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An effort is made to advance a unified logical method for ana-
lyzing the true stress states in rigidly connected bridge trusses.
The report is divided into two parts: (a)basic research and
development, and (b) integrated synthetic applicationwith auto-
matic logical checks.

The theoretical development of the proposed matrix-energy
method and examples for the orientation of its exact and sim-
plified versions are setforth. The method of panel-load super-
positionis advancedas a powerful substitute for influence lines
and the methods of substitution and transformation as efficient
ways for reducing the number of unknowns and the unavoidable
solution of large sets of simultaneous equations is clarified.
Also included is an integrated synthetic application of those
points developed to a complication analysis. Toillustrateacom-
prehensive scheme with only a small computer available, a
three-span continuous highway bridge truss has been selected for
the objective analysis. The close correspondence of all maxi-
mum design axial stresses to these determined by the conven-
tional method demonstrates the validity of the proposed method.

The proposed method yields most expediently two maximum
stress states: (a) maximum axial stresses and simultaneous end
moments and transverse shears; and (b) maximum end moments
and simultaneous axial stresses and transverse shears. The
larger requirement of the two constitutes the absolute maximum
stress state that should govern the design. Automatic logical
checks for programmed computation are presented. Anindepen-
dent proof for the symmetric coefficient matrix and a validity
demonstration for the method of transformation are included.

eFOR MORE THAN eight decades, methods originally developed for analyzing pin-
connected trusses have inappropriately continued to be used in determining stresses

in modern rigidly connected trusses. Pinned joints were being replaced by riveted
joints in the 1870's and became almost completely obsolete about half a century ago.
Since World War II, additional versions of rigidly jointed trusses—welded and bolted —
have gained increasing importance. All these modern rigidly connected trusses, with
or without internal or external redundancy, are inherently highly statically indeter-
minate rigid frames. The rigidity of the joints constitutes the main cause for end
moments, transverse shear, and axial stress in each member.
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THEORETICAL DEVELOPMENT

Including Manderla's (1) first enunciation of a method 85 years ago, at least nine
independent methods have been developed for the solution of the so-called ""secondary
stresses, ' stresses caused by conditions ignored in the conventional analysis of '"pri-
mary stresses.' The problem of secondary stress has actually arisen from improper
solution of rigidly connected trusses, rather than from its being truly secondary in
nature. By analyzing a rigidly connected truss under a given loading as an assemblage
or chain of rigid frames, only one true set of perfectly normal genuine stresses will
be found, thus dispelling the misnomer of secondary stresses.

To achieve the ideal of solving all genuine stresses including secondary stresses in
each member of a rigidly connected truss of any configuration with any redundancy un-
der any externally applied loading, a matrix-energy formulation is proposed. The
method enables the determination of all genuine stresses in a unified setup; it adapts
to programmed electronic computation, provides both exact and simplified solutions,
and applies to both determinate and indeterminate rigidly connected bridge trusses.

BASIC CONCEPTS

A rigidly connected truss under a given loading is structurally much more compli-
cated than an otherwise ideal pin-connected version identically loaded. There exist,
as the truss deflects, couples acting on the bar ends (equal to the internal resisting
moments at those points) plus transverse shears. Any determinate truss thus becomes
indeterminate in its logical correct solution.

In the most general case, a rigidly connected indeterminate truss of any redundancy
would be completely determined by statics, if all of the following were known: (a) the
internal resisting moments at the ends of the members, (b) the axial stresses in the
redundant members, and (c) the redundant reactions at the supports. These three
types of quantities are treated as unknowns in the proposed method. To insure that all
unknowns are statically independent, equations of static equilibrium must be fully ap-
plied to eliminate dependent unknowns. Consequently, the number of statically inde-
pendent unknowns is just equal to the degree of statical indeterminateness of the truss
viewed as an assemblage of rigid frames.

In general, for an asymmetrical rigidly connected truss of m members under asym-
metrical loading, there will be 2m unknown end moments. In a symmetrical rigidly
connected truss and under symmetrical loading, if n is the number of joints, the num-
ber N of statically independent unknown end moments is given by

N = (1)

[\M=]

%(2m-n)=m~

All internal axial stresses, bending moments, and shears in the members, and
hence, the total strain energy of the truss can be expressed in terms of the externally
applied panel loads and the independent unknowns. ("'Axial stress' denotes "total axial
stress' or '"total internal axial force' as distinguished from '"unit axial stress.') By
appropriate partial differentiations, all the necessary simultaneous equations will be
evolved. On these basic concepts is founded the development of the problem solution
in its operative sequence.

Fundamental Notations and Sign Convention

The exaggerated elastic curve of any truss member I-J in the plane of the truss is
represented in Figure 1. Symbols applying to this member are as follows:

Mij, Mji = unknown internal resisting end moment at I- and J-end, respec-
tively (kip-in.);
Njj = axial stress (kips);

Qjj = transverse shear (kips);
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Figure 1.

A;: = cross-sectional area (sq in.);

ljj = moment of inertia (in.");

L.. = length (in.);

= distance from I-end (in.);

= displacement at s, normal to line I-J (in.);
modulus of elasticity of material (ksi);

= modulus of rigidity of material (ksi);

= DPoisson's ratio of material (may be taken as 0. 03 for structural
steel); and

T Q H o n&
1l

Uij’ Vij’ Wij = strain energy due to bending moment, transverse shear, and axial
stress, respectively (in.-kip).

The sign convention is defined such that (a) positive end moments produce clock-
wise rotation of the member ends; (b) positive axial stresses are in tension; and (c) a
positive pair of shears forms a counterclockwise couple.

Constituent Strain-Energy Matrix

The matrix of constituent strain-energy expressions may now be formulated. In
Figure 1, recognizing that the moment due to axial stress and deviation from the line
I-J is usually negligibly small, the true moment about any point at a distance s from
the I-end,

Mg = Mjj - Qjjs - Nijj b (2)
may take the simplified form of
s = Mjj - Qs ®)
where
Q; = Ty + 7l 4)

Following the original suggestion of Ménabréa (2) (containing the earliest suggestion
in the use of the expression for the strain energy of the truss), but in the present-day
complete form, we may write the matrix of the constituent strain-energy expressions
of any member I-J as:
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where G = E/2(1 + p) in the last equation,
Summing up {W UV}, ij for all members of the truss, the total strain energy U of
any truss is then

m
Ebaj {wyj vy vy} ®)
T

where m is the number of members in the truss,

Matrix Equation of Unknowns and Their Solution

With all joints enormously rigid, all components ideally fit, and all supports unyield-
ing, the application of Castigliano's second theorem (3), or the theorem of least work,
to the problem of trusses with any degree of redundancy, will yield the following
relations:

aU aU 3
3M 3N 3

where M is any statically independent unknown end moment, N is the unknown axial
stress in any redundant member, and R is any unknown redundant reaction.

Whereas Eqs., 7 represent minimization of strain energy or zero '"relative" displace-
ments, the last also denotes the condition of zero settlement of support. In the case of

} = {0001} (7

B

alt\I/I would be equal

to the rotation, a—g to an over- or underrun, and a—g to the support settlement.
The unknown M's, N's, and R's of any loaded plane truss of any configuration may
be generalized as the unknown column vector {Xj}, where i =1, 2,..., n. Repeated

non-zero settlement, according to Castigliano's first theorem (3),

application of
equations;

}[(J 0 yields a set of n nonhomogeneous simultaneous algebraic linear
i

(2] {5} - {e3 ®
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in which bothiand j =1, 2,..., n and the constant vector {Ci} has been transposed to
the righthand side.

It follows analogously from Maxwell's theorem of reciprocity (é) that the coefficient
ajj of Xj in the jth equation is identical both in sign and magnitude as the coefficient
ajj of Xj in the ith equation, and, consequently,

ajj = ajj (9)

where i £ j, giving a symmetric coefficient matrix. An independent proof for the sym-
metry of the coefficient matrix is given in Appendix A,

The system of Eqs. 8 will always have a general solution by inverting [aij] unless
it is singular; i.e., if |aij| £ 0, the solution will be

{Xi} = [aijj_l{ci} (10)

Because the premultiplication of a matrix by its inverse is uniquely equal to a unit
matrix, the vector of solutions given by the right side of Eqs. 10 constitutes the only
solutions. 1

By virtue of a symmetric matrix in Eqs. 8, only 5 n(n + 1) coefficients must be

evaluated and, consequently, the computer time for inverting the matrix will be cor-
respondingly reduced. In inverting large matrices, an efficient and fast method such
as Li's algorisms (5) is recommended.

ANALYSIS OF A BRIDGE TRUSS BY MATRIX-ENERGY METHOD
An Example for Orientation of Exact Method

To exemplify the numerical process and compare the results with those obtained by
recognized conventional methods, the simple bridge truss given by Sutherland and
Bowman (8) is first solved by the proposed exact matrix-energy method.

It is desired to find all genuine stresses at the ends of each member of the rigidly
connected truss shown in Figure 2 due to vertical loads of 166 kips at each lower panel
point except supports. The makeup of members is given in Table 1. For simplicity,

TABLE 1
MAKEUP OF MEMBERS AND SECTION PROPERTIES

Bar Section A(in.?) I(in.Y) L(in.) I/c(in) Sketch
8 e 27.68 961.0 450.44 ‘572

35 3L ani 26.55 922.8 300.00  'oo-J

34 4sexsgxy  18.00 175.3 300.00 27"

23 4-[s6x32x7/16 15.88 153.8 336.00  24.1 i '
3-4 4|s6x32x3/8 13.68 131.8 450.4¢ 207 [ '

4-5 4-{s5 3x3/8 11.44  179.1 336.00 14,7
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¢ centroidal axes of members are taken as
3 5 5 , intersecting exactly at theoretical panel
51+55 points, thus eliminating eccentric moments.
28! Independent and Dependent Unknowns.—
1 1- In the present case, referring to Eq. 1,
z i B4 m = 13 and n = 8; therefore, N=13 -4 =9,
249”?, 168° 1665 166 *249 That is, the present truss is determinate
L L4@25' = 100" when pin connected, but becomes indeter-

' minate to the 9th degree when rigidly con-
nected. The nine statically independent

Figure 2.
unknown end moments may be represented,
element for element, by the matrix:
X, Xz X, Mis Mzi Maa My 3¢ Ma’y My o
Xye X5 Xo| = | May Moz Mss | = -[Ma' Y M’z My (11)
X7 Xs Xo My Mas Mss Mg 2 Maf 32 Ms/ 3/

Then, by TM = 0 at joints 1, 2, 3 and 1/, 2, 3’, six of the remaining dependent
unknown end moments can be expressed as:

Mz M,/ 2/ X
Mas | = -|Mafsr | = -|Xz + Xa (12)
Msa Ms’ 4 Xs + X5 + Xa

By symmetry, this yields:

(Mis Mss Qusy = {0 0 0) (13)

Extended Methods of Moments, Shears, and Joints, —The axial stress in each mem-
ber is readily determined by the extended methods of moments, shears, or joints, which
are illustrated for members 1-2, 1-3, and 2-3 in the following paragraphs.

In the extended method of moments, by passing a section just to the left of member
2-3 and considering the equilibrium of the free body to the left, as shown in Figure 3,
we have by TM = 0 about joint 3,

|- X. 249 %] (336 1 300 1) = 0 and

=|% %4 1]

{0.002976 0.002976 222.321)

"
450.44 Q3% = The extended method of shears, taking
the same free body as shown in Figure 3,
QIE 536" yields:
pligk - X2 N1 {Qm Q1a> =
-X; + )(a X + X
Figure 3. 300.00 450.44
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N/?i andby ZY = 0,
| °f2{4 [Ns X + X -X, + X2 249
V12 { 2 ) N
i 2 28 251 .\
Qp 166 37.53 450.44(27.53)300 |

Therefore,

Nis = | X -X. -Xa -1 {0.002486 0.004469 0.001982 333,808}

Inthe extended method of joints, by passing a horseshoe section around joint 2, as
shown in Figure 4, we have by TY = 0,

[Nos Qus Q2 166J{1 1 -1 -1} = 0

Substitution of the values of Qz4 and Q,; yields:

I_st Xy + Xy X+ X 166_J

7 - Y
g
O =
(@]

|
g

—
(o]

'
N
L}

[en)

or

Neo = L-Xi X, -Xa -Xr 1] {0.003333 0.003333 0.003333 0.003333 166.000)

Axial-Stress Expressions and Strain-Energy Constants. —By applying the preceding
methods, axial stresses in all members of the truss may be found as given in Table 2.
The constant term in each N expression is exactly equal to the "primary stress' in the
same bar if it is pin jointed. Constants in the strain-energy expressions of Eqs. 5 are
given in Table 3, taking Poisson's ratio y as 0.3. Withtheaid of Tables 2and3, (10)° E
times the strain energy in each truss member as given by Eqs. 5 is recorded in Table 4.

