothesize that the dominant figure contours should influence the 
magnitude of displacement. In this study, an equilateral triangle was used to test this 
hypothesis. 
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In summary, this study was an attempt to isolate the perceptual variables that cause 
lateral displacement and to discriminate between two alternative models of that process. 

APPARATUS AND PROCEDURE 

To determine where and when lateral displacement began and the magnitude, it was 
necessary to devise a method for measuring lateral position continuously. An optical 
tracking system was developed by Melpar, Inc., for this purpose. It was a housing 
anchored on the rear bumper of a vehicle containing 37 individual photodetector units 
mounted to face downward. The detector is shown in Figure 2. Each unit contains a 
light source and lens system to focus the beam on the roadway, and a mirror system 
that focuses light reflected back from a specially prepared road onto a photoresistor. 
A schematic of the detector unit is shown in Figure 3. To get sufficient light reflected 
back to the photoresistor, a 2-in. retroreflective strip was placed on the pavement. 
With this material, a high proportion of the incident light from the lamp is reflected 
back into the mirror and hence to the photoresistor. 

The photoresistor itself was connected directly to a transistor amplifier. If no light 
fell on the photocell, so that its resistance was high, the amplifier was biased below 
cut-off. When, however, the incident light was high and resistance dropped, sufficient 
current flowed to close a relay. Thus, whenever one of the detector units passed over 
the reflective line, it and only it, would fire. As the vehicles moved laterally, a dif­
ferent unit was activated. Because the units were on 2-in. centers, lateral position 
could be estimated to the nearest inch. With a total of 37 detector units, displacement 
could be measured over a range of 6 ft. 

To record the diplacement data continuously, the digital output of the amplifier re­
lays was used to switch an appropriate step in a 37-section potentiometer. This analog 
voltage was then recorded on a Brush recorder. With this complete system, it was pos­
sible to plot the path of a vehicle continuously as it traveled down the test track. By 
leaving 5-ft gaps in the reflective line every 100 ft, it was possible to determine lateral 
placement as a function of distance from the displacing object. 

I , 

Figure 2 . Lateral displacement detector. 
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Figure 3. Photodectector unit. 

The test track was a 1-mi section of a jet aircraft runway. The runway was of con­
crete, 100 ft in width plus an additional 25-ft wide asphalt shoulder on each side. The 
runway was made up of four 25- by 20-ft sections of concrete. The maximum vertical 
curvature of the section used was less than 0. 1 percent. A single section nearest the 
edge of the runway was used. Thus, the travel path was effectively a lane 25 ft wide 
with its limits being demarcated by the asphalt shoulder on the driver's right and the 
longitudinal joint on his left. 

The reflective strip was laid in the center of the lane. It was placed with an accuracy 
such that the deviation from the center was never more than 1 in. over the mile course. 
The reflective material was a metallic buff color that was clearly visible to the observer . 
No way was found to camouflage this line and still retain sufficient retroflectivity to in­
sure reliable operation of the placement detector. The arrangement of the test situation 
is shown in Figure 4. 

The displacing objects used were two identical equilateral triangles 6 ft on a side, 
mounted on a boom. This boom was 12 ft long, of sufficient length to minimize any ef­
fect that the mounting base might have on displacement. The boom could be moved in 
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or out and the triangle could be rotated about its mounting point to have either the base 
or the apex nearest the path of travel. One object was placed 2,000 ft from the beginning 
of the course, and the other, 4,000 ft. Four lateral locations for each object were se­
lected. From an analysis of the angle estimation model, the distance at which the tan­
gent function begins to exhibit an obvious change in slope is about 200 ft. This model 
predicts a direct relation between lateral displacement and the size of the angle; hence, 
object location was chosen in units of angular separation at the distance of 200 ft. The 
closest location was chosen at this point to subtend an angle of 2°. Three other posi­
tions were chosen so that they subtended angles of i/4°, 2%0, and 2~,s° . In lineal 
distance from the driver the object was placed 7. 0, 7. 8, 8. 9, and 9. 6 ft. 

In these experiments, each object was placed at random among the four locations. 
In addition, the orientation of the triangle was arranged randomly. The complete ma­
trix of conditions was randomized using orthogonal latin squares so that any inter­
action effects between the two objects were counterbalanced. 

Four vehicle speeds were used: 15, 30, 45, and 60 mph. Each subject was tested at 
each speed for all combinations of object location and orientation. In total, each sub­
ject went through a 4 by 4 by 2 factorial design. In addition, the design was replicated 
four times. 

