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Some important properties of these 
packingG arc given in Table 1. 

The coordination number is the number 
of contacts that a typical sphere makes 
with its neighbors. The unit cell may be 
defined as that smallest portion of the 
system which gives a complete represen­
tation of the manner of packing. Graton 
and Frazer (32) discuss this for each 
type of packing. Reference is also made 
to other properties of these systems, 
such as the interfacial angles of the unit 
cells. 

Type 

TABLE 1 

PROPERTIES OF REGULAR 
PACKINGS OF UNIFORM SPHERES 

Void Porosity Coordination Layer 
Ratio (% ) No. Spacing 

Cubic 0.91 47.64 6 
8 Orthorhombic 0.65 39.54 

Tetragonal-
spheroidal 0.435 30.19 

Rhombohedral 0.35 25.95 

aCase 2 . c e ase 3. 

10 
12 

The rhombohedral system is the most important theoretically, and usually is the 
basis for calculations. It is also the most important from a practical viewpoint, be­
cause it is the densest possible state. 

In the Case 3 type of rhombohedral packing , each sphere is in contact with four 
spheres below, four above, and four in the same layer. In Case 6, each sphere has 
contact with three below, three above, and six in the same layer. 

In the rhombohedral system, there are two types of voids: 

1. Concave-cube void formed by six spheres of which four form a square, one lies 
in the hopper produced, and the sixth lies vertically below it; and 

2. Concave-tetrahedron void formed by four spheres, one of which lies in the hopper­
like depression formed by the other three. 

The number of concave-tetrahedron voids is twice that of concave-cube voids in the 
rhombohedral system, but the distribution differs in the two cases. All voids are in­
terconnected in such a way that the largest sphere that can pass through the circuit 
has a radius of (2/ /3 - 1) R (39). 

Graton and Frazer (32) show that there are several alternative arrangements of 
Case 6 packing analogous to multiple twinning in r.rystallography. This results from 
the fact that the unit of the rhombic layer (Fig. 1) has two hollows into either one of 
which a sphere may be placed. 

The stability of the systems increases as the porosity decreases . The cubical 
system is the least stable, because each sphere is delicately supported at one point 
below and is only prevented from toppling by lateral support provided by the four neigh­
boring spheres in the same layer. The orthorhombic and tetragonal-spheroidal sys­
tems have more stability, because each sphere has two points of support from below 
as it rests in the cusp formed by two adjacent spheres. A force having a component 
perpendicular to the plane of this cusp will tend to topple it. The rhombohedral sys­
tem has complete stability: in Case 6 each sphere rests in the hopper- like depression 
formed by three spheres, whereas in Case 3 each sphere rests in the hopper- like de­
pression formed by a square of four spheres. If Case 1 packing is disturbed slightly, 
it may pass through Case 2 to Case 3. This happens when each sphere leaves its posi­
tion at the top of a lower sphere and falls into an adjoining cusp and thence into an 
adjacent hopper. In a similar manner, Case 4 may pass into the Case 5 state and 
finally into Case 6. 

The cubical packing has the greatest potential energy, whereas the rhombohedral 
has the least. Because bodies try to attain the position of least potential energy, these 
systems tend to form the rhombohedral state, especially if a mechanical disturbance 
is applied to the system. However, the side walls of the container act against this 
tendency by preventing any lateral spreading of the system. 

The question of the relative stability of a system is only one of the factors influencing 
the formation of a given packing. The relative stability concerns the vertical relation­
ships, but there are other conditions which influence the horizontal relationships. 

If equal spheres accumulate on a horizontal surface, there will be a strong tendency 
for a simple rhombic arrangement to show itself in the first layer (32). If this occurs 
there is considerably better than an even chance that this pattern will propagate upwards 
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to form Case 6 packing. It is, of course, highly unlikely that this will continue without 
interruption. There are bound to be many regions of haphazard packing, each such 
region being initiated by a sphere getting into the wrong place. Thus, in the building-up 
of the assemblage, there is a conflict between the tendency to form Case 6 packing and 
the tendency to produce haphazard packing. Haphazard packing may, purely by chance, 
result in a systematic or repetitive arrangement in some regions. Therefore, the 
probability is that the resulting assembly will consist of three-dimensional colonies of 
Case 6 packing and of intervening regions of haphazard arrangement. 

There is an optimum rate of assembly to give maximum regularity of arrangement. 
Obviously, rapid dumping is unfavorable. 

The angle which the side wall makes with the bottom influences the packing forma­
tion. A 90° angle will favor Cases 1, 2, 4, and 5; a 60° or 120() angle favors Cases 2 
and 3, whereas a 70° 32' or 109° 28' angle favors Case 6. Thepackingisalsoinfluenced 
by the angles which the side walls make with each other. A 90° angle favors formation 
of the square pattern and, hence, Cases 1, 2, and 3. Intersection of the side walls at 
60° with themselves and at 90° with the bottom favors Cases 4 and 6. Intersection of 
the side walls at 60° with themselves and at 70° 32' with the bottom strongly favors 
Case 6 packing. 

The walls of the container give rise to a wall effect which causes the porosity in the 
vicinity of the wall to be greater than that in the body of the packing. This effect has 
been studied by Furnas (28) who obtained an expression for the voids, Vw, present in 
a ring at the wall of arearr d D / 2: 

V w = { V + K ( 1 - V) \ ( l + ;Kd ) _ 2~d ( 1 ) 

in which d is the diameter of the particles, D is the diameter of container, V is the 
voids present in the interior, and K is an experimental factor found to be 0.3. The 
wall effect increases as the ratio d/ D decreases. 

If the wall effect may be neglected, the density of the system will be independent of 
the absolute size of the spheres. This is confirmed by the experimental studies of 
Westman and Hugill (94). 

Kolbuszewski ( 49 )carried out experiments on the effect of the rate of pouring of 
sand on the resulting porosity. As the rate of pouring from a given height decreased, 
the porosity decreased to a limiting value. This value itself decreased withincreasing 
height of drop up to a certain height. 

Systematic Packing of Spheres of Different Sizes 

Horsfield (37) calculated the decrease in porosity resulting from the insertion into 
the voids of the rhombohedral system of successive spheres just large enough to fill 
the voids. The spheres filling the concave-cube voids are termed secondary spheres, 

TABLE 2 

EFFECT ON POROSITY OF 
SPHERES INSERTED IN 

VOIDS OF RHOMBOHEDRAL SYSTEM 

Sphere 
Type 

No. of Radius a Porosity Spheres 

Primary 
Secondary 
Tertiary 
Quaternary 
Quinary 
Filler 

1 
0.4142 
0.2247 
0.1766 
0.1163 
0.0000 

aPrimary radius= 1 . 

1 
1 
2 
8 
8 

25.95 
20.69 
19.01 
15.74 
14.81 

3.84 

whereas those filling the concave-tetra­
hedron voids are tertiary spheres. The 
quaternary spheres are inserted in the 
largest voids left after the secondary and 
tertiary spheres are in place, and so on 
through the different types. The results 
are given in Table 2. Of course, it is 
impossible to attain practically a system 
packed in such a manner. 

Hudson (39) imagined the voids of the 
rhombohedral system to be filled with S 
spheres of equal radii, r, arranged in cubic 
symmetry. He calculated the density in­
crement for values of Sup to 27 (22, 39). 
The densest state was obtained when each 
concave-cube void contained 21 spheres 
with r = 0.l 782R (in which R is the radius 
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of the primary spheres) and each concave­
tetrahedron void contained 4 spheres 
with r = 0.1547R. 

Dense Random Packing of 
Unequal Spheres 

Wise (101) studied mathematically a 
dense random packing of unequal spheres 
which is more representative of a real 
densely packed syste m than the preceding 
systematic models. This randompacking 
is obta ined in the following manner. 

A large sphere A is taken and other 
smaller spheres are placed on its surface . 
The first and second spheres must touch 
each other and also A. Every new sphere 
must touch A and at least two others that 
touch each other. Figure 2 shows what 
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is seen looking out from A. If the center 
of a sphere D is joined to the centers of 
the spheres around D, a network of tri­
angles is formed, each of which lie s in a 
different plane. These triangles are the 

Figure 2 . D2nse random packing of unequal 
spheres (.!2..:1;) . 

faces of a polyhedron with the centers of 
the spheres as its vertices. If these vertices are joined to the center of A, the whole 
space inclosed by the polyhedron is partitioned into tetrahedra associated with the 
given sphere D. Wise sets up a probability distribution function w for the four radii 
in each tetrahedron and deduces general equations for w. The properties of the packing 
are expressed in terms of w. 

In the special case in which the logarithms of the radii of the spheres follow a norma l 
distribution of standard deviation, a = 0.4, the mean rauius is 1.08 and the mean porosity 
of the packing is 0.2. The mean number of spheres in contact with a sphere of given 
radius can also be calculated and is shown in curve C of Figure 3. 
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Figure 3. Dense random packi ng of spheres having rad ii obeying a l og- normal dis tribu­
tion of standard devi ation a = o.4 ( 101). 
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Wise's main concept of tetrahedra is used by Kallstenius and Bergau ( 4 6) in deter­
mining by a graphical method the structure resulting from a random assembly of grains. 

Another type of random packing was theorized by Brandt (7) and used in the calcula­
tion of the speed of a dilatational wave through a granular system. The primary spheres 
are packed randomly to a porosity, n, and smaller uniform spheres are packed to the 
same porosity in the voids of the primary system. Still smaller spheres are packed 
to the same porosity in the remaining voids and so on. 

REAL GRANULAR SYSTEMS 

In a real granular system, the coordination numbers of the spheres vary according 
to the position of each sphere. 

W. 0. Smith ( 82) suggested a simple method to determine the average coordination 
number, N, of a system having a certain porosity, n. N is considered to decrease 
linearly as the porosity increases from 25.95 percent (rhombohedral system) to 47.64 
percent (cubic system). N can, therefore, be obtained by interpolation between the 
corresponding values of 12 and 6. 

rJ) 
w 
Ct'. 
w 
:::r: 
Q_ 
(/) 

l.J.. 
0 
01 
2 
_J 

~ g 
1,..1.. 
0 
I-z 
w 
u 
ex 
w 
Q 

~'igure 4. 

If) 

20 A w 

A P= .36 a:: 
10 w 

I 
0 B n. 

cf) 

40 10 LI.. 

!IJ 0 0 

C Ol 

20 40 z 
10 30D 

_J 

0 20 i 
30 10 ~ 

l.J.. 

E 20 0 0 
r-

10 P=.45 z 
0 

w 
u 

4 5 6 7 8 9 10 11 12 (Y 
Ld 

COORDINATION NUMBER n. 

Distribution of coordination number at several porosities 

Z 12 
a::'. 
~ II 
~ 

~ 10 
z 9 0 

tr z 
0 
Dr!'. 
0 

7 
0 6 u 

0.25 0.30 

0 DENOTES EXPERIMENTAL 
POINTS 

0 

0 

0 

0.35 0.40 0.45 0.50 
POROSITY n 

( 83) . 