TABLE 2
AXTAL-STRESS EXPRESSIONS

Member (10)® Times Axial-Stress Expressions

1-2 2.976Xs + 2.976X4 + 222321

1-3 2.486X; - 4.469X%, - 1.982X,4 - 333808

2-3 -3.333X; + 3.333X; - 3.333X%; - 3.333X; + 166000

2-4 -2.976Xs + 2.976X4 + 2. 976Xs + 222321

3-4 4.469X5 - 1.982X4 - 1.982Xs + 2.486Xs + 4.469X7 + 1. 982X, +
4.469X, + 111269

3-5 -2.976X7 - 2.976X; - 2. 976X, - 296429

4-5 -6.667Xs - 6.667Xo
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TABLE 3
CONSTANTS IN STRAIN-ENERGY EXPRESSIONS

Member L/A L/61 2(1 + p)/AL
1-2 16. 66667 0.285225 0.000481
1-3 16.27311 0.078120 0.000209
2-3 21.15869 0.364109 0.000487
2-4 16. 66667 0.285253 0. 000481
3-4 32.92689 0. 569600 0.000422
3-5 11.29944 0.054183 0.000326
4-5 29.37063 0. 707965 0. 000676

TABLE 4

STRAIN ENERGY OF TRUSS MEMBERS

Member  (10)® E Times Strain Energy in Member I-J = 10° E(Wj; + Ugj + V)
1-2 %(16. 66667) (2. 976X, + 2. 976Xs + 222321)% + 285225(X; + XX, + X3)
+ 2481 (X, + Xo)?
1-3 %(16.27311) (2. 486X, - 4.469X, - 1.982X4 - 333808)°
+ 78120(X% - XuXy + X3) + %(209) (Xi + Xq)?
2-3 %—(21. 15869) (-3.333X; +3.333X; - 3.333Xs - 3.333X, + 166000)*
+364109 [(-Xe - Xo* + (Ko + Xo)Xg + X2 + 2(487) (-X; - X + Xy )*
2-4 %(16. 66667) (-2.976Xs + 2. 976X4 + 2. 976X, + 222321)?
+ 285253 (X3 - XaXy + X2) + %(481) (Xs + X7)?
3-4 %(32. 92689) (4.469Xs - 1,982X, - 1. 982X, + 2. 486Xs + 4. 469X,
+1.982X, + 4.469%, + 111269)* + 569600 [ (-X4 - X5 - Xa)* +
(Xs + X5 + Ko)X, + X3] + 2(422) (-Xs - Xs - Xo + Xo)°
3-5 %(11. 29944) (-2.976X, - 2. 976X, - 2. 976X, - 296429)
+ 54183(X% - XeX, + X8) + %(326) (Xe + Xo)®
4-5  5(29.37063) (-6.667Xs - 6. 667Xs)"
center
vertical

(use one-half in computing %EU)
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Simultaneous Equations and Their Solution. —Because of symmetry in both structure
and loading in this particular example, it is necessary to write only one-half of the total
strain energy. After eliminating 1/2 and E, repeated application of %g— = 0 yields
Egs. 10 where 044

fx)

{X1 X, X3 Xqa X5 Xg X7 Xq Xs},

-1

—

727716 284328 235 -77992 0 0 235 0 0
1300346 728471 292 363622 O 2235 0 0
1300734  -439 363183 366 -283879 292 658
[aij]‘l - 1296559 1139899 1139460  -292 569049  -292

1868605 1139460 -292 569049 -292
1249171 366 569340 -52838

ajj below main diagonal 571981 392 758

. . 1139852 392

= ajj above it 110103
L 8
and

(10)°{25. 2144 -47.0097 6.3636 -25.5609 -3.7656 -9.1098 -14.6329
-17.2309 -26.3407}.

Cy

The solution of {Xi} in kips-inches by electronic digital computer or otherwise is
recorded, element for element, as

X X; Xa 66.20 -84.47 39.19] Mis Mai Mas
Xs Xs Xe| = |[-13.41 42,50  -40. 541 = |Ms, Msz Mss (14)
Xo Xo: %5 -5.803 -9.309 -258.8 | Ms; Mis Mss

TABLE 5

BENDING STRESSES AT MEMBER ENDS

Member End Moment (kips-in.) L Unit Bending
Eind Cross' Method Proposed Method (in.%) Stress (ksi)
1 2 -67 -66. 20 27.5 2.262

3 67 66. 20 167.5 0.395%
99.1 0.668P
2 1 -85 -84.47 27.5 3.072
3 45 45.28 24.1 1.879
4 40 39,19 27.5 1.425
3 1 =) -13.41 167.5 0.0802
99.1 0.135P
2 43 42.50 24,1 1.763
4 12 11.45 20.7 0.553
5 -44 -40. 54 156.0 0.2602
97.6 0. 4159
4 2 -5 -5.803 27.5 0.211
3 -9 -9.309 20.7 0. 450
5 0 0 14.7 0
5 3 -263 -258.17 156.0 1.6582
97.6 2. 6510
4 0 0 14.7 0
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TABLE 6 Bending Stresses. —Dividing end mo-

AXIAL STRESSES AND TRANSVERSE ments of members thus found by their re-
spective section moduli (I/¢) given in

SHEARS Table 1 yields the unit bending stresses
Ni; Niid & Qi at member ends recorded in Table 5.
Member (kigs) HiSi)IJ i 1;Js ) These correspond to the so-called second-

ary stresses. Values of end moments for
the same truss members as found by
Sutherland and Bowman (6) by the Cross
method are also given. The closeness of
end-moment values by both methods testi-
fies to the validity of the proposed method.
But the results of the proposed method are
"truer" because more accurate axial-strain
energy has been used and shearing-strain
energy has been taken into consideration.

Axial Stresses and Transverse Shears,—
Axial stresses and transverse shears,
simultaneously obtained by substituting
the values of Xj into Table 2 and Eq. 4, are recorded in Table 6. Unit axial stresses
are also calculated.

Streamlining and Simplification. —By treating the rigidly connected truss as an as-
semblage of rigid frames, the exact matrix-energy method proposed herein, as demon-
strated by the former example, has yielded the solution of axial, bending, and shearing
stresses in all members of the truss in one unified single setup. With widespread use
of electronic computers, the entire process can be programmed from given data to end
results. It is shorter and more straightforward than the conventional methods when
secondary stresses are considered.

Although the exact method should be used for special investigations and particular
designs requiring a high degree of accuracy, for ordinary design purposes a simplified
method should be used.

1-2 222.030 12.335 -0.502
1-3 -333.239 -12.039  0.118
2-3 165. 387 10. 415 0.261
2-4 222.291 12.350 0.111
3-4 110.085 8.047  0.005
3-5 -295.614 -11.134 -0.998
4-5 1.996 0.174 0

An Example for Orientation of Simplified Method

A study of the equations obtained from B%%— = 0 suggests a simplified method which
i
saves much time in writing the energy expressions and in evaluating the elements of
the coefficient matrix,
The process for obtaining the first equation of Egs. 10, after dividing (10)® EU by

the planted (10)°, from the true value of

U
E =
3 Xy :

DI -

yields, on rearrangement, the relation:

0 = 0.285225(2X%, + Xz)
+0.078120(2X; - X4)

-16.27311(0. 002486) (333. 808) 1 axial stress (corresponding to
-21.15869(0.003333) (166. 000) primary stress)
+16.27311(0, 002486) (0. 002486X, axial stress (affected by
- 0.004469X, end moments and transverse
- 0.001982X,) shears)
+21.15869(0. 003333)%(X,; - Xz + Xa + X7)

+0.000481(-1) (-X, + Xz)
+0. 000209(X, + X4)

) contribution by moments
J

} transverse shears
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It is evident that the coefficients of the unknowns X;, X,, and X4 above the dashed line
are about 1,000 times greater than those below the dashed line.

An approximate but much simplified solution sufficiently accurate for usual engi-
neering purposes can, therefore, be most expediently obtained by deleting all strain-
energy terms contributed by transverse shears in writing the energy expressions and
all terms affecting axial stress contributed by end moments and transverse shears
after partial differention. All terms contributed by moments and the term correspond-
ing to the primary stress should be retained.

The simplified form of the first equation thus becomes

(1262 2852 -781) (X1 X. Xa) = 25.214 (10)*

and the symmetric matrix equation reduces to:

- N = - o =t
7262 2852 O -781 O 0 0 0 0 X 25.214
12987 17282 O 3641 0 0 0 0 X -47.010
12988 O 3641 0 -2853 O 0 X3 6.364
12954 11392 11392 O 5696 O X4 -25.561
18674 11392 0O 5696 O Xs | = (10)* | -3.766
12476 O 5696 -542| | X, -9.110
ajj below main diagonal 5705 0 0 X7 -14.633
L : 11392 0 Xa -17. 231
= 2ji above it. 1084) | X -26. 341
whose solution by electronic digital computer yields:
X Xz X 66.9 -84.9 39.0 Mis Mai Mag
Xs X5 Xo| = |-10.7 43.4  -44.5| = |Ms; M Mas (15)
X; X3 Xo -6.15 -9.25 -265 Maz M4z Mss

after which all axial, bending, and shearing stresses in each member of the truss can
be determined by statics. The accuracy of the simplified method can be seen by com-
paring Egs. 15 with Eqs. 14. The closeness of the results testifies to the validity of
the simplified method.

SPECIALLY DEVELOPED TECHNIQUES FOR CONTINUOUS HIGHWAY
BRIDGE TRUSSES

Method of Panel-Load Superposition for Continuous Trusses

In determining the maximum tensile or compressive stress, or maximum and mini-
mum stresses in case of reversal, in all members of a determinate truss due to moving
live loads, there are available two methods of approach—the influence-line method and
the maximum-stress load-position criterion method—both giving the live-load positions
producing maximum tensile or compressive stresses.

Due to its inherently complicated nature in an indeterminate system, however, the
maximum-stress load-position criterion method has never been heretofore applied to
a continuous bridge truss. Theoretically, such a criterion can be deduced for any con-
tinuous truss, but the resulting expression would be unwieldy. This explains why the
influence-line method has remained the only means by which live-load positions are
determined for computing the maximum tensile and compressive stresses in any mem-
ber of a continuous truss.
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Nevertheless, it must be recognized that continuous bridge trusses are usually built
only for comparatively long-span crossings. Even in a moderate three-span continuous
deck truss, such as the Hawk Falls Bridge (on the Northeast Extension of the Pennsyl-
vania Turnpike) which measures 616 ft horizontally between end bearings and is built
on a 1,54 percent grade, there are altogether 113 members if taken unsymmetrically
and 57 members when considered as symmetrical about the centerline of the bridge.
The formulation of influence-line equations, computation of influence ordinates, and
plotting of influence broken lines for so many different members in the composition of
the said continuous truss are all very time-consuming tasks.

It must be further recognized that influence lines constituted a visual aid in deter-
mining live-load positions in the days of manual computation. With modern electronic
computation, typing out influence ordinates, plotting them into influence broken lines,
and then retyping in positioned loads for maximum tensile and compressive stresses
form the slowest links in automatically programmed continuous computation.

Moreover, it is evident that there are far less live-load panel points than stress-
carrying members. In the case of the Hawk Falls Bridge, if considered symmetrical,
there are only 15 (14 in a pin-connected truss) live-load panel points vs 57 members
(55 if LyU, and UyUs are excepted which would be true in a pin-connected truss) in
one-half of the continuous truss. It is, therefore, much more expedient to compute
the stresses in all members under each of the 14 or 15 live panel loads than to com-
pute 29 influence ordinates for each of the 55 or 57 members of the truss.

For the reasons just stated, it is proposed to abandon the classical influence-line
method and, in its place, use the panel-load superposition method. The procedure is
as follows:

1. Convert the lane loadings and concentrated loads for moment and shear, for a
given number of lanes and specified reduction, and for a given roadway width to panel
loads and concentrations when the lane loadings are placed nearest to the truss;

2. Load the bridge truss with one stress-producing live panel load at a time;

3. Compute the axial, bending, and shearing stresses in each member according to
the proposed matrix-energy method;

4. Repeat the process until all stress-producing live-load panel points are covered
from one end of the truss to and including the center panel point, if there is one, and
if the truss is symmetrical about its centerline;

5. Tabulate the stresses thus found, labeling members symmetrically on the other
side of the bridge centerline as primed members;

6. Add all plus-sign tensile stresses and minus-sign compressive stresses for each
of the umprimed and primed members;

7. Obtain the concentrated load factors for moment and shear by dividing the re-
spective converted concentrated load by the converted lane-loading panel load,;

8. Multiply the appropriate concentrated load factor with the maximum stress
among the plus-sign tensile stresses and among the minus-sign compressive stresses
caused by single live panel loads, using the concentrated load factor for shear or for
moment, respectively, as the stress in the member is dictated by shear or by moment,
applying one or two concentrations for moment according to the specifications inuse; and

9. Determine the maximum live-load stress of plus sign and minus sign in any mem-
ber by summing up the plus-sign or minus-sign stresses obtained in Step 6 for the un-
primed member and for the corresponding primed member, and in Step 8 for the un-
primed member.

