A Critical Analysis of an Origin-Destination Survey

ROBERT T. HOWE, Associate Professor of Civil Engineering, University of Cincinnati

•CAN a standard home interview O-D survey yield a pattern of movement which appears to be illogical? Can an abstract theory produce a pattern of movement which is more logical than that reported by an O-D survey? This paper examines the work-trip and shopping-trip patterns found in the 1957 O-D survey of the Cedar Rapids-Marion area of Iowa, and compares movements predicted by the author's field theory of movement with those found in the O-D survey and those simulated by application of a gravity model. The results of the study cast some doubts upon the validity of this particular O-D survey, and may raise further questions about all such surveys.

CEDAR RAPIDS-MARION O-D SURVEY

The Iowa State Highway Commission conducted a home interview O-D survey of Cedar Rapids and adjacent Marion during 1957. Figure 1 shows the area and the O-D zones. Every seventh household was interviewed, and the external cordon was established essentially at the combined corporation lines of these contiguous cities. The results of this study, combined with land-use and travel-time data, were used to create a gravity model of the area. This model, in turn, was used as the basis for predicting future movements in seven Iowa cities (6).

Wiant (6) reports that the gravity model was created in the following way:

Work trip production was related to the labor force residing in each zone. In calculating the number of auto-driver work trips originating in any zone, adjustments were made for transit riders and auto passengers. Zonal employment data were the basic attraction factor for work trips. Other home base trip production was directly related to car ownership and the zonal attraction factor used for this trip purpose was population plus 25 times retail employment. ... Factors were also derived from the Cedar Rapids data to describe the relation of travel time and trip frequency.

After "weighting" the model to reflect the true interchange of Cedar Rapids-Marion trips, the traffic model desire line volumes were compared to their home-interview counterparts.

Data on places of residence, employment, and retail trade were supplied to the Iowa State Highway Commission and to the author by the City Planning Commission of Cedar Rapids. Table 3 (Appendix) gives this information, together with coordinates of the centers of activity as selected by the author.

The Field Theory of Movement

The field theory of land use and the movement of people relating to work trips has been presented (3), and may be expressed

Paper sponsored by Committee on Origin and Destination.

Figure 1. O-D zone map of Cedar Rapids, Iowa.

$$V_{P_{i}Q_{j}} = \frac{\frac{Q_{j}}{R_{ij}} P_{i}}{\sum_{j=1}^{m} \frac{Q_{j}}{R_{ij}}} (i = 1, 2, ..., n)$$
(1)

in which

 $\begin{array}{l} V_{P_{i}Q_{j}} \\ P_{i} \\ Q_{j} \\ R_{ij} \end{array} = \begin{array}{l} \text{number of one-way work trips from i to } j; \\ p_{i} \\ = \begin{array}{l} \text{number of workers living in zone } i; \\ Q_{j} \\ = \begin{array}{l} \text{number of jobs available in zone } j; \\ \text{and} \\ R_{ij} \\ \end{array} \\ = \begin{array}{l} \text{straight-line distance between centers } i \\ \text{and } j, \\ \text{assuming that there are no } \\ physical \\ \end{array}$

After applying certain balancing iterations, the $(n \times m)$ solutions of Eq. 1 will draw the correct total number of workers from each zone of residence and will assign the correct total number of workers to each job site.

A thus-far unreported aspect of the field theory relates to the prediction of shopping trips. Based on the following assumptions:

1. Every household makes a certain average number of shopping trips each day (in particular, one such trip each day will be used for present purposes);

2. The number of retail employees at each shopping center provides a measure of the relative attractiveness of each center; and

3. The straight-line distance between a center of residence and a center of shopping is the proper measure of separation.

The field theory for shopping trips may be expressed

$$M_{H_{i}S_{j}} = \frac{\frac{E_{j}}{R_{ij}} H_{i}}{\sum_{j=1}^{m} \frac{E_{j}}{R_{ij}}} (i = 1, 2, ... n)$$
(2)

in which

 M_{HiSj} = number of one-way shopping trips from i to j; H_i = number of households in zone i; E_j = number of retail employees in zone j; and

 R_{ij} = straight-line distance from i to j.

Successive applications of Eq. 2 for i = 1, 2, etc., will assign each household to move to one center of shopping, but will not control, in any way, the total number of shopping trips destined for any center. Since it is a common phenomenon to find certain shopping centers more crowded than others, and since such centers do expand and contract to meet long-term trends in business, it appears obvious that the shopping trip pattern lacks the balancing restraints imposed on work-trip patterns. The number of retail employees in a center seems to be the only logical measure of relative attraction since this quantity is most easily varied to meet short-term changes in demand. Further discussion of these points will be found elsewhere (2).

PHILOSOPHIES BEHIND O-D SURVEYS, GRAVITY MODELS, AND FIELD THEORY

Caution is the order of the day when one is tempted to say that a new theory gives more reliable results than an established empirical solution to a problem. In previous

applications of the field theory, reasonable comparisons to O-D findings were obtained, but in the present study several major discrepancies were found. Before proceeding, therefore, it may be well to reconsider briefly the philosophy behind each of the three methods of determining trip patterns.

