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The role of theoretical analyses in the development of reliable design 
criteria for concrete pavements is reviewed. Available theories are 
examined in the light of performance records. As the underlying as
sumptions are incomplete, the usefulness of these theories is limited; 
moreover, the concepts involved have restricted planning of field ex
periments to the point where significant variables have not been meas
ured, with the result that interpretation of the data is confused and the 
findings inconclusive. 

A theory is presented which accounts for warping produced by non
linear temperature and moisture variations of sufficient magnitude to 
result in a partly supported slab, and the subgrade support character
istics are generalized to include time-dependent deformations. The 
behavior of concrete pavements predicted by this theory is found to be 
compatible with field performance; its use as a basis for designing 
more significant field experiments is recommended. 

•ACCORDING to Farrell and Paterick (1), expenditures for all types of surfacing on 
primary and secondary roads have comprised about 40 percent of the construction 
funds for highways as compared with about 25 percent, each, for grading and struc
tures. In 1960, about 4, 000 miles of new concrete pavements were constructed in the 
United States (2), an increase of approximately 60 percent over that being constructed 
during the previous five years. Thus, expenditures for concrete pavements represent 
an important and increasing fraction of the nation's highway investment. The need for 
improved design criteria is now more pressing than ever. 

DEVELOPMENT OF DESIGN CRITERIA 

Over a period of some 50 years, each of the following approaches has aided materi
ally in the development of design procedures for concrete pavements: (a) laboratory 
experiments, (b) controlled field experiments-test sections and test roads, (c) obser
vations of prototype performance, and (d) theoretical analyses. The relative utility of 
these techniques will be reviewed briefly. 

Highway pavements are among the most complex structures with which the civil 
engineer has to deal. The loads are variable in magnitude, space, and time, and large 
numbers of load repetitions must be taken into account; major changes in topography, 
subgrade materials, ground water and drainage conditions are common; the behavior 
of layered systems with widely different strength and displacement tolerances must be 
evaluated; and local variations in climatic conditions affect performance to a greater 
extent than in virtually any other structure of concern to the civil engineer. 

Faced with such variety of significant variables, laboratory tests in which it is 
feasible to control only a limited number of variables and geometries can be of value 
primarily for the purpose of elucidating specific phenomena, such as, the effects of 
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repeated loads on cumulative deflections, the pumping characteristics of various types 
of subbases, the relative shear strength of subgrade soils, and the effects of compac
tion. Although such studies are very useful, in the absence of a mechanism for com
bining the interactions of these properties with other factors affecting pavement per
formance, laboratory tests are inherently incapable of leading to the formulation of 
more reliable overall design procedures. 

Test sections and test roads permit control of a number of variables under specific 
prototype conditions. Highway engineers have had the foresight to use this tool to a 
greater extent than their counterparts in structural and foundation engineering, yet 
these efforts have not led to the development of generally valid design criteria. This 
is because prototype conditions vary widely from locality to locality and adequate pro
cedures for translating behavior-and the interactions contingent upon this behavior
from one locality to another are not yet available. Perhaps the most valuable aspect 
of a test road is its use to assess the validity of a design procedure. Comparisons of 
this nature have almost invariably demonstrated that large disparities exist between 
predicted and observed behavior. It is still widely believed that the stronger the sup
port beneath a concrete pavement the better the performance of the pavement for a 
given set of loading conditions. Table 1 is an abbreviated summary of the rigid pave 
ment survival data obtained at the AASHO Road Test (3). It is apparent that subbase 
thickness had a minor influence on performance. In contrast to the behavior of flexible 
pavements, single-axle loads were hardly more damaging than their (theoretically)_ 
equivalent tandem-axle loads, but what assurance can be given that this will also be 
the case under a different set of prototype conditions? On the other hand, if an analysis 
were available that could predict such performance, and this prediction could be veri
fied in a test road under another set of conditions, designs for other environments and 
loading arrangements could subsequently be made with confidence. These considera
tions illustrate the strength and weaknesses of the test road approach in furthering the 
development of reliable design concepts. 

Observation of prototype performance still remains a primary basis of pavement 
design procedures. Investigation of failures has led to a gradual evolution in design 
practices so that today satisfactory pavements can be constructed to suit local condi
tions almost anywhere in the United States. However, this approach has many draw
backs. In the 1940's, when vehicle loads and numbers were increasing rapidly, ex
perience could not keep pace with changing conditions. The situation has been partly 
remedied by enacting laws to limit vehicle loads, yet evidence is lacking to the effect 

TABLE l 

ABBREVIATED SUMMARY OF PERF ORMANCE DATA, NONREI NFORCED 
CONCRETE PAVEMENTS AT AASHO ROAD TEST 

Axle Subbase 
Ax.le Applications (1, 000's) to Failurea 

Loop Load Thickness 5-ln~ 6¼-In. 8-ln. 9½-In. 11-ln. 12-In , 
(kips) (m, ) 

