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A study of theoretical knowledge of the structural behavior of flexible pave
ments is reported. The limitations of present concepts of the elastic layer 
theory are discussed and means for developing better theoretical relation
ships are suggested. Several concepts of elastic models including two- and 
three-layer systems were studied. The hypothesis that flexible pavements 
are perfectly elastic appears to be valid for limited numbers of safe loads of 
short duration. However, for slow-moving or static loads large enough to 
nearly overstress the pavement, a rheologic model is more applicable. It 
was also determined that pavement layers lacking tensile strength may ac
count for a large part of the difference between calculated and measured de
flections and stresses. Also, there may be merit to an approach using an 
equivalent modulus of elasticity, E, for the system. In a discussion of 
Poisson's ratio it is concluded that although this parameter has little effect 
on calculated stresses, a value of 0. 5 seems to be most appropriate for soils 
and pavements. A discussion of the effect of pavement rigidity on pavement 
deflections indicated that the deflection factor is most important. The layered 
system model of flexible pavements should be expanded to include the con
dition of zero tensile modulus of the component materials. 

A well-documented history of the development of theoretical solutions for 
the design of flexible pavements for the period 1906 through 1962 is presented. 
At least five different theoretical approaches to the design of flexible pave
ments have been developed. 

•FOR THE LAST two years the Sao Paulo State Highway Department has been engaged 
in a research study of pavement deflections in several state highways, employing 
Benkelman beams and load bearing tests. The research program is still under way at 
this time. Some 12, 000 individual measurements have already been made covering 
1, 200 km (750 mi) of roads. The test results obtained so far have been statistically 
analyzed and reported (1), but final conclusions are not yet available. In a parallel 
project a bibliography Su.rvey was made of present knowledge on the structural behavior 
of flexible pavements, seeking to provide a theoretical framework to be used in the 
analysis and interpretation of experimental data. This survey has been already com
pleted (2), and includes in unified and comprehensive form, a critical review of most 
of the proposed theories on the problem and of experimental studies published by sev
eral authors. It was later felt that this report might be of enough interest to other 
engineers engaged in pavement research to warrant its publication as a separate study. 
This paper is an abridgment of the latter report. 

Paper sponsored by Committee on Flexible Pavement Design and presented at the 43rd 
Annual Meeting. 
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BACKGROUND 

A quarter of a century has elapsed since the development of the CBR method, the 
first correlation-based empirical method of thickness design of flexible pavements (3). 
Twenty years have passed since the presentation of the elastic layered theory, the first 
wholly theoretical analysis of the flexible pavement ( 4). These two opposite but con
verging approaches to the same problem still stand today, though much improved. In 
the meantime, more than three dozen different methods have been proposed, both of 
semiempirical and semitheoretical conception. The problem is still far from solved, 
but a few definite trends can be recognized, at least on a worldwide scale. 

The CBR method has gained an increasing reputation and has won the confidence of 
design engineers the world over. Its advance and improvement have been continuous 
and steady, largely due to the remarkable contribution of the U.S. Army Corps of 
Engineers (5). A review of the technical literature of several countries and of several 
organization s in the U. S. indicates that the use of the CBR method and its modifica
tions far exceeds the use of all the other non-CBR methods combined. Starting as a 
purely empirical method, the CBR has evolved, due to experience, research, and 
theoretical analysis of the correlation curves, into what could be very properly called 
a rational method. It is rational in the sense of having reason and understanding, of 
properly relating causes and effects, of being suitable for intelligent use, and pro
viding sound and trustworthy design. It is not entirely "scientific"-but then very few, 
if any, engineering design methods are. 

The elastic layered theory, however, has lagged far behind. Its advance and de
velopment have been slow, hampered by the tremendous mathematical complexity of its 
equations in analytical form (6). Nevertheless, many research engineers have retained 
hope in this theory as the best scientific approach to the design problem. A good ad
vance was made by several authors in the numerical computation of influence coefficients 
for stresses and deflections by the layered theory. The calculation of most of these 
coefficients required the use of modern electronic computers. The first numerical 
coefficients for deflections for a two-layer system were computed by Burmister him
self in 1943 ( 4). Coefficients for two-layer stresses were published by Hank and 
Scrivner (7) and Fox (8) five years later. However, the two-layer elastic system is a 
grossly oversimplified model of the flexible pavement. Stress coefficients for the 
three-layer system were published in 1951 by Acum and Fox (9), and were extended 
to a wider range of parameters by Jones in 1962 (10). Coefficients for three-layer de
flections are still unavailable, except for a particular case computed by Shiffman (11), 
and an approximate process by Jeuffroy and Bachelez (32). The three-layer elastic 
system is still a simplified model of the multilayer pavement, but a more complex 
model would hardly be susceptable to calculation. 

The numerical computation of influence coefficients made possible the experimental 
testing of the elastic layered theory. With the works of Sowers and Vesic (13) and other 
researchers, the layered theory was put through a severe trial. The available results 
show a reasonable agreement between measured stresses and deflections and theoretic 
computed values, but only for pavements possessing some tensile strength, such as 
soil-cement bases. These results tend somewhat to confirm the theory. Unfortunately, 
for flexible pavements which do not have tensile strength, that is, for truly flexible 
pavements, the measured and computed values show a disagreement great enough to 
overrule the physical analogy between the theoretical elastic model and the real pave
ment. 

It is not likely that the application of rheologic principles could bring much improve
ment to the present concept of the layered theory. The rheological analysis must in
clude elastic components in the complex rheological model. The influence of the elastic 
components would still be solely governed by the elastic layered theory-and this theory 
has proven to be not entirely correct. 

The need is apparent for a better theoretical analysis than the present layered 
theory. It is hoped that such improved theoretical analysis can evolve in time to meet 
halfway the steadily improving empirically originated CBR analysis. Both systems of 
knowledge would then be encompassed by one larger branch of applied science, pave
ment mechanics. This seems to be the discernible trend. 
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This paper reviews the logical foundations of the elastic layered theory, discusses 
some of its inconsistencies, and points out possible ways of improvement. 

THEORY OF ELASTICITY APPLIED TO FLEXIBLE PAVEMENTS 

The first question that arises in trying to apply the elastic theory to pavement struc
tures is whether a flexible pavement is an elastic body, at least approximately following 
Hooke's law. Considerable research and theoretical studies have been done on this 
point by several authors. One of the best approaches to the problem is the one pro
posed by Ruiz (14) and Baker and Papazian (29). The flexible pavement structural be
havior normallYfalls in one of the two folloWing patterns: 

1. Ca se A. -Under a finite nwnber of repetitions of loads of short duration (of the 
same order 0f duration as moving wheel loads) with intensity of loading well below 
breaking strength, the behavior of pavements of adequate design and construction is 
predominantly elastic, especially at low temperatures. The AASHO Road Test (15) for 
instance, determined that "deflections of flexible pavement surfacing increased almost 
linearly with load . . . . " The pavement in this case can be adequately represented by 
an elastic model whose most important characteristic is its modulus of elasticity. The 
elastic modulus of pavements in Case A should be determined under conditions typical 
of this case. 