The maximum live-load stress obtained by this method will be almost identical with
that obtained with the true lane-loading length as deduced from influence broken lines.
We shall prove by a random example that the difference is generally less than one
percent which is well within engineering accuracy because neither modulus of elasticity,
moments of inertia, most probable load estimation, nor allowable stresses are pro-
bably more accurate than within one percent.
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£ Panel-Load Superposition Method vs
S O/ L3 Classical Influence- Line Method

o

o

; A random proof of the closeness of the
e F—F—2 OL results obtained by these two methods is
bl E_JV/T s % 7 1™  pased on the influence line of the diagonal

: ‘ I,U; of a two-span parallel-chord Warren-

: f— 4€30'=120 { type continuous truss with verticals con-

sisting of 4 panels at 30 ft in each span.
This influence line was constructed to a
close order of approximation by the three-
moment theorem which can be applied to
the case with expediency. An excerpt (7) of the correct influence line is shown in
Figure 5. B

For unit panel load, the corresponding fractional load over 23. 4 ft of the stringer
from L to Ls will be 23.4/30 = 0,780 and, therefore, the right stringer reaction =
0.78(23.4)/2(30) = 0.304 and the left stringer reaction = 0.780 - 0.304 = 0.476, making
the panel load at I, = 0,476 + 0,500 = 0. 976 instead of unity.

If the trusses were spaced at 38 ft ¢. to c., carrying two roadways of 26 ft each
with an additional 4-ft divider, as in the Hawk Falls Bridge, applying the maximum
lane live loading (converted from H20-S16-44) that may act on one truss, 1,26 kips/ft
plus one concentration of 51.1 kips for shear, to this influence line will give the maxi-
mum tension in L,U; as Tj and Tg, respectively, for the influence-line method and the
panel-load superposition method. Thus,

Pigure 5.

0.385
0.743
[%]- vasso [ 9™ 1} 1] ornon| « st [S72] < [3991] e
0.117 ) ’
0.073

which shows that the proposed panel-load superposition method results in a stress error
of only (91.65 - 90.97)/90. 97 = 0. 00747, on the order of 7i, of one percent. This is
sufficiently accurate for all designing purposes. Similar verification may be shown for
any member in any truss.

The panel-load superposition method is recommended for use in all analyses of in-
determinate highway bridge trusses, especially when the maximum axial stresses are
governed by lane loading plus concentrations.

Methods for Reducing the Number of Unknowns

Large-capacity computers, if available, can usually solve large systems of non-
homogeneous algebraic linear equations. The number of unknowns is generally immate-
rial. A process of solution which is easier to formulate and program will prove more
expedient. However, when a moderately large set of equations has to be solved with a
small-size computer, the capacity may not be enough to handle the necessary numerical
operations. In addition, larger rounding-off errors are as a rule associated with a
larger number of unknowns. Working with the smallest possible number of unknowns
has the advantages that the solution is more easily accommodated by most computers,
and the rounding-off errors are kept to a minimum,

Method of Substitution. —This consists of substituting an unsymmetrical loading by
symmetrical and antisymmetrical loadings. This method has been developed to reduce
to only one-half the number of statically independent unknowns in symmetrical longer
span continuous trusses under unsymmetrical loading.

Figure 6a shows arbitrarily a symmetrical three-span continuous bridge truss carry-
ing an unsymmetrical load of 2P applied at a certain panel point (e. g., the first panel
point), with redundant reactions R: and R; indicated at interior supports. By the prin-
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Figure 6.

ciple of superposition, R;, R, and 2P, viewed as a loading system acting on the sym-

metrical bridge structure, can be represented as the sum of a set of symmetrical load-
ing and a set of antisymmetrical loading acting separately on the same structure as in-
dicated in Figures 6b and 6c. The magnitudes of R’ and R” are related to R, and R, by

R’ + R" R,
28] 4

Solving for R’ and R” yields

R' ‘Ra =¥ R.g
(17)

L]

D] =

R// Rl. - RG},

In the case of symmetrical trusses, the number of statically independent unknowns
in the matrix-energy method for symmetrical loading will be just equal to one-half of
that for unsymmetrical loading. By using unprimed subscripts for joints on the left
half of the structure and primed subscripts for those on the right half, we have
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Nij Nj G
Mjj | = | -Mj‘j” (18)
Qjj -Qj ‘5’

In even-panel symmetrical trusses with a center-vertical member, the internal
bending moments and shearing stress in this member under symmetrical loading will
be equal to zero. But the axial stress in the center-vertical member will not be equal
to zero due to axial stresses and shears of inclined chord members meeting at the center
joints, or due to shears alone if those chord members are parallel. In computing the
strain energy in one-half of the truss, of course, only one-half the strain energy in the
center vertical should be counted. The same applies if a center top chord exists instead
of a center vertical.

In the same symmetrical truss under the substituted antisymmetrical loading, the
number of statically independent unknowns will also be equal to one-half of that under
unsymmetrical loading; that is, using the unprimed and primed subscripts as before,
we have

Nl] —Ni fj ’
Mij = Mi'j' (19)
Qjj Qij’

where the absolute values of axial stresses, bending moments, and shearing stresses
are the same in corresponding unprimed and primed members. As the strain energy
is a scalar quantity, it may again be computed for only one-half of the truss.

Thus, in symmetrical bridge trusses, any unsymmetrical loading may be substituted
by a set of symmetrical loading and a conjugate set of antisymmetrical loading, whereby
not only are the unknowns reduced to one-half of the original number but also one-half
of the total strain energy of the truss will be needed in later formulation. The algebraic
sum of the solutions under the substituted symmetrical and antisymmetrical loadings
will give the desired solution under the original unsymmetrical loading.

Method of Transformation. —If, after reducing the number of unknowns by the method
of substitution, the size of the system of equations is still greater than the capacity of
the computer available, further reduction of unknowns can be effected by the method of
transformation, i.e., transformation of unknown end moments into unknown reference
tangential deflection angles. In the matrix-energy method for analyzing rigidly con-
nected trusses, the recognized unknowns, except redundants, are the statically inde-
pendent end resisting moments of members. There are three such unknowns in each
triangular closed figure. But there are fewer joints than independent unknown end
moments. At each joint there is only one unknown rotation, which in rigid frames is
the principal advantage of the slope-deflection method.

In a truss, however, it is more expedient to choose Manderla's (1) approach which
was the origin of the modern slope-deflection method. To adapt his approach to the
problem under consideration, the number of unknowns may be reduced by applying the
relationship

2E1ij
Mij = Tﬁ—‘l (ZTij e Tji) (20)

between the unknown end moment and the tangential deflection angle r, which is the
angle between the tangent at the end of the deformed member and the straight line join-
ing the ends of that deformed member.
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There are as many r's as twice the number of members in a truss. However, all
the 7's around a joint can be expressed in terms of the angle changes (Aa's) between
the straight lines joining the ends of the neighboring members which experience defor -
mations under a given loading, and a selected reference r. Thus, all end moments can
be expressed in terms of reference r's which are the new intermediate unknowns. As
there is only one reference t at each joint, the number of r's will be exactly equal to
the number of truss joints, which is far less than the number of unknown end moments
in the set of simultaneous equations in the energy method.

Hence, when all end moments are substituted by their corresponding equivalent ex-
pressions represented by Eq. 20, the set of n simultaneous equations will result in n
equations with j unknowns, where n is the number of original equations or statically
independent unknowns in the energy method, j is the number of unknown reference r's
plus the number of redundants, and n > j.

As both the original n equations with n unknowns and the present n equations with j
unknowns are all genuinely correct and exact equations, there is no need to normalize
(8) the n equations into a new set of j equations for solving the j new unknowns. The n
equations are to be distinguished from "conditional equations' of observation. Instead
of normalizing, any j equations out of the n equations that contain the j unknowns will
give identically correct solutions. With the j unknowns (reference r's and any redun-
dant reactions and/or axial stress) solved, back substitution into M-r relations repre-
sented by Eq. 20 will give all end moments.

To utilize a given computer capacity, partial reduction of unknown end moments
may also be permissible with the result of mixed unknowns consisting of all redundants,
some reference 7's, and some end moments. A numerical demonstration of the method
of transformation for reducing the number of unknowns is given in Appendix B, where
identical results are obtained as by the simplified energy method.

SOLUTION OF SIMULTANEOUS ALGEBRAIC LINEAR EQUATIONS

Scores of direct and indirect (or iterative) methods have been developed for solving
simultaneous algebraic linear equations. Proper choice of method to suit the problem,
to adapt to the computer capacity, and to attain the desired accuracy and efficiency lies
in the skill of the programmer,

The well-known direct methods include (a) determinants of matrices (slowest);

(b) lower triangular matrices; (c) upper triangular matrices including unit upper tri-
angular matrices; (d) post multipliers; (e) elimination; (f) row operation; (g) row oper-
ator with and without augmentation; (h) decomposition; (i) submatrices, escalator, or
block decomposition; (j) symmetrical matrices; (k) Cayley-Hamilton theorem; (1) Gauss-
Doolittle method and Crout method of LDU decomposition; (m) orthogonalization; (n) in-
verting modified matrices; and (o) Li's algorisms for mono- and polyset constant terms

with and without inversion for both asymmetrical and symmetrical matrices (5,9, 10, 11),

Among the indirect or iterative methods, the following may be cited from the geo-
metrical approach: (a) Wittmeyer process, (b) special Wittmeyer processes, (c) Seidel,
(d) back-and-forth Seidel process, (e) optimum or steepest gradients, (f) conjugate
gradient, (g) relaxation, (h) hyperplane interpretation, and (i) residual vector, From
the analytic approach are (a) Cesari's method, (b) method of von Mises and Geiringer,
and (c) method of Hotelling and Bodewig. To these, must be added the Monte Carlo
method, a nondeterministic or statistical method. No attempt is made to exhaust the
list (5, 9, 10, 11).

To choose the best method for a given set of equations requires a clear comprehen-
sion of the underlying theory, the synthesis of the procedures, and the formulation of
the algorism of the preceding methods. Whenever a large-capacity high-speed com-
puter is available, because computing time is generally insignificant, the most easily
programmed method (except the slowest) should be chosen, With low-speed small-
capacity computers the fastest method requiring the least storage capacity should be
used. When the capacity is too limited, a flexible method that can be adapted to the
computer should be chosen, such as "Simultaneous Equations A La King' for the IBM
1620 or the relaxation method.
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Large Sets of Equations and Computing Time

Two- or three-span continuous highway bridge trusses of moderate length may easily
run into the inversion of a matrix of the order of more than 100 x 100. The largest set
of simultaneous linear equations solved by a computer in the United States up to June
1963 consisted of a matrix of 700 x 700.

Using STRETCH at the highest speed yet built (500, 000 multiplications per second)
and Li's algorism for a symmetrical coefficient matrix of a set of 199 equations, the
computing time will be about 4 sec. With STRETCH and using an already inverted sym-
metric matrix according to Li's algorisms, the time of solution of 199 equations for
each set of constant terms will be further reduced to only 0. 115 sec.

To solve the same n = 199 equations by the conventional determinental method would
require {n-+-1)! or approximately 789(10)*™ multiplications, plus (n + 1) (n) (n - 1) =
n(n®-1) = 7, 880, 400 additions or 3, 940, 200 equivalent multiplications, taking each ad-
dition time as approximately equal to one-half of each multiplication time. Even using
the fastest computer, STRETCH, it would still require 1, 578(10)*® sec or slightly more
than 5(10)°® yr. Before the advent of the electronic digital computer, the task would
have been impossible.

Structural analyses generally involve symmetrical matrices. Using Li's algorism
for symmetrical matrices with one set of constant terms, the solution of n unknowns
requires an equivalent number of multiplications on the order of about %3.

Simultaneous Equations A La King

Usually, computers available to bridge engineers are of moderate or smaller size
than STRETCH and have limited storage capacity. For instance, in the use of thebasic
IBM 1620 computer, having only a storage capacity of 20, 000, the solution of a moder-
ately large set of linear equations will need special programming. ''Simultaneous
Equations A La King," developed by D. N. Leeson and desighated Program Number
5.0.008 in the 1620 General Program Library, can solve a set of 58 linear equations
requiring a core storage of 55,510 and 58, 937, respectively, for the recommended
mantissa length of 12 or a longer length of 13 (the latter for more accuracy). To facili-
tate the use of this program, the Source Program Deck (Cards) and the SPS II Processor
Deck (or Assembly Deck) should be prepared or secured in advance.

Relaxation Method

This method of successive approximations has the inherent advantage of easy pro-
gramming, may be broken into as many segments as any small computer can hold—
especially if the coefficient matrix is band-like—and can attain any desired accuracy.
The mathematical technique and the physical facility of the computer can be used in an
infinite variety of ways to accelerate the convergence of the process of solution. Be-
sides use as a mathematical tool for solving simultaneous linear equations, the method
may be directly applied to stress calculation in frameworks (12).