Surface Surface Surface Surface Sur face Surface 

12S 3 (3, 7) (3, 9) (4, 4) 
G (3 . 1) (4, 1) (4 . 3) 
11 (3 , 7) (4.2) (4 , 0) 

24T 3 705 (4, 0) (4 , 3) 
0 90 1 (4.1) (4 , ,) 
0 771 (4. 0) (4,2) 

18S 3 716 (3 , 8) (4 , 5) (4.2) 
0 353 (4. 3) (4. 4) (4. 5) 
0 291 (3, 0) (4. 3) (4. 1) 

32T 3 343 687 (4.2) (4.0) 
0 328 1, 000 (4.2) (4.2) 
0 289 722 (4. 1) (4.2) 

22.4S a 760 (4,2) (4,3) (4, 1) 
0 898 (4.1) (3. 7) (4, 5) 
0 705 1,111 (4. 5) (4 , 5) 

40T 3 335 (4.2) (4.2) (4, 3) 
8 369 (4. 2) (4, 0) (4. 5) 
0 698 898 (3, 8) (4, 4) 

30S 3 878 (3 , 6) (4, 4) (4. 2) 
0 (3, 9) (4. 3) (4.2 ) (4. 0) 
11 (3,4) (4.2) (4. 3) (4, 2) 

48T s 
?·Bl !3·'l 14. 3l !4· 3l 0 4, 1 4. 3 4, 3 4. 2 

0 1, 114 (4, 3) (4, 3) (4. 4) 

Failure is taken at a ser viceabillty index oI 1. 5. Nu mbers in parentheses are serviceability in -
dices at end o! teat (no failure) . S = s ingle axle, T = tandem axle. 
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that current legal restrictions represent an optimum combination of road costs and 
vehicle efficiency and experiments with vehicle design (as related to pavement design) 
have been greatly restricted. Furthermore, due to changes in local conditions, vir
tually every state uses a different design procedure, hampering exchanges in experience 
between states and greatly limiting the possibilities of utilizing 50 years of road-build
ing experience in this country in the design of equally satisfactory roads abroad. Most 
serious of all, although a number of current designs have proven satisfactory, there is 
no basis for deciding that they are necessarily the most economical. Some recent de
signs have been disappointing, and proposals for radical changes in pavements sec
tions, such as the use of insulating layers for the purpose of attenuating the detrimental 
effects of frost action, cannot be fully accepted until a record of satisfactory perfor
mance based on trial and error techniques has been developed. 

It is apparent, therefore, that the lack of adequate theory has been the largest 
single factor hampering further progress in highway pavement design. The validity 
of a theory can readily be assessed, partly in the laboratory, but principally by the 
use of test sections or by observations of prototype behavior. If a theory embraces 
the significant aspects of the problem, it can form the strongest link possible for trans
lating experience from one locality to another. No restrictions need be placed on 
changing conditions, and the most economical (yet satisfactory) design _can quickly be 
arrived at for any specific set of conditions. The history of technological develop-
ment in every area of human endeavor bears eloquent testimony to the validity of these 
facts. A sustained and concerted effort to develop more reliable theories of pavement 
design is urgently needed if the public is to receive the fullest possible benefits from 
its highway dollar. 

REVIEW OF AVAILABLE THEORIES 

In earlier papers (4, 20, ), the factors that influence the performance of concrete 
pavements were reviewed. Although it was recognized that the development of cracks 
in concrete pavements was not necessarily indicative of impending failure, cracks in 
existing roads generally reflect deficiencies in design and construction practices. The 
occurrence of these cracks may not be injurious initially from the standpoint of driving 
comfort, but rather from the danger of water penetration (and subsequent loss of sup
port), from the loss of effective load transfer and reduced mass of the individual slabs, 
and from the danger of spalling and increased pavement deterioration. The gradual 
elimination of diagonal (corner) and longitudinal cracks in concrete pavements was 
traced, and it was shown that (except in special cases) failure of modern concrete 
pavements could not be attributed to weak subgrade support, pavement pumping, frost 
action, poor load transfer at joints, or deterioration of unsound concrete. Extensive 
performance data were cited to show that by far the major proportion of cracks were 
oriented transversely to the direction of the road and that they were caused primarily 
by the combined effects of pavement warping and superimposed traffic loads. Unequiv
ocal evidence was presented to the effect that, for typical ambient conditions, varia
tions in temperature and moisture with slab thickness induced warping of sufficient 
magnitude to result in partially supported slabs. 