2. Case B. -For slow-moving or static loads, close to the breaking strength, 
especially at high temperature and for new pavements, the behavior is predominantly 
viscous or pla s tic. The pavement in this case is best represented by a rheologic 
viscoelastic model, such as the Voigt model. Peltier (12) suggests that the behavior 
of pavements in Case B is elastic delayed. The final deflection, given time, depends 
on the final modulus of elasticity but not on the viscosity of the pavement. The viscous 
components of the pavement structure affect the immediate deformation but not the 
final deflection if enough time is allowed for the time-dependent part of the deflection 
to take place. The elastic model would also apply, within certain limitations, to Case 
B if the final modulus of elasticity is chosen as the working modulus. 

These considerations justify the conclusion that an elastic model is adequate to rep
resent the pavement in Case A, and to a lesser extent in Case B . A rheologic model 
would better represent the pavement in Case B. However, the rheologic model must 
include elastic components. The influence of the elastic components would necessarily 
follow the elastic theory. Therefore, the theory of elasticity is the governing law in 
Case A, and also plays an important role in Case B. 

Elastic Model of Pavement-Elastic Constants 

The term "pavement" here refers to the whole structure built above the subgrade, 
including all existing layers of subbase, base, binder course and surface course. The 
term "subgrade" means the soil mass resulting from earthmoving operations and is 
located below the pavement. 

The simplest elastic model of a pavement is the two-layer elastic system depicted 
in Figure 1. The subgrade soil and the pavement materials are supposed to be homo
geneous, isotropic and perfectly elastic. The subgrade is considered to be a layer of 
infinite depth, limited in its upper boundary by the subgrade surface and unlimited in 
the vertical downward direction and the horizontal direction. The pavement is con
sidered to be a layer of finite thickness, h, unlimited horizontally, lying over the sub
grade. The dividing surface between the two layers is the interface. The wheel load, 
Q, is represented by a contact pressure, p, uniformly distributed over a circular con
tact area of radius, r. The wheel load is initially considered a vertical static load. 
The effects of dynamic impact, horizontal forces and repetition of loads are later in
corporated into the analysis, usually as corrective coefficients. The dead load due to 
the weight of the materials is usually considered to be negligible as compared to the 
live loads. 

It is known from the theory of elasticity that a homogeneous, isotropic and elastic 
material is characterized by two independent elastic constants. These constants can 
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Figure l. Two-layer system. 
Figure 2 . Three-layer system . 

be taken as the modulus of elasticity or Young's modulus, E, and the Poisson's ratio, 
µ . A nonisotropic material has up to 15 independent elastic constants, according to 
the degree of anisotropy. A nonhomogeneous material has variable physical character
istics. A nonelastic material obviously has no elastic constants. In the two-layer 
elastic model, there are then four constants, namely Ei, µi for the upper layer and 
E2, µ2 for the lower layer. 

A further improvement of the elastic model is the three-layer elastic system in
dicated in Figure 2. In this system are six elastic constants, two for each layer. The 
remaining assumptions apply as for the two-layer system. A still better analogy to the 
real pavement would be a multilayer elastic system. However, the solution of an 
elastic model with more than three layers would present an exceedingly complex mathe
matical problem. 

Of all simplifying assumptions made in the construction of the elastic model of the 
pavement, the hypothesis of perfect elasticity is the one which most departs from re
ality. The stress-strain relationship of real materials is not exactly linear; more
over, it depends on the material conditions. In other words, the elastic "constants" 
of real materials are not really constants, but depend on factors such as load, state of 
stress, rate of loading, temperature, compaction, and moisture. However, if we 
choose adequate average values for the elastic constants, valid for the particular con
ditions of the problem under study, the elastic theory should provide a reasonably ac
curate framework for the solution of many problems. 

The main difficuity is Lhen of an experimental nature: the determination of adequate 
values for the elastic constants. The determination of elastic modulus of soils and 
pavement materials can be made by experimental methods such as triaxial tests, load 
bearing tests, drop impact, and pulse velocity. Each of these methods has its merits 
and shortcomings, its limitations and range of application. This subject has been 
widely studied by several authors. For our purposes it is enough to recognize that the 
elastic modulus is a physical characteristic of materials that can be measured experi
mentally for a given set of conditions. The experimental methods of measurement will 
not be further discussed in this paper, which is directed to the discussion of the con
ceptual or philosophical foundations of th~ theories. 

The determination of Poisson's ratio for soils and flexible pavement materials poses 
a different problem, generally overlook d by most authors. For soils, Poisson's ratio 
is a very tenuous properly which has never been satisfactorily determined. It is usually 
supposed to be near 0.5, the value for an incompressible engineering material (16). 
Because saturated nondraining soils can be assumed to be incompressible withinthe 
range of practical loads, this value appears to be reasonable. It has the additional 
advantage of simplifying theoretical equations, in which U1e Lerm 2 u is frequently 
found. There is no reliable test to meai:mre Poisson's ratio for soils and pavement 
materials, and no sound criterion to chose a value different from 0. 5. The author 
suggests that the difficulty of measuring Poisson's ratio may go deeper than testing 
complexities. It is possible that the Poisson's ratio as such-a relation of radial and 
axial unit elongations-may have no physical significance for soils and pavement ma
terials. The concept of Poisson's ratio, according to the elastic theory, is based on 
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the assumption that the deformations are small and the corresponding small displace
ments do not substantially affect the action of the external forces. These conditions 
are not generally met for soils. Consequently, the elastic principle of superposition 
of effects is not exactly valid for the stresses and strains acting on the elemental 
volume within the soil mass. The principle of superposition may eventually give ac
ceptable results for the effects of external macro loads, as a sort of gross average 
blanketing the interrelated effects of several micro phenomena, but it is not strictly 
valid for the point stresses and strains. Therefore, the elastic Poisson's ratio be
comes meaningless-and it is small wonder that it could never be satisfactorily de
termined. But according to theory, a second elastic constant, in addition to the modu
lus of elasticity, is necessary to define the elastic material. For practical applica
tions, a coefficient related to the volumetric change, such as the elastic modulus of 
compression, would be more reliable as the second elastic constant. The condition 
most likely to prevail in actual subgrades is the permanence of volume, corresponding 
to a coefficient of volumetric change equal to zero. It can be demonstrated that this 
zero coefficient corresponds to a theoretical value of Poisson's ratio equal to 0. 5. 
Therefore, this value of µ = 0. 5 seems to be well justified from a theoretical stand
point. 

In the Vicksburg tests ( 1 7), the value of u = 0. 5 was found to be adequate for the 
clayey-silt soil test sectioll:" For the air-dry pure sand test section (18), the most 
probable value was considered to be 0. 3. However, the result for thepure sand is not 
as convincing as the one for the clayey-silt soil. Closely examining the sand section 
data presented ( 18, Plate 96), one can see that the agreement between measured and 
computed horizontal stresses is very poor, both for 0. 3 and 0. 5 values of µ, the former 
being only a little better than the latter. The pure sand section test results deviate in 
several respects from the elastic theory, much more than the clayey-silt soil section. 
There are several reasons to believe that most actual subgrades are closer to the 
clayey-silt soil than to the pure sand and, therefore, closer to µ = 0. 5. 