A system ready for relaxation with the main diagonal elements equal to -1 and the
constant K vector shifted to the left of the equations may be written:

o - = ' = = =)
-1 ajg ... a1y| [x1 H{l 0
321 -1 o« e azn Xz kz
. - ..o . . + . = . (21)
2n1 32 - —1_J | *n _knu ~O |

The difference of the left-hand side of the ith equation may be denoted by r; (residuals)
for any reasonably assumed set of starting values xj 0); thus,
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-1 ag9 ... ay, Figo ky |rq
g1 - agn| [X5) ey 3
+ (%] = ¢ (22)
lan1 @n2 ... -1 _xl(lo)_j K | T'n |

The relaxation procedure simply consists of altering the starting values of xj(o), one

or more at a time, until all the rj become zero or negligibly small for the desired

accuracy. If a given xJ(O), e.g., xl({o), is altered by an amount Axy, then ry alters by

- 8% and the other rj alter by ajk Ax,. Consequently, to reduce a given rj, e.g., Ty,

(0)

to zero, we alter Xy by X = T Simultaneously, the other r; will also alter and must

be reduced to zero, one by one, by suitable alterations, ij. It is expedient to elimi-
nate the largest residual appearing in the system at any stage in the process.
The entire procedure may be most conveniently carried out in tabular form by

entering the starting value of each x(0) and its successive alterations Ax;j in a left

column (or computer locations), and the residuals in the right column (on another loca-
tion of the computer). Thus, the relaxation table has two columns (or sequential loca-

tions) for each Xj. As soon as the residuals have gradually vanished to the degree of
accuracy desired, the sum of x].(o) and of all the Axj gives the final value of X;. With

this outline of the procedure, the relaxation method may be programmed for any par-
ticular version of the computer.

CONTINUOUS TRUSS, LOADINGS AND UNKNOWNS

Continuous Highway Bridge Truss and Loadings

Applicability of the proposed matrix-energy method to an indeterminate highway
structure is demonstrated using as an example the three-span continuous bridge over
the Missouri River near Wolf Creek, Montana, on Federal Aid Project 172D Unit 2.
The bridge is an economical structure and has a pleasing appearance, mainly due to its
excellent proportions and simplicity in details. The main reason for choosing this
bridge truss to exemplify the indeterminate analysis lies in its having only two redun-
dant reactions symmetrical in arrangement, a moderate number of members and,
hence, comparatively few unknowns, which can be handled by the smaller digital com-
puters possessed by most engineering organizations.

As shown in Figure 7, the skeleton truss of the bridge is of the Warren type with
verticals and slightly inclined upper chords. It has spans of 135 ft: 180 ft: 135 ft,
carrying a roadway of 20 ft. It was designed in 1932 for Standard H15 loading accord-
ing to Montana State Highway Commission Standard Design Specifications for Highway
Structures as revised in February 1932, which are the same as the AASHO Standard
Specifications for Highway Bridges and Incidental Structures, 1931,

Makeup of Members. —Section components of each member, its gross sectional
area, gross moment of inertia, theoretical length, and section modulus are as given
in Table 7 for use in later computations. Centroidal axes are taken as intersecting at
theoretical panel points, thus eliminating eccentric moments.

Dead Panel Loads. —These have been duly distributed to lower and upper panel points
as given in Table 8.

Live Loads and Impact Formula. —The design live load for the bridge as used in
1932 was Standard H15 loading. The equivalent loading by which the design was then
governed, as it is today, consists of a uniform load of 480 Ib/lin ft of loaded lane plus
a concentrated load of 13, 500 1b for moment or of 19, 500 1b for shear. That is, the
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TABLE 7 TABLE 8
MAKEUP OF MEMBERS AND SECTION PROPERTIES DEAD PANEI. LOADS
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A ) 309 lighter concentrated load is used in com-
Ge 4- 5 x3 v 9.60 5.4 33 1.1 puting the stresses in members in which
Kk 348 the greater part of the stress is produced
2 - 12[20.7 83,72 by bending moments; the heavier concen-
B yops s 16T 3L BLETE e g trated load is used when the greater part

of the stress in a member is produced by

Be 381. 83766

a Eedlp B.78 1014 599 16914 226 shearing forces or when it is to be in
De 2 - 12[20.7 12,06 256,2 399,16914 42,8 equilibrium with that in a member such
oF 2 12[5 _ T as at the end joint. There seems no stipu-
2 - 1[0 s lation, at the time when the bridge was
Fg 1 D 16 5% B 23,58 4937 421.75349 .o o designed, that two concentrations be placed
8 i " . .
— in adjacent spans for the maximum stresses
2 - 12(35 124,42 z :
o . PIES 8 20,44 ©18.4 4573987 g g of chord members near the intermediate
) 8 supports.
By b 4 ga 207.0 435.733ET . To conform further with the provisions
id h 287 440. 45886 P "
SRR T for obtaining the greater maximum stress
e &~ 1 12:00 %obed  AA0eioHdS 428 in a member at the time when the bridge

o was designed, the roadway is considered
loaded over its entire width of 20 ft with
both uniform and concentrated loads per

foot of width equal to one-ninth (the lane width then being 9 ft) of the load of one traffic

lane; but the load intensity is reduced by 20 (roadway infeet) - 18 (two-lane width in feet)
=2percent., As the result of this method of applying live loads, the lane loading will be

increased by a factor of 19—0(1 -0.02) = 1.08889.
For the bridge under consideration with a typical panel length of 22. 5 ft, the typical

live panel load is P = 4806(22.5) = 10, 800 1b, or 10. 8 kips. The transversely modified
live panel load Py, for producing maximum stresses is, therefore, Py, = 10. 8(1.08889) =
11. 76 kips.
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The dynamic vibratory and impact effects will be accounted for as a fraction of the
live-load stress by the formula:

50
e (23)

in which I is impact fraction and L is length, in feet, of the portion (or portions) of the
span (or spans) which is loaded to produce the maximum stress in the member con-
sidered. There was no 30 percent impact ceiling when the bridge was designed.

By tracing the most possible former loading conditions as summarized previously
one insures the closest check of maximum axial stresses determined by the proposed
method with those obtained by the Montana State Highway Commission when the bridge
was designed. This check will testify to the validity of the proposed method.

Reduction of Statically Independent and Dependent Unknowns

Statically Independent Unknowns. —There are 38 closed triangular figures (f) and two

redundant supports (r) in the truss. If the structure is viewed as a chain of rigidframes,

it is statically indeterminate to the (3f + r) = 3(38) +2 = 116th degree under un-
symmetrical loading. By using the method of substitution for an unsymmetrical loading
by a set of symmetrical loading and a set of antisymmetrical loading, the number of
statically independent unknowns are reduced to only one-half of 116, or 58,

With the letter designations for joints and numeral designations for independent
unknown-end-moment subscripts as indicated in Figure 8, the 58 statically independent
unknowns under any unsymmetrical loading are as defined in the following:

1. For the set of symmetrical loading,

g e '
Xl1 Mab-'l Ma'b '
X Mpa Mpy|

= . — I " (24)
Ko7 Mg My’ g
Xsg Rg 'Rg' ;‘
S |- L 18 L s

2. For the set of antisymmetrical loading,
- : o 3
Xl_]- Eﬂab ] Mg 'y’
|

| Xe Mp, | Mp g’
' |

= ‘ (25)
X57 MkJ i Mk!JI
Xss R R ¢+

Ja 3 8 5 a

Statically Dependent Unknowns. —The dependent unknown end moments are given by

joint equilibrium as follows:
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Any umeymmstrical loading may be
substituted by a set of "symmetrical
loading"(a) plue a set of "Anti-
symmetrical loading"(a).
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1. For the set of symmetrical loading,
r. - B B
‘Myp | My'p* X, —|
;MB]) MB v' Xo + X3 + X4
;MbB MbIBI X5 + Xg
] p . —_— (26)
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2. For the set of antisymmetrical loading,
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MpB My’ Xs + Xe
= - 27)
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Figure 9.

Application of Method of Substitution

When the computer available is of small capacity, to analyze the truss under un-
symmetrical loading with the reduced number of 58 statically independent unknowns,
solutions of stresses in truss members for the substituted sets of symmetrical and
antisymmetrical loadings must first be carried out. The solutions for the original un-
symmetrical case may then be obtained at once by the principle of superposition.

As shown in Figure 9a, any unsymmetrical typical live panel load of 10. 8 kips ap-
plied, e.g., at b may be substituted by two sets of loadings shown in Figures 9b and 9c.
The reactions in Figure 9b are obvious; Ry in Figure 9c follows directly from the
equation of couple equilibrium:

20R, + 8Xss = 18(5.4)

If a sufficiently large computer is at hand for solving all the unknowns under any un-
symmetrical loading, the process will be faster without resort to this method of
substitution.

FORMULATION OF AXJIAL-STRESS EXPRESSIONS AND
CHARACTERISTIC SIMPLIFICATIONS

The basic techniques for formulating axial-stress expressions have been presented
under "Extended Methods of Moments, Shears, and Joints.'" As a general rule, the
axial stress in each of the top and bottom chord members and each of the diagonal
members in the panels having inclined upper chords may be determined by the extended
method of moments; that of the end posts and of the diagonal members in panels having
parallel chords, by the extended method of shears; and that of the verticals, by the
method of joints.
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As typical examples of application of this general rule, we may formulate the axial-
stress expressions for members De, DE, aB, Jk, Bb, and Cc in the truss shown in
Figure 9b under the substituted set of symmetrical half-panel loads.

Diagonal De and Upper Chord DE

These two axial stresses may be determined most expediently by the extended method
of moments. Taking the free body diagram just to the left of member Ee, as shown in
Figure 10, and noting that

Xig + Xox Xis + Xgp Xig + X
{Qde QDe QDE} ={ 18 5 21 lSDe 22 IBDE 19} (28)

we have, by ZM, = 0,

[_Row vector of stresses_l (Column vector of lever arms} =0

or

LNDe -Qpe Qe -QDE Xio + Xer + Xa2) 5.4 -(5.4 - Xsg) |

{__D‘gge) de(0e) oo 20.6(DE) 1 17.6p oa} =0 28]

Substituting Q's from Eq. 28 and all known distances into Eq. 29, and transposing,
yields:

23006973
B [Xis (Xie + Xia) (Kio + Xu) Xea] | 50285858 %o 11 [1- 0940838
De ~ (10)t0 47844797 | ~ (%o 1] 0. 35590670

20565912 (30)

where the last product of two vectors corresponds to the conventional primary stress
in member De,
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Taking the same free body diagram shown in Figure 10, by Z Mg = 0, we haveagain
the product of a row vector and a column vector equal to zero,

LNDE -QDE (Xlg + Xo1 + Xzz) -5.4 (54 = Xsa)_l

p Ee(Ee - Dd) _
{Ee DE — DE 1 3p 4p} = 0 (31)

Substituting Q's from Eq. 28 and all known distances into Eq. 31 and transposing, yields:

2054445, 1
NDE = LXis X Ay 4 Xu)l| 30357910 |+ | Ko ~4] [2:?3(5’?]222] (32)
(10) 32412364 y

where the last product of two vectors also corresponds to the conventional primary
stress in member DE,

End Post aB and Center Diagonal Jk

These two axial stresses may most expediently be determined by the extended method
of shears. Taking the free body diagram just to the left of member Bb (Fig. 11), and

noting that
{Qab QaB} =

N5 {Xl + X5 -Xia]; Xz (33)
381.83766" Qupk, p
2 70 h by ZY 0
270" =
?ab we have, by s
aT At 1 Qap
bk X5 NaB Té- + ’\/—?— + Qab +
5.4 =%58(s)
270" 5.4 - Xsg = 0 (34)
Figure 11.
1140.45886" Qx
gt s
9/ K
J(NJk
T g N
5.4k ), ij 348"
k 348"

Figure 12,
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Substituting Q's from Eq. 33 and known distances into Eq. 34, and transposing, yields:

Z
N

_ L&+ %) %] [26189140] | (Koo -1] [1.4142136] (35)

(10)!° 52378280 7.6367532

in which the last product of two vectors is again the conventional primary stress in
member aB.

To determine Njk, taking the free body diagram to the left of panel jk, as shown in
Figure 12, and noting that

{ij QIk QJK} _ {XM ;; Xsa Xa ;ern Xs2 + Xss} (36)

p

we have, by ZY = 0,

-Njk Jilji + Qyk })—k + Q4+ ij + Xsg - 5.4 + (5.4 - Xgg) = O (37

Substituting Q's from Eq. 36 and all known distances into Eq. 37, and transposing,
yields:

B [Xs1 (Xs2 Xss Xos Xse) X | igg;éggg 5 B (38)

N
Jk
(10)*° 17614859

where the last term means the conventional primary stress in member Jk is zero.