Home interview O-D surveys determine the trips made by a sample of households on a particular day. Normally only vehicular trips are recorded, i.e., auto driver, auto passenger, and mass transit, as was the case in Cedar Rapids. The sample findings are then multiplied by a factor (in Cedar Rapids, 7) to get a representation of the total pattern of movement with a certain expected probability of error. For example, if the expanded volume for a certain movement is 100 trips, two-thirds of the time one must expect that the actual number of trips making this movement is between 70 and 130, while the remainder of the time the error must be expected to be larger (7). Since walking trips are ignored the possibility exists that many intrazonal trips, and perhaps trips between adjacent zones, are not reported. A person who drives to work and stops at a store to shop on his way home will be considered to have made one of the following two sequences of trips: (a) home to work; work to shopping; shopping to home, or (b) work trip; non-home based trip; shopping trip, depending on the nomenclature being used. Finally, the results of an O-D survey are supposed to represent movements on a "typical day," even though the data may have been gathered over a period of six months or more.

Since 1955, several attempts have been made to fit gravity models to the results of O-D surveys in the hope that such models might be used to extrapolate the findings of the corresponding surveys to future land-use patterns in the study areas (1, 5, 6). The only theoretical justification offered for such action has been that some combination of coefficients, exponents, and adjustments applied to a particular formula permits the calculation of simulated movements which one is willing to say approximates the findings of a corresponding O-D survey. In the Cedar Rapids study, home to work, other home based, and non-home based trips were simulated by such models.

In contrast to the above empirical approaches, the field theory assumes that, for some unknown reason, people move between centers of activity in accord with "laws" similar to those which govern the movement of various types of particles in physical "fields of force." Eqs. 1 and 2 make no attempt to say which persons will make which trips. Based on such assumptions as outlined, these equations yield the relative probabilities of their respective types of movement without regard for mode of transportation. In three previous studies, in which only work trips have been simulated, the theory has yielded results which have been at least consistent with the results of corresponding O-D surveys (2, 3, 4). One limitation on the theory is that it can deal only with a closed field, and cannot simulate trips across an external cordon.

This paper grew out of an attempt to simulate the work-trip pattern found by the O-D survey of Cedar Rapids by means of the field theory. When it was found that the results of the theory did not, in general, compare favorably with the results of the survey, both sets of data were examined in considerable detail in an effort to find the cause or location of the major discrepancies. The balance of this paper presents evidence on which the following question may be answered: Can something as abstract as the field theory create patterns of movement which are more reliable than those found by an origin and destination survey?

WORK TRIP PATTERN IN CEDAR RAPIDS-MARION

Eq. 1 was applied, together with three iterations, to simulate a pattern of work trips. Every worker was assigned to a job site within the external cordon, and every job was filled by a worker living within the cordon. Minor adjustment had to be made in the total number of workers and total number of jobs as given in Table 3 (Appendix). Table 4 (Appendix) gives both the total number of workers drawn from each zone of residence and the total number of work trips assigned to each job site by the theory, by the O-D survey, and by the gravity model. (Detailed movements found by the O-D survey and by the gravity model were supplied by the Iowa State Highway Commission.)

Figure 2. Ratio of work trips by zone of origin.

Figure 2 is based on the data of Table 4 and shows the average number of work trips per worker originating in each zone of residence as found by the three methods of determining movement. Figure 3, also based on Table 4, shows the average number of workers assigned to each job in each zone of employment. In both figures, the average number of workers is plotted logarithmically to indicate that the assignment of 2 workers to a job is an error equivalent in magnitude to assigning $\frac{1}{2}$ worker to a job.

In all of the analyses which follow, gravity model results will be shown in figures, but no comments will be made concerning them.

Where Figure 2 shows ratios greater than unity it would seem that some workers make more than one trip from home to work each day. Such a situation would actually occur if various numbers of workers go home for lunch. Where less than one work trip per worker is made, the zone may have (a) a high rate of unemployment (although it is assumed that Table 3 contains the number of workers actually employed), or (b) a high rate of absenteeism (although the O-D survey is supposed to represent a "typical day"), or (c) a large number of workers who walk to work and are, therefore, of no interest in an O-D survey.

Figure 3 indicates that certain zones were found by the O-D survey to attract more work trips than there are jobs available in those zones, but again trips to eat lunch at home may account for this. Unusually high absenteeism on a "typical day," or workers walking to their jobs would seem to be the only explanations for those zones which appear to attract less than one work trip per available job.

While the field theory, as applied in Figures 2 and 3, creates one work trip for each worker and for each job, if the trips to home for lunch are an important factor in the traffic pattern, the theory can handle them easily. The number of workers living in each zone who go home for lunch can be added to the number of workers living in the

Figure 3. Ratio of work trips by zone of destination.