In the absence of more experimental work, we have to rely on the theoretical analy
sis. It is fortunate that the theoretical influence of Poisson's ratio on the vertical 
stresses and deflections is small, for both homogeneous and layered systems. Shiffman 
(11) computed the vertical stresses and deflections for a three-layer system with 
Poisson's ratio of 0 . 4, 0. 2 and 0. 4, respectively. The author compared the vertical 
stresses from Shiffman with the values for Poisson's ratio of 0.5 interpolated from the 
tables of Jones (10) and found differences less than 5 percent, below experimental ac
curacy. The author also compared the vertical deflections from Shiffman to the de
flections of a corresponding two-layer system with Poisson's ratio of 0. 5 given by the 
Burmister graph ( 4). This comparison is valid because the two upper layers of the 
Shiffman case have the same modulus of elasticity, being different only in Poisson's 
ratios. The two upper layers of the Shiffman three-layer case correspond to the upper 
layer of the Burmister two-layer case. The comparison shows that the influence of 
Poisson's ratios of the upper layers is entirely negligible. The influence of the lower 
layer is sensible but less than 15 percent. This difference is of little significance be
cause the lower layer of real pavements, that is the moist subgrade, is most likely to 
have a Poisson's ratio of 0. 5. 

Available experimental and theoretical evidence indicates that a Poisson's ratio 
of 0. 5 seems to be the most adequate for general use. The discussion of alternative 
values for Poisson's ratio belongs to the realm of theoretical hypothesis. Practical 
graphs or formulas for deflection analysis including values of Poisson's ratio other 
than 0. 5 are utterly unwarranted. This inclusion is misleading because it presupposes 
the wrong notion that Poisson's ratio is a parameter that can be varied to suit particu
lar project conditions. Actually there is no such thing as the selection of a µvalue in 
practical problems of deflection analysis, at least in the light of present knowledge. 

This adoption of a fixed value for one of the two independent elastic constants some
what simplifed the elastic model. We have now just one elastic constant, the modulus 
of elasticity, for each layer. As stated before, it is most important for the validity of 
the elastic model that the actual values of the modulus be measured under conditions 
similar to the service conditions of the real pavement. The elastic modulus is the 
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physical parameter that binds the theory to the ground-and so to say, it is the clay 
foot of many theoretic giants. 

The elastic model of the pavement will be completely defined by the following con
ditions and parameters (~: 

1. Elasticity condition. -The subgrade soil and pavement materials are supposed 
to be homogeneous, isotropic and perfectly elastic, obeying Hooke's law. The modulus 
of elasticity is supposed constant, and usually assumed to be the same for tension and 
compression. 

2. Geomeh·ic parameters. -These are radius, r, and layer thicknesses, h1, hz, 
h3, . . . . It is convenient to express all thicknesses as nondimensional multiples of 
the radius, which is the same as to consider r = 1. The radius is thus eliminated as 
an independent parameter. There is one independent geometric parameter for each 
layer: h1/ r, hz/r, h3/r , .... 

3. Loading parameter. -The applied contact pressure, p, is usually assumed to be 
normal to the surface, that is, of vertical direction. It is convenient to adopt the value, 
p = 100 percent and express all induced stresses in the model as a percentage of p. 
The contact pressure is then also eliminated as an independent parameter. The dead 
weight of the layers is usually neglected. 

4. Physical parameters. -There is a modulus of elasticity for each layer, E1, Ez, 
E3, . . . . It is convenient to adopt as independent parameters the nondimensional 
ratios between successive modulus, plus the lowest modulus: E1 / E2, Ez/E3 and EJ. 
Sometimes it is useful to express the combined effects of all different moduli as an 
equivalent modulus Ee. 

5. Boundary conditions. -The top surface of the layer is assumed to be free of any 
stresses outside the contact area and of shearing stresses inside the contact area. The 
lower boundary at infinite depth is supposed to be free of any stresses and strains. 

6. Continuity conditions. --The interfaces between the layers are assumed to fall 
within one of the two limiting cases: Case 1 (Rough interfaces)-with perfect continuity 
and the layers in continuous contact, acting together with no slippage at the interfaces; 
or Case 2 (Smooth interfaces)-with no friction and the layers in continuous contact but 
perfectly free to move horizontally relative to each other. In reality, the actual con
ditions at the interface are intermediate between these two extremes, but probably 
closer to the first case than to the second. 

The mathematical problem posed by the elastic model consists in expressing all in
duced stresses and strains within the model as functions of the independent parameters, 
for the given conditions. 

Relative Rigidity of Flexible Pavement 

Because the pavement modulus is greater than the subgrade modulus, there is a 
relative rigidity of the flexible pavement with respect to the subgrade. The relative 
rigidity improves the pavement performance in two ways: (a) it reduces the vertical 
downward pressure transmitted to the subgrade beneath the loaded area, and (b) it in
creases the ultimate shearing strength opposing the upward movement of the subgrade 
soil around the loaded area. According to Hveem (19), the second effect is more im
portant than the first one. Certainly, the most important effect of the rigidity is a 
reduction of the total deflection for a given load. A convenient form of indicating the 
effect of the pavement rigidity is to compare the total deflection of the layered system 
with the corresponding deflection of a uniform medium of the same modulus of elasticity 
as the subgrade modulus. The ratio between the two deflections is the deflection fac
tor. The most important problem to be solved in the elastic model is the calculation 
of the deflection factor. 

PREVIOUS STUDIES 

Almost all mathematical solutions of the layered system are based on the classical 
Boussinesq-Love solution for the semi-infinite uniform medium presented by Love (20). 
There were a few partial solutions of the layered system problem before the Burmister 
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analysis. One of the most widely known 
is the solution presented by Hogg (21) of 
the problem of a thin rigid slab supported 
by a semi-infinite elastic foundation. 
Hogg' s solution introduces an additional 
condition in the elastic model previously 
defined. It supposes that the thin slab 
deflects according to Navier hypothesis; 
that is, top and bottom faces and median 
plane deflect along parallel curves. This 
hypothesis causes a considerable simpli
fication in the calculus, but it covers only 
approximately Case 2 of the continuity 
condition. Hogg' s solution was numerical
ly computed and presented in graphical 
form by Odemark (22). An extension of 
Hogg' s solution to the three-layer prob
lem was recently presented by Jeuffroy 
and Bachelez (32). 

For the two-layer system, the deflection factor and vertical stress computed by 
Hogg and Odemark are practically equal to the corresponding values given by the 
Burmister analysis. The radial and shear stresses in the top layer are slightly dif
ferent in the two solutions, but the radial and shear stresses in the lower layer can
not be correctly calculated with Hogg' s solution. For the three-layer system the 
agreement is not as good. 

Semi-Empricial Solutions 

Palmer and Barber (23) presented an approximate process for calculation of de
flections of the two-layer system which gave results close to the Burmister analysis. 
Palmer and Barber start from the hypothesis that, for deflection computation, the pave
ment thickness, h , could be replaced by an equivalent thickne ss, h', of subgrade soil 
(Fig. 3), satisfying the condition: 

(1) 

1/3 
The factor (E1 / E;J had been previously proposed by Marguerre as the relative rigidity 
factor for slabs. It should be noted that the replacement of h by h' corresponds to a 
transformation of coordinates, displacing the origin 0 to O' but keeping the interface 
unchanged. 