Although Goldbeck (5) in 1919 and Older (6) in 1921 independently derived a "corner 
formula" for the required thickness of concrete pavement slabs (to account for loss of 
support at the corners due to weak subgrades and temperature and moisture differ
entials), the first completely rational theoretical analysis was contributed by Wester
gaard (7) in 1926. In 1927 Westergaard (8) extended his analysis to the consideration 
of stresses and deflections indttced in the-slab by uniform temperature gradients. With 
modifications to account for the effects of adjacent loads (9), impact (10), load repeti
tions (11, 12) and warping effects (10, 11, 13, 14, 15), Westergaard'sanalysis still 
servesas a framework around which current design procedures for concrete pave
ments are built. It is pertinent, therefore, to review the basic assumptions made in 
this theory; namely, (a) that the temperature gradients are uniform, (b) that the slab 
remains at all times in full contact with its support, and (c) that the support can be 
represented by independent elastic springs of constant stiffness, as suggested earlier 
by Winkler (16). 
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The consequences of these assumptions has been the development of a conceptionally 
inadequate basis for predicting the behavior of concrete pavements . They suggest that 
the critical stresses will produce diagonal cracks at the corners, whereas the majority 
of cracks are now transverse. They indicate that, for a given set of conditions, an 
increase in subgrade modulus would permit the use of a reduced slab thickness, where
as it has been known for some time that concrete pavements placed on rock break up 
rapidly. The general lack of correlation between subgrade modulus and pavement per
formance is now well documented (3). Moreover investigations to evaluate the behavior 
of concrete pavements have generat ed considerable confusion, as deflections and strains 
have been measured without full knowledge of the actual support conditions at the time 
the measurements were taken. 

In 1959, Harr and Leonards (4 , 40) solved the "slab on ground" problem to include 
the (more common) case wher e warping due to temperature and/ or moisture gradients 
results in partly supported slabs. For the first time , it was shown analytically that 
high values of the subgrade modulus (K) can result in increasing (rather than decreas
ing) critical stresses due to warping and that interactions between slab size and thick
ness, degree of subgrade support, and concrete quality may result in either increasing 
or decreasing critical (tensile) stresses with increasing values of K. However, the 
concept of a subgrade modulus (Winkler foundation), and the assumption of a uniform 
temperature gradient was retained. 

The Winkler type foundation lacks continuity in the medium (shear stresses are ne
glP.d.P.d) ,incl pm,P.R severe problems in determining appropriate values of K (17) . For 
this reason, a number of investigators have preferred to replace the Winklerfounda
tion with an elastic continuum (18). Hetenyi (19) observed: "Though the first type 
[Winkler foundation J is mathematically simpler, one should not regard it, as some 
investigators do, as an approximate or elementary solution for the elastic solid founda
tion, because of its own physical characteristics and significance." 

Full scale experiments (20) on a slab warped by temperature gradients to a condi
tion of partial support corroborate this view for short-term loadings. However, under 
sustained loadings (such as the weight of the slab), most subgrade soils suffer time
dependent deformations due to consolidation or creep processes, or to a combination 
of these factors. (Depending on the relative rates of these processes , creep in the con
crete slab may also be important.) Such time-dependent deformations may be simu
lated by viscoelastic models (21, 22). 

A variety of mechanical modelsiias been proposed (23) to simulate the behavior of 
the viscoelastic materials . These generally consist ofv arious combinations of three 
fundamental types: (a) Maxwell element, (b) Kelvin element and (c) standard solid ele
ment (Fig. 1). Freudenthal and Lorsch (24) discussed the three mechanical models 
and compared the behavior of these models with the actual behavior of soil. Graphs 
were presented to indicate that the standard solid model gives the best approximation 
to the actual behavior of soil. 

For problems whose geometry does not vary with time, the time dependency of the 
viscoelastic problem can be removed by taking the Laplace transform of the differen
tial equations and boundary conditions. This operation transforms the viscoelastic 
problem into an elastic problem, and the inverse transform of the solution gives the 
solution to the viscoelastic problem. Using this method, Freudenthal and Lorsch (24) 
solved the problem of an infinite beam on a viscoelastic f0undation; Hosken and Lee 
(25) solved the problem of an infinite elastic plate on a viscoelastic foundation; Pister 
and Williams (26) solved the problem of an infinite plate on a viscoelastic foundation 
taking into account Reissner's (27) shear interactions; and Kerr (28) solved the prob
lem of a rigid circular plate on a viscoelastic foundation taking into account shear in -
teractions. Lee (29), and Boley and Weiner (30), discuss other methods of solving 
viscoelastic problems and include excellent bibliographies. For the special case 
where the slab is in full contact with its support, the principle of superposition may be 
applied and the use of the Laplace transform method is justified. However, for the 
more common case of partial support, superposition is not applicable (even though the 
differential equations are linear) because each component of loading has an independent 
effect on the distance to the point of zero support (Fig. 2). 
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Figure 1. Basic elements of viscoelastic models. 
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I 
Figure 2. Simplified diametral section of a warped slab. 

In their solution of the partly supported slab on a Winkler foundation Harr and 
Leonards (4, 20) assumed linear temperature (or moisture) variations through the 
thickness of the slab, although observations by Teller and Sutherland (15), Lang (31), 
and the Corps of Engineers (32) showed that curved temperature variations represent 
the more usual distribution. This was based on the fact that Teller and Sutherland con
cluded from their observations that linear variations are more critical, and the fact 
that Thomlinson's analysis (33) of a simple harmonic variation in temperature at the 
top surface of the slab (whichresulted in curved temperature variations) gave values 
of computed stresses less than those of Westergaard for a fully supported slab. How
ever, once the solution to a partly supported slab on a viscoelastic foundation was ob-
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tained, it was realized that non-linear temperature (or moisture) variations could be 
more critical than linear variations. 