Vertical Members Bb and Cc

The extended method of joints may most advantageously be applied to determine the
axial stresses in vertical members Bb and Cc. Taking the free body diagram around
joint b (Fig. 13a), and noting that

{Qab ch} : {X t X Fo s X”} (39)

we have, by ZY = 0,

Npp Qp
QBb"_/TI\\ °"1’° NBC"'(" | T —}’ Hp
Nab ‘%& b‘ ) Noe %8¢ g\‘;_.- e
Qp 5.4 Yoo

(a) (b)
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NBp - Qap - 5.4 + Qpe = 0 (40)

Substituting Q's from Eq. 39 and the known panel length into Eq. 40, and transposing,
yields:

Npp = % (Xi+%s = Xe~Xs) + 5.4 (41)

where the last term represents the conventional primary stress in member Bb.
In the free body diagram shown in Figure 13b, noting that

— -

12

>,
1.2
QCC = Cc

Xg + X13
Qp | = cD (42)

X4 + X5
QpC —BC

we have, by summing up the stress components along the axis perpendicular to mem-
ber BC (or CD),

12
-Nce (ﬁ%) + Qce (rgf) +Qp - QC =0 (43)

Substituting Q's from Eqs. 42 and all known distances into Eq. 43, and transposing,
yields:

12

37037037

Xy X X X; X

|f“ i Eg . ”J 35460993

Nge = — 38613081 | + 0 (44)
(10) 15760441

37037037

where the last term denotes that the conventional primary stress in member Cc is zero,

Summary of Axial-Stress Expressions

The axial stresses in all other members of the left half of the truss shown in Figure
9b under typical symmetrical half live panel loads at b and b’, have been similarly
determined. They are summarized in Eqs. 45:
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Least Significant Part of

Axial Stress

Lower Chords

(N ]

pNij -

Nk

37037037

(10)10

34013605

(10)10

30864198

(10>10

29239766

(10)10

28735632

(IO)IB

Upper Chords

Npc

Nep

NEF

LX4 X7 (X + Xio) ]

—Xg +X5

X3 +

i~ (X;s +

Xass
Xa0

Xso

_-(Xa + Xq4 + Xe)

+ X7

+ Xlg-)_

+ Xag

+ Xa

+ Xaz)

+ X53-

+ Xsq)

(10)r0

LXa X + Xi2) Xm_]

(10)10

LXIS _XlQ

-(X21 + Xzz)_]

[Xeo (Xes + Xea) Xzs_]

(10)10

szs -Xa1 -(Xss + Xs4)_]

(10)10

(10)™°

Most Significant Part of
Axial Stress

-Xsa
+
L -Xss
—"XSB
+
L 'X58
[ Xss
+
+ Xao_)_J L-Xsa
—-Xss
+
) b‘XSB
- Xse
+
_X58
= —
71644467, 1]
33851532
35495999 |
737140466 7
35495999

L1644467. 1
-

(2054445, 1
30357919
32412364 |

34466809 |
32412364
| 2054445. 1

(1233882. 6
28812826

30046709 |

+

=

+

+

—

1

5.4

2. 7551020 ]

| 4.9591837 |

4.1666667 ]

4, SOOOOOOJ

(4. 7368422

Lxss

[ Xso

Lxsa

[Xss

[_Xsa

[4.2631579

4, 6551’7247

4.1896552
b =

4 (3

. 5005352 |
. 7257226 |

.5005352 ]
.7257226J

. 8675668 |
.3808102 |

9167840
1753167

. 9167840
. 1753167




Least Significant Part of Axial Stress

Upper Chords (Cont'd)

NGH

Njg
Verticals

Npp

Nce

e

NFf

]

31280592 ]
(o2 (oo +f“) Xor| 30046709 | + LXss
(10) | 1233882, 6]
o X (Kas + Xag)| [ 411497.23]
[ (105 | 28575800 | + Lo
(10) 28987297 |
29398794 |
[ X (}Qv-rj%a) . anamraet | + L%
(10) [ 411497. 23]
-0.0028735632(Xss + Xsa + Xsv) + ana
0.0037037037(X; + Xs - Xg - Xo) +
12
37037037
X X X .Z X; Xus 35460993
i=9 38613081 | +
(10)*° 1576044, 1
37037037
0.0037037037(X1z + Xir - Xis - Xoi) +
& 37037037
Xie -Xio Xzo E X; Xos 35939123
i=21 38834951 | +
(10)*° 1797914, 4
37037037
0.0037037037(Xea + Xao - Xso - Xas) +
3 37037037
-Xos X311 Xaz 1—233)(1 Xar 36036036
= 38038038 | +
(10)'° 1001001.0
37037037
0.0037037037(Xss + X4 - Xz - Xas) +

Axial Stress

.1 [ 8evsess]
4.3808102 |

.1 [4-go50420]
4.2263451

sl 4. 6959420 |
4,2263451 |

1] [#-6s51728
4.1896552

5. 4000000

0

0

0

0

0

0
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Most Significant Part of
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Least Significant Part of Axial Stress

Verticals (Cont'd)

Diagonals

48

[—Xaa X4z Xaa
i=4

(10)'°

| 37037037

36714976
37359098
322061. 19|
37037037

0.0037037037(X4s + Xss - Xsa - Xsa)

0.0074074074(Xs2 + Xss)

(- + X)) -Xs)

NaB =

(10)*°

LXa (X4 + Xa) (X7 + Xo) xzq_l

(10)10

-LX8 X Xz Xz Xig Xl'l'_l

(10)10

LX15 (Xie + Xia) (Xio + Xai) Xz?J

(10)10

| Xeo Kes Xaa Kas Koo Xan)

LX27 (X2s + Xa0) (Xa1 + Xas) ){34_]

(10)“}

(10)™

(26189140 |
| 52378280

(26189140 ]
52378280
50149417
23960277 |

52425682
25146797
52425682
50285858
23006973
50285858 |

(23006973 ]
50285858
47844797
20565912

50551779 |
22099137
50551779
48211419
197587717
48211419

(19758777 |
48211419
46908408

18455766

+

Stress
0
0
0
(%5 -1] %
Lo 1) [
B
b 1 [}
(X 1] [(1)
Lo 1) 3

Most Significant
Part of Axial

. 4142135
. 6367532

. 2938550
. 32496822

. 2421677
.31198630

. 0940836
. 35590670

. 0489494
. 34122451

. 0906205
. 18997905
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Most Significant Part of

Least Significant Part of Axial Stress Al Stress

Diagonals (Cont'd)

g
48463338 |
19393605
N o Lo Xos Xeo Xor Kug Xai] 48463338 | | 5 || [0.20660685

BB (10)° ar1gog7 |+ L% 0.18594617
18118254
47187987 |

- o
18118254
[Xss (Xao + Xe2) (Xas + Xas) Xao] | 47187987

0. 066473512
Npi = (10)*° sormesy |+ X -1 E)-05982616;|
17707924 |

47284901 |
18022487

Neo - ~Xa Xor Xao Xap Koo Xoo) 47284901 [x, 1) [0-086035812
= (10)°° 46877273 % 0.05943223
17614859

36877273J

Xs: (Xsz + Xoa + Xos + Xso) X (17614859 ]
Njx = [Xe: (X + Xoa + Koy + Xao) Ko 46877273 | + 0 (45)

(10)*° 17614859 |

Those axial stresses in members on the right half of the truss shown in Figure Sb
under typical symmetrical half live panel loads at b and b’ may be obtained by using
these axial-stress expressions and Eqs. 18.

Most and Least Significant Parts of Axial Stresses

As indicated in Eqs. 45, the most significant part of each axial stress represented
by the last product of two vectors (or otherwisezero) consists of a constant term and
another containing the redundant reaction Xss, and corresponds to the conventional
primary stress in each member. The least significant part of each axial stress is due
to end moments and transverse shears by virtue of rigid-frame action.

The entirety of an axial-stress expression should be used in writing the strain-energy
expression due to each axial stress before partial differentiation, but thereafter the
least significant part may be neglected in formulating the equations and in computing
axial stresses.

It should be noted that the coefficients of the unknown end moments in the axial-
stress expressions are dependent only on the properties of the composition of the truss.
They are independent of any external loading. The coefficients of the unknown end
moments in the axial-stress expressions are, therefore, always the same regardless
of loading conditions. Only the most significant or primary-stress terms are subject
to change for different loadings. This important fact necessitates determination of
only a single set of coefficients of unknown end moments in the axial-stress expressions
for all members under various loading conditions. For each different loading condition,
only those coefficients in the most significant (or primary-stress) terms need further
calculation, thus saving much time and labor.

Since the reactions at the end supports due to the redundant reactions (treated as
loads) at the interior supports always have -1 as the coefficient of X58(s) for any sub-
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stituted set of symmetrical loading and -0. 4 as the coefficient of X5g(3) for any sub-

stituted set of antisymmetrical loading, as shown in Figure 9, the coefficient of XSB(S)’
in the axial-stress expressions will always be the same as will that of X5g(5). There-

fore, axial-stress expressions under any different symmetrical or antisymmetrical
loading can be readily determined by revising only the constant terms in the most sig-
nificant part of axial stresses, or primary stresses.

As has been pointed out, the least significant terms in the axial-stress expressions
for antisymmetrical loadings are the same as for those for symmetrical loadings given
previously (this applies even to unsymmetrical loading). To formulate the axial-stress
expressions for the antisymmetrical set of loadings at b and b’, as shown in Figure 9c,
we need only write explicitly the most significant part of axial stresses (corresponding
to primary stresses) as grouped in Eqs. 46:

Lower Chords

Nap = Npe = (1(1))3 [-Xss 1] (40,000,000 486,000,000)
Neg = Nge = (1;)8 (% 1) {110,204,080 347,142, 860)
Net = Nig = (1;)8 [-Xss 1) (166,666,670 225,000,000}
N = Ny = —— [-Xss 1] (142,105,260 127,894, 740
gh = hi = (10)3 58 ( 3 ’ ) ’ }
Nyj = Ny = (1;)8 L-xss 1] (46,551,724 41,896, 552)
Upper Chords

N = Nep = (101)8 [xss -1 76,671,359 414,025,340

NpE = NEF = {ow [%ss -1 (140,021,410 283,543,360

Nee = Nem = ToF [Xss -1 (194,702,670 175,232, 410)

Lo (X -1) (93,918,842 84,526,957

Z
jas
—

1)

2
et
o

1l
gl
2

Verticals



Diagonals

NeF
NFg

NgH

Ny

(10

[Xss
[Xss

[Xss

[Xss
[Xse
L-Xee
[-Xes
[Xss
L-Xse

[ Xse

{66, 568, 542
(51,754,198

{49, 686, 707

(43,763,343
(41,957,976
{43,624, 819
{84,708, 813
(7,714, 009
{17,261, 899

(75,941, 183

687,307, 790)
102,364, 990 )

98,275, 685 )

94,671,183 }
90, 765, 719 )
77,891,410}
76, 237, 932 }
69,996,608 )
69, 535, 709 )

68,347,064 )
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(46)

The most significant part of axial stresses in members on the right half of the truss
may be obtained by using these products of vectors and Eqs. 19.

STRAIN-ENERGY EXPRESSIONS, REDUNDANT REACTIONS, AND

SETS OF SIMULTANEOUS EQUATIONS

To apply the simplified matrix-energy method for analyzing the three-span continu-
ous truss under consideration, the constants in the strain-energy expressions of truss
members have been computed and the results are given in Table 9. With axial-stress
expressions formulated as shown previously and strain-energy constants of truss mem-
bers as given in Table 9, the strain-energy expressions can be readily formulated in
practically the same manner as given in Table 4, except that to conform with the sim-
plified matrix-energy method used herein the strain energy due to transverse shears
will be neglected in the present analysis; the error so introduced will be negligible.

With the axial-stress expression for member ab represented by Ngp,, that for mem-

ber bc by Np,e, ete., the general strain-energy expressions may be written, according

to Eqs. 5, using U to denote total internal strain energy in the member represented by

the subscripts:
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TABLE 9
CONSTANTS IN STRAIN-ENERGY EXPRESSIONS OF TRUSS MEMBERS
L L L L
Member K a Member K ﬁ
ab 22.388060 0.17564403 Cc 33.732057 1.5511551
be 22.388060 0.17564403 Dd 32.236842 1,3243243
cd 22.388060 0.17564403 Ee 32.187500 0.89721254
de 22.388060 0.17564403 Ff 35.526316 1.4594595
ef 22.388060 0.17564403 Gg 34.687500 0.96689895
fg 22.388060 0.17564403 Hh 37.500000 1.5405405
gh 22.388060 0.17564403 Ii 35.937500 1.0017422
hi 22.388060 0.17564403 Ji 38.157895 1.5675676
ij 22.388060 0.17564403 Kk 36.250000 1.0104530
jk 22.388060 0.17564403 aB 22.796278 0.16568500
BC 16.135316 0.11727265 Be 43.489483 0.62760957
CD 16.135316 0.11727265 cD 45.463456 0.65609655
DE 16.144260 0.11733765 De 33.098602 0.25967287
EF 16.144260 0.11733765 eF 28.808298 0.24492073
FG 16.128356 0.11722206 Fg 17.886068 0.142378417
GH 16.128356 0.11722206 gH 16.480101 0.11743582
HI 16.120398 0.11716422 Hi 29.763242 0.25303941
1J 16.120398 0.11716422 iJ 30.085988 0.25578331
JK 16.119403 0.11715699 Jk 36.522294 0.28653322
Bb 29.605263 1.21621620 — — —
| [ (7
Uab Pl N;b (X% - XiXs + X%) _]
Upe TN, X6 - XeXo + X
Ueq % Nzcd (X2 - XieXir + Xin)
1
Use FNGe  (Xie - XXar + X5 | _
22.388060
Uef % sz (X34 - XoaXpo + X39)
E =
1
Ufg 5 N;g (X30 - XsoXss + Xis)
0. 17564403
L =
1.2 2 2
Ugh 35 Ngh (X536 - XseXar + Xi1)
Uhi % Nili (X% - XX + Xis)
Uij é Ni] (Xis - XapXss + X5s)
1
Uik 3 Nik (X84 - XsaXyq + Xie)