By combining the equivalent thickness hypothesis of Palmer and Barber with the 
Boussinesq-Love analysis of the uniform medium and neglecting the deformations 
within the pavement itself, the subgrade deflection may be substituted for the total de
flection, and expressed by: 

w 1. 5 pr 2 (2) 

This equation may be rewritten in another form by calling W0 the total deflection of the 
uniform medium and F' the Palmer and Barber deflection factor: 
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F' 

therefore 

1 

W = W F' 
0 

(3) 

(4) 

(5) 

Eqs. 2 or 5 will give the total deflection if the pavement deflection is neglected. If the 
ratio E1/ E 2 is greater than 100, the pavement deflection is much smaller than the sub
grade deflection and can be safely neglected. But if the modular ratio is smaller than 
100, this cannot be done. In actual practice, the modular ratio of flexible pavement is 
seldom greater than 100 and the pavement deflection should be taken into consideration. 
By an extension of the Palmer-Barber analysis ( 4, Discussion), it can be demonstrated 
that the total deflection may be expressed by the f ollowing equation: 

(6) 

By making : 

F (7) 

we have : 

(8) 

Eq. 8 will give values for the total deflection practically equal to the values given by 
the Burmister analysis. This final agreement justifies the initial hypothesis of sub
stituting h' for h, according to Eq. 1. 

The vertical stress in any point of the vertical axis passing through the center of 
the contact area, within the pavement or the subgrade, can be calculated by the equiva
lent thickness hypothesis combined with the Boussinesq-Love equation. However, the 
Palmer-Barber analysis is less correct for stresses than for deflections. The vertical 
stress values given by the Palmer-Barber analysis are smaller than the corresponding 
values computed by the Burmister analysis. Moreover, the radial and shear stresses 
cannot be calculated by the Palmer-Barber analysis. 

From Eq. 2 comes the well-known semi-empirical Kansas formula (25): 

in which 

h =J( 1.5Q)z - rz l 11E2Wa 
(9) 
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h required thickness of pavement (in.), 
Q design wheel load (lb), 
r radius of contact area (in.), 

E1 elastic modulus of pavement (psi), 
E 2 elastic modulus of subgrade (psi), and 

Wa allowable deflection of subgrade (usually assumed to be 0.1 in.). 

For practical use, the wheel load, Q, is affected by two empirical factors related to 
traffic and rainfall, as follows: 

Q Pmn (10) 

in which 

P maximum wheel load, usually 9, 000 lb; 
m = traffic coefficient, between 0. 5 and 1; and 
n = rainfall coefficient, between 0. 6 and 1. 

The subgrade modulus E2 is determined by the triaxial test, with the use of a graphical 
process that takes into consideration the variation of the vertical and radial stresses 
with depth. The pavement modulus, E1, can be determined by the triaxial test, or a 
value for E1 is assumed from previous experience. The thickness of each component 
layer of the pavement is also calculated with the help of the rigidity factor; that is, the 
thickness is inversely proportional to the cube root of the modulus. 

The Kansas method, however useful in actual practice, has several shortcomings 
when viewed from a theoretical standpoint. To begin with, it neglects the pavement de
flection. Actual tests, such as the AASHO Road Test (15), show that the pavement de
flection often amounts to 30 percent or more of the totaldeflection. Furthermore, the 
determination of the elastic modulus by the triaxial test is, at best, a delicate opera
tion and does not take into consideration the rate of loading in the two patterns of struc
tural behavior previously discussed. But the weakest point of the method is the assump
tion of a fixed and arbitrary value for the allowable deflection, regardless of the pave
ment type. The assumed allowable deflection is very critical because it has a great 
influence on the resulting thickness. The usual value of 0 .1 in. is rather large. Sev
eral performance studies, including the AASHO Road Test, indicate that 0. 04 in. would 
be a more realistic value to prevent the early deterioration of the pavement. However, 
if this is introduced in the Kansas formula, unrealistically high thicknesses will result. 
Many authors have shown the difficulty of designing for an arbitrary allowable deflection. 
McLeod (26) points out that a given deflection under a specified wheel load does not in
dicate thesame ability to carry traffic if the strengths of the underlying subgrades are 
different. In spite of its theoretical inconsistencies, the Kansas design method has 
been reportedly used with success (25). This might be explained by the experience and 
"engineering judgment" of Kansas engineers in supplementing their method. 

Another semi-empirical method employing the triaxial test in a modified form is the 
Texas method (27) which uses a correlation-based classification chart rather than a 
design formula:-The subgrade soil and pavement materials are classified by the posi
tion of their Mohr's envelopes in the classification chart, and the required thickness 
is taken from a design chart using the classification of materials and the design wheel 
load. The Texas method employs the triaxial test in a rather dependable manner. In
stead of using just one numerical value for the modulus of elasticity of each material, 
it relies on several points of the shear envelope, each point being determined by 
stressing the material until failure at various lateral pressures. The theoretical 
justification of the method is based on the Burmister analysis, making use of the Hank
Scrivner solution (7). The Texas method represents definite progress towards the de
velopment of a scientific design method, but because it does not properly present a new 
solution for the mathematical problem of the elastic model, it will not be further dis
cussed here. 

Ivanov (28) presented a semi-empricial thickness design method that is said to have 
been the official Russian method for many years. The Ivanov method has some re-
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semblance to the Palmer-Barber analysis. It is essentially based on the assumption 
of an arbitrary allowable deflection and the calculation of stresses and deflection with 
approximate formulas. The rigidity factor of the pavement is assumed to be the 
following: 

(11) 

Comparing Eqs. 1 and 11, we can see that Ivanov attributes greater rigidity to the 
pavement than do Palmer and Barber. On the other hand, Ivanov permits smaller al
lowable deflection, of the order of 0. 04 in. 

Ivanov proposes an approximate formula for the vertical stresses but gives no 
formulas for the radial and shear stresses. The vertical stresses computed by the 
Ivanov formula for the uniform medium are very close to the values given by the 
classical Boussinesq-Love equation. For the two-layer system, Ivanov's formula 
gives vertical stresses well below the values given by the Burmister analysis. For 
the deflections, the two theories present a reasonable agreement. 

The final deflection equation of Ivanov is: 

w 1T 

2 .ya 

in which 

p contact pressure, 
r == radius of contact area, 
a -=- empirical constant, 

E 2 subgrade modulus of elasticity, 
n rigidity factor, and 
h pavement thickness. 

nhya] arc tan ---
2r 

(12) 

The elastic modulus is determined by load bearing tests or dynamic tests. The pro
posed values for the constant a are as follows: for a uniform mediu1n a = Z. 5; for a 
two-layer system a = 2; and for a three-layer or greater system, a = 1. 

Implied in the analytical derivation of Ivanov' s equation, though not clearly stated, 
is the assumption of µ = 0 because the effect of the radial stress on the deflection is 
neglected. Ivanov' s deflection equation for a uniform medium is: 

W _ 2pr 
o - E (13) 

The same expression would be given by the Boussinesq-Love analysis forµ= 0. This 
condition should be borne in mind when using Eqs. 12 and 13. Of course, if the elas
ticity modulus is determined with load bearing tests by Eq. 13 and the resulting value 
is introduced in Eq. 12, the difference is canceled out. But if the modulus is determined 
in the usual way, for µ = 0. 5, it should be multiplied by a factor of 1. 3 3 before enter
ing it into Eqs. 12 and 13. Eq. 12 may be somewhat simplified for the two-layer sys-

tem by using the values a = 2, n = (E1/E 2) 
1
/P.· ", and W 0 = 2 pr /E 2: 

F 
w 

0. 7 [arc ta" 
1 1 + --

3.5 
n 

(14) 
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and, therefore, 

(15) 