In summary, realistic analysis of lhtl crilical slrtl!:i!:itl!:i and dt!fltlcliuns lhal dtlvelup 
in concrete slabs on ground due to their weight, superimposed loads, and temperature 
(and/or moisture) variations must take into account at least the following three physi
cal phenomena: 

1. Warping of sufficient magnitude to result in only partial support of the slab by 
the ground; 

2. Non-linear temperature (and/or moisture) variations as a function of slab 
thickness; and 

3. Subgrade reactions that are time-dependent. 

This report presents an analysis that includes all three of these factors. Numerical 
solutions were obtained for the Maxwell and standard solid models for linear (equiva
lent) temperature variations, and for the case where the temperature variations can 
be represented by the combination of a linear and a (symmetrically) curved variation. 
Comparisons are made with the solutions obtained by Leonards and Harr ( 4) and with 
field performance records. On the basis of these comparisons, the utility-of the new 
theory is assessed. 

THEORY 

Assumptions 

1. Homogeneous, isotropic, circular slab with a free edge boundary obeying Hooke's 
law. 

2. The supporting medium is homogeneous and is represented at each point of con
tact by an independent viscoelastic element. 

3. Deflections of the slab are small in comparison to its thickness. 
4. External forces acting on the slab are those due to gravity and/or a uniformly 

distributed load acting normal to the surface of the slab. Inertia forces are neglected. 
5. The slab is subjected to a temperature (and/or moisture) variation with depth 

that is independent of time. The variation in temperature is constant on all planes 
parallel to the upper and lower slab surfaces. 

Notation 

F = 
L = 
T = 
t = 

w = 
Wm,n = 

E 
µ, = 
H = 
y = 
q = 

D 

T (y) 
~T = 

K 
KA 
KB = 

p (t) 

force 
length 
temperature 
time 
deflection, considered positive in the upward direction (L) 
deflection at the nodal point n after mth increment in the value of the 

radial distance to the point of zero deflection (L) 
Young's modulus (F/L2

) 

Poisson's ratio 
slab thickness (L) 
any arbitrary distance from the center of the slab, positive down (L) 
uniformly dis tributed load due to the weight of the slab and/or surface 

loading (F/ L2
) 

E F = flexural rigidity of the slab (FL) 
12(1-µ 2

) 

temperature at depth y (T) 
temperature difference between top and bottom of slab 
spring constant for Winkler foundation or Maxwell model (F/L3

) 

spring constant of upper spring in standard solid model (F/L3
) 

spring constant of lower spring in standard solid model (F /L3
) 

upward reaction on the slab at time t (F /L2
) 



p1 (t) = 
p2 (t) = 

e = 
1' = 
O! = 
>,. = 
r = 
b = 
a = 

tm = 
V (r) = 
M (r) = 

CY (r) = 

v2 r = 

reaction on dash pot at time t (F/L2
) 

reaction on lower sprin~ in standard solid model at time t (F/L2
) 

dash pot constant (Ft/L ) 
dimensionless time factor (Kt/El) 
linear coefficient of thermal expansion (T - 1

) 

distance between two nodal points (L) 
radial distance (L) 
radial distance to point of zero deflection (L) 
ra,dius of slab (L) 
time required for the mth increment in the value of b (t) 
shear at point r (F /L) 
radial bending moment at point r (FL/L) 
radial s tres s at point r (F/ L2

) 

32 1 0 
-- + 
o r 2 r a r 

v
4 

r = { / ; 2 + ; 0\) v
2
r 

Analysis 
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The thermoelastic problem is first reduced to an equivalent elastic problem with 
initial and boundary stresses. Consider a slab that is initially at a uniform tempera
ture. Let the temperature at any distance y from the center of the slab be changed by 
T (y). Stresses will be applied at the boundary to prevent deformationsfromoccurring 
within the slab due to the change in temperature. For the strains at all points to be 
zero (30): 

1 E (crr - µ cra) + O! T (y) = o 

~ (cra - µ crr) + O! T (y) = o 

From Eqs. la and lb, 

(la) 

(lb) 

(2) 

Inasmuch as crr and cre are equal, the values of the stresses in any other direction 
must also equal crr, 

Thus, to prevent deformations at all points within the slab, stresses crr and cra 
given by Eq. 2 must be applied at every point within the slab and at the boundary of the 
slab. However, since the boundary at r = a was initially assumed to be free, the 

radial stress -(~ ~ T µr) must be removed at the boundary. This can be done con

veniently by substituting a statically equivalent force system (which has the same re
sultant force and moment per unit length) along the boundary but of opposite sign. The 
thermoelastic problem is reduced to an elastic problem with a moment at r = a and 
initial stresses at all values of r given by 

M (r)] r a = (1 - µ) f+H/2 
T (y) y dy 

- H/2 

(3) 
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O! E T (~) O! E /+H/2 (. ·t· 1) - ~-~ T ( ) d crr 101 1a = (l _ µ + H (l _ µ) y y 
-H/2 

(4) 

Invoking Saint-Venant's principle (30, 34), the solution obtained using this substitu
tion is very accurate at distances fromthefree edge larger than the thickness of the 
slab. 