Figure 5. Average number of contacts per sphere, N, as function of porosity n (83) . 
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Later W. 0. Smith et al. ( 83) determined experimentally the coordination numbers 
in a well packed aggregate of lead shot for various porosities. At a given porosity, 
the number of spheres having a given coordination number varied according to a Gaussian 
distribution (Fig. 4). At a porosity of 36 percent, the greatest number of spheres had 
a coordination number of 8, and the values of N ranged from 4 to 12. As the porosity 
increased, there was a shift toward the lower coordination numbers, as may be expected. 
These authors thought that the actual system might for statistical purposes be treated 
as composed of separate clusters of rhombohedral or cubic arrangements, these being 
present in such a proportion as to give the observed porosity of the assembly. This 
consideration leads to the following expression for the average coordination number, 
N, in terms of the porosity, n: 

N = 26.4858 - 10. 7262 
1 - n 

(2) 

The curve representing this is shown in Figure 5 and agrees well with the observed 
experimental values. 

MECHANICAL BERA VIOR OF GRANULAR SYSTEMS 

A theoretical model for determining the mechanical behavior of a granular system 
is an arrangement of discrete spheres in direct elastic contact with one another. 

Contact Theory 

The classical Hertz theory of contact predicts that when two elastic spheres in con­
tact are compressed by a force, N, along their line of centers , there will be a plane 
circular area of contact ( 91). The radius, a, of this circle is assumed to be small 
compared to the radius, ~ of either sphere and is given by 

a = (0NR) 1/a (3) 

in which 

e = 3(1 - v 2 )/4E (4) 

and v and E are Poisson's ratio and Young's modulus, respectively, of the spheres. 
The normal pressure a at distance, p, from the center of contact ( o ""a) is given by 

3N ( 2 2)½ a = ~a-p 
2 rr a 

(5) 

which is a parabolic distribution (Fig. 6). The relative approach O!. of the sphere 
centers is 

O!. = 2 (8~)¾ 
R½ 

from which the normal compliance C of the contact is 

1 - !I 

2 µ a 

(6) 

(7) 

in which u is the shear modulus of the spheres. As apparent from Eqs. 3 and 6, a and 
O!. do not vary linearly with N. This fact introduces mathematical difficulties. 

If the normal force, N, is kept constant and a tangential force is applied in the plane 
of contact and gradually increased from zero to T, slip will start at the circumference 
of the circle of contact and progress radially inward covering an annular area. The 
inner radius, c, of the annulus of slip was found by Mindlin (56) to be 
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Figure 6. Distribution of normal, a, and tangential, T, components of traction on con­
tact surface of two like spheres subjected to normal force followed by monotonic 

tangentia,l force ( 22) . 

(8) 

in which f is the coefficient of static friction . The relative tangential displacement , o, 
of the centers of the spheres is 

0 = 3 ( 2 - l)) fN [ 1 - ( 1 - ~ ) %] 
8 u a fN 

The tangential compliance of the contact is 

S = do = ~ 
dT 4 u a ( 

T )- 1/a 1-­
fN 

On the annulus of slip, the tangential component of traction, T, is assumed to be 

(9) 

(10) 

T = fa (11) 

As the tangential force T approaches fN, Eq. 8 shows that c tends to zero. When 
T = fN, rigid body sliding occurs. 

It is important to note that the tangential compliance S is of the same order of mag­
nitude as the normal compliance C. 

If the tangential force acting on the two spheres under consideration is gradually 
reduced from a peak value T 1 ( 0 < T 

1 
< fN), an annulus of counter slip will be formed, 
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starting from the edge of the area of contact, and will gradually spread radially inward. 
Its inner radius was found by Mindlin et al. ( 58) to be 

( 
T1 - T ) 

1

/
3 

b = a 1-~ 

The corresponding relative displacement of the centers of the spheres during 
unloading is 

[ 
3/ o/ ] 0 = 3(2-v)fN 2 ( 1 -~) 

3
_( 1 _T1 ) 

3
_ 1 

u 8 µ, a 2fN fN 

(12) 

(13) 

This is shown by curve PRS in Figure 7. When T decreases to zero, there will remain 
a residual displacement, oR, and a certain annulus of slip. (This can be seen by setting 

T = 0 in Eq. 12, T = T 1 in Eq. 8 and noting that b - c > 0.) This indicates that the 
system is not elastic. The permanent set can be removed only by applying a tangential 
force in the reverse direction. When T = -T 1 , b = c; that is, the slip has been annulled. 
An oscillation of the applied tangential force between the values T 1 and -T 1 causes the 
closed hysteresis loop PRSUP to be followed. 
The area inclosecl in the loop represents the frictional energy F dissipated in each 
cycle of loading: 

F 
9 ( 2 - v ) ( fN) 2 

10 .u a { ( 
T )% 

1 - 1 - fJ 

(14) 

For small amplitudes of loading (i.e. , 
T1/ fN « 1) Eq. 14 reduces to -

F = ( 2 - v) T/ 
36 u afN 

( 15) 

The conclusions of this theory have 
been verified experimentally except for 
Eq. 15 in which F was found to vary as 
T 1 

2 instead of T i3. This discrepancy may 
be explained by supposing that at small 
values of T 1 , energy is dissipated as a 
result of plastic deformation of a small 
portion of the contact surface ( 2 2). 

The two spheres are generally sub­
jected to varying normal and tangential 
forces (i.e. , a varying oblique force) 
when the granular system of which they 
are a part is acted on by varying external 
forces or is in a state of internal vibra­
tion. In such cases, as mentioned by 
Deresiewicz (22), the relation between 
the instantaneous tangential forces and 
displacements depends not only on the 
initial state of loading but also on the 
entire history of normal and tangential 
forces. 

T 

p 

.--6 

s -T. I 

Figure 7. Theoretical hysteresis loop 
sho,ring re l ative tangentia l displacement, 
(j, of centers of' two spheres due to 

n ormal force (22 ). 
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Moreover, a variety of phenomena are involved which depend upon: whether either the 
normal or the tangential force is held constant while the other varies; whether they 
both vary and whether the sense of variation is such that one increases while the other 
decreases, both increase, or both decrease; whether the relative rate of change of the 
two forces is greater or less than the coefficient of friction; whether the immediately 
preceding history of loading was in the same or in the opposite sense as the current 
loading. 

Deresiewicz (22) gives the solutions (i.e. , the tangential compliances) for oblique 
forces applied in a certain manner, including the oblique force which maintains a con­
stant direction but oscillates in magnitude between equal values-a problem connected 
with a vibration of a granular system. Deresiewicz also outlines the solution to the 
case of a twisting couple applied about the line of centers of two spheres in contact. 
The spheres are compressed by a constant normal force. The results are similar to 
those presented previously for a tangential force applied to the two spheres at constant 
normal force. 

Velocity of Waves Through Granular System 

To determine the velocity of compressional waves through a granular system, the 
grains have been assumed to be in elastic contact with each other and contact theory 
has been used. 

Hara (34) studied the propagation of compressional waves of long wavelength in a 
system ofequal spheres of cubic and rhombohedral (Case 3) arrangements. The direc­
tion of propagation was taken to be parallel to one of the edges of the unit lattice. The 
spheres were imagined to be replaced by mass-spring systems in series, in which the 
stiffness of each spring was computed from Hertz's theory of normal contact. If N is 
the normal f0rce at each contact and R is the radius of each sphere, the velocity, Ci, 
of the compressional waves was found by Hara to be propor tional to (N/R2)1/ 5

• If the 
system is acted on by its own weight only, C1 is proportional to the sixth root of the 
height of the system. 

Gassmann (30) considered a rhombohedral (Case 6) system of equal spheres, each 
of radius, R. Taking as the origin the center of a sphere in the topmost layer (zero­
layer) and taking the z-axis vertically downward, the following equations give the co­
ordinates of the center of the sphere in the kth layer: 

R I k ' x = 2 I_ 4i + 2j + ( - 1 ) + 1 j ( 16) 

y = 1 R [4j + ( - 1 ) k + 1] 

z = 

in which i and j are arbitrary integers. 

216 
Rk 

3 

(17) 

(18) 

Gassmann assumed there was zero pressure between spheres in the same layer and 
that a given sphere was subjected only to the weight of the spheres lying above it. The 
variations of the stress from its initial value are assumed to be small enough that the 
increments in the components of stress and strain are linearly related. If the number 
of layers and spheres is sufficiently large, the system at its initial state of stress can 
be considered a homogeneous anisotropic porous solid with the symmetry of Voigt' s 
class No. 26 of crystals (53). In other words, the system has transverselyisotropic 
symmetry (53) , all directions perpendicular to the z-axis being equivalent with respect 
to elasticit~ The matrix of the elastic constants is 

C1 C1 - 2Cs C2 0 0 0 
C1 - 2Cs C1 C2 0 0 0 

C2 C2 Cs 0 0 0 
0 0 0 C4 0 0 
0 0 0 0 c4 0 
0 0 0 0 0 Cs 
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(19) 

Nk is the normal force on the contact between spheres of the kth and (k + 1 )th layers. 
If no load is assumed above the first layer 

1T 2 
Nk = 3 R pg z (20) 

assuming the density of the air filling the voids to be negligible in comparison with the 
density, p, of the spheres; g is the acceleration due to gravity. The partial differential 
equations of wave motion through the system can be obtained by substituting the elastic 
constants obtained previously into the general equations of motion of an elastic solid 
(53), assuming the wavelength to be large compared with R. The solution (30) gives 
the velocities of propagation of plane waves through the system. There exist in general 
three distinct wave velocities, corresponding to three different waves. Each velocity 
depends on the direction of wave propagation. 

Gassmann calculated the variation of the largest velocity with depth using the elastic 
constants of granite and taking the z-axis as the direction of wave travel. The velocity 
varied as the sixth root of the pressure. 

Deresiewicz (22) discusses the experimental work on the relation between the ve­
locity, the pressure and the percentage of water filling the voids. 

Brandt (7) considers a system of several sizes of spheres randomly packed. His 
model is clo ser to an actual granular system than are the regular models assumed by 
others. The largest (primary) spheres, of number, K11 and radius, R1, are assumed 
to be randomly packed to a porosity, n. The number, K1 , is taken to be large enough 
that the wall effect of the in closure may be neglected. The volume V of the inclosure is 

V == 4 rr K1R1 3 

3(1 - n) 
(21) 

Secondary spheres (K 2 in number and of radius, R 2 ) are assumed to be packed ran­
domly in the voids of the primary system to the same porosity, n. In a similar manner, 
tertiary spheres are packed in the remaining voids, and finally quaternary spheres are 
randomly packed in the spaces that are left. If R./R. 

1 
is large enough 

1 1 + 

(22) 

in which Vi is the total true volume of the ith set of spheres. This relation has been 
shown experimentally by Furnas (29) to be approximately true when R/Ri + 1 ;,: 5. 

If the volume of the inclosure containing the granular system is decreased so that 
the spheres deform, and ~1 is the decrease in the radius of each primary sphere, the 
new volume of the inclosure is 

V _ 4 1T K 1(R1 - t.1)3 _ 4 1T Kil{/ 4 rr K1R/ t.1 (23) 
11 

- 3(1-n ) - 3(1-n) - (1 - n) 

neglecting terms involving t./ as is done in the Hertz theory of contact. The decrease 
in the inclosure volume is 

The decrease in the volume of the spheres is of the order of t::,. 1
2 and may be neglected. 