Figure 4. Discrepancies between work trips assigned by theory and found by O-D survey (0) and gravity model (M).

zone, and the number of workers leaving each job site to go home for lunch can be added to the number of jobs at the site to get modified values for P and Q in Eq. 1.

Figures 2 and 3 deal only with the total work trip pattern and do not take into account the possible effects of variations in lengths of work trips. Figure 4, by contrast, is a form of frequency diagram for the distribution of discrepancies between theory assignments and O-D findings of work trips from each zone of residence to four regions of employment. These regions are (a) the zone of origin, i.e., intrazonal; (b) those zones which abut the zone of origin, Ring 1; (c) those zones which are adjacent to Ring 1, called Ring 2; and (d) all other zones, called Outside

Ring 2. For example, Figure 1 shows that zones 03, 04, 06, and 07 form Ring 1 for zone 05, and that zones 00, 02, 09, 10, 11, 12, and 38 make up Ring 2, therefore, all other zones, except 05 itself, are Outside Ring 2. Each part of Figure 4 shows the approximate magnitude of any discrepancies which may exist, and whether the theory or O-D survey gives the larger total movement. Figure 4 (a) shows that in 32 of the 39 zones the theory predicted more intrazonal trips than were found by the survey. Figure 4 (b) shows that in 23 cases the theory assigns more workers to Ring 1 zones of employment than does the survey. Figure 4 (c) indicates that the theory and O-D survey each assigns more than the other in 19 cases, or what one might expect if the theory and survey gave reasonably comparable results. Finally, Figure 4 (d) indicates that the O-D survey, in general, assigns far more workers to job sites Outside Ring 2 than does the theory. In summary, Figure 4 shows that the O-D survey found many more long work trips and many fewer short work trips than were predicted by the theory.

In an effort to determine whether the O-D survey or theory results, as shown in Figure 4, are more logical, the intrazonal work trip pattern was analyzed further. It would seem reasonable to hypothesize that greater opportunities for work close to home, as measured by the product of jobs times workers in a zone, will induce larger numbers of workers to work within their zone of residence. Of course it is possible to have (a) a very large number of jobs available in a zone that houses very few workers, or (b) a very large number of workers living in a zone that includes very few jobs, and either of these cases is likely to distort the hypothesis. Nevertheless, each zone was ranked in ascending order, from 0 to 38, on the product of jobs in the zone times workers living in the zone. Each zone was similarly ranked on the number of intrazonal work trips predicted for that zone by the theory, and found for that zone by the O-D survey. (For purposes of Table 5 and Figure 5, the total number of O-D work trips originating in each zone was multipled by a factor to yield one work trip per worker living in the zone.) Table 5, Appendix, gives these three rankings for each zone, and is arranged by ascending order of product magnitude. This shows, for example, that zone 32 ranks (a) 5 on product magnitude, (b) 4 on intrazonal work trips by theory, and (c) 17 on intrazonal work trips by O-D survey. Figure 5 plots the rankings of Table 5, with the diagonal line of slope 1, and intercept at the origin, representing the hypothesis. With perhaps five exceptional points, the theory fits the hypothesis fairly well, in fact with a coefficient of correlation of 0.936. The O-D results depart rather widely from the hypothesis and have a coefficient of correlation of only 0.378.

CONCLUSIONS REGARDING WORK TRIP PATTERNS

If the hypothesis underlying Figure 5 can be accepted, i.e., if it is logical to expect that, in general, the greater the opportunity for intrazonal work trips, as measured by the product of jobs times workers in the zone, the greater will be the number of

Characteristic	By Theory	By O-D Survey
Workers living in zone	787	787
No. of work trips originated	787	997
Ratio of trips to workers	1.00	1.253
Jobs in zone	1061	1061
Intrazonal work trips	109	55(44a)
Work trips to Ring 1	202	231
Work trips to Ring 2	409	503
Work trips to Outside Ring 2	67	208

ΤÆ	AB	LE	1

Detter of the state of the stat		DATA	ON	WORK	TRIPS	ORIGINATING	IN	ZONE	3(
--	--	------	----	------	-------	-------------	----	------	----

^aAdjusted value used in Table 5 and Figure 5.

such trips, it may be concluded that the theory gives a much more logical pattern of intrazonal work trips than does the O-D survey. But what impact does the intrazonal pattern have on the longer work trips that may be considered to be of greater importance in transportation planning?

Table 1 pertains to work trips originating in Zone 30. This, plus similar data for all other zones as summarized in Figures 2, 3, and 4, would seem to indicate that the O-D survey found progressively more work trips than predicted by the theory as the length of the trips increased. Furthermore, since the O-D survey indicates that many workers make more than one work trip per day it may be concluded that the O-D survey indicates that the longer the work trip the more likely the worker is to go home to lunch.

Even though one cannot say, in the present state of knowledge, that the theory gives the correct pattern of movement, it seems possible to conclude that the work trip pattern presented by the O-D survey is not completely logical.