The case where temperature increases with the depth of the slab (upward warping) 
is treated in this paper. The slab is divided into zones as shown in Figure 2. Zone 1 
represents the region that is in contact with the viscoelastic foundation. Zone 2 repre
sents the region having no contact with the foundation. 

The differential equation for zone 1 is (35) 

D w + a - = q - p (t) ( 
04.___ 2 o3w 1 °2w 1 ow) 
or4 + ;- or3 - r 2 0r 2 r or (5) 

in which q is the superimposed axisymmetrical load and p (t) is the time-dependent 
subgrade reaction. 

The differential equation for zone 2 is (35) 

ov4w = q 

For the Maxwell model, p and ware related by 

ow 1 ~ p 
rt = K at + a 

For the standard solid model they are related by 

or 

ow 1 ~ _i 
at= KA ot + e 

(6) 

(7) 

(8a) 

(8b) 

The equivalent elastic problem is solved by the finite-difference method. The cen
tral difference equations (36, 37) for the first four partial derivatives are ( X, the dis
tance between nodal pointsT: -

0 8)-----@-@ ar =!! 2X 
2,2 

0-@----0 -=!! --
or2 x2 

as 
= 

or3 - 2X 3 

2,4 (9) - = 7 or4 -
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A diffe~ence equation will be obtained for each of the interior points within zones 1 
and 2. It 1s app~~ent fro~ Eq. 5 _that a singularity occurs at r = 0. The difficulty is 
overcome by writmg the differential equation in rectangular coordinates, 

o4w 2o4w o4w 
-- + --- + -- = 
ox4 ox2 oy2 o y4 (10) 

Taking the same origin for both polar and rectangular coordinates, due to radial sym
metry at r = 0, 

ow - ow ow 
- oy = "Fr ox (lla) 

o2w o2w o2w 
ox2 = oy2 -

ar 2 (llb) 

o4w a4w o4w o4w 
ox4 =-- = = oy4 ox2 oy2 or2 (llc) 

Therefore 

4 o4w = 
_g_ E-fil (at r = 0) 

ox4 D D 
(12a) 

or 

4 o4w =_g__ - p (t) (at r = 0) 
or 4 D D 

(12b) 

Mr n( o
2
w µ ow) 

= or2 + -;- or (13a) 

As r - 0, 
1 ow o2w ---r or or2 

Therefore 

Mr] D (1 + µ) o2w 
= 

or2 
at r = 0 

(13b) 

There are (n + 3) unknowns (Fig. 3); one nodal point at r = 0, n nodal points in 
the slab, and 2 nodal points representing the boundary conditions ; n equations are ob
tained from interior points. At the boundary, two additional equations are obtained. 
For the nodal point that is common to zones one and two, another equation is obtained 
by equating the difference equations for the common point. (Alternately, the summation 
of vertical forces may be equated to zero (38). However, consideration of the differ
ence equation for the nodal point common toz ones 1 and 2 is much simpler from the 
standpoint of obtaining numerical results on the computer. ) Therefore there are as 
many equations as unknowns. 

If n is the nth nodal point, and using the sign conventions as shown in Figure 3, 
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Figure 3. Nomenclature and sign convention for finite difference procedure. 

wn + 2 - 4wn + 1 + 6w n - 4w n - 1 + wn - 2 
).,4 

Taking the downward loading as q for zones 1 and 2: 

D (V4w) = - q + p (t) 

For any nth nodal point the difference equations are given by 

_D_ [wm n+ 2 (2n3 + 2n2
) + Wm n+ 1 (-8n3 

- 4n2 
- 2n + 1) + 

2ns >..4 , , 

Wm, n (12n3 + 4n) + Wm, n -1 (-8n3 + 4n2 
- 2n - 1) + 

H 

t 

(14a) 

(14b) 

(14c) 

(14d) 

(15) 

Wm, n _ 2 (2n3 
- 2n2

) ] = - q + Pm, n (16) 

where m is the mth increment in the value of b, the common point for zones 1 and 2. 
F or zone 2, p = 0 and for zone 1, pis a function of time. 
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The relation of p with deflection and time for a Maxwell element is given by Eq. 7. 
Writing the difference equation for this relation, 

Wm, n - Wm -11 n 
t:,,.tm 

1 (Pm, n - Pm - 1, n> 
= K Atm + e (17) 

where Pm n is the contact pressure at the nth nodal point after mth increment of b and 
Atm is th~ time required for increasing b from (m-l)th increment to mth increment. 
Therefore, 

KAtm 
= <Pm, n - Pm - 1, n) + -0- Pm, n (18a) 

K (wm n - Wm -1 n> 
' ' 