Hence, V d may be taken as the decrease in void volume, that is, the decrease in the 
bulk volume of the secondary system of spheres resulting in a decrease t::,. 2 in the radius 
of each secondary sphere. Repetition of this reasoning gives the relation 
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A 2 1 
A 1 nU 

= (25) 

in which U = R 1/R2• Assuming U = R/Ri +1 (i = 1, 2, 3, 4), this procedure yields 

1 

(nU)i-1 
(26) 

Brandt then considers a case where the flexible inclosure of the granular system is 
subjected to an all-round pressure, p

0
, while a liquid is introduced at a pressure PL" 

An energy balance may then be set up in which the energy, ET, required to decrease 
the bulk volume of the system is equated to the sum of the energy, Es, used in de for ming 
the spheres and the energy, EL, employed to compress the interstitial liquid: 

and 

E 
T 

= 

4 Ai 
Es = ~ NKi f Fidx 

i = 1 0 

(27) 

(28) 

in which N is the average coordination number of the spheres and is assumed to be the 
same for the four sets, which are packed to the same porosity, n, and Fi is the aver­
age force at the contact of a sphere in the ith set. The energy balance gives rise to a 
cubic equation in F1. The approximate solution obtained by Brandt after insertion of 
the experimental value N = 8. 84 is 

2.34 R/ ( p0 - PL) 
F 1 = ------'------'--- ( 29) 

C [ l + 30.75B
3
/
2 

( 1 : 1/)] 
rp E (po - p L) ½ 

in whic h Bis Lhe bulk modulus of the liqLLid, 11 is th Poisson's 1:atio of the spheres 

and (C©)½ = 2/ 3n½, approximately. From this value of Fi, ll. 1 and the new bulk 
volume Vn of the s ystem can be determined . V11 , can in turn be used to find the 
speed Cct of a dilatational wave in the system from the known equation 

C == [ 3g ( - V dp ) ( ~ ) ] ½ 
d p dV 1 + 11 

in which p is the density of the total system including the interstitial Quid. 
For a system with air in the voids (its density being neglected) Brandt obtains 

C - [ 2g 
d - 3pn(l-n) ( 

~ )] '/2 
P01/s 

1 + I/ l/ 
K's 

(30) 

(31) 

at low pressures, K being a constant. 1/. 
Experimental data support the theoretical result of the proportionality of Cct to P0 ° 

al low pressures but depart from ll a l high pressur s . The point of transition between 
lhe behavior at low a nd high pressures probably 1•epresents the upper limit of a pplica­
bility of lh lassical Hertz tb ory of contact (22) . 

Although the theor tical r suit of Hara, Gassma.nn and Brandt are in qnalitative 
agreement wilh these experimental data, th y predicl valu s of the velo ity of wav prop­
agation less than those obtained by experiment because they consider only th normal 
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components of the forces at the points of contact and neglect the tangential components. 
Because the tangential stiffness of a contact has the same orcier of magnitude as its 
normal stiffness, it must be considered. This has been done for certain idealized 
granular systems. 

Stress-Strain Solutions for Idealized Granular Systems 

Tangential forces or twisting moments at the contacts between the grains of a granular 
system cause the load-displacement relations to be nonlinear and inelastic. Therefore, 
the mechanical response of the system depends not only on the initial loading but also 
on the history of loading and the stress-strain relations at any point of t he sys tem must 
be expressed as increments of stress related to increments of strain. 

Duffy and Mindlin (23) obtained a solution for a rhombohedral system (Case 3) of 
spheres subjected to £certain simple program of loading. The s ystem is assumed to 
be initially subjected to an isotropic compressive stress, a0 . An arbitrary incremental 
stress, small in relation to a0 , is then applied. The initial contact forces are allpurely 
normal and equal to each other. Also the compliances are nearly the same for all the 
contacts. The incremental stress-strain relations obtained are 

dau = Cud(u + C12d(22 + C12d( 33 

da22 = C12d(11 + C11d(22 + C12d(33 
da33 - C12d1:11 + Cu.<lt"!!:! + C11d€33 (32) 
da23 = 2C44d(33 
da1a = 2C44do3 
da12 = 2C44do2 

in which 

C = 2 ( 4 - 3 11) C = 2C = 4 - 3 11 ( 3 µ 
2 

ao ) 
1
/a 

11 11 12 44 2 _ II 2 ( 1 _ V ) 2 
(33) 

The equations are referred to rectangular coordinate axes parallel to the edges of the 
unit cube of the system. The form of these relations corresponds to those in a crystal 
with cubic symmetry. From them, the velocity of wave propagation may be derived, 
assuming that the variations in the stress accompanying the propagation are small com­
pared to the initial stress in the system. Strictly speaking, integration of Eq. 32 should 
be limited to increments in which the stress remains isotropic. When this is not the 
case, the compliances will vary from contact to contact and it will become necessary 
to consider the history of loading of each contact. 

Duffy and Mindlin (23) have also obtained solutions for the case when he system is 
subjected to a loading giving rise to an isotropic pressure, a0 , and a uniaxial pressu1·e, 
aa, parallel to one of the edges of the unit cube. The subsequent increments in loading 
are supposed to be variations in either a0 or aa. The differential stress-strain rela­
tions have the same form as lhose of a tetragonal crystal with six independent elastic 
moduli. In this case, there are two types of contacts, each with a different loading 
history. 

MECHANICAL RESISTANCE PROPERTIES OF GRANULAR SYSTEMS 

As a result of Coulomb's studies, the shearing strength, s, of a granular system is 
commonly expressed as s = a tan ¢ in which a is the normal pressure on the failure 
plane and ¢ is the so-called angle of internal friction. The resistance to shear is due 
to a combination of effects, including sliding friction, rolling friction and interlocking 
( 88). Tan r/J, the shearing strength per unit normal stress, is not constant but depends 
on a number of factors. Methods of measurement of tan ¢ and their comparative merits 
are discussed in various references (9, 12, 41, 51, 70, 74, 80, 87, 93 ). 

Dependence of Tan¢ on Void Ratio 

At a constant normal stress, tan ¢ (i.e. , peak value) increases as the initial void 
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ratio decreases. When a dense granular system is sheared, it expands, because the 
closely interlocked grains need sufficient space to be able to roll or slide over one 
another. The increase in volume means that work is done against the normal pressure 
which reflects itself in a higher tan ¢. In a loose system containing many arches, the 
volume will decrease during shear as the arches are broken down and the grains rear­
range themselves to a denser state. Eventually the critical void ratio is attained at 
which shear continues at constant volume (14, 88). Winterkorn suggests that in shear, 
granular systems behave as macro.meritic liquids (98). The comparison with ordinary 
molecular l iquids gave rise to the following formula(lOO) : 

tan¢ = 
C' (34a) 

V - Vmin 

which is equivalent to 

tan¢ = C (34b) 

in which C' and Care constants, e is the void ratio, Vis the volume of the system in 
the given state, and emin and V min are the corresponding values with the system in the 
densest possible state. Winterkorn's formula is verified by comparing its predictions 
with experimental data obtained by various workers. 

Idel (42) considered a generalized rhombohedral system (Case 6) of equal spheres. 
In this system every three spheres forming a hollow to support a fourth sphere were 
generally not in contact with each other (Fig. 8). This resulted in a higher porosity 
than the 26 percent of the normal rhombohedral system in which the three supporting 
spheres are in contact with each other. Ide! defined the contact angle 0 as the angle 
made with the horizontal by the normal at the point of contact between the upper and a 
lower sphere (Fig. 8). The following relation was obtained: 

n = l - TT 1 
9./3 sin 0 cos 2 0 

(35) 
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for different values of coefficient of friction f, i.e., tan o/ (102). 

in which n is the fractional porosity. For the usual (densest) rhombohedral system 
(Case 6), 0 = 54 ° 43 '. For the Case 3 generalized rhombohedral system (four supporting 
spheres) Wittke obtained 

1T 1 
n = l - - 2 

12 sin 0 cos 0 
(36) 

In this case 0 = 45 ° for the densest state when n = 26 percent. The least possible value 
of 0 for either case is 30 °. 

From statical considerations, Wittke ( 102) obtained the following relation for the 
angle ¢ of the general rhombohedral system-(either case) under the stress conditions 
of the triaxial test: 

tan
2
(~+45J = 2tan0tan(0+1/J) (37) 

in which tan 1/J = f, the coefficient of friction between the spheres. Because 0 is related 
ton by Eqs. 35 or 36, tan¢ may be related by Eq. 37 ton. Curves of tan¢ against n 
can thus be drawn for given values of tan 1/J (Fig. 9). These curves differ for Cases 3 
and 6 of the rhombohedral system, because Eqs. 3 5 and 3 6 are different. 

Wittke performed experiments on glass beads packed in the generalizedrhombohedral 
state. The measured tan ¢ values were about 50 percent lower than the theoretical 
values according to Eq. 37. The major part of this discrepancy was attributed to fric­
tion developed between the end layers of the system (top and bottom) and the bounding 
plates. 

The theory developed by \;l;/ittke is based on a particular idealized granular system. 
Because, as indicated by Figure 9, tan ¢ depends considerably on the arrangement of 
the system, Wittke' s solution for tan ¢ as a function of n cannot be considered applicable 
directly to a general granular system, such as a sand. In the shear zone of a dense 
granular system, there is a loosening up as compared to the rest of the system (93, 
102). The over-all volume changes taking place during shearing are consideredb y 
Newland and Allely ( 65) and by Poorooshasb ( 69). 

Dependence of Tan ¢ on f 

A number of expressions have been derived relating tan ¢ to the coefficient of friction 
between the grains, f. Caquot (13) considered an irregular system composed of grains 
of various sizes and shapes in random distribution and found that tan ¢ = ( rr /2) f. 

Bishop (2) obtained approximate expressions for ¢ from energy considerations. In 
the case oft riaxial compression in which a2 = a3 < a1, 
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sin¢ 
15f 

(al 
10 + 3 f 

For plain strain where a 2 = ai + aa --2--, 

normal stress) 

sin ¢ = 3/2 f 

(38) 

(39) 

The expressions of both Bishop and Caquot give tan ¢ = 0 when f = 0 (Fig. 12). This 
cannot be true for void ratios below the critical value, because in such cases a finite 
amount of work must be done against the normal forces as the system expands. 

Considering a rhombohedral ( Case 6) 
system of equal spheres, Dantu (20) ob­
tained relations between tan ¢ andf in the 
following manner. Each sphere has 12 
points of contact with neighboring spheres 
and the direction cosines of the unit nor­
mal vectors (Fig. 10) are given in Table 
3. 

Assuming the system is subjected to 
normal stress es, ax ay, oz , and to shear 
stresses T xy r yz, r zx, the usual notation 
for t he subscripts being used, the normal 
reactions between the grains can be cal­
culated from considerations of statics. 