Bb ~

BO| -

g
-

%N%C (X3 - XaXy + X3) 16. 135316 T
1. ¥ - 2

NL, (K - XX+ X) | 0. 11727265,
% N (K - XK + x| [16. 144260

1 :

= Npp (%o - XeoXas + Xio) 0. 11733765
|- el =

—1 NZ 2 X ZT E T
5 Npg (XKoo - XeeXa + Xai)|  |16.128356
%NEGH (Xga X3aXar + Xg'r) 0. 1172220J
—;—Nin (X% - XaoXes + Xa)|  [16.120398
L% N (K - XeXao + X) 0. 11716422
1.2 5 ; 16.119403 |
2N e - XuXe + Xl | g 11715699

(=2}
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29. 605263

1.2162162
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Dd

Ee

DO =

16

i=13

20

i=19

33.1732057

1.5511551

32.236842

1.3243243

32. 187500

0.89721254



Ff

Hh

42

>

i=41

203

35.526316

1.4594595

34. 687500

0.96689895

37. 500000

1. 5405405
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= | doge2
B'U; = 5Py
= 1 2
E UJj - ENJJ
iy FT =
Ulﬂ{(s} ENKk
E =
1 s
UI{k(a,) 3 Nkx

4 | Xss

48
2 %

i=45

n
-9
o

57

3

(5% _

35.937500

1.001742

38.157895

1. 5675676

1.010453

where (s) denotes symmetrical set of loading, and (a) denotes antisymmetrical set of

loading. Only one-half of EUgy should be used in computing %EU.
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p— —_— PR—

1 [22. 796278
UaB l_i Nap (K3 + XX + xi)_J 0. 1656850£|

12 2 _ 2 [43. 489483

UBe Lz NBc (X3 - XaXio + Xm)_J 0.6276095;|
i1 145, 463456

E{Up| = [[gNeD K - XuXua + X?"ll L0.6560965;_|

1 33. 09
UDe Lg Ni)e (Xis - XisXaz + ngll 9. 008602 .a

| 0.2596728

1 28.
Uor| [[3Mr O - ik s x| o350t

oo B, ot -memoem [F ggggggj
UgH I_%Nng (s - KosXoa + Xg*ﬂ :—g:ﬁgigésg-_l
Blog | = [ 0% - X+ )| 5705202
Uiy I_%NziJ (Xir - KarXso + X&o) :g:ggggggsl
Ui | LE_Nfrk (X5 - KouXer + Xso) 3313333332_ 47)

Solution of Redundant Reactions

In the simplified matrix-energy method which we are now applying, not only is the
strain energy due to transverse shears neglected but also the part other than the con-
ventional primary stress (the most significant part) in the axial-stress expression is
deleted after partial differentiation. Thus, the 58th equation obtained from

E ;X‘ia S 0 (48)

DN =t

assumes the form of an algebraic linear equation with X, as the "unique unknown."
This redundant reaction may now be solved. The size of the set of simultaneous equa-
tions is consequently reduced to 57 equations with 57 unknowns.

The pair of symmetrical half-panel loads applied at b and b’, and ¢ and ¢’, etc., may
be represented by b++, c++, ete., respectively; the pair of antisymmetrical half-panel
loads applied at b and b’, ¢ and ¢’, etc., may be represented by b+-, c+-, etc., re-
spectively; the panel load symmetrically applied at k may be represented by k; and the
symmetrically located dead loads may be represented by DL. The redundant reactions
at the interior supports are found as in Table 10. The left redundant reaction is upward
positive, and the right redundant reaction is upward positive under symmetrical loadings
and downward positive under antisymmetrical loadings.

It must be noted that the redundant reactions can first be solved independently only
in the simplified matrix-energy method. In the exact matrix-energy method, Eq. 48
will contain some of the unknown end moments X;; it must be solved simultaneous
with the other 57 equations.
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TABLE 10 Formulation of Sets of Simultaneous
REDUNDANT REACTIONS AT Equations
INTERIOR SUPPORTS For the present problem, the complete
: ; systems of simultaneous equations inpoly-
Due to  Xse (kips) Due to  Xse (kips) set unknown and constant vectors, after
e 0 DL 26939998 partially differentiating the total strain
be+  1.0696012 g 0 energy given by Eq. 6 with respect to each
e+ 2.1265065 b+~ 1.5125273 unknown, take the following general matrix
d++  3.1326161 c+-  2.9914410 forms:
e++ 4,0066760 d+- 4.2743738
f++ 4.7827808 e+- 5.0799756 1. For symmetrical loadings,
g+ 5.4000000 f+- 5.5290950
h++ 5. 8704096 g+- 5. 4000000
i++  6.1854863 h+-  4.5950812 [24i]57 « 57 [¥ik]57 « 10 =
j++  6.3893981 i+-  3.2634630 57 x a7 A 10
k++ 6.4439991 j+- 1.7249734

l:cik—J'S_’Y x 10 (49)

2. For antisymmetrical loadings,

Ml « s [ Xadem s = [eadsm « s (50)
The solutions of these equations by matrix inversion are, respectively,
-1
Ficd57 x 10 = [P4]57 x 57 [Cud 57 « 10 (51)

and

Puls v s [ 57 [ Ci] 57 (52)

I&'g
()1|
]

X

where the barred subscripts denote number of rows, the unbarred subscripts denote
number of columns, and [aj;]'s of Bgs. 51 and 52 differ by a 3 x 3 trailing sub-matrix
as will be explained later by Eq. 53. There are as many unknown column vectors and
known constant column vectors as there are loading conditions.

To explain the formulation of these matrices, Table 10 is used to express all pri-
mary axial stresses in truss members under the 18 different sets of loading conditions
in their numerical values.

After substltutmg each of the 18 sets of axial stresses for Nll‘s in Egs. 47, repeated
operations of § aa)g = 0, wherei =1, 2,..., 57, will yield two sets of 57 x 57
coefficient matrices with 57 x (10 + 8) known constant matrix to solve the 57 x (10 + 8)
unknown end-moment matrix in two inversions.

It is especially noteworthy that, in the exact matrix-energy method, the coefficient
matrix has to be determined from coefficients of all unknowns in the strain-energy ex-
pressions. But in the simplified matrix-energy method, the coefficient matrix is de-
pendent only on coefficients of unknown bending moments.

Because the center vertical member has no bending moment under any symmetrical
loading and experiences certain bending moment under each antisymmetrical loading,
the coefficient matrix for symmetrical loadings will be different from that for anti-
symmetrical loadings but limited only to a 3 x 3 trailing sub-matrix:
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55,55 As55,58 As5, 57
sub - Eliﬂ = |ase,55 3Ase,56 Ase, 57
as7,55 As7,88 As7,57 (563)

which is a diagonal matrix for symmetrical loadings or a symmetrical matrix for anti-
symmetrical loadings. This difference is evident by inspecting the strain-energy ex-
pressions of the center-vertical member Kk in Eqs. 47.

Coefficient Matrices and Constant-Vector Matrices

The two sets of 57 x 57 coefficient matrices for symmetrical and antisymmetrical
loadings and the 57 x 10 and 57 x 8 constant-vector matrices for the 18 basic loading
conditions are regimented arrays of numbers. Tosave space, they are notshownherein.

Solution by Inversion Using Electronic Digital Computer

Eqgs. 51 and 52 were solved by matrix inversion with the program ''Simultaneous
Equations A La King" furnished by IBM for use in the IBM 1620 computer (capacity,

60, 000 core storage) available at the South Dakota Department of Highways.

Solutions of end moments of all members for substituted symmetrical and antisym-
metrical sets of loadings are given in Table 11, from which full panel-load end moments
may be obtained.

Apnpropriate combinations of panel-load end moments will vield all end moments
simultaneous with maximum design stresses and maximum end moments of all members.

COMPOSITION OF MAXIMUM DESIGN AXIAL STRESSES
Dead-Load Stresses

Dead-load stresses are computed by the same general rule and in a similar manner
as described previously by applying all upper and lower dead panel loads given in
Table 8 simultaneously.

Maximum and Minimum Live-Load Stresses

Maximum live-load stresses, and minimum live-load stresses or maximum live-
load stresses of the opposite sign, of all members of the truss are the most important
part of live-load-stress analysis for later stress combination to arrive at maximum
design stresses and maximum range of stress reversals.

In a programmed computation by the basic scheme of the proposed method, if the
computer available is of sufficient capacity, neither method of substitution nor method
of transformation would be needed. The procedure would be to load the truss with live
panel loads, one at a time, from b to f, then from h to k, as shown in Figure 9a. By
the panel-load superposition method, summation of all-plus-sign stresses and of all-
minus-sign stresses in each member will give, respectively, the maximum tensile
and compressive stresses.

From Figures 9band9c, with the method of substitution introduced in the present
case because only a smaller computer is available, half live panel loads will be placed
for both symmetrical and antisymmetrical sets, one pair at a time, at b and b’ to f and
f’, then at h and h' to j and j’, but one full panel load will be placed at k only once.
Then from Eqgs. 18 and 19, the axial stress, N, in member 1J is given by

Nij = Nijs) + Nij(a) (54)
(due to any P (due to symm, (due to antisymm.
Bl any panel] set of lP at set of —l—P at x
point x) 2 2

x and x’) and x')
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and
Nij = Nj‘j* = Nij(s) - Njj(a) (55)
(due to any P (due to any P (due to symm, (due to antisymm,
at panel at panel 1 1
point %) point ) set of 3 P at set of EP at x
xand x’) and x’)

It follows, therefore, that

= 7 '_b’ ]
Max. Total Pos. Nijj 2 (Pos. Njj) + (Max. Pos. Nyj) Fe
b
= (56)
bl
Max. Total Neg. Nij| | D (Neg. Njj) + (Max. Neg. Njj) Fy
L _ Lb =
where the concentrated-load factors for moment and for shear are given by
F. for moment 1 13.5
- T0.8 =
F, for shear “[19.5

and in Eqs. 56 b to b’ attached to the T sign means summation of all positive or negative
axial stresses when panel points from b to b’ are loaded such that like-sign stresses
are produced.

Impact Stresses

The loaded length L in the impact formula of Eq. 23 will be obtained for either the
maximum plus-sign or maximum negative-sign live-load stress by summing up the
corresponding panel lengths. Impact stresses are then obtained from

N _5
Impact stress = Max. L. L. stress (L+ 125) (58)

Maximum and Minimum Design Stresses

These will be determined by summing up dead-load, maximum or minimum live-load
(or maximum of opposite sign), and impact stresses in the usual manner,

Provision for Overload Stresses

These stresses are differently stipulated in different design specifications according
to the judgment of those who have jurisdiction over formulating the specifications. The
100 percent increase of maximum live-load and impact fraction was stipulated in the
1932 design specifications. Because under this provision there is usually reversal of
stresses, both the algebraic sum of one sign and that of the opposite sign are increased
by 50 percent of the smaller value. When so increased for overload provision, the
results of the analysis of this study check almost identically with those of a study con-
ducted by the Montana State Highway Commission.
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Summary of Axial Stresses

Dead-load, maximum live-load, impact, and maximum design stresses together with
certain overload and reversal stresses are summarized in Tables 12 and 13. Results
of the proposed method are given as well as those of the Montana study for comparison.

As shown inthese tables, all dead-load, maximum and minimum (or of opposite sign)
live-load, impact, and overload stresses check almost identically with the correspond-
ing results of the Montana State Highway Commission. This further testifies to the
validity and soundness of the proposed method.

All numerical values, except the minimum DL stresses for overload provision, were
independently computed. To conform with the original design provisions, Montana
values were used under ""energy method."