SHOPPING TRIP PATTERN IN CEDAR RAPIDS-MARION

The O-D survey determined a pattern of one-way, home-based, vehicular shopping trips. The field theory was applied on the assumption that each household makes one shopping trip per day that originates or ends in the home. The gravity model cannot be considered in this section because it combined shopping trips with all other homebased non-work trips.

For purposes of the theory, a shopping trip is any movement between a home and any place of retail business from a gasoline station or small local grocery store to a major integrated shopping center. With such a comprehensive definition it might be desirable to assume that every household makes an average of two, or even more, shopping trips per day, but for present purposes the assumption of one trip per day will suffice. Solutions of Eq. 2, therefore, insure that every household makes exactly one shopping trip per day, but place no restraints on the total number of shoppers assigned to any single zone of shopping.

Table 6, Appendix, gives the total number of shopping trips originating in each zone and destined for each zone as determined by the theory and by the O-D survey. Figure 6 is based on Table 6 and shows the average number of shopping trips per household originating in each zone. Although it cannot be said that the O-D survey findings are wrong, it seems most unlikely that, on the average, all households in Cedar Rapids-Marion make only one shopping trip every three days (27, 365 households and 9, 206 internal shopping trips). Figure 6 further indicates that households in zones 15, 32, 33, 34, and 35 average less than one shopping trip every ten days.

Figure 7, also based on Table 6, shows the average number of shopping trips attracted by every retail employee in each zone. Zones 00 and 13 do not have any retail employees, but were assigned one each for study purposes. The theory actually assigns two shoppers to each of these zones while the O-D survey assigns 55 shoppers to zone 00. On the average, the theory assigns 3.58 shoppers to each retail employee with a range in assignments from 2.00 to 4.48 per employee. By contrast, the O-D survey assigns an average of 1.44 shoppers per employee with a range in assignments from 0.24 to 11.20 per employee, omitting consideration of the 55 assigned to zone 00.

Figure 8 corresponds to Figure 4 and shows the discrepancies between theory predictions and O-D findings for shopping trips of varying length, namely from each zone of residence to Intrazonal, Ring 1, Ring 2, and Outside Ring 2, as these terms have been previously defined for work trips. Consistent with Figures 6 and 7, the theory predicts more shopping trips of all lengths than were found by the O-D survey, with few exceptions. The few zones of origin for which the survey found more intrazonal than predicted by the theory, and the 12 zones for which it found no intrazonal trips, are rather difficult to explain. Table 2 shows comparisons between the intrazonal shopping trips of zones 00, 06, 12, 14, 21, 26, and 37, which zones show erratic behavior in Figure 8, and the intrazonal shopping trips of nearby zones of comparable size which appear to show more nearly normal behavior. In each erratic case where the O-D survey actually found intrazonal trips, it found appreciably more than one shopper per retail

Figure 5. Rankings of intrazonal work trips vs rankings of products of workers times jobs in zone.

Figure 6. Ratio of shopping trips by zone of origin.

employee in the zone, whereas in the normal case it found considerably less than one intrazonal shopper per retail employee.

If it is reasonable to hypothesize that, in general, the greater the opportunity to make intrazonal shopping trips, as measured by the products of households times retail employees in a zone, the greater will be the number of such trips, Figure 9 can be plotted in a manner similar to that used for Figure 5. Table 7, Appendix, gives the zones ranked in ascending order of magnitude of the product of households times retail employees in the zone, with corresponding rankings by theory predicted and O-D found intrazonal shopping trips, and forms the basis of plotting Figure 9. Again the line of slope 1 passing through the origin represents the hypothesis while the plotted points compare the rankings by theory and O-D survey. As in the case of intrazonal work

Figure 7. Ratio of shopping trips by zone of destination.

Zone	Behavior in	Households	Retail	Intrazo	nal Trips by
No.	Fig. 8	in Zone	Employees in Zone	Theory	O-D Survey
00	Erratic	532	1	1	13
37	Erratic	400	15	9	0
38	Normal	348	21	10	14
06	Erratic	960	205	96	228
07	Normal	718	262	146	31
12	Erratic	563	52	24	61
11	Normal	553	90	41	15
14	Erratic	1,435	88	57	152
16	Normal	1,373	83	61	14
21	Erratic	1,606	78	48	267
24	Normal	1,071	188	128	59
26	Erratic	917	49	56	0
22	Normal	616	50	19	13

survey.

trips, that the theory gives more consistent results (coefficient of correlation, 0.961) than does the O-D survey (coefficient of correlation, 0.575).

CONCLUSIONS REGARDING SHOPPING TRIPS

Inasmuch as the theory considers a child walking to a neighborhood store to purchase a loaf of bread to be creating a shopping trip, and the O-D survey reports only movements using vehicles, one might expect that the theory would (a) in general predict a larger total number of shopping trips for each zone than found by the survey, (b) consistently predict more intrazonal shopping trips than found by the survey, and (c) possibly predict a smaller number of long trips than found by the survey. In the Cedar Rapids area the theory actually (a) predicts a larger number of shopping trips originating from every zone, but a smaller number destined for nine zones than found by the O-D survey, (b) predicts more intrazonal shopping trips in only 28 of the 39 zones, and in one zone predicts 200 fewer such trips than found by the survey, and (c) with the exception of one zone, predicts more trips to the region Outside Ring 2 than found by the survey.