Assuming zero friction between the 
spheres: 

TABLE 3 

DIRECTION COSINES OF 
UNIT NORMAL VECTORa:1 

Normal 
Vector 

I 
2 
3 
4 
5 
6 

1 
- 1/ 2 
- 1/ 2 
+ 1/2 

0 
- 1/2 

f3 

0 
+/372 
-/372 
+/376 
-1373 
+/376 

6 

0 
0 
0 

- 1673 
- /613 
- 1376 

ao:J f3 J and O are the direction 
cosines referred to the x, y, and z 
axes, respectively (Fig . 10) . 
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1. If T xy = T yz Tzx = 0, 

F ( 40) 

in which R is the radius of the spheres and F, G, H are the normal reactions between 
the spheres (Fig. 11 ); 

2. If T xy = T yz = T zx = 0, and ax = ay = ar , a s in the triaxial test 

(41) 

3. If Txy = Tyz = Tzx = 0 and ax = ay 
of a hydr ostatic pressure to the syst em , then 

az = a, corresponding to a pplication 

F = G = H = R 2 /2 a (42) 

In Case 2, failure of t he system will occur when G = H "' 01 i.e . , when az/ Or = 4. 
This corresponds to tan ¢= 0.750 or ¢= 35 •52 '. Assuming a coefficient of fri ction, r, 
between the spheres, Dantu finds by statics for this case that 

F = ~ a G = H = 8 R 212 ( o - a /2 1 - 12 f) ( 43) 
/"2+f z , 6 r z 4 /2+f 

The condition of limiting equilibrium corresponds to G = 0 when 

Oz 4 /2 + f ( 44 ) 
0 r 12 - 2f 

from which 
sin ¢ _ oz - or _ 3 /2 + 2f 

- Oz + or - 512 + 2f 
(45) 

The curve representing tan ¢ against f is compared in Figure 12 with curves obtained 
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by others. Tan¢ tends to infinity(¢ = 90°) when f =1"2/2 = 0. 71. Physically this means 
that for values of f greater than 0. 71, the granular system can have vertical sides and 
at the same time support a vertical load without any lateral support. Failure occurs 
by actual crushing of the grains when the load has attained a sufficiently high value. 

Considering an ideal packing of equal spheres, Spencer ( 84) obtained a relation be-
tween¢, f and n. -

In his study of the generalized rhombohedral system ( Case 6), inclosed in a cylinder 
as in a triaxial test, Idel ( 42) obtained from statical considerations the following ex-
press ion: 

. ,,., 1 . 5 tan ( w = e ) - 1 sin.,,= 
1. 5 tan ( ,Ji + a ) + 1 

(46) 

in which tan 1/J = f. Because n is related toe by Eq. 35, this expression gives the varia­
tion of tan ¢ with fat different porosities. Eq. 46 is different from Eq. 37 from which 
Wittke's curve is drawn. 

Extending the theoretical calculations of Thurston and Deresiewicz (90) on the mech­
anism of failure of a rhombohedral system of equal spheres, Scott (75) obtained 

tan ¢ = 13 + ( 4 /2) f 

2(/6-f) 
( 47) 

Sjaastad (79) considered a Case 6 system and ignored the contribution to shear 
strength of rolling friction as compared to that of sliding friction. Failure of the sys­
tem occurs when one distinct layer of spheres, together with all those above it, slides 
over the layer immediately below, which remains at rest together with all the lower 
layers. Considering a typical sphere resting in the hollow formed by the three spheres 
below it, it is apparent that there are two extreme modes of failure: (a) type 1 in which 
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the top sphere slides directly over the top of one of the bottom spheres, and (b) type 2 
in which the top sphere slides through the cleavage between two of the lower spheres 
(Fig. 13). Two conditions must be considered in each mode of failure: (a) the static 
case in which failure is about to occur, and (b) the kinetic case existing after a very 
small displacement when the top sphere has lost contact with one or two of the under­
lying spheres. The expressions obtained by Sjaastad are as follows: 

1. Type 1, static case 

1 tan¢ 
sin e - f cos e [

cos e + f ] 
3 ( sin e + r cos a) 

and kinetic case 

in which 0 = 54 ° 43'. 
2. Type 2, static case 

tan ¢ ~ 
cos e + f sin e 
sin e - f cos e 

[ 
2f 

tan ¢ = 3 ( sin e + f cos e) ] / [ 
f sin a ] + sin a cos a - sin 

60 
_ 

and kinetic case 

sin Ot sin 60" + f cos a tan¢ = 
cos a sin 60 • - f sin o: 

in which e = 54 ° 43' and a = 19 ° 30 '. 

(48) 

(49) 

(50) 

(51) 

For each type a mean curve is obtained (Fig. 14) by taking the average of the kinetic 
and static values. Assuming equal probability for any sphere to move along either 
failure path, Sjaastad obtained the curve for 26 percent porosity shown in Figure 12. 
Another assumption was that of equal partition of energy between the two extreme 
failure paths. Because less energy is required for type 2 failure, the probability ratio 
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is about 2 to 1 in favor of it. However, very little difference was found between the 
curve resulting from this assumption and that based on equal probability. 

Sjaastad assumed that for the regular packing at the upper limit of porosity, the 
cubic, tan¢ is equal to f. Therefore, curves at intermediate porosities could be ob­
tained (Fig. 15) by assuming further that¢ is proportional to the relative density. The 
latter assumption is based on data published by Burmister . 

Some of the results obtained experimentally by various workers on systems with 
nearly perfect and equal spheres are plotted in Figure 15 in which there is satisfactory 
agreement with Sjaastad's equal partition solution in the range f = 0.1 to 0.5. In par­
ticular, although Sjaastad' s data on glass beads at 3 8 percent porosity are somewhat 
greater than theoretical values, the line joining them is almost parallel to the theoret­
ical curve at n = 38 percent. On the other hand, Sjaastad's data do not show such an 
agreement with the solutions of Spencer, ldel and Wittke. Considering all the data 
shown in Figure 15, they fit Spencer's solution best at the lower values of f, but 
Sjaastad' s over a wider range. 

None of these solutions are completely verified by the data now available. To deter­
mine which is the most accurate, values of tan ¢ at f ~ 1 must be measured on granular 
systems approaching the ideal. Because the solutions diverge considerably at the higher 
values off, such data should easily show which is the most valid. 

All solutions except Caquot's show a rapid increase of tan¢ with f. An increase in 
f is obtained when the system is subjected to a vacuum and some heat is applied, so 
that the adsorbed layers of gas are mostly removed and there is more intimate contact 
between the particles. Sjaastad' s experiments (79) have proved this increase in f. 



30 

TAN 
cp 

3 

z 

0 

• SPENCER, GLASS BALL0TINI 1 f-.126 n-s .29, .34, .401 .45 
o IDEL, STEEL SPHERES, f=.\88 n, ... 39, .44 
0 IDEL, GLASS SPHERES, f ... z3 n=.37, .41 
• W1TTKE,GLAS5 5PHERE5 1 f=.29 n=.26,.35, .40, .44-
x SJAASTAD) GLASS BEADS, f-.12, .36, .49 n=.38 

0.2 0.4 0.6 
FRICTION COEFFICIENT f 

0.8 

Figure l5 . Experimenta l dat a on nearly ideal systems v s Sjaast ad' s Eg_ual Part ition of 
Ene rgy solution ( 79). 

Effect of Grain Size on Tan ¢ 

According to the expressions for tan ¢ obtained by various workers on the basis of 
idealized granular systems, tan ¢ is independent of the absolute grain size of the sys­
tem. To determine conclusively whether tan ¢ depends on t he grain s ize , controlled 
tests on systems with regular arrangements of spherical grains of uniform size and 
surface characteristics should be performed. The results obtained until now are in­
conclusive, because the systems tested have generally departed more or less from 
uniformity in size, shape and condition of surface of their grains. Also care was not 
generally taken to obtain the same initial void ratios for the samples tested so as to 
afford a true basis for co mparison. Wittke' s (102) experiments are an exception, but 
the grain sizes used by him do not differ widel~Sjaastad (79) used a wider size range 
and also maintained the same initial void ratio, but his system was less ideal than that 
of Wittke. 

Hennes (3 5) measured the shear strength of samples of rounded gravel of approxi­
mately uniform size. Tan ¢ was found to increase appreciably with grain size up to 
% in., beyond which there was little variation (Fig. 16). The shapes of the grains 
varied considerably within each sample and from sample to sample. The results, 
therefore, do not show the influence of grain size alone. The samples were densified 
before testing in the same manner by tamping and vibration, causing widely differing 
values of the initial void ratio. However, Table 4 indicates that the largest size (¾ to 
1/2 in.) had a considerably greater initial void ratio than the smaller sizes. Because 
tan¢ increases as the void ratio decreases, the largest size may be expected to show 
a value of tan ¢ greater than 1.17 at the same void ratios as the smaller sizes. This 
indicates a tendency of tan¢ to increase with grain size in the tested range, but it is 
not conclusive owing to nonuniformity of the samples in size and shape. The resistance 



31 

311 _. --------------------------, 
4 

•" z 
w 
N 3" 
<f) 8 

O.B 0.9 /.0 I. I 1.2 1.3 

TAN cp 
Figure l6. Hennes' experimental curve showing effect of grain size on tan¢ for rounded 

gravel (35). 

to shear depends considerably on the state of packing, particularly along the plane of 
sliding, and the packing is influenced by the gradation and shape characteristics. 

From tests on crushed quartz in loose state, Parsons ( 68) found that tan ¢ had a 
minimum value at a grain size of 0. 75 mm (Fig. 17 ). Thesamples were placed in the 
shear box by pouring from the same height. The results are inconclusive, because the 
degree of angularity or sharpness of the grains varied with the grain size. 

Kjellman and Jakobson (48) obtained a higher value of ¢ at a larger grain size (Table 
5) using .samples of round pebbles. The initial void ratio, e0 , of the coarser samples 
was larger (i.e., smaller unit weight), so that if corrected to the same e0 the difference 
between the values of¢ for the fine and coarse material would become greater. Here 
again the results are inconclusive, because secondary effects may have played a part. 

Using samples of sand, Wu (103) ob­
tained decreasing values of ¢ with increas-
ing grain size in the range from 0.1 to 3 
mm. This is at least partly due to the 
greater nonuniformity of the coarser 
samples ( 42). For systems at the same 
void ratio7an ¢ decreases as the nonuni­
formity increases. 

From triaxial tests on glass beads and 
quartz sand, Idel ( 42) concluded that tan 
¢ was independent of grain size. The 
size of the glass beads tested varied 
from 3 to 35 mm, whereas that of the 

TABLE 4 

HENNES' EXPERIMENTAL DATA (35)a 

Grain Size ~~~~~ Init. Void Triaxial Init. Void 
Tan r/1 Ratio Tan r/J Ratio 

Nos. 8-16 0.903 
Nos. 3-4 1.12 
3/ 4-1/2 in. 1.17 

0.698 
0.622 
0.85 

aOn S81llples of rounded gravel. 

0.91 
0.93 
1.03 

0.61 
0.61 
0.58 
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quartz sand varied from 0.4 to 5 mm. ldel's results, however, showed a considerable 
scatter in the measured values of tan ¢. For instance , in the case of the glass beads 
at a porosity of 39.5 percent, the measured values of tan¢ ranged from 0.55 to 0. 70. 

Wittke (102) developed an ingenious experimental technique for obtaining a system 
of practically uniform glass beads in a rhombohedral packing ( Case 3 or 6) and for 
testing it triaxially in that state. With a porosity of 26 percent, the value of tan ¢ for 
three sizes of glass beads (15.0, 14.8 and 11.85 mm) stayed nearly constant at 0.37 in 
the Case 3 state. With Case 6 packing (porosity also 26 percent), tan ¢ varied slightly 
from 0. 78 to 0. 86 for the three sizes. However, Wittke 's results do not permit genera­
lization, because the sizes used varied only over a narrow range. 