KAtm 
= Pm, n (l + -0-)- Pm-1, n (18b) 

_ K(wm, n - Wm -1, n) + Pm -1, n = 
Pm, n - KAtm 

(1 + -9-) (18c) 

Kw m, n 
Kw P 

m - 11 n + _ ....:m=---1.,_1..;;.n~ 

( 
KAtm) KAtm 

+ 
KAtm) 

(1 e 1 + -e- (1 + e ) 

At t = O, that is, for m -1 = O, Kw0 n = p0 n (initial condition). 
' ' 

The relation of p with deflection and time of the standard solid element is given by 
Eqs. Ba and b. Proceeding in the same manner as for the Maxwell element (38) 

Pm, n = 
1 + 

+ 

(19) 
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At t = 0, that is, for m - 1 = 0, p2 
0 n = 0 (initial condition). 
' 

Difference Equations for Boundary Conditions 

For the shear at r = a to be zero, 

a 
- Dar (V2w) = 0 

or 

for which the difference equation is (n = a/X), 

_ D [ w m, a/X + 2 - 2wm, a/X + 1 + 2wm, a/X - 1 - wm, a/X - 2 
2 X 3 

1 (wm, a/>.. + 1 - wm, a/>.. - 1) 

a2 2X 
+ 

(20a) 

(20b) 

1 (wm, a/>-+ 1 - 2wm, a/X + wm, a/X - 1) ] = 0 (2 l) 
a X2 

For the moment at r = a to be M0 , as given by Eq. 3 

o(a2w + ..I:!. aw) r = a = Mo 
ar2 r or 

for which the difference equation is 

0 
[(wm, a/X + 1 - 2wm, a/X + wm, a/X - 1) + 

x2 

RESULTS 

Computation Procedures 

(22) 

(23) 

It is more convenient to work with increments in b, the radial distance to the point 
of zero deflection and to calculate the corresponding time increment t.t rather than to 
work directly with increments in time. In order to reduce the number of variables 
involved, the solutions are presented in terms of a dimensionless "time factor." 

For the Maxwell model: 

K 
7' = e ~t (24) 
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For the standard solid model: 

T = (25) 

The corresponding time increments can be obtained from a knowledge of the relaxation 
time, K/0. 

The starting point in the computations (t = O) is the solution for a Winkler founda
tion (4). From this value of b, the first increment in b is taken to the immediately 
adjacent nodal point; thereafter, the increments in b equal the nodal point spacing >... 
A decision must be made regarding the number of nodal points to be used in the nu
merical solution. The number must be large enough to give sufficiently precise results 
but not so large as to make the computational procedure too cumbersome. Further
more, the value of A must be small enough so that data can be obtained for a sufficient 
number of r-values to show the effects of the viscoelastic foundation as a function of 
time. 

For a = 240 in., a value of A = 5 in. was selected; that is, a = 48 A. Thus, the 
total number of nodal points is 48 + 1, the nodal point at r = 0. With the two differ
ence equations representing the boundary conditions, the total number of simultaneous 
equations to be solved is 51. A flow diagram (Fig. 4) for the FORTRAN source pro
gram (39) is used in the solution; the complete program is given by Reddy (38). To 
examinethe precision of the result, a comparison of the deflection and stress at r = 
0 for a = 48 A (51 equations), and a = 96 A (99 equations), is given in Table 2. It 
is apparent that A = 5 in. is a sufficiently small increment to give more than adequate 
precision for practical purposes. 

Numerical Results 

Due to the large number of variables involved, it is impractical to present the re
sults as an assembly of charts similar to those prepared by Harr and Leonards (4) for 
the Winkler foundation. Numerical results are available (38) for the following combi
nation of data for the case of linear variation in tempe1·aturewith depth: a = 240 in. ; 
H :: 4

6 
12, and 24 in.;µ = 0.15; a = 6 x 10-5 in./in./°F; .6.T = 30 F; and E = 

3 x 10 and 5 x 106 psi. 
For the Maxwell model the values of K selected equal 100, 200, 400, and 700 pci; 

for the standard solid model computations were made for the ratio KA/Ks equal to 0. 5, 
1. 0, 3. 0, and 10. 0 with KA = 100, 200, 400, and 700 pci. 

For illustrative purposes, sets of three curves giving the deflection, radial stress 
at upper surface of slab, and subgrade reaction as a function of radius and time factor 
for a few combinations of the parameters listed above are shown in Figures 5 through 
10. In spite of an extensive search of the literature, values of relaxation time K/9 ap
propriate to this problem were not found. Therefore, interpretation of the results in 
terms of actual times must await experimental determination of K/0-values. 

li the temperature distribution is nonlinear the procedure is the same, except that 
the initial stresses and deflections (at ,- = 0) must be determined for the case of a 
slab on Winkler foundation with initial stresses and end moments as given by Eqs. 3 
and 4 (40). If the temperature distribution can be approximated by 

T (y) = A y2k + B y (26) 

where, A and Bare constants and k is any positive integer, the solution is greatly 
simplified. Eq. 26 can be separated into two parts: 

T By (27) 

(28) 

Eq. 27 represents a linear temperature distribution whose solution has already been 
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TABLE 2 

COMPARISON OF DEFLECTIONS AND TENSILE STRESS AT r = 0 

b Time Factor Deflection (in . X 10-3) Stress (psi) 
(in.) 