From Eq. 14 Ivanov defines a uniform medium of equivalent modulus, Ee, which 
would have the same deflection of the layered system. It is possible to calculate the 
equivalent modulus of a multilayered system, considering the layers two by two, from 
the lowest to the top. This concept of an equivalent modulus, based on equality of de
flections, is the most outstanding feature of Ivanov's method. From Eqs. 13 and 14, 
the equivalent modulus is: 

Ee (16) 

Burmister Analysis 

Burmister presented in 1943 the first rigorous and complete theoretical solution of 
the problem of stresses and strains in the elastic model of the pavement ( 4, 6). The 
Burmister solution follows exactly all conditions of the elastic model previously de
fined. In his first paper ( 4), Burmister extended the Boussinesq-Love equations to 
the two-layer system, determining the parameters by the boundary and continuity con
ditions, and checking the compatibility of the equations. The Burmister solution, with 
the use of Bessel auxiliary functions, gives the stresses and displacements in any point 
of the two-layer system for the two cases of interfaces. In his second paper ( 6), 
Burmister extended his analysis to the three-layer system with rough interfaces, but 
derived only the equation for total deflection at the surface. The Burmister equations 
in analytical form are exceedingly complex and not suitable for immediate application. 
For practical use, they require the computation of numerical influence coefficients for 
stresses and deflections. 

The first numerical coefficients were computed by Burmister ( 4) for the total de
flection at the surface beneath the center of the contact area of a two-layer system with 
rough interface and with 0. 5 Poisson's ratio in both layers. The Burmister equation 
for deflection is: 

w F (17) 

in which 

W total deflection, 
p contact pressure, 
r radius of contact area, 
h pavement thickness, 

E1 pavement modulus of elasticity, 
E2 subgrade modulus of elasticity, and 
F deflection factor, function of the ratios E1/E2 and h/r. 

In the Boussinesq-Love analysis, the total deflection of a uniform medium of modulus, 
E 2, loaded with a uniform pressure is: 

Wo 
1. 5 pr (18) 
~ 

Therefore, 

w W0 F (19) 

for F 1 and W Wo· 
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Figure 4. Two-layer deflection factor. 

The total deflection of a uniform medium loaded with a rigid plate is : 

W _ l.18 pr 
o - E z (20) 

Eq. 19 is valid with the substitution of the va lue given by Eq. 20 for W0 . The theoreti
cal analysis shows the influence of the two para meters E1 / E2 and h/r on the deflection. 
Burmister computed numerically the deflection factor, F, for usual values of the pa
rameters, and presented the results in graphical form (Fig. 4). 

Burmister Design Method 

Burmister also suggested ( 4) a semi-empirical thickness design method based on 
his analysis. It consists essentially of fixing an arbitrary value for the allowable de-

. flection and calculating the required thick-
T ABLE 1 ness by the deflection graph. The subgrade 

INFLUENCE COEFFICIENTS FOR TWO-LAYER STRESSES" modulus is determined by load bearing 
Ve1·lk:tl St<·••• Radl l stressb Shear stress, tests, and the pavement modulus is ~ l"-

El/F..'.! h/r (Coiuprossion).. J>1./[J ('!'.) Ps /P {~) sumed from experience. The total de-
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flection is then checked in a trial section 
of the pavement. This method has the 
same weakness already discussed in the 
Kansas method, namely the difficulty and 
inconsistency of assuming an arbitrary 
value for the allowable deflection. The re
quired thickness is very sensitive to the 
chosen value of the allowable deflection . 
Burmister' s design method has not en
countered the same acceptance as has 
his theoretical analysis of stresses and 
deflections. 

Extensions of the Burmister Analysis 

Hank and Scrivner (7) published nu
merical coefficients for two-layer stresses 
and some three-layer stresses at the inter
faces, in the vertical axis for rough and 
smooth interfaces. Some of these values 
are given in Table 1. The vertical stresses 
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are very similar in both types of interfaces, but the radial and shear stresses at the 
base of first layer are greater for the smooth interface, particularly for the lower 
modular ratios. The radial stress at the top of the second layer (not shown in Table 1) 
is always smaller than the radial stress at the base of first layer. There is always a 
discontinuity of radial stresses, even in the case of rough interfaces, induced by an 
equal strain under different moduli of elasticity. 

Fox (8) presented numerical values for the two-layer stresses in the vertical axis 
and alsoin points off-set from the axis, computed with the help of the relaxation method 
of Southwell. The Road Research Laboratory (24) published some of Fox results in 
gr~tphical form, comparing the two-layer stresses with the corresponding stresses for 
a willorm medium (Fig. 5). This comparison ir(dicates that the two -layer vertical 
stresses are considerably lower than the uniform medium stresses. For example, at 
a depth z/ r = 1, the uniform medium vertical stress is 65 percent of p, whereas in the 
two-layer system it is reduced to 29 percent of p. This result indicates that the pave
ment rigidity reduced the vertical stress at that particular point to less than half. 
However, at greater depths, i.e., for z/r greater than 3, the stresses in the two sys
tems are very similar. 

The reduction of the vertical stresses in the layered system is accompanied by a 
considerable increase in the radial and shear stresses and the appearance of tensile 
stresses in the top layer. The greatest values of the layered system tensile stress are 
located beneath the center, in the lower face of the top layer. The tensile stress de
pends on the same parameters E1/E2 and h/r. The uniform medium (E1/E2 = 1) with 
µ = 0.5 has no tensile stress in the vertical axis. When the modular ratio exceeds 1.5, 

z 
r 

Qi 

H 

Uniform medium 

E, 
--=1 

E2 

Two-layer system 

E1 h 
--=10 --=1 

E2 

f-L = 0 . 5 

Pavement 

(Modulus E l ) 

Interface 

Subgrade 

(Modu lus E2 ) 

Figure 5, Pressure bulb for the two-layer system (Burmister) compared to a uniform me
dium (Boussinesq-Love). 
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tensile stresses begin to appear. Figure 6, based on Hank-Scrivner values, indicates 
the reduction of vertical stresses and the increase of radial stresses in a two-layer 
system, with the increase of the modular ratio. For h/ r = 1 and E1/ E2 = 2, the tensile 
stress already reaches one-third of the contact pressure. For E1/E2 = 100, which is 
the greatest modular ratio normally occurring in flexible pavements, the tensile stress 
exceeds three times the contact pressure. In the last case, the flexible pavement has 
a stress distribution similar to a rigid slab in flexure, with top and lower face stresses 
almost equal in absolute value but opposite in signal, and middle plane stresses almost 
zero. Baker and Papazian (29) also noted this basic similarity in the structu1·al design 
of rigid and flexible pavements. They computed tensile stresses of flexible pavements 
by the Burmister analysis, and the correspondent rigid slab stresses by the Wester
gaard analysis, and found comparable stresses, particularly for the thicker pavements. 
As for the influence of thickness, the tensile stress reaches a maximum for a certain 
critical thickness (of the order of half the radius) and then decreases with an increase 
in the thickness of the top layer. This theoretical finding explains the recognized fact 
that thin surfaces are more prone to tensile cracking and, therefore, should be more 
flexible. 