Bishop's measurements (3) on Chesit Bank pebbles and on Ham River sand showed 
that the two materials had nearly the same tan ¢ at equal porosities. The ratio of the 
two sizes was 1: 60. Casagrande ~) reports a similar constancy of tan ¢ with grain 
size. 

Sjaastad (79) performed direct shear tests on five nearly uniform samples of glass 
beads. Eachsample passed one U.S. standard sieve and was retained on the next 
sieve. The mean sizes varied from 0.46 to 3.1 mm, and the initial void ratio was kept 
constant at 0.608. The results (Fig. 18) support the argument that tan¢ is independent 
of grain size. The considerably higher ¢ value shown by the 1. 1-mm sample was attri­
buted to its greater uniformity compared with the others, shown by microscopic obser-

TABLE 5 

KJELLMAN AND JAKOBSON'S 
EXPERIMENTAL DATA (48)a 

Pebble Size Init. Unit </J 

Type (mm) (t/ m') (deg) 

Fineb 8-11 1. 54 36.2 
Coarseb 38 - 53 1.43 37 .1 
Finec 8-11 1. 63 42.9 
CoarseC 38- 53 1.53 44.1 

~On samples of rog.nd pebbles. 
Loose state. Dense state. 

vation. 
In summary, there is some evidence in­

dicating an increase of tan ¢ with grain 
size. However, the evidence is inconclu­
sive, because this increase may well be 
due solely to secondary effects such as 
shape and nonuniformity of the component 
particles and variation in their surface 
characteristics. There exists more and 
better evidence suggesting that tan ¢ is 
independent of grain size. 

Other Factors Influencing Tan ¢ 

It has been established experimentally 
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for granular soil systems that tan ¢ decreases with the applied normal pressure ( 88). 
It is also found that tan¢ increases with increasing angularity of the grains, i.e. ,with 
decreasing sphericity (15, 16, 35, 88). 

A uniform granular system withconstant void ratio and a certain friction coefficient, 
f, may have different values of tan ¢ depending on its mode of packing. Wittke (102) 
found theoretically that a system of uniform spheres in the Case 3 packing had about 
half the value of tan¢ as the same system in Case 6 packing. This was also verified 
experimentally. Because Case 6 may be turned into Case 3 by a suitable rotation in 
space, Wittke' s findings indicate anisotropy. That is, the value of tan ¢ depends on the 
direction of the applied stresses. 

Wittke' s theory also shows that the stress and strain conditions affect tan ¢. Thus, 
for example, his theory gives a value of 1.0 for a Case 6 system at an f of 0.1 when the 
conditions are those of a plane-strain test, whereas for the same system under the con­
ditions of a triaxial test, tan¢ equals 0.9. This finding provides an explanation for the 
higher experimental values of tan ¢ of a granular soil obtained by the box shear test as 
compared with those obtained by triaxial testing (3 5, 88). 

Whitman ( 9 6) has shown experimentally that tan¢ is independent of the rate of strain 
in the triaxiaTiest when the failure-time is varied from 5 msec to 5 min. 

Certain experimental variables, such as the ratios of the dimensions of the sample 
tested and the ratio of its diameter to that of the inclosing cylinder, may affect the 
measured tan¢ (102). These are not discussed here, because they do not pertain to 
the system as such but only to the experimental technique. 

Granular Systems with Different Grain Sizes 

Figure 19 shows the porosities obtained for granular systems containing two grain 
sizes when the systems are subjected to equal amounts of compactive effort. For a 
system of given grain size ratio, there is a certain composition that gives the least 
porosity. The further the system is from uniformity, i.e., the smaller the ratio dmin/ 
dmax, the easier it is to obtain smaller porosities. Comparison of the shear strengths 
of different granular systems at the same porosities shows that uniform systems have 
the greatest shear strength, other factors such as grain shape and roughness being 
equal (16, 35, 100, 105). 

Assuming that tan ¢ varies linearly with n between 26 percent and 43 percent (justi­
fied according to Wittke' s (102) solution), Idel (42) comes to the conclusion that all granular 
syste ms of two grain sizes should have the same tan ¢ when in the densest possible state, 
no matter what their percentage composition or grain size ratio (of course, assuming 
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equal shapes and f values). This conclu­
sion is expected by Idel to hold for systems 
of more than two sizes. The same would 
apply to the systems in their loosest state. 
For an intermediate porosity, Idel assumes 
that the corresponding tan rt, value can be 
found by linear interpolation. The nearer 
the system is to uniformity, the larger is 
the rate of change of tan rt, with n. 

The term relative density is used to 
indicate the position of the system between 
its loosest and densest states, these latter 
being obtained by arbitrarily fixed proce­
dures (10, 49). Relative density = (n - nd)/ 
(n,t - nctf at a porosity n in which n,t, nd 
are the loosest and densest porosities. A 
comparison in importance has been made 
of n,t and nd to the liquid and plastic limits 
of a clay. The relative densitydetermines, 
among other things, the supporting value 
of the system and its compressibility (10). 
Burmister (10) gives results showing a 

linear variation of rt, with the relative density of a given system. Wu (103) obtains 
similar results. --

Hennes' (35) experimental results show that increasing angularity (i.e. , nonsphe­
ricity of the grains) causes a greater increase in the shear strength of a graded sys­
tem than in that of a system with uniform grain size. 

TESTING OF MACROMERITIC SYSTEMS THEORY 

According to the macromeritic theory, a granular system of identical spheres is in 
a potentially liquid state when it has a void ratio of 0. 62 (the critical value) or higher 
(98, 100). The critical void ratio (CVR) thus corresponds to the melting pointofsimple 
chemical substances. Winterkorn (100) derived Eq. 34a on the basis of Batschinski's 
formula for the viscosity of simple molecular liquids at different temperatures. How­
ever, Eq. 34a can be expected to hold strictly only for the macromeritic liquid state, 
i.e., for systems above the CVR. It is, however, equivalent to Eq. 34b, whose predic­
tions have been compared with data obtained from shear tests (direct or triaxial) on 
cohesionless soils (25). 

Data from directshear tests on Ottawa standard sand (88, p. 349) produced a curve 
for a normal pressure of 3 tons/sq ft in which rt, = 32.3 ° when e = 0. 57, and rt, = 29. 5 ° 
when e = 0. 61. Substitution of these values in Eq. 34b yields values for C and emi of 
0.226 and 0.212, respectively. The formula can then be used to calculate values oftan 
rt, at any void ratio, and the same normal pressure, as in Table 6 which shows good 
agreement between values. Whenever the experimental data at high void ratios are 
higher than the calculated ones, partial collapse to a lower void ratio during the testing 
may be suspected. Table 7 shows the values of emin and C calculated at different nor­
mal pressures by means of Eq. 34b. At each normal pressure, two values of e were 

TABLE 6 

CALCULATED VS EXPERIMENTAL 
TAN ¢ VAl,UES8 

Vojd Ratio 

0, 56 
0 .59 
0. 62 
0 ,64 
0. 66 

Cal. 

0 650 
0.598 
0. 554 
0. 528 
0 , 505 

Tan i 

Exp . 

0, 649 
0. 596 
a. 554 
0,539 
0. 531 

Dev. 
(~ ) 

+ 0 2 
+ 0 3 

0. 0 
- 2. 0 
- 4.9 

uEx pcrb1entt,l data f 1·01u 'l'a~.lor (§§_, p . 349) . 

applied together with the corresponding 
measured¢ values. The table indicates 
that at different normal pressures C does 
not deviate by more than 12 percent. These 
calculations have been made using data 
from experimental curves arbitrarily drawn 
as mean curves through points showing 
considerable scatter (89, Fig. C-5). Thus, 
a 12 percent deviationof C is not excessive. 

The values of emin in Table 7 are rea-



sonable when compared with the value 
0.35 for the void ratio of the densest 
(rhombohedral) state of an assembly of 
equal spheres. The samples on which 
the data were obtained were only approxi­
mately uniform in size and their grains 
were not spherical. Therefore, they may 
be expected to have a "densest state" of 
lower void ratio than 0.35. 

Data from triaxial tests on washed 
Fort Peck sand (88, p. 350) at a minor 
principal stress o 3, of 34 psi, produced 
experimenta l values of ¢ = 41. 6 ° at e = 
0. 62, and rt> = 34. 0 • a t e = 0. 825. From 
these and Eq. 35, emin = -0.028 and C = 
0.575 giving the calculated values of tan 
¢ in Table 8. Though a negative emin 
value is used in the formula, it gives good 
predictions. 

Data from direct shear and triaxial 
tests on Sand B (87, p. 1061) are sum­
marized in Table9. For each type of 
test the values of C show good agreement. 
A comparison of the two types, however, 
shows that the value of C depends on the 
kind of test used for measuring the shear 
strength. Table 9 shows that the triaxial 
test gives higher values of C and this is 
confirmed by calculations with other ex­
perimental data (25). This variation of 
C with method oftest is probably due to 
the different stress conditions imposed 
on the system. 

De Beer (21, p. 281) obtained data by 
means of triaxial tests on sand at constant 
a 3 • The experimental curves show the 
variation of ¢ with n at various values of 
a 3 from 0.02 kg/ cm 2 to 50 kg/ cm 2. The 
curve at o 3 = 1 kg/cm2 gives the following 
values: (a) at n = 0.39 (e = 0.640), ¢ = 
41.7 °; and (b) at n = 0.45 (e = 0.818), ¢ = 
34.0 °. These values give emin = 0.083 
and C = 0.496 from Eq. 34b which is then 
used at other void ratios to obtain the 
calculated tan ¢ values in Table 10. The 
agreement with the experimental data is 
very good. Table 11 gives the values of 
C and emin calculated from the data at 
different o values. 

It is seen that in the large stress range 
from 0.02 to 50 kg/cm 2

, C is practically 
constant, as it should be. As o3 increases, 
emin shows a consistent decrease. 

Normal 
Pressure 
(ton/sq ft) 

TABLE 7 

VALUES OF C AND e . 1 

mm 

e e . C mm 

1/2 
3 
8 

0.58, 0.62 0.235 
0. 57, 0.61 0.212 
0.55, 0.59 0.235 

0.236 
0.226 
0.192 

1 From Taylor (88, p . 349) . 
2 Of C fr o:n me8ll value. 

TABLE 8 

CALCULATED VS EXPERIMENTAL 
TAN ¢ VALUESa 

Void Ratio 
e 

0.65 
0.70 
0. 75 

Tan ¢ 

Cale . 

0.848 
0.790 
0.7 40 

Exp. 

0.853 
0,798 
0.747 

aFrom Tayl or (§!;,, p , 350 ) , 

TABLE 9 

VALUES OF C AND e . 1 

mm 

Test2 a
3 

(psi) 

Dev. 
(\t) 

- 0.6 
- 1.0 
- 0.9 

C 

35 

Dev.2 
(%) 

+ 8.2 
+ 3.7 
- 11. 9 

Direct shear 18 
34 
18 
34 

0.055 0.504 
0.083 0.465 

Triaxial - 0.128 0.653 
-0.123 0.621 

1 From Tayl or (87, p. 1061). 
2 Using v alue s of e of O. 60 and O. 70 i n 
all tests . 

TABLE 10 

CALCULATED vs EXPERIMENTAL TAN¢ VALUEsa 

P ol'osity 
n 

0 , 36 
0.41 
0 . 43 
0.47 

Void Ratio 
e 

0. 562 
0 . 695 
0 . 755 
0.886 

Tan ¢ 

Cale. 