>.. = 5 In. A=2.5In. >.. = 5 In. A=2.5In. >.. "' 5 In. >.. = 2. 5 In. 

175 0.3204 0.3200 
180 1. 540 1. 536 
185 3.560 3.586 
190 6. 662 6.68 
195 11. 01 11.11 
200 17.07 17.17 
205 25. 22 25. 28 
210 36.02 36. 03 
215 50.14 50.10 
220 68. 41 68.38 

Maxwell model: K 200 pci; a 
H = 4 in. 

I T• O 
~ T • 0 .156111 

T ' 0.85184 

2.000 1. 973 527. 0 526. 9 
3.388 3. 389 529.5 528. 8 
5.697 5. 633 538.6 538.0 
9.839 9.573 555.4 556.3 

17.40 16. 93 576.8 580.0 
30.39 29.76 597.3 602.0 
50.96 50.24 611. 7 616.8 
81. 29 80. 74 616.9 621. 7 

123. 5 123. 4 611. 6 615.4 
179.7 180.5 595.3 597.8 

= 240 in.; E = 5,000, 000 psi; AT 30F; and 

E = 5,000,000 PSI 

K = 200 PCI 

li.T = 30°F 

H = 24 IN. 

o.oe 

0 .04 

-+---r°"..-~:c-~8---0::.....~~~-+-- r-- -+-- +----+--+----,f--~ o ~ .,, 
:I: 
u 
z 

-z 
---1------,f-----l -0 .08 ': ... 

u .,, 
_J 

-+---+---+---+----l---+---1--- - -=-....1.--+-=:::;===-...:_--j_o 12 ::; 
0 

-l---+---+---+----lf--- -l---1----1---+---+- --+----+---i-O 16 

-+---+---+---+-- --l---+---1----1---+--- -+--+----+---i-0.20 

240 220 200 180 160 140 120 100 80 60 40 20 0 

RADIAL DISTANCE,r, IN INCHES 

Figure 5. Deflect i on curves for s l ab on Maxwell foundation. 
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E • s,000,000 PSI 
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280 

f 
AT • 30"F 

H • 24 IN, 
'!: 
., 240 .. 
.: r • 0,88101 
l'; t oo 
"' " s 
al 

16 0 
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"' 
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>- 120 -.. 
"' "' "' QC 
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"' BO _, .. 
~ 
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4 0 

r 220 200 180 160 140 IZO 100 80 •o 40 20 

RADI AL DI STAN CE, ,, IN INCHE S r 
Figure 6. Radial stre sses for s lab on Maxwell foundation. 

0 
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K = 200 PCI 

6T = 30° F 2 
iii 

T: 5.0 571 H = 24 IN . a. 

~ 
r= 3.7884 
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T: 1.8523 
j:: 
0 
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6 
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°' l,J 
0 
<( 
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8 
m_ 
::, 
VI 

T = 0 .15615 

10 
200 180 160 140 120 100 80 60 40 20 0 

RADIAL DISTANCE, r' IN INCHES 

Figure 7. Subgrade reaction f or s l ab on Maxwell foundation. 
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T: 2 .4167 

T= 1,0009 

T = 2.4167 

T=l .0009 /1 , 
T: 0 .50288 /-y, -

T: 0 .22575 . 1 
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Figure 10 . Subgrade reacti on and p2 for slab on st andard sol id f oundat ion . 

given. Eq. 28 gives a temperature distribution that is symmetrical about the mid
depth of the slab. The boundary moment (Eq. 3) is, therefore, zex·o; hence, this tem
perature distribution produces only initial stresses (Eq. 4) and no additional warping 
of the slab results. Because there is no change in geometry, the effects of the tem
perature distributions defined by Eqs. 27 and 28 are directly additive. For example, 
with a = 240 in.; H = 12 in.; K = 200 pci; E = 5,000,000 psi: 

T()=~-~ 
y H H2 

(29) 

the initial stress due to the temperature distribution given by Eq. 28 equals (Eq. 4): 

[- T (y) + 
+H/2 ] a r (initial) aE 1 J T (y) dy = 1- µ H = 

-H/2 

aE [+ 30y2 (.!..) (30) Hs] 
1-µ H2 H H2 12 

(30) 

for y = -6 = -: (top surface of slab): 
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()'r (ill. 1·t1"al) = O! E ( ~ - 30 ) - (6 X 10-G) (5 X 100) ( 30) = 176 5 ps1· 
1 - µ + 4 12 - 0. 85 + 6 .. 

(tens10n) 

Therefore, a tensile stress of 176. 5 psi is added to the stresses obtained for the 
linear temperature distribution (at y = -6, top surface of slab) for all values of r and 
-r. The deflections are identical with those obtained from the linear temperature dis
tribution. 