All the electronic equipment for measuring and recording lateral position was mounted 
in a station wagon and included a 1. 5-kv generator on top. A driver subject and the ex­
perimenter were the only occupants of the vehicle . Four assistants adjusted the posi­
tion and orientation of the displacing objects according to a prearranged schedule. 

The subjects were five male drivers, ranging in age from 25 to 40 years. All were 
licensed drivers with five or more years of driving experience. None were told the 
purpose of the tests. Rather, they were told that the study was aimed at finding out how 
well they could maintain the vehicle at a constant assigned speed. 

RESULTS 

The maximum lateral displacement was determined for each condition and each sub­
ject. These data were subjected to an analysis of variance, and the summary is given 
in Table 1. As may be seen, differences among the main variables are significant at 
the 0. 01 level. The analysis also shows a significant interaction among these variables. 

Figure 5 is a plot of displacement as a function of object location for each of the four 
speeds. These curves include data for the base orientation only. The line shown is the 
mean displacement for the five subjects. The general form of the curve is the same as 
that for each individual subject. The straight-line relationship shown is similar to 
Taragin's (6) data, but the magnitude of lateral displacement is less. 

The displacement at each object location increased markedly with speed as sum­
marized in Figure 6, Again, these four curves are for the the base orientation only. 
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TABLE 1 

ANALYSIS OF VARIANCE FOR LATERAL DISPLACEMENT UNDER 32 
EXPERIMENTAL CONDITIONS 

Source of Variation Sum of Squares d. f. Mean Square F 

Vehicle speed (vs) 2, 911. 7 3 970.5 46.88a 
Object distance (OD) 3,658.4 3 1,291.3 62.38a 
Object orientation (OS) 252.5 1 252.5 12.20a 
Driver (D) 9, 610.8 4 2,402.7 116. 07a 
VS x OD 110. 5 9 12.3 
vs X OS 135.0 3 45.0 2.13 
VS X D 2,015.9 12 168.0 8. 12a 
OD x OS 240.1 3 80.0 3.86a 
OD X D 1,979.4 12 164.9 7. 97a 
OS x D 34.9 4 8.7 
vs X OD X OS 226.2 9 25.1 1. 21 
vs X OD X D 1,007.2 36 279.8 13.52a 
vs X OS X D 297.4 12 24.8 
OD X OS X D 637.6 12 53.1 2.06 
vs X OD X OS X D 796.4 36 22.1 
Error: within treatments 9,917.8 480 20.7 

Total 33, 831. 8 639 

aSignificant with probab ility less than 0.01 

The data demonstrate that lateral displacement is directly dependent on travel speed 
as well as object location. 

In the rate of change of angle model it was hypothesized that lateral displacement 
would begin at a distance from the object that was directly dependent on vehicle speed. 
Figure 7 shows the relation between vehicle speed and the distance at which displace­
ment began. The parameter is the lateral location of the displacing object. As may 
be seen the beginning point varied from approximately 50 ft at 15 mph to about 275 ft 
at 60 mph. The data are consistent in showing a significant increase in starting dis­
tance for all four object locations and, thus, the hypothesis is confirmed. 

A third hypothesis that derived from the angular change model was that the rate of 
change of angle at which displacement began would be independent of both object loca­
tion and vemc1e speed. To test this hypothesis, it wal::i nect!l::it;ary Lu ueLermiue Ii-um 
each run the point at which lateral displacement began. This determination was con­
founded by two factors. First, there was a certain variability in lateral position for 
all subjects. Thus, considerable error was possible in the judgment of the beginning 
of displacement because it was frequently uncertain whether the change was in response 
to the displacing object or just random changes in position. Second, not all conditions 
yielded a significant displacement, in which case no determination of starting distance 
was possible. In general, this occurred when the object was loca ted farthest from the 
travel path and at the lowest speed (15 mph). In general, lateral displace ment occurred 
reliably for the three highest speeds, and the three closest object locations. The dis­
tance at which displacement began could reliably be estimated for these cases. Further 
analysis was done only on these data. 

For these combinations of speed and lateral location of the object, the rate of change 
of angle was determined for each speed and each driver subject, and an analysis of var­
iance was done on these data. The summary is shown in Table 2; none of the differences 
are significant. It seems reasonable to conclude, therefore, that there is a constant rate 
of change of angle between the driver and the object at the point where displacement is 
begun. 



18 

f!l 15 
:I: 
(,) 
z 
T 
!z 12 
w 
::!: 
w 
~ 9 
~ 
en 
a 
..J 6 
<( 
ct: 
w 
!:i 3 
..J 

' 

"' -- 60 M.P.H . 

-- 45 M.P.H. ... ~ 
...... 

r--...~ ~-. 
~ ..... ·- ... 
I'-- •• ~ ... 