1.058 
0 .810 
0. 738 
0. 617 

Exp. 

1.018 
0. 813 
0.743 
0.636 

aExperimental data from De Beer(~, p. 28 1) . 

Dev. 
(1,) 

+3.9 
-0.4 
-0 . 7 
-3.0 

Burmister's data from direct shear tests performed on Ottawa standard sand (9, pp. 
1073-75) have been applied to Eq. 34b to give Table 12. Here again the constancy of 
C is confirmed. 

Wu's data (103) from triaxial tests on three specimens of sand referred to as 134, 
121, 133, respectively, give Table 13. For each specimen, the value of C is approxi­
mately the same at the two values of a 3 • 
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TABLE 11 

VALUES OF C AND emin 1 

Confining 
Stress o.:i e emin C 
(kg/cm2

) 

0.02 0 . 640, 0 . 818 0 . 132 0. 533 
0 . 1 0 .640, 0 , 818 0. 118 o. 520 
0.2 0 . 640, 0 . 818 0 . 110 0.515 
1 0.640 , 0 . 818 0 .083 0. 496 
2 0 . 640, 0 . 818 0.051 0 . 497 
5 0 . 613, o. 785 0.000 0 . 504 

10 o. 613, o. 785 • O. 030 o. 501 
50 0 . 613 , 0 754 - 0. 085 0 . 485 

1From Do Beer (21, p. 281) . 
'Of C from menn-:-

TABLE 12 

VALUES OF C AND emin 1 

Normal 
Pressure e emin 
(kg/cm 2

) 

2 .033 0 , 483, o. 637 0.208 
1 , 533 0 . 501, 0 . ~:51 o. ::::o~ 
1.033 0 . 506 , 0 . 663 0. 264 
0. 533 0.499, 0 . 656 0.274 

1From Bur mister (9, pp. 1073-1075) . 
20f C from mean. -

C 

0 . 278 
n nn • 
V ,'-'i.1"2 

0 .261 
0 . 262 

TABLE 13 

VALUES OF C AND emin' 

Sand 03 

Specimen (kg/ cm 2) 

121 

133 

134 

1. 40 
2.80 

1.40 
2. 80 

1. 40 
2,80 

'From Wu(~) . 

0 

0.452, 0,637 
0,445, 0,605 

0,371, 0.553 
0 . 352, 0.550 

0 .600, 0 . 823 
0 , 606, 0 , 805 

TABLE 14 

-0 . 805 
-0. 770 

-0.881 
-0. 670 

-0. 460 
-0, 525 

Dev. 2 

(<t) 

+5.3 
+2.8 
+1.8 
-2. 0 
-2. 2 
-0. 4 
-1.0 
-4. 3 

Dev. 2 

(%) 

+1. 5 

. 4 . 7 
- 4 . 4 

C 

1. 202 
1 , 146 

1. 173 
0. 999 

0. 978 
1. 048 

CALCULATED vs EXPERIMENTAL TAN • VALUEsa 

Porosity 

o. 39 
0, 41 
0 . 43 

Void Ratio 

0 , 640 
0 , 695 
0 . 754 

Tan 0 

Cale. 

0 . 860 
0 . 785 
o. 719 

Exp , 

0 . 863 
o. 776 
o. 707 

aExperimental data from Nash (2i, p, 163, Fig. 6) , 

Dev . 
(%) 

-0 .3 
+l , 2 
+1 ,'/ 

TABLE 15 

CALCULATED VS EXPERIMENTAL TAN ¢ VALUESa 

Porosity Void Ratio Tan¢ 
Dev . 

" e 
Cale. Exp . (%) 

0 . 40 0 . 667 0. 821 0 , 827 -0 . 7 
0 , 42 0 , 725 o. 764 0. 774 -1 . 3 
0 , 46 0. 851 0 . 665 0 . 635 +4 . 7 

aExperimental data from Bjerrum et a l, (~, p.33, Fig. 7) . 

TABLE 16 

CALCULATED VS EXPERIMENTAL TAN ¢ VALUESa 

Void Ratio 
Tan¢ 

Dev . 
e Cale. Exp. (%) 

0 . 60 0. 690 o. 690 0.0 
o. 70 0 , 623 0 . 627 - 0.6 

a Experimental data from Rutledge Qi, p. 56, Table 2) . 

TABLE 17 

CALCULATED VS EXPERIMENTAL TAN ¢ VALUESa 

Porosity Void Ratio 
Tan¢ 

Dev . 
n e 

Cale . Exp . (%) 

0 ,32 0 ,470 0 . 897 0 . 936 - 4 .2 
0.40 O ,667 0 . 619 0 , 674 -8.2 

a Experimental data from Bishop (~). 

Nash's triaxial tests on a nearly uniform 
sand (64, p. 163, Fig. 6) yield the following 
data: (a) ate == 0.667 (n = 0.40), ¢ = 39.4 "; 
and (b) ate = 0.818 (n = 0.45) , ¢ = 33.3 ·. 
These give C = 0.498 and min = 0.061 rom 
which the calculated values of la.n ¢ in Table 
14 a.re obtained. 

The following are data taken from the 
results of drained triaxial tests on sand 
made by Bjerrum et aL (5; p. 33, Fig. 7 ): 
(a) ate== 0.613 (n = 0.38f, ¢ = 41.4 "; and 
(b) ate= 0.785 (n = 0.44), ¢ = 35.5 °. These 
give C = 0.640 and emin = -0.112 whichare 
used for Table 15. 

Rutledge's data obtained by triaxial tests 
on Sardis dam sand (74, p. 56, Table 2) 
yield (a) at e = 0.55,¢= 36.1 °; and (b) at 
e = 0.80, ¢ = 29.7 ° . These give C = 0.656 
and emin = -0.352, used in Table 16. 

Bishop's data obtained by direct shear 
tests on Walton gravel (3) yield: (a) ate = 0.428 (u = 0.30) , ¢ = 44.8"; and (b) ate= 
0.545 (n = 0.353), If,= 37.5 ·_ These gjve C =- 0.394 and emil = 0.031, used in Table 17. 

Eq. 34b has also been tested against additional data (25} published by Taylor (87 
88) 1 D Beer (21) , Burmister (~, .!.Q, 12), Wu (103), Nash (64), Bjerrum et al. (!T, 
Rutledge (7 4) Bishop (3), and Caquot and Ke1•isel (13). The .results are similar to 
those prececling. - -
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GENERAL CONCLUSIONS 

Eq. 34b reproduces rather accurately the tan¢ values of granular systems within a 
given range of strain energy, expressed as normal pressure or minor principal stress. 
The constants C and emin are derived from tan ¢ determinations at two different void 
ratios, with the system being at the same level of strain energy as in the contemplated 
use. 

The value of C has been found to be approximately constant at different strain energy 
levels provided that the same type of test--plane shear or triaxial-is employed. Phys­
ically, the C-factor is of a composite nature. It can be conceived as expressing pri­
marily particle-particle interaction; hence, C should also express the ease with which 
a system of high void ratio will collapse to the CVR and of the ease or difficulty with 
which pores or "holes" from other parts of the system will migrate to the shear failure 
planes or zones during the shear process. Furthermore, because C is of the essence 
of a "free energy consuming" factor, its value should express also the various mech­
anisms for energy consumption, such as translation and translation plus rotation, mo­
bilized in the system during the shearing process. 

The values for emin generally decreased as the strain energy of the system increased. 
The strain energy is of the nature of a free energy; shear in the type of system con­
sidered is an irreversible process and the main characteristic of such processes is 
the production of entropy. Hence, increase in strain energy of the system shouldfavor 
the shear process and be reflected in either the C or emin values or both. These con­
siderations indicate the direction which must be followed for theoretical refinement of 
the simple formula for tan ¢. The need for such refinement is indicated by the fact 
that at high strain energies the calculated emin values may become negative. It is 
remarkable, however, and important from a practical point of view, that even negative 
emin values did not prevent the simple formula from yielding rather accurate data. 

The relative constancy of factor C and the rather accurate predictions of tan ¢ that 
can be made by means of the acknowledgedly oversimplified Eq. 34b show the essential 
validity of the assumption of physical analogy between macromeritic and molecular 
systems and their respective conditions of state-solid and liquid with relatively low 
internal friction for pure systems of identical component particles and liquids with 
wide range of internal friction for systems with particles of different sizes, shapes 
and character. There exists, however, a definite need for more exact evaluation of 
the physical significance of factor C and of the apparent variation of emin with increas­
ing strain energy of the granular system. Such evaluation may even make important 
contributions to our theoretical understanding of the behavior of true, i. e. , molecular, 
liquids. 

From this point of view of the macromeritic systems theory, the CVR at constant 
volume represents the volumetrically defined melting point of the system. Identifica­
tion of the various types of CVR, is made by Taylor (88) and more recently by Geuze 
(31) and Fahmy (24). Winterkorn (98) has shown that the CVR (any type) decreases 
linearly as log a3 increases. This relationship was checked and confirmed by Farouki 
(25) using other data given by Taylor (87, 88) and Burmister (~). Hence for any given 
system one may write 

CVR = a - b log a 3 (52) 

in which a and bare constants. In this equation, the minor principal stress, a3 , may 
be replaced by the normal stress, a1 . 

In normal molecular liquids, the melting point increases with increasing pressure. 
Where the opposite is the case, as with normal ice and water, this is due to a structural 
arching effect arising from the directional nature of the H-bonds of the H20 molecule. 
The decrease of the volumetrically defined melting point of macromeritic systems with 
increasing strain energy makes their behavior more comparable to that of water than 
that of normal molecular liquids. This may be one of the reasons why the laws of mac­
romeritic assemblies, developed originally for noncohesive granular systems, maintain 
their intrinsic validity even in typical cohesive soil-water systems. 
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Discussion 

ARPAD KEZDI, Professor, Technical University, Budapest, Hungary. -Every investi­
gation of the behavior of granular systems used to start with the examination of ideal 
packings of spheres. This is an idealization of nature and not directly applicable in 
practice; however, these studies may lead to a better understanding of nature, the real­
ization of some important facts and the establishment of some, at least qualitative, 
statements. The concept of grain assemblies as macromeritic liquids, introduced by 
Winterkorn, throws a new light on the investigations of packings of equal spheres be­
cause the laws of physics, with respect to liquids, can thereby be applied to grain 
assemblies. 

When comparing the characteristics of different states of matter, Winterkorn includes 
the grain assemblies as a separate state along with the solid, liquid and gaseous states (113). 
Sands and gravels may also be listed with liquids. The variation of the coefficient ~ 
lateral pressure, K0 (!r ..... 1101Nn in soil mechanics as coefficient of earth pressure at rest), 
shows clearly the fields for every condition of state. If a solid body displays a very 
great cohesion (c - 00

), K0 tends to zero. With dec1·easing binding for es between the 
elementary particles (caused by an increase of temperature, by vibration, or electric 
effects), the K0 value increases to 0.4 to 0.5, which is characteristic for grain assem­
blies. Greater values occur with the viscous liquids, in which the internal shearing 
resistance is much smaller and finally K0 = 1 is reached for ideal liquids with zero 
internal friction. In the case of gases Ko exceeds 1, due to the atomic particle move­
ments. The increase of K0 can be achieved by transmitting energy to the system, 
either as mechanical energy forcing particles out of the solid, as vibration energy de­
creasing the number of contacts between the particles, thus reducing the inner resistance 
in a transient manner, or as thermal energy which enlarges the distances between the 
particles and increases their speed, thus transforming a solid to a liquid or a liquid to 
a gas. By applying a common yardstick for the different kinds of energy, it will be 
possible to plot the K0 values as a function of the stored energy in the system, thus 
giving the range for the different conditions of state (Fig. 20). The greater the stored 
energy, the easier the migration of the "holes" in the system and, therefore, the greater 
the coefficient of lateral pressure. 