The three-layer stress coefficients were computed by Acum and Fox (9) for points 
at the interfaces in the vertical axis. The relaxation method was found tobe unsuit
able for off-set points in the three-layer system. Jones (10) extended the Acum-Fox 
computation to a wide range of the parameters for the three-layer system with rough 
interfaces and Poisson's ratio of 0. 5. The Jones tables were computed by the elec
tronic computer at Shell Laboratorium, Amsterdam. Table 2 gives some of the Jones 
coefficients, expressed as a percentage of contact pressure. Peattie ( 30) organized a 
series of charts based on the Jones tables giving the stress and strain factors in 
graphical form for convenience of interpolation. The Jones-Peattie works are the most 
extensive set of numerical data now available on the elastic layered system. They give 
the stress and strain coefficients (but not the deflection factor) for the three-layer sys
tem for any combination of parameters within the following range (Fig. 2): 

E/E 2 K1 0. 2 to 200 

Ez/E3 Ka 0. 2 to 200 

h1/ h2 H 0.125 to 8 

r / h2 A 0.1 to 3. 2 
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20 

20 

20 

2 

TABLE 2 

INFLUENCE COE FFICIENTS FOR THREE-LAYER STRESSEsa 

E,/E 3 : K, h, / h 2 : H 

20 0. 25 

20 

2 o. 25 

2 

20 0. 25 

20 

h,/r : .!_ 
A 

1. 25 
2. 5 
5 
1. 25 
2. 5 
5 
1. 25 
2 . 5 
5 
1. 25 
2.5 
5 
1. 25 
2. 5 
5 
1. 25 
2. 5 
5 

A 

0 .8 
0.4 
0.2 
0. 8 
0.4 
0 .2 
0.8 
0.4 
0 . 2 
0.8 
0.4 
0.2 
0.8 
0 . 4 
0. 2 
0 .8 
0.4 
0.2 

Pz2/P (1\) Prt / p (<;\) 

6. 7 580 . I 
1. 9 378. 3 
0. 5 177 .0 
1. 5 251. 7 
0 . 4 79 . 7 
0. 1 21. 6 

26. 3 474 .0 
7. 9 348. 9 
2 . 1 169 .5 
5 .9 185 . 2 
1. 6 62 .9 
0. 4 17 .5 
9. 3 -70 . 8 
2.7 7. D 
0 . 7 24 .G 
3 . 6 43 . 0 
0. 9 16.8 
0 .2 4 .9 

P8 1I P ( ~) 

324. 5 
207. 0 
95. 3 

129.8 
41. 2 
11. 2. 

275 . ~ 
193. 1 
91. 9 
98. 7 
33 . 3 
9.2 

11.0 
42 . 2 
33. 5 
38. 1 
14. 8 
4.3 

aAt interfaces (rough interfaces) on the vel'tical axis as percentage of canto.ct pressure; 
symbols used are as follows: 

pz
2 

vertical stress at 2 nd j nterface (pressure on subg1·ade} 1 

prl = radial stress a t lst interface (tension at base of top laye r)J and 

p
51 

= shear stress at 1st inte;cface (at base of top layf'r). 

(Interpolatjon between given values of K1 and ~ can be perfo1·med graphically on log
log paper.) 

The last parameter is the reciprocal of the usual one, that is: 

h w'r = 0. 32 to 10 
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Shiffman (11) computed the stresses and also the deflection factor for a pa rticular 
case of a three-layer system having E1 / E 2 = 1 and E w'E3 = 10; that is, the same modu
lus in the two top layers, but different Poisson's ratios for each layer: µ1 = 0. 4, µz = 
0. 2 and µs = 0. 4. Except for this specific case, which is of little practical interest, 
there are no published values for the three-layer deflection factor determined by the 
rigorous Burmister analysis . 

Shiffman has also presented (31) a general analysis of stresses and displacements 
in layered systems, developing analytical procedures for the consideration of normal 
and tangential loads and axisymmetric and inclined plates. Numerical coefficients 
were not presented . 

Jeuffroy and Bachelez (32) proposed an approximate solution for the three-layer 
system to which we have already referred. The Jeuffroy-Bachelez solution is an ex
tension of Hogg' s solution. The top layer is supposed to follow Na vier's hypothesis. 
The first interface is assumed to be smooth and free of shear stresses. The second 
interface is assumed to be rough, but having all stresses and strains equal in both 
layers. This is a further simplification because, according to the rigorous Burmister 
analysis, the radial stresses at the interfaces are different in both layers, even for 
the rough interfaces. J euffroy and Bachelez presented a series of charts giving the 
stresses and deflection factor for the three-layer system, for single and dual wheel 
loads. The stresses computed by Jeuffroy and Bachelez are higher than the corres
pondent values in the Jones tables. The radial and shear stresses in the two lower 
layers cannot be computed by the Jeuffroy-Bachelez solution. 

EXAMPLES OF APPLICATION 

A few simple practical applications of the theories discussed are in order, to try 
the engineering "feeling" of so many tables, graphs and formulas. For example, if 
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the wheel load is Q = 7, 800 lb, p = 100 psi, and r = 5 in. and we assume a uniform 
medium of modulus E = 1, 000 psi, the deflection at surface is: 

Wo _ 1. 5 x 100 x 5 _ O 75 . 
- 1, 000 - . lll. 

Calculation of vertical and radial stresses at an arbitrary depth of 10 in., according 
to the Boussinesq-Love analysis (35) yields Pz = 28. 4% x 100 = 28. 4 psi and Pr = 
1. 6% x 100 = 1. 6 psi (compression) because z/r = 10/5 = 2. If over this sub
grade we build a 10 in. base of modulus 20, 000 psi, we have a two-layer system, 
whose parameters are h/r = 10/5 = 2 and E1/E2 = 20, 000/1, 000 = 20. The two
layer deflection, by the Bur111ister graph (Fig. 4), is F = 0. 22 and W = 0. 75 x 0. 22 = 

0 .17 in. If the two-layer deflection is calculated by some of the other referred methods, 
the following results will be found: 

1. By the Hogg-Odemark graph, W = 0. 75 x 0. 23 = 0. 17 in. 
2. By the Palmer-Barber approximated formula 

F' 1 0.182 
% 

+ 22 x 20 

andW = 0.75 x 0.18 = 0.14in. 
3. By the Palmer-Barber corrected formula, F = 0.182 (1 - 1/20) + 1/20 = 

0. 223 and W = 0. 75 x 0. 22 = 0. 17 in. 

4. By the Ivanov formula, n = 20
1
/ 2. 5 = 3.31, h/r = 2, 1/n1/3 '

5 = 1/3.31
1
/J, 5 = 

0.015, 0.7nh/r = 4.65whichyield F = 0.7(arctanl/4.65 + 0.015arctan4.65)= 
0 . 16 4 and W = 0 . 7 5 x 0 . 16 = 0 . 12 in. 

In calculating the stresses at the interface by the Hank-Scrivner table, because 
p = 100 psi, the percentages of p correspond to psi. The vertical and radial stresses 
are pz = 6. 6 psi and Pr = 84. 4 psi (tension). Comparison of the two-layer system 
with the uniform medium indicates that the deflection was reduced from 0. 75 to 0 .1 7 
in., and the vertical pressure on the subgrade from 28. 4 to 6. 6 psi, but at the same 
time the radial stress passed from a compression of 1. 6 psi to a tension of 84. 4 psi. 
The shear stress, not computed in this example, also increased. It should be noted 
that the computed values of radial and shear stresses are very high. 