~ ... ...... .. ~ ... ... .. ... .. ~-...... .. ... . .. .. 

---- 30 M. P. H. 

......... 15 M.P.H . 

""'Ill:.;: 

. .... .... .. ... 

7 
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TABLE 2 

ANALYSIS OF VARIANCE FOR ANGULAR CHANGE 

Source of Variation Sum of Squares d. f. Mean Square F 

Between vehicle speeds (VS) 17.3 2 8.65 4.62 
Between drivers (D) 7.1 4 1. 78 
Interaction: VS X D 34. 9 8 4.36 2.33 
Error: within treatments 56 . 2 30 1. 87 

Total 115.5 44 
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Figure 8. Effect of three highest vehicle speeds on angular change (three closest ob­
ject distances combined). 

The final result of this investigation concerns the spatial relations between the con­
tours of the displacing objects. It was hypothesized that displacement would be greater 
when the base of the triangle was nearest the path of travel than when the apex was so 
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located. The analysis of variance in Table 1 shows that there was a significant differ­
ence between object orientation. In Figure 8, displacement is plotted as a function ob­
ject location for each orientation and for each speed. The difference between the base 
and apex orientation increases with speed of travel and decreases as object distance in­
creases. Again, the results offer verification for the hypothesis that lateral displace­
ment should be dependent on the geometric characteristics of the displacing object. 

ANALYSIS 

The data clearly indicate that a model of lateral displacement based on the rate of 
change of visual angle accounts best for the obtained results. The three hypotheses 
originally specified for this model were validated and thus, as the model predicts, there 
was a direct relationship between the magnitude of displacement and travel speed. A 
second hypothesis, that lateral displacement would begin at a longitudinal distance that 
was functionally related to vehicle speed, was also confirmed by the data. Third, it 
was hypothesized that the determining factor in displacement would be the derivative of 
the visual angle which would be constant over all conditions. The results of this study 
offer strong confirmation of this hypothesis. 

Thus, the study leads to an explanation of lateral displacement that is based on the 
driver's ability to detect the rate of change of visual angle of objects near his path of 
travel. The problem for a driver approaching an object near his path of travel is one, 
from a perceptual standpoint, in which, phenomenally, the image of the object moves 
across the retina. However, this model is actually a special case in the general field 
of the visual perception of velocity. The major differences are that (a) the angular ve­
locity of the target in the driving situation is nonlinear and (b) the visual angle subtended 
by the object itself increases as the observer approaches. 

From this viewpoint, it is worthwhile to compare the angular velocity at which dis­
placement begins with the classical research one on the threshold for visual velocity. 
The work of Brown (1) indicated absolute thresholds in the range of 1. 0 to 10. 0 min of 
arc per second, whereas the more recent work by Rock (5) indicated an absolute thresh­
old range of 0. 2 to 0. 5 min of arc per second with luminance carefully controlled. In the 
the present experiment, the range of angular velocity at the beginning of displacement 
was from 4 to 40 min of arc per second. It is obvious, therefore, that the driver is 
responding to the presence of an object near his path of travel at a point where its an­
gular velocity is at his absolute threshold. 

Within the framework of this model, it is possible to define the process of displace­
ment. If the driver, traveling at a certain speed, increases his fixation distance along 
the roadway, two things occur. One, the angular velocity of elements in his field of 
view decreases rapidly. Eventually all elements become subthreshold, regardless of 
their lateral separation. Two, objects located at increasing distances from the path 
of travel are seen outside the near fovea. Beyond this 2° to 4°, sensitivity to velocity 
decreases rapidly. Thus, there is a visual operating field, essentially conical, deter­
mined by a physiological characteristic and a physical function which defines the limit­
ing size of this field. This is shown in a slightly different fashion in Figure 9. As 
fixation distance increases on the abscissa, the lateral position of an object must in­
crease rapidly to maintain a visual velocity threshold. With a visual field of 3°, it may 
be seen, that at 60 mph, at a distance of 300 ft, objects more than 16 ft from the driver's 
path are outside his visual field. Conversely, all objects less than 14 ft, although within 
the operating field have subthreshold angular velocity at this distance. Actually, it is 
only lateral locations within the hatched area that have a highly detectable angular ve­
locity at 60 mph. Thus, as a driver approaches an objectlyingwithin his visual operating 
field at this speed, at a distance of about 300 ft, if there is no detectable component of 
angular velocity, the object will appear to be in his path, and he will begin to displace. 