Judging from Figures 6, 7, and 8, and associated tables, it seems safe to say that the O-D survey found a pattern of shopping trips that is much more erratic than that predicted by the theory.

Figure 9. Rankings of intrazonal shopping trips vs rankings of products of retail employees times households in zone.

TRIPS TO THE CENTRAL BUSINESS DISTRICT

Thus far the CBD has been treated as any other zone, but this area, zone 01, should be considered in some detail because it is the most important generator of work trips (containing over one-third of all the jobs in the study area) and of shopping trips (containing over one-half of all retail employees).

Of the 562 workers living in zone 01, the theory assigns 351 to work in the CBD, while the O-D survey found 23 intrazonal work trips out of a total of 292 work trips originating in the zone. The gravity model created 138 intrazonal work trips out of a total of 357 work trips generated in the zone. The theory assigns 604 of the 768 house-holds in the CBD to shop in that area, while the O-D survey found 53 out of a total of 133 originating shopping trips to be intrazonal. Despite the obvious diversity of these numbers, both the theory and survey may be correct since the former deals with all forms of transportation and the latter covers only movements by vehicle. But what of work and shopping from other zones to the CBD?

The theory assigns a total of 10,008 workers to the 10,260 jobs in the CBD (to limit the number of worker and job digits to 4, the theory assigned 9,999 jobs to zone 01); the O-D survey found 9,635 work trips destined for zone 01; the gravity model assigned 9,522 such trips. The theory assigns 14,127 shoppers to deal with the 3,962 retail employees in the CBD, while the O-D survey found 4,084 shopping destinations in the area. Table 8 lists the work and shopping trips destined for the CBD by zones of origin, and Figure 10 shows the values in graphical form.

The zones are grouped as Intrazonal, Ring 1, Ring 2, and Outside Ring 2, as these terms have been previously defined.

1. For the first ring of zones around the CBD, the theory consistently predicts up to 200 more work trips per zone than found by the O-D survey. This difference might

	-							-		_		_	-
ntrazonal From Ring 1	01 02 08 09 15 22 23 25 28	SW S S S S S S S S S S	w w w w	w		w		w					
From Ring 2	03 04 16 18 19 21 24 26 27 30 31	888888888888888888	s	w w w	w w w w	w			W		w		
From Outside Ring 2	05 06 07 10 11 12 13 14 17 20 29 32 33 34 35 36 37 38 00	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S			W W SW	sw	w	w		w w w w	w w w	
	Zone of Origin	Over 200	101-200	51-100	26-50	11-25	0-10	0-10	11-25	26-50	51-100	101-200	Over 200

C Chapping Thin

be explained by a combination of circumstances that makes it easy for workers to walk to work but difficult for them to find parking spaces near their work.

2. With two exceptions, the theory predicts considerably more work trips originating in each zone of Ring 2 than were found by the survey. The explanation for this discrepancy is more difficult to find since the minimum walk from this ring is in the order of 10 blocks.

3. Outside of Ring 2, except in Marion and the most remote parts of Cedar Rapids (zones 33 to 38 and 00), the theory predicts many fewer work trips destined for the CBD than were found by the survey. Inasmuch as the theory and survey both assign

91

W Work Trin

roughly the same total number of work trips to the CBD, perhaps the great excess of O-D trips indicates that many people who work in the CBD go to their suburban homes for lunch.

4. The work trips from zones 33 to 38 and 00 present the type of error distribution one might expect if the theory and O-D survey gave reasonably comparable results.

5. When the distribution of shopping trips is considered, without exception the theory predicts more trips, and frequently many more, than were found by the survey. This, however, may be quite reasonable since many people who work in the CBD also shop there, and, because the theory predicts homebased work trips and homebased shopping trips, there is no reason why a person should not go from home to work, from work to shop, and back to home in a single round trip.

On the whole, it seems safe to say that the Cedar Rapids CBD could not survive on the number of work and shopping trips destined for it according to the O-D survey.

SUMMARY AND CONCLUSIONS

In order to predict future patterns of movement within urban areas, it seems necessary that some logical relationships be found between existing patterns of movement and existing land uses. Future patterns of movement may then possibly be extrapolated from anticipated patterns of land use by applying currently observed interrelationships.

An O-D survey, in itself, can only determine existing patterns of movement to some order of accuracy. A land-use study coupled with an O-D survey provides information for relating the movements to the land uses. Gravity models have been set up on several occasions in an effort to provide the required mathematical relationships for extrapolation.

The field theory of movement merely assumes that the pattern of movement between areas of varying land use develops naturally in accord with certain unexplained physical laws. If the theory can simulate existing patterns of movement with sufficient accuracy, variations in the land-use factors in the equations should produce reasonable approximations of related patterns of movement.