Some Properties of Packings of Uniform Spheres 

The first systematic treatment of packings of uniform spheres was given by Slichter 
( 81). He established the different arrangements of the spheres and gave formulas to 
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Fi~ure 20 . Relation between condition of state and pressure coefficient . 

calculate their density based on the following assumptions: (a) the spheres are ideally 
rigid and undeformable; (b) the system of spheres is of infinite extent; and (c) there 
are no adhesive forces between the spheres; frictional forces will be mobilized by 
movements only. 

A packing of spheres can be either continuous or discontinuous, compressible or 
incompressible. It is continuous, if, by starting on the surface of a sphere, selected 
at random, any sphere may be reached by crossing on surface contact points only. Dry 
granular soils obviously form a continuous packing. 

A packing is compressible if a hydrostatic pressure, applied on plane surfaces, 
limiting a closed volume of the packing, can cause a compression of the system. Com­
pressible systems are stable in unloaded state only if adhesive forces act between the 
spheres, as in clay and silt soils. Packings suffering no compression on the application 
of hydrostatic pressure are incompressible; this state is best approached by natural 
sands and gravels. This does not imply, however, that the simultaneous application of 
hydrostatic and shearing stresses cannot cause any compression of the system. In 
incompressible systems, there is at least one point of contact on every half sphere. 
The following investigations are limited to continuous and incompressible packings. 

The density of a packing may be either uniform or variable. Uniform density results 
when an infinite system may be formed from finite unit cells without gaps and voids be­
tween the cells. In a more rigorous definition of uniformity, in the same-congruent­
position every sphere must be with respect to its neighbors. 

To construct uniform packings, a certain configuration in the plane is chosen such 
that the plane may be covered completely with an infinite number of unit cells without 
overlapping. Points on the borderlines that serve as centers cf spheres are fixed so 
that the spheres do not intersect each other. The plane of the spheres' centers is the 
middle plane of the layer. An identical layer is placed on the first with middle planes 
parallel. A third similar layer is placed. The distance between the first and second 
layers, and the second and third layers, respectively, may be different. The whole 
system is composed of layers constructed in this manner. The fourth layer is in every 
respect identical with the first one; therefore, only three layers need be investigated. 
One sphere is selected in the middle layer and the number of spheres in contact with it 
in the lower, middle and upper layers are designated u, m, ,l. The symbol [u, m, ,l] 
is used to characterize the construction procedure. The coordination number of the 
system is given by N = u + m + t. Cubic packing, the loosest state of uniform incom­
pressible packings, has the symbol [ 1, 4, 1 J and rhombohedral packing, the densest 
state, has the symbol [3, 6, 3] (Fig. 21). The symbol of the orthorombic system is 
[2, 4, 2] and that of the tetragonal-spheroidal is [2, 6, 2]. It is evident that packings 
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Figure 21 . Cubic (a) and rhombohedral (b) packing of spheres . 

for every coordination number between 6 and 12 can be constructed in several ways and 
the densities of packings with the same coordination number are not necessarily the 
same(107). 

A continuous, incompressible, and uniform packing with coordination number as low 
as 4 is constructed as follows: The base figure is a hexagon, with every second corner 
the center of a sphere. The length of the side is smaller than D; the diagonals are 
greater than D. The spheres are not in contact; therefore, m = 0. The lower layer is 
constructed so that every sphere contacts three spheres in the middle layer. The upper 
layer is constructed by establishing one point of contact with the sphere of the middle 
layers. Then u = 1, and the symbol of the system is [1, 0, 3 ] (Fig. 22). 

The porosity of this system is given by the relation 

D3
77 2 1,1 

1- -
6 A(m1 +m2) 

n = (53a) 

in which D is the diameter of the spheres, 1,1 is the number of spheres on the base figure 
given by normal projection of the packing to the base plane, A is the area of the base 
figure, and m1 and m2 are the distances between the three planes. For example, in the 
packing (3, 6, 3] 

n 1 - 7T 

3/2 
0.259 (53b) 

when 

l,/ 1 + 6 X % = 3, 
m 1 m 2 = 2r /2/✓3, and 

A 6r 2✓3. 
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The porosity of packings with the same 
coordination number depends on the dis­
tance between the parallel planes used in 
the construction; it varies, therefore, be­
tween given limits. Data on different 
packings are listed in Table 18. As can 
be seen, there are continuous and incom­
pressible systems with porosities above 
70 percent; the value , n = 47.46 percent, 
generally taken as the maximum, is 
smaller than the porosity of many pack­
ings . 

lower 

The cubic system is the simplest pack­
ing and has a porosity of 47.46 percent. 
This system may be transformed to an 
orthorhombic and to a rhombohedral one. 
In the first case, every sphere of a given 
layer glides on a sphere of the lower 
layer, with the direction of movement 
parallel to the straight line connecting 
the centers of the given row of spheres . 
The unit cell, consisting of eight spheres, 
is transformed from a cube to a rhombo­
hedron (Fig. 21 ) . The amount of move­
ment can be given by the variation of the 
orientation angle, c;, between 60° and 90° 

Figure 22 . Packi ng with coordinat i on No . 

( Fig. 23). At c; = 60 °, the system is 
orthorhombic. 

N-4 . 

TABLE 18 

The porosity of the system in terms of 
c; is 

SYSTEMATIC PACKING OF SPHERES 

n = 1 - 1T (54) 
6 sin c; 

The volume of the unit cell varies with 
sin O'. The same relation applies to the 
height of the unit cell. The variation of 
V and n is shown in Figure 24. If n = 
(V - Vs ) /V, and Vs is the volume of solids 
in the cell 

Coordination 
No.N 

4 
5 
6 
7 
8 
9 

10 
11 
12 

Vs = V ( 1 - n) = 1r/6 

Symbol 

[ 1, 1, 2] 
[ 1, 0, 4] 

( 3,0,3 ] = [1,4, 1) 
[ 1, 5, 1] 
[ 1, 6, 1] 
[ I, 6, 2] 
[2, 6, 2] 
(2, 6, 3] 
[3, 6, 3] 

Porosity 
n 

0. 718 
0. 558 
0,476 
0, 439 
0 . 395 
0 . 352 
0,302 
0. 281 
o. 259 

Relative 
VolV 

1. 853 
1. 185 
1,000 
0. 932 
0.864 
0.807 
0. 750 
0. 728 
0. 707 

(55) 

The volume of the spheres in the unit cell remains constant during the movement. This 
case may be considered that of plane deformation, the unit cell being deformed in one 
direction only. 

In the second basic case, several types of movement must be applied to the system. 
There must be additional movement in the direction normal to that of the plane defor­
mation. The movement is carried out uniformly; i.e., the deformation and compression 
of the unit cell occur at a uniform rate. The angle of orientation (that is , the angle be­
tween two edges of lhe same side on the unit cell) is the same for every two edges 
(Fig . 25). Assuming this , movement may be described with the help of c;, and the vol­
ume of the unit cell and the porosity can be given as functions of c;, 

The formula for the porosity has been given by Slichter as early as 1889: 

n = 1 -
1T 

(56) 
6 ( 1 - cos c;) I 1 + 2 cos c; 
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Plan 

Figure 23. Orthorhombic packing of spheres. 

The volume of the unit cell is 

V = (1-cosCl') l l+2cosCl' (57) 

and the volume of solids is given by Eq. 55. The void ratio is, therefore, 

e = _n_ = 6V _ 1 (58) 
1 - n 1T 

The height of the unit cell varies with Cl' (Fig. 26): h = D sin 6 with D cos 6 = D cos Cl'/ cos 
(Cl'/2) which yields 

h = D✓l - COS
2

Cl' = D (1- cos (l') ✓-1 + 2 cos (l' 

COS
2Cl'/2 sin (l' 

( 59) 

Figure 27 shows the variation of V, F and h for D = 1 in terms of Cl'. 
The coordination number of the system does not vary continuous ly during the move­

ment; it takes the final value only after performing the described movement. Smith et 
al. ( 83), with the intention of applying the results derived for uniform spheres to actual 
particle systems, assumed that the actual system may for statistical purposes be 
treated as composed of separate clusters of rhombohedral or cubic arrangements, these 
being present in such a proportion as to give the observed porosity of the assembly. 
This consideration leads to the following expression for the average coordination num­
ber, N, in terms of the porosity, n: 

N = 26.4858 - 10.7262 
1 - n 

(60) 

The curve representing this (Fig. 28) agrees well with the observed experimental 
values. From the relationship between the angle of orientation and the porosity, the 
curve N = f (Cl'), i.e. , the relationship between the angle of orientation and the coordi-
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Figure 25. Rhombohedral packing . 

Fig ure 26. Height of unit cell . 

nation number (Fig. 28b), may be con­
structed. The plot of N as a function of 
the relative volume of the unit cell (Fig. 
29) is a straight line that represents, most 
likely, Eq. 60 in another form. The equa­
tion of the straight line is: 

N = 6+6(2+/2) (1-V) = 
6 ( 4.41 - 3.41 V) (61) 

Coordination number and porosity may 
also be related by plotting the values 
given in Table 18. Porosities and the rel­
ative volumes of the unit cell are shown 
in Figure 30. The plot consists, of course, 
of isolated points for the integers N; the 
connecting dotted line is given only to show 
the trend of variation. It is interesting to 
show that Figure 31, giving N = f (a,) and 
constructed on the base of the curves in 
Figure 32, does not differ much from the 
data shown in Figure 28b. 

Extending the interpretation of a, beyond 
60 ° results in decreasing values of n, and 
the spheres intersect each other. The 
rate of decrease is considerable, because 
the volumes of the intersecting parts have 
to be considered twice. When this volume 
equals the volume of the remaining voids, 
theoretically n = 0. This occurs at a, = 49 °, 
where the volume of the unit cell is equal 
to V = 0. 523 = 7T / 6. The variation of n with 
a, for the range 90 ° "' a, "' 49 ° is given in 
Figure 33. The part 60 ° > a, "' 49 ° of the 
curve may be used to determine the angle 
of orientation for packings of nonuniform 
sphere8 with porosities greater than 25 
percent. This angle may be taken as a 
characteristic of the substitute packing of 
uniform spheres. Efforts to find a phys­
ical meaning for values of a greater than 
90 ° have not been successful. (At a, = 120 °, 

n again equals ze1·0; however, the part of 
the curve Ior values between 90 and 120 ° 

is not the same as that between 60 and 90 °. 

Shearing Resistance of Packings 

The following is an attempt to determine 
the stresses necessary to bring the cubic 

system into the rhombohedral system. The shearing resistance of the densest packing 
(N = 12), filling the entire space, will be infinitely great, thus forming a closed system. 
An increase of the volume cannot take place, even if the shearing stresses increase to 
infinity. The porosity of a certain arrangement in the infinite space can decrease only 
as the effect of shearing stresses; any combination of stresses causes a tendency of 
densification. 