The process for detecting lateral position becomes a fairly direct one for the driver. 
He must adjust his point of fixation to that distance at which there is a sharp decrease 
in angular velocity for objects at the margins of this visual field. This point is avail­
able from a variety of cues in the driving environments such as pavement texture and 
shoulder contrast. 
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As obstructions first enter his field, the driver is able to make a simple binary 
judgment. If the obstruction has a detectable lateral movement it cannot be in his path, 
and no displacement is necessary. If it has no detectable lateral velocity, it is located 
in his path, and hence he begins to displace. 

These considerations indicate that the driver is given a very small margin of time 
and distance within which to operate on objects located laterally along the path of travel. 
Assuming no restrictions in sight distance, he has only 3 to 4 sec in which to decide 
whether a displacement is necessary and how much is required. By operating at the 
absolute threshold of angular velocity, the driver not only has a stable reference for 
detection but also maximizes the time available for object location as well as the time 
for making compensatory steering responses. 

It would seem reasonable to expect that those factors found from classical research 
to influence the perception of visual velocity would be applicable to lateral displacement. 
Thus, the object size may be expected to influence displacement because of the effect of 
stimulus size on visual velocitv (1). This factor of size as it affects lateral displace­
ment has been studied by Case· eCal. (2). They found that there was a significa'iit effect 
on the displacement starting point and also the magnitude of the displacement as a func­
tion of the displacing object's size. 

It may also be expected that the shape of the stimulus will influence the visual per­
ception of velocity. The results of this study demonstrated that there was a significant 
reduction in displacement of approximately 15 percent when the apex of the triangle was 
oriented toward the driver's path of travel. Phenomenally, of course, these results 
imply that the apex-oriented object has a higher visual velocity than does the base-ori­
ented one. The higher the velocity, the less will be displacement because displacement 
occurs in relationship to perceived velocity of the displacing object in this model. 

The effect of shape has been studied by Motokowa ( 4) by means of electrical stimula­
tion of the eye. His findings bear directly on the effects on lateral displacement found 
in this investigation relative to the triangular displacing object orientation. His work 
suggests that the physiological correlate of visual velocity is the amount of suppression 
of retinal response exerted on the retinal pathway through which the image of the moving 
object has passed. 

This concept, called retrograde suppression, can account for most of the perceptual 



11 

results in the study of visual velocity. Thus, Motokowa suggests that as a moving 
stimulus passes across the retina, a field is generated about that object which suppresses 
activity in the area removed from the immediate vicinity of the stimulus itself. Thus, 
as a stimulus moves across the retina, it generates retinal activity as it proceeds and 
acts to extinguish or neutralize the retinal activity in the path through which it has al­
ready passed. Hence, the lower the velocity, the more intense the stimulus; or the 
larger the object, the greater will be the degree of this retinal suppression-all leading 
to a perception of lower angular velocity. In essence, the strength of the suppressing 
stimulus is the correlate of the perception of velocity. 

The intensity of the suppression is also related to the nature of the contours of the 
stimulus. Other experimentation by Motokowa (3) has shown that the strength of the 
field about an object is determined by the contour s of that figure as well as its size and 
brightness. For a triangle, as used in the present displacement study, the field of ac­
tivity is at a minimum at the intersection of the figure contours. Consequently, the 
strength of the field that acts as a suppressor on trace activity in the retina is at a 
minimum. The perceived velocity of the figure will be a maximum with that orienta­
tion. It is, then, in the basis of the differences in fields of suppression that the re­
duction in lateral displacement obtained in this study can be explained when the apex is 
oriented closest to the driver's path of travel. 

Every attempt was made to obtain a maximum displacement in the design of this 
s tudy. It was initially predicted that the magnitude of displacement in this study would 
exceed that obtained by Case et al. (2) or Taragin (6) because an effective 25-ft lane 
width was employed with no other obs tacles in the d river's path. This prediction was 
not borne out in the study. Actually, the magnitudes of displacement were one-half to 
one-third less than reported in the field studies just mentioned. Two reasons may 
account for this unexpected result. One is in the nature of the displacing objects. In 
this study, the absolute size of the object was 15 sq ft, which is considerably smaller 
than the displacing objects used by Case etal., whose minimum and maximum sizes 
were 28 and 64 sq ft, respectively. In Taragin's study, two of the objects were con­
siderably larger than the triangles used in this experiment. In terms of the model of 
displacement proposed in this paper, it would be expected that the apparent velocity of 
the displacing object will be greater for the smaller object and hence appear farther 
from the driver's path of travel. 