In the case of Cedar Rapids-Marion, one is forced to conclude that the theory does not simulate the patterns of movement found in the 1957 home interview O-D survey with a reasonable degree of accuracy. Careful examination of the movements found by the survey, however, leads to the conclusion that the theory actually predicts a more logical pattern of movement than was reported by the survey. It must be left to the reader to decide whether the O-D findings are correct in spite of appearing to be illogical, or that the survey has yielded an invalid picture of the travel situation in the area of study.

ACKNOWLEDGMENTS

The author is most grateful to Don B. Salyer, Director of Planning of the City of Cedar Rapids, and to Rex H. Wiant, Assistant Highway Planning Engineer of the Iowa State Highway Commission, for supplying the land-use, O-D, and gravity model data. He is also indebted to the University of Cincinnati.

REFERENCES

- 1. Hansen, W. G., "Evaluation of Gravity Model Trips Distribution Procedures." HRB Bull. 347, 67-76 (1962).
- 2. Howe, R. T., "A Field Theory of Land Use and the Movement of People." Purdue University, Ph. D. thesis (1959).
- 3. Howe, R. T., "A Theoretical Prediction of Work-Trip Patterns." HRB Bull. 253, 155-165 (1960).
- 4. Howe, R. T., "A Theoretical Prediction of Work Trips in the Minneapolis-St. Paul Area." HRB Bull. 347, 156-181 (1962).
- 5. Voorhees, A. M., "Estimating and Forecasting Travel for Baltimore by Use of a Mathematical Model." HRB Bull. 224, 115-123 (1959).
- 6. Wiant, R. H., "A Simplified Method for Forecasting Urban Traffic." HRB Bull. 297, 128-145 (1961).
- 7. "Origin-Destination and Land Use." Procedure Manual 2A of National Committee on Urban Transportation, Public Administration Service, Chicago (1958).

Appendix

TABLE 3

BASIC	DATA	ON	CEDAR	RAPIDS-I	MARION,	IOWA

O-D No. Zone of House-		No. of	Co of He	ord. ousing	Total No.	Retail Em-	Coord. of Job Sites	
Zone	holds	Workers	Ni	Ei	of Jobs	ment	Nj	Ej
00	532	652(627)*	41**	34**	61	0(1)*	40**	35**
01	768	584(561)	21	18	10260(9999) '	3962	22	19
02	463	419(403)	27	20	445	68	28	19
03	1125	1452(1396)	33	20	381	42	34	19
04	724	834(802)	29	22	1294	79	28	21
05	492	546(525)	33	22	54	9	32	21
06	960	1125(1081)	35	26	766	205	36	29
07	718	822(790)	31	26	2709	262	32	27
08	314	349(335)	23	20	908(1169)	227	22	21
09	1093	1301(1251)	25	22	616	121	24	21
10	746	813(781)	27	24	381	61	26	23
11	553	561(539)	29	26	630	90	30	27
12	563	674(648)	31	28	257	52	32	27
13	400	535(514)	25	26	99	0(1)	26	25
14	1435	1578(1517)	23	30	318	88	20	29
15	308	472(454)	21	20	1028	208	20	19
16	1373	2041(1962)	23	24	330	83	22	23
17	712	749(720)	23	26	129	37	20	27
18	399	492(473)	19	22	2694	273	18	21
19	679	891(856)	19	22	123	36	20	23
20	963	1324(1273)	19	28	103	30	20	29
21	1606	2037(1958)	23	10	292	78	20	09
22	616	893(858)	25	14	105	50	24	15
23	628	720(692)	23	14	633	150	22	15
24	1071	1475(1418)	19	12	749	188	20	13
25	610	710(682)	21	16	948	26 8	2 0	15
26	917	1127(1083)	17	12	352	49	16	11
27	560	732(704)	19	16	399	94	18	15
28	472	815(783)	19	18	360	109	18	17
29	749	962(925)	15	14	160	22	16	15
30	665	817(785)	15	18	1061	130	16	17
31	1073	1192(1146)	15	20	1170	187	16	19
32	457	530(509)	15	24	81	15	16	23
33	12	18(17)	11	12	1041	94	12	15
34	735	781(751)	11	18	126	13	10	17
35	65	89(86)	39	36	441	148	40	37
36	1061	1300(1250)	41	38	325	35	40	37
37	400	476(458)	39	38	170	15	38	37
38	348	399(386)	39	36	65	21	38	35
Totals	s 27365	33360(31999)			32064	7599		

*Numbers in parentheses used for theory calculations and comparisons. *Coordinates in thousands of feet. 'Jobs in Zone Ol reduced to get four digits, difference added to Zone 08.