As shown in Figures 24 and 27, the unit cell suffers a compression and a distortion 
during the movements that transform a cubic system (N = 6) into a rhombohedral one 
(N = 12). The decrease of volume can be achieved by the application of a uniform all-
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round pressure; the decrease of the angle of orientation may be caused by uniform 
shear (Fig. 33). The relation between volume change and shear strain and the respec­
tive stresses may be determined by use of the general laws related to liquids. 

As a first approximation, a linear relationship is assumed to exist between volume 
change and hydrostatic pressure. The volume in consideration-the volume of the unit 
cell-is occupied partly by voids and partly by sphere parts. For the present, a sub­
stitute liquid filling the unit cell is assumed. The volume change from or. = 90 ° to or. = 
60 ° is given by 

V - Vo t:,, V - --- 0 

C 
(62a) 
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and 

p -
p -

a 

C1 ( V - Vo) (62b) 

in which C is the bulk modulus of com­
pressibility (depending on the surface prop­
erties of the spheres) and Vo is the volume 
at Cl'= 60° (Vo= 1r/6). 

The deformation caused by shearing 
stresses consists of the change of a, accom­
panied by the decrease of porosity. In the 
theory of liquids (108), the shearing stress 
is given by --

T = - oF 
o/3 

( 63) 

in which {3 = 90° - o: and F (/3 T ) is the free 
energy of the lattice referred o on sp here. 
It is a funct io11 of variation of t he he ight of the 

Figure 33. Packing of spheres loaded 
hydrostatic and shearing stresses. 

by unit cell and of the temperature. Because 
these are isothermic processes, this term 
can be taken as the potential energy of one 

sphere with respect to the sphere immediately below. It is, then, given by h - ho, where 
h is the height of the unit cell at a, and ho is the minimum value at a, = 60° or D /273 
(Fig. 26, Eq. 59 ). Assuming again, as a first approximation, a linear relationship for 
h = h (a) (connecting h = 1 for a,= 90° and h = ho for a,= 60°), h = 1 - C2B or 

oF 
o/3 

( 64) 



and, therefore, T = canst. = C2. 
The shearing resistance of the medium 'r 

can be given (Fig. 34) as 

tan ¢ = TI cr = T C:a = cr Ci(V - Vo) 

C 

V - Vo 
(65) 

which is in complete agreement with the 
equation of Winterkorn suggested by the 
analogy between liquids and grain assem­
blies (106). 

Values, calculated on the basis of the 
concept of the solid and liquid state of 
macromeritic systems (Eq. 65) have 
been compared with experimental data 

Figure 34. Dete rmi nati on 
fric tion. 
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r 

of angle of 

obtained by various dependable workers on the friction properties of granular materials 
(26 ). 
-It must be emphasized that this formula represents the first approximation. Besides 
the substitution of the relations V = f (p) and h = h (/3) with straight lines-which actu­
ally, as it can be seen from Figures 24 and 27, may be considered justified-it neglects 
an important factor. This approximation is also involved in Batschinski' s formula: 
namely, the activation energy for the diffusion of holes in the liquid and in the particle 
assembly has been disregarded. It should be borne in mind also that the 'application of 
the equation to higher pressures can hardly give exact values, because the dependence 
of the volume on the pressure and of the energy on the volume deviates from a linear 
law in this region. 

Eq. 65 can be used to verify the difference between plane shear and shear in three 
dimensions. Considering Figures 5 and 8, respectively, with the term Vo (volume of 
solids) the same in both cases, the difference in T or h must be taken into account. 

and 

yield 

1 1 - 0.866 -- 0.255 T pane = 

T space 

11/6 

1 - 0.815 
11/ 6 

0.353 

tan ¢ plane = 0. 255 = O. 725 
tan¢ space 0.353 

(66a) 

(66b) 

( 67) 

This may explain the discrepancies in the value of tan ¢ as determined by direct shear 
or by triaxial test, respectively. It means that if the latter amounts, for instance, to 
¢ = 40°, the direct shear is likely to give¢= arc tan (0.725 tan¢)= 32°. Many test 
results in the literature show similar deviations ( 111 ) . 

To arrive at a better approximation in the evaluation of the inner resistance of a 
macromeritic liquid, the dependence of V on cr, instead of Eq. 62b, must be considered, 
according to an empirical equation proposed long ago by Tait (108). This relation 
states that there is a strain-hardening during the process of compression. For a given 
amount of compression, greater all-round stresses must be applied if there is already 
a stress of this type acting. This means that the bulk modulus of compressibility is 
not a constant, but a function of the all-round pressure itself. If 

C = dp 
de 

p + b 
ab 

(68) 
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the volume change is 

V - Vo = a log ( p; b) ( 69) 

This equation is of the same form as that for the compression of soils proposed by 
Terzaghi (112). 

The term1V - Vo) is given as a trigonometric function of {3; it may be replaced 
without loss of accuracy by a parabola of the second degree. The deviation from the 
exact value can be made smaller than 1 percent. Then 

(70) 

and from Eq. 69 

[
/ V - Vo\ . l - r / C1.B/ \ •] 

p = b \ exp -a- } - 1 J = b L \ exp - a- / - 1 (71) 

Eq. 59, giving a measure for the available potential energy, may be replaced also by 
a parabola of the second degree. Then 

F = 1 - C?/3 2 

and 

T = aF/a/3 
The shearing resistance is given by 

T 
tan¢= 75 

2C,J3 

(72) 

(73) 

(74) 

Because the relation between the porosity and the angle of orientation ( a, = 90° - f3) 
is known, Eq. 7 4 furnishes the solution to the problem. However, the physical meaning 
of the laws expressed by this equation will be better understood, if instead of {3, the 
void ratio c is used (notation used to replace the usual e, in order to avoid confusion 
with the base of the natural logal"iUun). Then, Eq. 70 yields 

(75) 

and 

tan rp = 
b [ ( exp E - : \11:Ul ) - 1 ] 

== 
C ✓ E - Emin 

( E - Emin ) 1 exp a -

(76) 

Eq. 76 should be checked against available shear test data obtained by dependable 
research workers. In Figure 35 data from direct shear tests on Ottawa standard sand 
( 88) have been plotted as tan ¢ = f ( E); the curve according to Eq. 7 6 is also shown using 
the constants <min = 0.2 a= 0.5, and C = 1.26. The deviations are small (Table 19). 

It is likely that a more precise determination of the constants would result in a still 
better agreement; this sample calculation has been presented to show the general trend 
of Eq. 76. It may be assumed that the constants E min and a vary within close limits. 

A third approximation is also available to evaluate the function tan ¢ = f ( E ) . The 
variation of the volume of the unit cell with the variation of the imaginary coordination 
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Figure 35. Experimental vs calculated data. 

TABLE 19 
number is a linear relationship. The 
shearing stress, necessary to produce 
movement by overcoming the friction on 
the surface of the spheres, may be as­
sumed to be directly proportional to (N - 6) . 
In the case of the cubic arrangement of the 
spheres (N = 6), the shearing resistance is 
zero (melting point). Then Eq. 61 yields 

EXPERIMENTAL VS CALCULATED DATA ON 
SHEARING STRENGTH 

Void Tan¢ 
Dev , 

Ratio, Dev . (%) 
Cale . Exp . 

0 . 58 a , 684 0 .682 -0 .002 -0 . 29 
0 , 60 0 .651 0 , 648 -0 , 003 -0 , 46 
0 . 62 0 .620 0 ,614 -0 , 006 -0 . 98 
0 . 64 0, 593 0 . 589 -0 . 004 -0 . 67 

N - 6 = 6 ( 2 +/2) ( 1 - V) (77) 0.66 0. 570 0 . 579 +0.009 +l.38 

and 

T = C (N - 6) = C1 [ a - b (V - Vo)] (78) 

Assuming, as in the first approximation, 

a = C2 ( V - Vo) (79) 

the result is 

tan¢= C - B (80) 
V - Vo 

This equation differs from Winterkorn's Eq. 34a only in the term (-B). This may 
account for the activation energy neglected in Batschinski' s equation. It would be 
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Figure 36 . Lateral pres­
sure of cubic packing . 
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Figure 37- Cubic packing as limiting state . 
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Figure 38. Substitution of isolat ed forces . 

worthwhile to check this equation against 
experimental data; it is not impossible 
that cases yielding negative values for 
<min, which is physically difficult to visu­
alize, would fit Eq. 80. 

LATERAL PRESSURES OF PACKINGS 

The study of systematic packings can 
be extended to the invesligallun uf lateral 
pressures exerted by them. This inves­
tigation furnishes some interesting results 
that may be of value for the better under­
standing of earth pressure phenomena 
(110). 
li in cubic packing, there is, according 

to Winterkorn' s conception, a melting point 
of the grain assembly, the coefficient of lat­
eral pressures, as interpreted in the theory 
of earth pressure, has to be unity (Fig. 20). 
This packing, however, gives at the first 
glance zero value (Fig. 36); there are no 
horizontal forces between the spheres . 
The slightest tilting of the wall AB will 
produce, however, lateral forces; if there 
is no friction between the spheres, this 
horizontal force, H, if I::. a~ 0, in the first 
row is W (Fig. 37). In the second row, 
H is 2W, and so on, until in the n-th row 
H is n W. The coefficient of earth pres­
sure is 
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(81) 

This definition assumes a continuous distribution of the forces transmitted through 
the particles; that is, the number of contacts becomes infinity. To calculate, the packing 
must be substituted by a continuous mass. This can be accomplished in the following 
manner (Fig. 38): 

DEo = W+2W+ ... +nW 
1 
2 n (n + 1) W (82) 

w (83) 

1 ( )1T 2 Ea = - n n + 1 - D Y s 
2 6 

(84) 

in which D is the width of the back of wall. This gives a triangular distribution for the 
horizontal stresses, with an intensity 

because h is nD. 

2:l:: E 
h 

(n + 1) % DY s 

The vertical force exerted by a vertical row of spheres is 
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Figure 39, Forces in orthorhombic system . 

(85) 

(86) 
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giving a uniform pressure 

N 1T 
2 =nD-Ys 
D 6 

and a coefficient of the earth pressure at rest 

Ko = 
(]Z 1 

= 1 +-
O"z n 

which, if n - CX), is 1. 
Although a simpler expression for this coefficient is 

H nW -Ko = - = - = 1 
N nW 

the more complicated way shown here is useful for the treatment of other cases. 

(87) 

(88) 

(89) 

The density of the orthorhombic system is midway between that of the densest and 
the loosest ( [ 3, 6, 3 J and [ 1, 4, 1 J) systems. It is, in fact, the densest of the plane sys­
tems. The determination of forces between the spheres and those acting on a plane 
with the angle of a= 60°, respectively, is shown in Figure 39. 

With the same procedure as before, the resultant force on AB is 

and 

Therefore 

and, for the vertical plane 

DEo 
1 17 3 

2 n (n + 1) 6 D Y s 

Eo 
2 

Kos Ys 
2 

0.523 (n - CX)) 

1 1 
DE

0
h = - n (n + 1) ---2 x H 

2 0.866 

H = W tan 30° 

Koh = ( 1 + ~) 0.:66 P. X ~ X 0.577 = 0.404 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

These results are in very good agreement with the measured values for sand of middle 
density. 
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