A second condition concerns the factors influencing the driver's ability to judge his 
line of travel accurately. In this study, the reflective strip that was placed on the pave­
ment to measure lateral position was clearly visible to the driver subject. All five 
drivers appeared to orient themselves relative to this marking so that it was nearly 
centered under the vehicle. In essence, the striping served as a direct reference by 
which the driver could define his path of travel. By having a stable reference at which 
the driver may fixate, the detection of movement of an object near his projected path 
should be improved. With no such reference for fixation, the driver's point of regard 
may be expected to vary laterally. This should reduce the accuracy of his estimation 
of the apparent velocity of the object and hence add ambiguity about the judgment of 
object location. It seems reasonable that such uncertainty would amplify a driver's 
response to the displacing situation, leading to a greater magnitude of displacement. 
If this explanation is valid, it should be possible to reduce the magnitude of lateral 
displacement in a field situation by providing the driver with a tracking reference line. 
A test of such a hypothesis is currently underway at the Bureau of Public Roads. 

It is interesting, relative to the model, to examine the Interstate standard that re­
quires all roadside objects to be a minimum of 6 ft from the travel lane. At this 
separation, the object will have a highly detectable angular velocity for distances up to 
300 ft from a driver traveling 60 mph. This is consistent with the data in this study, as 
shown in Figure 10. What the Interstate standard for the location of shoulder objects 
actually does, then, is to insure that within the visual operating field of the driver all 
fixed objects shall generate a suprathreshold rate of angular change. It is obvious 
from the present study that this design standard is applicable and valid only for high­
ways in which travel speed is approximately 60 mph. Where the highway speed limit is 
substantially lower, a closer positioning may be tolerated. The data in Figure 10 clearly 
show that the object may be within 2 ft of the edge of the lane at very low speeds. 



12 

It also becomes apparent why objects located close to the roadway may affect high­
way capacity. Given a situation in which there are two lanes of traffic of fairly high 
volume traveling at around 40 mph, what happens when an obstruction is placed on the 
shoulder, sufficiently close to the travel lane? In terms of the model proposed here, 
drivers are responding to objects at the maximum distance from the object which their 
speed permits. Because the amount of displacement is directly dependent on speed, a 
driver may reduce displacement by reducing his travel speed, which in addition, increases 
the time he has for locating the shoulder object. If, because of traffic opposing him, 
the driver must eliminate or minimize displacement, he will have to reduce his travel 
speed. In so doing, he minimizes both the probability of collision with a shoulder ob­
ject and encroachment in the opposing traffic lane. One obvious consequence of this 
process is to limit the capacity of the lane. 

A final aspect of this investigation relates to the more general problem of the visi­
bility of stationary objects on or near the highway. This problem, especially acute at 
night, has received considerable attention in the safety field for many years. In gen­
eral, it has been conceived primarily as a problem in object detection. From the re­
sults of the present study, it wouid seem reasonable that not oniy the detection of an 
object is important, but also the ability of the driver to locate that object relative to the 
path of travel. If the driver detects the object, it is also necessary to ascertain a col­
lision or near-collision course. Obviously, the brightness of the object or its con-
trast with its surroundings, object size, and its shape are fundamental factors in this 
dynamic localizing process. For example, one would predict on the basis of the model 
that a small object located close to the roadway would generate a greater relative visual 
velocity than a larger one. Thus, a car parked on the shoulder in which the oncoming 
driver perceived only the reflection from an unlighted taillight would be far more likely 
to be placed outside his path of travel than would the whole vehicle illuminated by a 
street light. The same problem also arises when there is headlight glare from oncoming 
cars which effectively reduces the contrast of the roadside object. Thus, the problem 
of visibility of roadside objects involves more than simple detection of the object's pres­
ence. Any thorough analysis of this problem must include not only detection but also 
the accuracy of roadside object location as well as the driver's ability to locate himself 
in his path of travel. 

SUMMARY 

This study was an attempt to analyze certain of the underlying factors that cause the 
lateral displacement of a vehicle away from a roadside object. The investigation was 
conducted in daylight and under free field conditions. For several conditions of object 
location and vehicle speed, the lateral position of the vehicle was measured continuously 
over a 5, 000-ft specially prepared test track. 

The findings indicate that lateral displacement is a special case in the field of visual 
velocity perception. Relative to the observer, the displacing object effectively moves 
laterally across the retina with a definable angular velocity. Drivers react to this 
apparent velocity of the object by determining when and how much they should displace 
on the basis of the time and distance at which that velocity increases sharply. 

The results were related to previous work carried out by other investigators inter­
ested in the lateral displacement phenomenon. They offer rationalization for the effects 
of lateral displacement on highway capacity and as an important consideration in colli­
sion avoidance under low illumination levels and headlight glare. 
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