TABLE 12
SUMMARY OF MAXIMUM AXIAL STRESSES, NO OVERLOAD

Montana (kips) Energy Method (kips)
Member

D, L. L. L. I. Total D. L. L. L. 1. Total
ab 63.9 42.8 5.4 112.1 63.9 42. 8 5.4 112.1
bc 63.9 42.8 5.4 112.1 63.9 42.8 5.4 112.1
cd 70.9 55..1 7.0 133.0 71,10 55.2 7.0 133.2
de 70.9 55.1 7.0 133.0 71.0 55.2 7.0 133.2
ef -51.6 -32.2 -4.6 -88.4 -51.4 -32.2 -4.6 -88.2
fg -51.6 -32.2 -4.6 -88.4 -51.4 -32.2 ~-4.6 -88.2
gh -40. 8 -26.3 -3.8 -70.9 -40. 6 -26.3 -3.8 -70. 7
hi -40. 8 -26.3 -3.8 -70.9 -40.6 -26.3 -3.8 -70.7
ij 80.7 59.3 9.1 145.1 81.0 55.3 9.1 145.4
jk 80.7 5b.3 9.1 145.1 81.0 55,3 9.1 145.4
BC -85.7 -55.0 -7.0 -147.7 -85.8 -55.0 -7.0 -147.8
CD -85.7 -55.0 -7.0 -147.7 -85.8 -55.0 -7.0 ~-147.8
FG 154.0 58.0 6.6 218.6 153.9 57.9 6.6 218.4
GH 154.0 58.0 6.6 218.6 153.9 57.9 8.6 218.4
JK -96.0 -61.1  -10. -167.1 -96.2 -61.1  -10. -167.2
Bb 33.1 33.0 9.9 76.0 33.1 33.0 9.7 75.8
Cc -4.2 — — -4.2 -4.3 — — -4.3
Dd 33:6 33.0 9.9 76.5 33.6 33..0 9.7 76.3
Ee -4.3 - — -4.3 -4.3 — — -4.3
Ff 33.2 33.0 9.9 76.1 33.2 33.0 9.7 75.9
Gg -3.2 — — -3.2 -3.2 — — -3.2
Hh 34.0 33.0 9.9 76.9 34.0 33.0 9.7 76.17
Ii -4.7 — — -4.7 -4.17 — — -4, 7
Ji 33.3 33.0 9.9 76.2 33.3 33.0 9.7 76.0
Kk -4.5 = = -4.5 -4.5 = . -4.5
aB -90.4 -60.4 =77 -158.5 -90.4 -60.5 -7.1 -158.6
De -70.1 -44.9 -6.0 -121.0 -70.0 -44.9 -6.0 -120.9
eF 117,3 60. 4 7.7 185.4 117.2 60.4 7.6 185.2
Fg -160.0 -74.2 -8.4 -242.6 -160.0 -74.2 -8.4 -242.6
gH -182.6 -84.2 -9.6 -276.4 -182.6 -84.3 -9.6 -276.5
Hi 123.9 64.5 8.2 196.6 123.9 64.6 8.2 196.17
iJ ~-72.9 -49.1 -6.6 -128.6 -72.9 -49.1 -6.6 -128.6
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TABLE 13 Further Merits of Panel-Load Method
SUMMARY OF MAXIMUM AXIAL STRESSES, OVERLOAD Eqs. 54 and 55 give live-load stress in any
Member  Loads  Montana (kips) Energ{y M)ethod truss m_ember. due_ toany typical panel l‘oad.
i For the investigationunder consideration,

Be D: Lj 30.8  21.6 30,8 21,6 atypical full live panel load was used so that
. e e o o the panel-load stresses may be later used
Reversal  10.6 -10.6 10,6 -10.6 toredesign the same bridge under current
Lotar 127.6  -31.8  127.6 -31.8 lane width of 10 ft, although the orginalde-

cD g- L. 2;- 9 153 21.8  15.3 sign was made for the 1932 specifications of
T ngé '423 62;3 '423 9-ft lane-loading width. The transverse ef-
Reversal ~ 18.3  -18.3 18.3  -18.3 fect of shifting the 9-ft lane-loading width on
e 12.6 648 125 548 the 10-ft lane width could have been directly

- ik 2 L g A obtained by multiplying the typical live panel
L -10.4 8.8  -10.4 8.8 load by the previously determined factor
Reversal — -22.8  22.8  -22.8 22,8
Total -139.1  68.3 -139.2  68.3 of 1.08889. . .

HI D T AB0 <055 NG 25,3 Influence-line ordmates' for all mem-

L7 Tt Lis -76.8 42,6  -76.8  42.6 bers, although not needed in the proposed
L -12.6 5.4  -12.6 5.4 : i i
Roverssl i1 4 114 iid 14 method of analysis, can b'e easily 'obtam.ed
Total -136.8 34,2 -137.0  34.2 from Eqs. 54 and 55 by simply using unit

Jk D. L. 95.0  17.5 25.0 7.5 panel load instead of typical full live panel
IL- L. Iég -45'2 1’1‘21 —46‘2 load. Moreover, the panel-load method
Reveigal 198  -19.8 13:3 _Igj3 makes it extremely expedient to obtain
Total 125.9 -57.8  125.9  -57.8 bending stresses (secondary stresses)

simultaneous with maximum design axial
stresses, and maximum bending stresses
(maximum secondary stresses) together
with simultaneous axial stresses.

END MOMENTS IN TRUSS MEMBERS

The essence of this study is to develop a unified, streamlined matrix-energy method
so that engineers can analyze any rigidly connected truss, determinate or indeterminate,
under any combination of loadings, and ascertain in each member the two possible
governing states of required internal resistances: (a) under loadings of maximum axial
stress—maximum axial stress, the larger of the bending stresses simultaneous with
maximum axial stress, and transverse shear simultaneous with maximum axial stress;
(b) under loadings of maximum bending stress—axial stress simultaneous with the
larger of the maximum bending stresses, the larger of the maximum bending stresses,
and transverse shear simultaneous with the larger of the maximum bending stresses.
The term "'bending stress,' as used herein, corresponds to conventional secondary
stress. It is evident that whichever of these two states requires the larger section
should govern the design.

The problem involved is no longer academic. It deserves more serious practical
considerations today than ever before: as longer spans of bridges are built, more
brittle high-strength steels are used, welded connections are introduced, steel pre-
stressing is applied, more dynamic effects are experienced from high-speed heavy
wheel loads, more economical designs are stressed, and thinner sections, plates, and
sheets are called for on plans. To best meet all these exacting demands and to insure
public safety at minimum cost, the closest analysis of complicated bridge structures
must be made.

Since the earliest introduction of a method for analyzing secondary stresses (1),
although at least nine independent methods have been developed, the complicated and
tedious analysis of secondary stresses has remained mainly of academic interest and
even as such has been only rarely performed. Not many already constructed rigidly
connected trusses have been given a secondary-stress analysis. None of particular
importance have ever been given as thorough an analysis as required to investigate
thoroughly the two governing states.

Even with today's technological development coupled with the availability of high-
speed electronic digital computers, generally only a conventional maximum axial-stress
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analysis is made for rigidly connected trusses. By the time the analyst has achieved
this conventional task using Miiller-Breslau's (13) principle of influence lines, he is
reluctant to undertake a secondary-stress analysis. The chief obstacle has been lack
of a straight-forward, unified, streamlined method whereby axial stresses, end moments,
and transverse shears will be obtained in one single setup. In this manner, all desired
results will be yielded once the problem has been formulated and fed into the computer.

With the approach used in the present study, the formidable task of performing and
iterating all necessary calculations for all members of a truss under all conceivable
loading conditions will become simple. This advantage is inherent to the proposed
method of panel-load superposition because at this stage of the analysis, each axial
stress in every member due to each individual panel load as well as both end moments
in every member due to each same individual panel load has been determined. The
remaining computation of simultaneous end moments and shears under loadings of maxi-
mum axial stress and of maximum end moments and simultaneous shears and axial
stresses under loadings of maximum bending stress is merely a simple arithmetic
chore.

Simultaneous End Moments and Transverse Shears

End moments of a member simultaneous with its maximum axial stress may be
readily obtained by the method of substitution used in this study, after converting Xj
to Mjj according to Egqs. 24 to 27, in a manner analogous to Egs. 54 and 55 for axial
stresses. Thus,

Mj; = My ¢ Mjj(a) (59)

(due to any P (due to symm, (due to antisymm,
dt any panel set of 2P at set of =P at x
point x) 2 2
x and x) and x’)

Mij . Myt B Mgl < Mij(a) (£0)

(due to any P (due to same P (due to symm, (due to antisymm,

Ak panel at panel set of 1D at set of 1D af x
point x°) point x) 2 2

x and x) and x')

Then, by the method of superposition,

bl
Simul. L. L. Mj; = ZMij + F¢ Mjj (due to the panel load producing max. Njj)
b

(61)
where b to b’ and F carry the same significances as defined with Eqs. 56 and 57.
And by Eq. 23,
. ; | 50
Simul. Impact Mij = Simul. L. L. Mij m (62)

Hence,

Simul. Total Mjj; = D. L. Mjj + Simul. L. L. Mj (1 + %) (63)
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Simultaneous transverse shears for any member IJ may be obtained from simultaneous
end moments, by Eq. 4, as

Simul. Total Mjj + Simul. Total Mjj

Simul. Ql] - Li] (64)

Maximum End Moments and Simultaneous Shears

Maximum end moments represent the state in which the resisting moment at either
end of a member reaches its possible maximum by loading certain panel points plus a
concentration, all producing moments of the same sign. This state has its own simul-
taneous axial stresses and transverse shears. One of the two maximum end moments
of each member will produce maximum secondary stresses.

Maximum live-load end moments Mjj and M;j of any member 1J may be obtained

from

Pos.
or M; ) Fo
Neg.

Pos.
x OF Mji) Fe

Neg.

(65)

in which the summations are to cover all positive or all negative Mjj, whichever gives
the larger maximum live-load Mjj. Mjj is treated in the same manner. F¢ and b to b’

are as defined before.
Then, maximum total end moments M;jj or Mjj of any member IJ is given by

Max. Total Mjj or Mji = D. L. Mjj or Mjj +

50
Max. L. L. Mj; or Mj; (1 ok ‘+—125) (66)

Simultaneous transverse shear in member IJ under this state is given by

Max. Total Mjj or Mjj + Simul. Total Mjj or Mj;

Lij

Qjj =

Governing Maximum Design Stress State

Under usual conditions, especially when the truss members are slender and light,
the state under maximum axial-stress loadings will govern the design. But if the mem-
bers are extremely short and heavy and the joints are enormously rigid, the state under
maximum end-moment loadings may require a larger section. To be absolutely sure, -
both states of stress should be analyzed and compared by the sections required.

Summary of End Moments, Shears, and Unit Fiber Stresses

A summary of end moments, shears, and unit fiber stresses is given in Table 14
for all members of the three-span continuous highway bridge truss. Values are tabu-




TABLE 14
SUMMARY OF MAXIMUM STRESS STATES

Maximum Axial-Stress Loading Maximum End-Moment Loading
M
% Max. Max. Max. A Max.
R e M. Axal 2 Fiber  Shear M. Bend. 5Y Fiper Shear
(kips-in.) Stress (ksi) Stress  (kips) (kips-in.) Stress (ksi) Stress  (kips)
(ksi) (ksi) (ksi) St (ksi)
Lower
chord:
ab a -37.88 -37.99
b -68. 80 9.28 1,61 10.89 -0.394 -69.20 1.62 8.86 10.48 -0.396
be b 61.10 9.28 1.43 10.71  0.240 64.70 1.51 .16 8.67 0.298
e 3.70 16.10
cd © -9.63 -19.53
d -82.87 11.00 1.94 13.03 -0.343 -85.17 1.99 10,32 12.31 -0.398
de d 91.60 11.04 2.14 13.18 0,553 92.40 2.16 10.32 12.48 0.553
e 57.71 56. 80
ef (3 6.83 -7.31  -0.186 -7.47  0.001 -14.91
5 -6.47 -44.43 -1,04 -3.16 -4.20 -0.220
fg f 21.79 52.91
® 103.58 -7.31  -2.42 -9.73  0.465 135, 00 -3,15 -5.18 -8.33 0.697
gh 4 -103.22 -5.86 -2.41 -8.27 -0.477 -136.20 -3.18 -4.06 -7.24 -0.715
h -25.173 -56.90
hi h 7.85 -5.86 -0.18 -7.74  0.009 48.41 -1.13  -2.49 -3.62 0.249
i -5.47 18. 82
ij i -65.26 -67.92
| -105.75 12.10 2.47 14.57 -0.635 -106.09 2.48 11.13 13.61 -0,.645
jk ] 100. 89 12.06 2.36 14.42  0.551 101. 86 2.38 11.39 13.71 0.392
k 47,86 48.97
Upper
chord:
BC B -23.98 -23.98
c -84.34 -8.82 -1.01 -9.83 -0.401 -84.34 -1,01 -8.82 -9.83 -0.401
CD C -12.57 -8.82 -0.25 -9.07 -0.120 83. 86 -1,00 -8.10 -9.10 0.296
n -1Q 75 -3 aR =
DE D 43.10 -4,19  -0.51 -4.19 0,032 59,21 -0.71  -3.21 -3.92 0.181
E -34.39 -10.27
EF E 53.71 54,93
¥ 47.26 -4.19 -0.95 -5.14 0,374 50, 49 -1,02 -3.50 -4.52 0.389
FG F 33.82 44.46
G 147.04 13.04 1.76 14.80  0.669 150. 06 1,80 12.88 14.68 0.720
GH G -149.31 13,04 1.78 14.82 -0.738 -151.45 1.81 12.84 14.65 -0.768
H -49.98 -56.17
HI H -52.36 -4.83 -1.05 -5.88 -0.392 -59.96 -1.21  -3.71 -4.92 -0.416
1 -53.51 -52.46
1J I 32.84 10. 66
J -59,90 -4.83 -0.72 -5.55 -0.100 -76.06 -0.91  -3.47 -4.38 -0.242
JK J 51.179 -9.98 -0.62 -10.60 0.153 54. 49 -0.65 -9.26 -9.91 0.175
K -10.35 -7.33
Vert.:
Bb B 5.06 12.60
b 6.97 8.31 0.76 9.07 0.045 14,16 1,54 3.63 5.17 0.099
Ce C 0.96 6.61
" N 9R -0 5h1 -0.13 -0 B8R 0. o007 f 02 -0.95 -0 51 -1 468 0 n4a
Dd D -7.71 12.88
d -8.16 8.317 0.89 9.26 -0.054 13.63 1.48 5.14 6.62 -0.090
Ee E -15.68 -0.45 -1.41 -1.86 -0.095 -26.53 -2.39 -0.45 -2.84 -0.163
e -13,51 -23.89
Ff P -12.57 -18,12
I -14.89 8,32 1.62 9.94 -0.088 -20,05 2.18 3.79 5.97 -0.118
Gg G 119 -0.33 -0.11 -0, 44 0.007 5.72 -0.52 0.33 -0.85 0.034
B 1.09 5.61
Hh H 12.86 17.60
h 14,25 8.41 1.55 9.96 0.079 19, 53 2,12 5.16 7.28 0.109
Ii 1 14.59 -0.49 -1.31 -1.80 0.079 24.69 -2.22 -0.49 -2.71 0.136
i 12.56 22,22 -
Jj J 3.82 4.53
1 4,170 8,33 0,51 8.84 0,024 5,57 0.861 756 T 17 0,029
Kk K 0.00 -0. 47 0.00 -0.47 0,000 0.54 -0.05 -0.47 -0.52 0,003
. k 0.00 0.51
Diag.:
aB ) ~42, 55 -9.47 -0.86 -10.33 -0.143 -42.55 -0.86 -9.47 -10.33 -0.143
B -11.99 -11.99
Be B 8.68 8.43 0.38 8.81  0.014 9.54 0.42 7.73 8.15 0.029
© -3.53 1.71
cD [ 3.87 0.47
n -10.22 6.61 0.45 7.06 -0.016 -12.42 0.55 3.69 4.24 -0.028
De D -1.00 -6.83
e -24,26 -10,02 -0.57 -10,59 -0.063 -27.04 -0.63 -9.04 -9.67 -0.085
eF [ -22.48 -20.34
F -23.93 12.65 0.50 13.15 -0.110 -28.59 0.60 11.66 12.26 -0.116
Fg F -42.85 -42.21
4 43,03 -10.29 -0.66 -10.95 0.0004 54. 52 -0.84 -8.55 -9.39 0.029
gH B -41,07 -39.34
H 53.18 -10.46 -0.64 -11.10 0,028 60,35 -0.72 -10.28 -11.00 0.046
Hi H 29.06 13.44 0,61 14.05 0.115 32.60 0,68 12.82 13,50 0.134
i 21,42 25. 80
iJ i 26, 64 -8.78 -0.56 -9.34 0,051 29.25 -0.61 -8.25 -8.86 0.051
J -4,26 -6.176
Jk J 20. 86 5.46 0.49 5.95 0.043 26.26 0.61 2.19 2.80 0.059
k -1.92 -0.10
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TABLE 15 lated for two maximum-stress states: (a)
MAXIMUM BENDING STRESSES IN STRUT under maximum axial-stress loading—
VERTICALS maximum axial stress and simultaneous
N S bending stress, and (b) under maximum
Member End Axial-Stress  End-Moment end-moment loading—maximum bending
Loading? Loadingb stress and simultaneous axial stress.
Simultaneous shears are given for each
Ce < 25.5 g stress state. Average and maximum shear-
Be }CE gl 13;_7 ing stresses may be obtained by established
Gg G 33.3 93.2 methods.
Ii I 267 49.7
Kk lI{( 0 10.6 Discussion of Results
In Table 14 are underlined the larger
®Bending stress in percent of maximum axial of the maximum fiber stresses which should
;Z;iiim fiber stress (%) over that due to mexi- pévexiy the demign of the J9 members in-ane-
mun, axtal-shress loading. half of the truss under each of the maximum
CHighest. stress loadings. Although for two mem-