If we cap this base with a 2'/2 -in. asphaltic surface course of modulus 400, 000 psi, 
we have a three-layer system with the following parameters: 

h1 H 
2.5 

0.25 
h2 10 
h2 1 10 

2 
r A 5 

(A 0. 5) 

E1 400,000 
20 

E~ 20,000 

E2 20,000 
20 Ea""" 1,000 

The three-layer deflection, by the Jeuffroy-Bachelez method, is W 
0 .14 in. This value is very close to the two-layer deflection. 

0.75 x 0~18 ::; 
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The stresses at the interfaces, by the Jones tables, are as follows: 

1. Radial stress at the base of first layer, Prl = 428 psi (tension); 
2. Radial stress at the base of second layer; Pr2 = 43 psi (tension); and 
3. Vertical stress at second interface, Pz2 = 3 .1 psi. 

The vertical pressure on the subgrade was further reduced from 6. 6 to 3 .1 psi, and 
the radial tensile stress at the second interface was also reduced from 84 to 43 psi with 
respect to the two-layer system, but for this the surface course should resist a very 
high tensile stress of 428 psi. The shear stress would also be very high. 

The high values of the theoretically computed tensile stresses in the base, and par
ticularly in the surface course, seem to be very unrealistic. It is unlikely that com
mon flexible pavement materials would withstand such high stresses, unless at very 
low temperatures. And according to the Jones tables the theoretical tensile stresses 
in the three-layer system can go even higher than those in this example, surpassing 
six times the contact pressure, i.e., to over 600 psi. It is curious to note that few 
authors have shown much concern for this apparent unrealism of the layered theory. 

The stress values included in Table 2 allow another interesting comparison. It is 
known that at low temperatures asphaltic surface courses have high elastic moduli and 
relatively high tensile strength. When the temperature rises, the surface modulus is 
reduced, but the base and subgrade modulus axe practically unaffected. As the ratio 
E1/E 2 decreases, the tensile stress is drastically reduced, while the vertical stress 
increases just a little. Consequently, the "slab effect" of the flexible pavement is 
considerably reduced and the structural behavior changes from elastic to plastic. We 
should investigate, for example, what would theoretically happen in a thin pavement 
when the modular ratio E1 / E2 changes from 20 to 2, without alteration in the other 
modulus. For the parameters E1/E2 = 20, E:i/E3 = 20, h1/ h2 = 0. 25, h:i/r = 1. 25, 
and p = 100 psi, we have Pz2 = 7 psi and Prl = 580 psi (tension). For E1/E2 = 2 
with the other parameters remaining the same, we now have Pz 2 = 9 psi and Prl = 
71 psi (compression). In this particular ~ase, simply because of a temperature change, 
the radial stress changed from a tension of 580 psi to a compression of 71 psi, while 
the vertical stress was only slightly affected. 

EXPERIMENTAL TESTING OF THE ELASTIC LAYERED THEORY 

The numerical computation of influence coefficients made possible the experimental 
testing of the elastic layered theory. In his original paper, Burmister ( 4) proposed a 
graphical solution of his multiple equations system to calculate the deflection of the two
layered system. The graphical process consists in drawing trial curves of the deflec
tion factor, F, on Burmister' s graph (Fig. 4) and selecting the best fitting curve. Later 
Burmister (33) presented an evaluation of pavement systems of the WASHO Road Test 
by this method. Yet, under close examination the results seem to be somewhat dis
appointing. It is apparent that the sole criterion of the shape of the trial curves is not 
reliable enough to permit an evaluation of the acting modulus of elasticity. 

There have been several experimental studies that have attempted to interpret mea
sured stresses and deflections through the layered theory and to correlate measured 
and theoretic values. The prevailing trend in many technical reports has been to under
estimate observed discrepancies, explaining the deviation between measured and com
puted values as inconsistencies of the measured data. However, a close check on the 
comparison often shows that the differences are not to be disregarded. 

Sowers and Vesic (13) presented an experimental study which factually compared 
and reported measuredand computed vertical stresses in the subgrade beneath stati
cally loaded flexible pavements. In a recent paper (34), Vesic widened the range of 
his conclusions, showing on a graph, besides his ownfindings, data from other re
searchers such as Griffith, McMahon and Yoder, the Road Research Laboratory and 
the AASHO Road Test. The general conclusion of these studies indicates a reasonable 
agreement between measured and computed values only for pavements possessing some 
tensile strength, like soil-cement and tar-macadam bases. For flexible pavements 
devoid of tensile strength, the measured and computed values show a considerable dis-
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agreement. The vertical stresses beneath the latter type of pavement are much higher 
than the values computed by the layered theory, being closer to the values given by the 
Boussinesq-Love analysis for a uniform medium. The vertical stresses in a homo
geneous soil measured by the U. S. Corps of Engineers in the Vicksburg tests ( 1 7) are 
close to the distribution predicted by the Boussinesq-Love analysis. -

The mass of experience available from several sources is not yet large enough to 
warrant a final conclusion, but it strongly indicates a serious deficiency of the layered 
theory. At least there is not one experimental study showing a good and general agree
ment between measured and computed stresses. The consistency of results among dif
ferent researchers utilizing different procedures rules out the possibility of a system
atic error in the measuring system. The inadequacy of the layered theory appears to 
be so great that the discussion of the degree of physical analogy between the theoretic 
elastic model and the real pavement would be meaningless. The leulative conclusiou 
would be that the theory simply does not apply to the non-tension-resisting pavements. 

It cannot be said, however, that pavements without tensile strength follow the 
Boussinesq-Love analysis. This would be a mathematical absurdity because the 
Boussinesq-Love analysis starts from the assumption of a uniform medium with con
stant modulus of elasticity, and is not valid for a layered system. What can be said is 
that such pavements, for unknown reasons, present a stress distribution that happens 
to be similar to the Boussinesq-Love curve for a uniform medium. 

INTERPRETATION OF EXPERIMENTAL RESULTS 

Several factors could be pointed out as possible causes of the disagreement between 
theory and practice. The most important factor seems to be the lack of tensile strength 
of the pavement materials. The layered theory assumes equal moduli of elasticity for 
tension and compression, but most actual flexible pavement materials have practically 
no tensile strength, that is, a zero tensile modulus. A new layered theory for zero 
tensile modulus would be helpful to test this hypothesis, but it is not avialable. Another 
important factor is the nonlinearity of the stress-strain relationship. The compressive 
modulus depends on the load and the lateral pressure, hence on the depth. This latter 
factor should be less important because it is also present in the uniform medium and it 
does not affect the validity of the theory for that medium. 

There are some other disturbing factors that the theoretical analysis shows to be of 
lesser importance: anisotropy of layered systems, adhesive restraint bet".veen the tire 
and the pavement, etc. Of course, the lack uf humugeueily of lhe materials would also 
be of a disturbing factor, but its effect would be a scattering of the data and not a defi
nite trend as shown by the test data. 

If more experimental testing supports the tentative conclusions based on the data now 
available, the final conclusion will be warranted that the pavement rigidity has prac
tically no effect on the stress distribution and on the reduction of the pressure trans
mitted to the subgrade. Semirigid pavements, like soil-cement, consitute an exception 
and should be designed by proper methods that take into account its tensile strength. 
But truly flexible pavement, devoid of tensile strength, does not contribute strength by 
the slab effect. It resists applied forces only by lateral distribution of stresses in 
depth, like a uniform medium. If this conclusion is proved true, as it seems to be, 
the Burmister analysis will have lost its usefulness. On the other hand, the usual CBR 
method that fixes the required total thickness based on subgrade strength, without much 
regard for quality of pavement materials, will be proved scientifically correct, at least 
in what concerns the pressure reduction. The shear strength of the system will be the 
determining factor of the pavement bearing capacity. Shear strength compulaiious will 
be very much simplified by the hypothesis of Boussinesq-Love stress distribution. 