DISCUSSION OF RESULTS 

Figure 11 shows the effect of the type of model assumed for the subgrade support on 
the maximum tensile stress in the slab. For a 24-in. slab on a relatively weak sub
grade, the Maxwell model results in a very large reduction in the maximum tensile 
stress (compared to a Winkler foundation) at a time factor equal to 5. For large 
values of KA/KB, the standard solid model tends towards the Maxwell model; at very 
small values of KA.IKB the standard solid model tends towards a Winkler foundation. 
Thus, in general, the Winkler foundation and the Maxwell model bracket the range in 
tensile stress likely to occur due to viscoelastic effects in the subgrade. An appropriate 
standard solid model may be assumed to approximate relaxation effects, as suggested 
by Freudenthal and Lorsch (24). 

The effect of time on the maximum tensile stress in the slab is shown in Figure 12 
for a weak subgrade, and in Figure 13 for a relatively strong subgrade. Two impor
tant deductions can be made: 

1. Viscoelastic effects in the subgrade cause important reductions in maximum 
tensile stress with time in the case of thick slabs; for thin slabs , relaxation effects 
are relatively minor and may even result in an increase in the maximum tensile stress 
with time. 

2. For thick slabs, the maximum tensile stresses are significantly lower for slabs 
on weak subgrades as compared with strong subgrades. 
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Figure 11. Effect of subgrade support on maxi.mum tensile stress . 
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Figure 13. Effect of ti111e on tensile stress at center of slab-standard solid model. 

Pending experimental verification of the theoretical results, it appears that the 
combination of a thick slab and a weak subgrade will combat the detrimental effects of 
warping most successfully, as shown by Figure 14 where the ratio of the tensile stress 
at the center of the slab to the modulus of rupture is plotted for the three subgrade 
models as a function of the modulus of subgrade reaction. For the two viscoelastic 
models, values of 'T were selected so that relaxation is virtually complete (i.e., the 
slabs have sunk into the ground until they are almost fully supported by the subgrade). 
Assuming that the standard solid model is a reasonable approximation to reality, it is 
seen that for thinner slabs little benefit is obtained as the stiffness of the subgrade 
is increased. This is compatible with performance records obtained at the AASHO 
Road Test (3). For thick slabs, increased subgrade stiffness is detrimental. 

For a given temperature difference between the top and bottom of the slab, a non
linear temperature distribution results in larger tensile stresses than a linear tem
perature distribution if the gradients in the top half of the slab thickness are larger 
than in the bottom half (for the case of upward warping) and vice versa for downward 
warping. Since this type of non-linear temperature distribution commonly occurs in 
practice (15, 31, 32), the non-linear case is critical from a design standpoint. 

The analysis presented herein is sufficiently general to provide a sound basis for 
significant field experiments. Procedures are available to measure temperature 
gradients and degree of subgrade support (20); in fact, considerable data on tempera
ture variations have already bee11 accumulated (15, ~' 32). Measurement of the 
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equivalent effect of transient moisture gradients is a more difficult problem, but 
considerable progress has recently been made in this connection (41). Experiments 
to determine the parameters KA, KA/KB, and KBf8 would permita full appraisal of 
the practical utility of the theory presented. Extension of the analysis to account for 
the effects of moving loads over (partly supported) warped slabs, and for creep effects 
in the slab itself, would establish the final link between theory and reality in the con
crete pavement design problem. 

CONCLUSIONS 

1. On the basis of the assumptions stated herein, a theory has been developed 
whereby the stresses, deflections, subgrade reaction, and degree of subgrade support 
can be computed for finite slabs subject to: (a) warping due to linear or non-linear 
temperature and/or moisture variations of sufficient magnitude to result in a partly 
supported slab; and (b) subgrade supports consisting of a Winkler foundation or a 
standard viscoelastic element. 

2. Regardless of the type of subgrade support, thick slabs on weak subgrades de
velop significantly lower (30 to 80%) tensile stresses due to warping than do thin slabs 
on weak or strong subgrades, or thick slabs on strong subgrades. Thus, the com
bination of thick slabs and weak subgrades will combat the detrimental effects of 
warping most successfully. 

3. Viscoelastic effects in the subgrade cause large reductions in the maximum 
tensile stress with time in the case of thick slabs on weak subgrades; for thin slabs, 
relaxation effects are relatively minor and may even result in an increase in the maxi
mum tensile stress with time. 

4. For a given temperature difference between slab surfaces, non-linear tem
perature (or moisture) distributions result in larger tensile stresses than linear tem
perature distributions if the gradients in the top half of the slab are larger than in the 
bottom half (for the case of upward warping). Since such non-linear temperature dis
tributions are commonly encountered in practice, the non-linear case is critical from 
a design standpoint. 

5. Although predictions based on the new theory are in qualitative agreement with 
performance records, field experiments are needed (including measurement of the 
significant parameters involved) to permit a full appraisal of its practical utility. 
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