TOTAL NUMBER OF WORK TRIPS DRAWN FROM AND ASSIGNED TO EACH ZONE

Zone Workers		Total	Work Trip Zone by	s from	Jobs	Total Work Trips to Zone by			
Zone No.	No. in Zone Theory O-D C One-Way One-Way T	Gravity Two-Way	in Zone	Theory One-Way	O-D One-Way	Gravity Two-Way			
00	627	625	502	1275	61	59	50	143	
01	562	560	292	713	10260	10008*	9635	19044	
02	405	403	469	909	445	443	439	936	
03	1397	1395	1683	3121	381	378	592	890	
04	804	802	755	1722	1294	1295	1352	2992	
05	525	523	656	1130	54	5 2	54	118	
06	1083	1081	1224	2168	766	762	949	1720	
07	791	789	993	1788	2709	2700	2575	6430	
08	337	335	287	549	908	1169*	952	1458	
09	1252	1250	920	226 8	616	616	537	1186	
10	782	780	777	1708	381	380	400	887	
11	541	539	749	1148	630	627	654	1454	
12	650	648	711	1516	257	254	364	621	
13	515	513	583	1159	99	97	109	235	
14	1519	1517	1660	3152	318	316	442	751	
15	454	452	316	794	1028	1026	1380	2081	
16	1962	1960	2038	4196	330	329	246	743	
17	720	718	752	1582	129	127	87	311	
18	475	473	321	946	2694	2689	2925	5753	
19	857	855	700	1569	123	121	195	265	
20	1275	1273	1426	3049	103	101	132	280	
21	1959	1957	2537	5117	292	289	153	767	
22	860	858	966	1827	105	103	80	599	
23	693	691	701	1446	633	630	792	1418	
24	1420	1418	1604	3114	749	744	827	1737	
25	683	681	634	1424	948	944	1345	2150	
26	1085	1083	1345	2226	352	347	444	792	
27	705	703	603	1485	399	395	458	866	
28	785	783	791	1636	360	357	447	797	
29	926	924	1050	1902	160	156	211	351	
30	787	784	954	1704	1061	1052	1274	2417	
31	1147	1145	1404	2517	1170	1162	1417	2710	
32	511	509	563	1246	81	78	113	213	
33	18	16	140	40	1041	1029	1301	2725	
34	- 55			10		1010	1001		
35	87	85	77	152	441	444	428	965	
36	1252	1250	1016	2559	325	327	293	759	
37	459	457	485	1029	170	169	79	463	
38	386	384	460	804	65	63	32	150	
Totals	32049	31960	34024	68505	32064	31960	34022	68505	

*Based on adjusted numbers of jobs given in Table 3.

RANKING OF ZONES BY PRODUCT OF JOBS TIMES WORKERS IN ZONE AND CORRESPONDING RANKINGS OF INTRAZONAL WORK TRIPS

Zone	Product Workers	Ranking by	Intraz Trips	onal Work by Theory	Adjusted Work Ti	Adjusted* Intrazonal Work Trips by O-D		
INU.	Times Jobs	Product	No.	Ranking	No.	Ranking		
33	18738	0	3	0	4	14		
38	25090	1	10	5	14	19		
05	28350	2	6	1	0	_		
00	38247	3	15	8	0			
35	38367	4	10	6	0			
32	41391	5	9	4	10	17		
13	50985	6	8	3	0			
37	78030	7	30	18	6	15		
22	90300	8	15	9	. 0	—		
17	92880	9	7	2	0			
34	94878	10	28	17	0	_		
19	105411	11	10	7	29	22		
20	129471	12	27	15	0			
29	148160	13	25	11	32	24		
12	167050	14	25	12	13	18		
02	180225	15	25	13	43	29		
27	281295	16	30	19	26	21		
2 8	282600	17	25	14	0	—		
10	297942	18	39	20	0	_		
11	340830	19	55	22	0			
26	381920	20	76	27	38	28		
08	393953	21	24	10	36	27		
36	406900	22	130	33	163	38		
23	438669	23	59	23	10	16		
15	466712	24	27	16	33	26		
14	483042	25	51	21	0			
03	532257	26	126	31	111	35		
21	572028	27	70	25	48	23		
16	647460	28	75	26	51	31		
25	647484	29	61	24	55	33		
09	771232	30	83	28	0			
06	829578	31	113	30	0			
30	835007	32	109	29	44	30		
04	1040376	33	150	34	114	36		
24	1063580	34	158	35	26	20		
18	1279650	35	128	32	55	32		
31	1341990	36	178	36	125	37		
07	2142819	37	304	37	81	34		
01	5619438	38	351	38	33	25		

*O-D work trips multiplied by factor to make total number of such trips equal to number of workers living in zone of origin.