The problem of deflection computation remains unsolved, however. The CBR method 
bypasses the deflection problem through the use of correlation curves, but this is a 
limited method. The correlation is strictly valid only for the conditions previously 
experienced. The deflection calculation is essential to any scientific design method 
because the maximum deflection has a large bearing on the fatigue resistance of pave
ment layers subject to repeated loadings. It is a recognized fact that the pavement 
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rigidity has an important influence on the reduction of the maximum deflection of the 
layered system, as compared to a uniform medium. If the layered system, according 
to Sowers a nd Vesic, ha s a stress distribution similar to the uniform medium but the 
defl ections are different, this difference in behavior could be interpreted as a differ
ence in the respective elasticity moduli. The problem could be approached by the com
putation of an effective or equivalent modulus of the system, as a function of the layer 
modulus and thicknesses, so as to make the computed deflections agree with the ex
perience . Presently there is no entirely valid theoretical analysis of this problem. 

VESIC'S PROCESS OF DEFLECTION COMPUTATION 

As a first solution t o this problem, Vesic (34) proposed an approximate method of 
deflection computation based on the assumption that the layered system has a stress 
distribution similar to the Boussinesq-Love curve, but with a different modulus of 
elasticity for each layer. A slight mofidication of the Ve sic process is shown in Figure 
7. The modification consists in using the well-known deflection factor for a uniform 
medium computed by F oster and Ahlvin (35) instead of a new definition of the deflection 
factor as proposed by Ve sic, and suppressing the curves for Poisson's ratios other 
than 0. 5, for the reasons previously mentioned. Also a correction was made in the 
curve for rigid plate . 

The deflection for a uniform medium subjected to a flexible load is (23, 25) : 
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Figure 7. Vertical deflection factor for uniform load, F, and for rigid plate,F'. 
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W deflection for flexible load, 
p contact pressure, 
z depth, 
E modulus of elasticity, 
F deflection factor, 
r radius of contact area, 
Z depth in radius, and 
µ. Poisson's ratio. 

The deflection equation for a uniform medium loaded with a rigid plate, not general
ly found in the technical literature, is the following: 

For z 

W' 
F' 

W' = pr 
E 

F' 

F ' = 12. 5 [ 1 z t 1 J + z2 + arc an Z 

0 and F~ = 1.18, in which 

deflection for rigid plate, and 
deflection factor. 

(23) 

(24) 

For Z equal to or greater than 0. 5, F' may be computed by the following approximate 
formula: 

F' 1. 5 (25) 
yi.5 + z2 

For Z greater than 3, F' is practically equal to F. This is a predictable conclusion 
because at greater depths the difference between the two cases of ·loading becomes less 
important. This fact is apparent in Figure 7. For Z greater than 6, both F and F' may 
be computed by the following approximate formula: 

F = F' = 1. 5 z 
When Z is infinite, F = F 1 = 0. Factors F and F' are shown in Figure 7. 

(26) 

Starting from the premises assumed by Vesic, and from the differential deflection 
equation: 

(27) 
(µ = 0.5) 

it can be demonstrated that the total deflection of the layered system is given by the 
following equation (Fig. 7): 

W =pr L ~EF (28) 

~F = Fn - Fn+l 

For the rigid plate F' is substituted for F, and 1. 18 for 1. 50. 
For the two-layer system, Eq. 28 becomes: 
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w (29) 

(F2 0) 

and for the three-layer system the deflection is: 

w (30) 

0) 

and so on. 
Vesic presented an evaluation of the deflection of the WASHO and AASHO Road 

Tests by his process. Deflections computed by the Ve sic process are much higher than 
those given by the Burmister analysis. Deflections of the two- and three-layer sys
tems of the previous example determined by the Vesic process are as follows: 

1. For the two-layer system (h/r = 2 and Fi= 0.67): 

w = 100 5[1. 5 - 0 · 67 ~J x 20, 000 + 1, 000 

The deflection found by the Burmister analysis was 0. 17 in. 
2. For the three-layer system: 

0. 35 in. 

W = 100 5 [1.5 - 1.34 1.34 - 0.56 0.56 J 0 30. 
x 400, 000 + 20 000 + 1 000 = · rn · 

' ' 
The deflection computed by the Jeuffroy-Bachelez method was 0.14 in. 

The equivalent modulus of a layered system by Ve sic' s process is given by the 
equation: 

1. 5 1. 5 - Fi F1 - Fa F3 - F4 
E z E1 + Ez + EJ + ... 

w 1. 5 pr 
Ee 

SUMMARY AND CONCLUSIONS 

(31) 

(32) 

The structural behavior of the flexible pavement may be described as elastic or 
viscoelastic. An elastic model is adequate to represent the flexible pavement in the 
first case, and also to a lesser extent in the second case if the final modulus of elas
ticity is adopted as the effective modulus. The theory of elasticity is the governing 
law in the first case, and also plays an important role in the second. 

The layered system model of the flexible pavements, with the usual assumptions of 
perfect elasticity, boundary and continuity conditions, is adequate for the development 
of valid theoretical analysis. However, this model should be expanded to include the 
condition of zero tensile modulus of the component materials. The elastic model is 
characterized by two elastic constants for each layer, the modulus of elasticity and 
Poisson's rQ.tio. 

The 0. 5 value for Poisson's ratio seems to be the most adequate, in the light of the 
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available experimental and theoretical evidence. Practical graphs of formulas for de
flection analysis should not include other values for Poisson's ratio, for this inclusion 
would be unwarranted and misleading. The discussion of alternative values for Poisson's 
ratio belongs to the realm of theoretical hypothesis. A coefficient related to the vol
umetric change would be more reliable as the second elastic constant, besides the elas
ticity modulus. 

Starting from the elastic model and known values of the model parameters and 
chasing adequate average values for the elastic constants, valid for the particular con
ditions of the problem under study, the elastic layered theory should provide a reason
ably accurate framework for the solution of many problems. One of the main problems 
of the layered system is the calculation of the deflection factor. 

The most important layered system analyses and theories were reviewed and dis
cussed. Examples uI application were computed. The available experimental data 
from many sources were used to test the validity of the layered system analysis. It is 
apparent from the available testing data that the present layered system theory is in
adequate to explain the structural behavior of flexible pavements lacking tensile strength. 
However, more research is needed to confirm this statement. 

It has been suggested that the most important cause of disagreement between theory 
and practice is the lack of tensile strength of common flexible pavement materials. 
The nonlinearity of stress-strain relationship is a secondary cause. Other disturbing 
factors exist but are of lesser importance. 

The need is apparent for a better theoretical analysis than the present layered sys
tem theory. It is suggested that the layered theory should be corrected to apply to zero 
tensile modulus materials. 

The deflection computation of layered systems could be profitably approached by the 
theoretical calculation of an equivalent modulus of the system as a function of moduli 
and thicknesses of the layers, so as to make the computed deflections agree with ex
perience. 

The CBR in its actual improved form is considered to be one of the most depend
able methods of thickness design now available. 
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