Zone	Households	Total SI Trips fro	opping om Zone	Retail Employment	Total Shop Assigned	Total Shopping Trips Assigned to Zone		
110.	III Zone	Theory	O- D*	in Zone	Theory	O-D**		
00	532	530	246	1	2	55		
01	768	766	113	3962	14127	4084		
02	463	461	92	68	232	110		
03	1125	1123	666	42	143	84		
04	724	722	234	79	317	41		
05	492	489	139	9	36	56		
06	960	958	627	205	570	955		
07	718	716	409	262	1044	64		
08	314	312	41	227	837	358		
09 10 11 12 13 14	$ 1093 \\ 746 \\ 553 \\ 563 \\ 400 \\ 1435 $	744 551 561 398 1433	140 248 235 210 183 711	121 61 90 52 1 88	478 269 382 206 2 318	546 98 225 294 1 424		
15	$308 \\ 1373 \\ 712 \\ 399 \\ 679$	306	0	208	747	53		
16		1371	409	83	340	59		
17		710	418	37	139	66		
18		397	70	273	971	63		
19		677	113	36	133	48		
20	963	961	282	30	107	336		
21	1606	1604	701	78	214	476		
22	616	614	216	50	173	40		
23	628	626	94	150	535	164		
24	1071	1069	369	188	687	436		
25	610	608	92	268	960	188		
26	917	915	434	49	149	136		
27	560	558	153	94	325	63		
28	472	470	77	109	381	58		
29	749	747	244	22	73	88		
30	665	663	77	130	443	81		
31	1073	1071	369	187	691	275		
32	457	455	40	15	46	18		
33	12	10	0	94	238	19		
34	735	733	46	13	32	23		
35	65	63	0	148	663	617		
36	1061	1059	350	35	155	227		
37	400	398	134	15	50	48		
38	348	346	224	21	65	16		
Totals	27365	27279	9206*	7601	27279	10949**		

TOTAL NUMBER OF SHOPPING TRIPS DRAWN FROM AND ASSIGNED TO EACH ZONE

*Excludes trips to outside external cordon. Includes trips from outside external cordon.

Zone	Product Households by Betail	Ranking by	Intrazor Trips	nal Shopping by Theory	Intrazonal Shopping Trips by O-D		
NU.	Employees	Product	No.	Ranking	No.	Ranking	
13	400	0	0	0	0	-	
00	532	1	1	1	13	16	
33	1128	2	1	2	0		
05	4428	3	4	3	0	-	
37	6000	4	9	6	0	—	
32	6855	5	6	4	0	—	
38	7308	6	10	8	14	20	
34	9555	7	9	7	0	-	
35	9620	8	14	12	0	-	
29	16478	9	12	10	73	33	
19	24444	10	10	9	0		
17	26344	11	8	5	13	17	
11	28756	12	41	22	15	24	
20	28890	13	24	18	16	25	
12	29276	14	24	19	61	32	
22	30800	15	19	15	13	18	
02	31484	16	21	16	14	21	
36	37135	17	60	31	105	35	
26	44933	18	33	21	0	—	
10	45506	19	31	20	11	15	
03	47250	20	47	24	14	22	
28	51448	21	18	14	0	-	
27	52640	22	21	17	11	14	
04	57196	23	41	23	41	28	
15	64064	24	13	11	0	-	
08	71278	25	14	13	10	13	
30	86450	26	50	28	22	26	
23	94200	27	48	26	13	19	
18	108927	28	47	25	0		
16	113959	29	61	32	14	23	
21	125268	30	48	27	267	38	
14	126280	31	57	30	152	36	
09	132253	32	61	33	51	29	
33	163480	33	56	29	0	-	
07	188116	34	146	37	31	27	
06	196800	35	96	34	228	37	
31	200651	36	122	35	84	34	
24	201348	37	128	36	59	31	
01	3042816	38	604	38	53	30	

RANKING OF ZONES BY PRODUCT OF HOUSEHOLDS TIMES RETAIL EMPLOYEES IN ZONE AND CORRESPONDING RANKINGS OF INTRAZONAL SHOPPING TRIPS

Area of	Zone of	Households in Zone	Work Tr CBD	rips to by	Shopping to CBD	Trips) by
Origin	Origin	of Origin	Theory	O-D	Theo ry	O-D
Intrazonal	01	768	351	23	604	53
Ring 1	02	463	141	143	275	53
U	08	314	212	45	249	11
	09	1093	491	291	665	76
	15	308	272	93	238	0
	22	616	344	254	365	64
	23	628	265	164	352	23
	25	610	295	284	371	78
	28	472	315	184	285	35
Ring 2	03	1125	384	406	573	287
	04	724	226	192	385	82
	16	1373	738	715	803	104
	18	399	157	112	225	29
	19	679	282	199	383	74
	21	1606	667	736	859	312
	24	1071	418	516	501	177
	26	917	308	258	441	112
	27	560	244	71	294	82
	30	665	194	164	305	44
	31	1073	304	407	518	141
Outside	05	492	140	195	244	56
Ring 2	06	960	223	374	399	155
	07	718	135	302	274	137
	10	746	243	332	405	106
	11	553	129	308	257	103
	12	563	104	196	204	46
	13	400	168	264	220	71
	14	1435	464	573	740	140
	17	712	248	321	398	111
	20	963	386	456	476	112
	29	749	248	232	361	37
	32	457	157	164	242	0
	33	12	5	0	6	0
	34	735	197	185	364	23
Marion	00	532	138	139	215	25
	35	65	16	0	22	0
	36	1061	245	144	360	27
	37	400	87	97	135	18
	38	348	72	96	116	0

WORK AND SHOPPING TRIPS DESTINED FOR CENTRAL BUSINESS DISTRICT