bers, both maximum stress states produce

identical maximum fiber stresses, the

maximum axial-stress loading (or state)
produces the larger maximum fiber stress in 31 members, and there are as many as
six members whose maximum fiber stresses are governed by the maximum end-moment
loading (or state) conditions.

The hypothesis previously advanced that the governing state is that of maximum bend-
ing stress (maximum secondary stress) and simultaneous axial stress and shearing
stress is fully substantiated. In the three-span continuous truss under analysis, the
following observations are pertinent:

1. Highest bending stresses (secondary stresses) occur in strut verticals Ce, Ee,
Gg, Ii, and Kk (Table 15). In all these strut verticals, maximum end-moment loadings
govern. The extraordinarily high bending stresses in these strut verticals would be
very serious if these members were not governed by minimum size or slenderness ratio
requirements.

2. Bending stresses in hangers increase toward the intermediate supports and reach
a maximum of 19, 5 percent in Ff of their maximum axial stresses. Maximum axial-
stress loadings invariably govern. Bending stresses in these members are generally
lower than those in strut verticals.

3. Among compression diagonals, the end posts aB and a’B’ have the higher bending
stresses which, however, amount to only 9.1 percent of their maximum axial stresses.
Both maximum axial-stress and end-moment loadings produce identical results.

4. Among tension diagonals, those nearest the center of the middle span have the
higher bending stresses which amount to only 9.0 percent of their maximum axial
stresses under loadings for these stresses.

5. Among upper chords, the end upper-chord members BC and B‘C’ have the higher
bending stresses at their inner ends, which amount to 11.5 percent of their maximum
axial stresses. Both maximum axial-stress and maximum end-moment loadings pro-
duce the same results. The next upper-chord members, CD and C'D’, are governed
by the maximum end-moment loadings, but their maximum fiber stresses under these
loadings are only 0.3 percent over those produced by the maximum axial-stress loadings.

6. Among the lower chords in this continuous truss, those in compression adjacent
to the intermediate supports have medium-high bending stresses, i.e., 33.1 percent in
fg and f’g’, and 41.1 percent in gh and g’h’ where g and g’ are intermediate supports.
Both members are governed by the maximum axial-stress loadings.

7. These stress observations apply only to vertical loadings of the continuous truss
under analysis. Bending stresses would be increased when both chord members are
analyzed to transmit wind loads (centrifugal forces) resisted by upper and lower lateral
systems or when verticals and end posts are analyzed to transmit sway portal action
due to lateral loads.
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It is thus clear that in the design of any important structure, in any critical design,
or in any important investigation, bending (or secondary) stresses in rigidly connected
trusses should never be taken as negligible, nor should maximum axial stress plus
simultaneous bending stress be assumed as adequate to dictate a safe design.

AUTOMATIC LOGICAL CHECKS

The development up to this point has been in proper logical sequence which allows
an automatic computation program to be written from a few basic parameters (span
lengths, panel lengths, truss heights, roadway width, median-divider width, sidewalk
width, live load, impact-fraction formula, modulus of elasticity, and Poisson's ratio) for
maximum design axial stresses and simultaneous end moments, or maximum end mo-
ments and simultaneous axial stresses, with simultaneous transverse shears,

Individual programs must be written for each particular electronic digital computer
in its most efficient machine language and must be adapted by the individual engineer
and programmer to their own machine. To include any specific program would be ex-
traneous to this basic investigation and would detract from its importance.

However, for the sake of helping those who are going to apply the proposed method
and associated techniques, some intermediate, sub-final, and final automatic logical
checks are given. To provide more general applicability, an indeterminate highway
bridge truss of the continuous type will be assumed as the hypothetical analysis to be
programmed.

As is inherent in any indeterminate structural analysis, the terms and coefficients
involve very small linear and angular displacements and their arithmetic operations.
The solution involves rather large sets of simultaneous equations. Unless more sig-
nificant figures are retained in the initial and intermediate stages, the final answers
may not have a three-figure accuracy. For instance, the subtraction of two eight-digit
figures differing by the last three digits would become zero if only five digits were kept,
and the solution of a large set of simultaneous equations would generate large rounding-
off errors. For this reason, it is not only desirable, but even imperative, to use as
many digits as the available computer can accommodate.

Logical Checks

Intermediate, sub-final, and final answers should be strategically checked by logical
criteria, either mathematical, statical, or according to conservation of energy. At
any stage of the machine computation, logical checks can be devised and incorporated
into ithe program; typing oul ithe checking indication may be programmed. In any plane
truss, for instance:

1. Computation of lengths of inclined members may be carried out by any process
but the results must conform to the Pythagorean rule:

a® + v = (68)

2. Reactions may be determined by any determinate or indeterminate methods, as
the case may be, but they must satisfy statical requirements:

)
0 (69)

where X and Y include, respectively, all horizontal and vertical components of all
applied loads and reactions if the entire truss is considered, or of all applied loads
and reactions on one side of a section and all stresses on the same side of the same
section if such a section is under consideration,

X
XY
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3. Moments may be determined in any way that is expedient, but
IM = 0 (70)

must hold when moments are taken about any joint, or about any point through any
section,
4. To test for correct internal strain energy, its total must be a minimum, that is

3U
X - 0 (1)
A change from negative to positive implies that nature does not do any foolish work or
any more than the minimum or least work.

5. In axial-stress computation with parallel chords at least in center panels, unless
the center vertical is a hanger in a pony or through truss or a strut in a deck truss, its
live-load axial stress (corresponding to primary stress) must be zero, or

Noo = 0 (72)

where O and o are, respectively, upper and lower center joints.

6. For end joint equilibrium, under the present lane loading with shear concentration
much larger than moment concentration, the compressive stress in the end-post is
governed by shear, and hence, the maximum stress in the end segment of the lower
chord in a through truss will not be governed by maximum moment, but by

L
Max. Ngp = -Max. Nap L—z% (73)

where a and B, respectively, denote end and hip joints, and b the lower joint of the
first hanger.

7. At all T-shape joints, e.g., j or J, chord stresses (corresponding to primary
stresses) are always equal, i.e.,

Nij = Njk
or (74)
Nig = Ny

8. With the simplified energy method, all axial stresses, N, should check with the
primary stresses, S, by the conventional method, i.e.,

Njj = 8§

(75)
where ij denotes any member.

9. With the exact energy method, the resulting exact N's are in equilibrium under
the principle of extended methods of moments, shears, and joints, i.e., when all com-
ponents of N, M, Q are considered, or

FN, M, Q = 0 (76)

10. With the simplified energy method, all bending stresses, f, should check with
the secondary stresses, s, by any of the classical methods, i.e.,
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fi:

ij = Sy
M } (77)
i

11. With the energy method, either exact or simplified, all bending stresses, f,
should satisfy Eq. 72, a criterion for minimum internal strain energy, or least work
of deformation, in conformity with which nature works.

12. 1In the method of panel-load superposition, when the panel load is replaced by
unity, the summation of reactions, R, should give

ZR = 1 (78)

13. With any method of inversion for solving any set of nonhomogeneous linear
equations, unless the matrix is singular, i.e.,

lajj| = O,

i) (i) = U (79)

In European usage, U is denoted as E or 1.
14. An overall check of all independent, i, and dependent, d, unknown end moments,
Mi and My, is given by

IM; = -IMy (80)

15. In general, maximum design N, M, Q for all members meeting at a joint or
acting through a section give the inequalities:

X 0
IY| £]0 (81)
ZM 0

No attempt should ever be made to check the results in this manner.

OH}r,\v Iagcinal ahanlr svitarnia mavw ha addad aoaa guooag
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ular problem.

CONCLUSIONS

The entire investigation stands for its full justification on the ground that:

1. Engineers have been aware of the "illogical (loath to use the word 'wrong') as-
sumption' in analyzing "'rigidly connected trusses' as ''frictionlessly pin-connected"
for 85 years; why then should the status quo be indefinitely continued by any progres-
sive engineer except the ignorant?

2. Nature has never made the artificial distinction between "primary stresses' and
"secondary stresses' as the prevalent engineering parlance has labeled them; they
exist by their very nature as axial stresses, bending stresses, and shearing stresses;
why then should this misnomer not be dispelled?

3. With the larger versions of modern electronic computers, rigidly connected
trusses can be analyzed as a chain of rigid frames in its true nature by the proposed
method and associated techniques in not over a few minutes difference in time as com-
pared with the conventional methods; why then should engineers continue to use nine-
teenth~century methods?
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Suffice it to state only a few without exhausting the enumeration.
On the ground as firm as this, the investigators have proceeded:

1. To expound a new exact matrix-energy method for analyzing all stresses in
rigidly connected trusses (exact, for the method is compatible with the nature-behavior
of any physical system), this being the rational approach for refined analysis required
in critical designs or investigations;

2. To synthesize the elegance and efficacy of matrix algebra founded by Authur
Cayley with the necessary compatible condition of minimum strain energy in elastic
structures propounded by Alberto Castigliano, their technological union constituting
the most powerful tool in structural analysis, especially in this electronic age and when
the coefficient matrix is symmetrical as proved in Appendix A;

3. To deduce a simplified matrix-energy method for analyzing all stresses in rigidly
connected trusses to minimize time and effort for ordinary engineering purposes;

4. To set forth the extended methods of moments, shears, and joints, so that strain-
energy expressions of the truss members will be compatible with the exact matrix-
energy method expounded;

5. To demonstrate the truth in the validity and thoroughness of the exact matrix-
energy method in the case of a determinate truss by comparing results with previous
authorities;

6. To reveal the closeness and dependability of the simplified matrix-energy method,
again in the case of a determinate truss, by comparing results with previous authorities;

7. To advance the method of panel-load superposition for continuous trusses in lieu
of the classical influence-line method of Miller-Breslau, this method being especially
adapted to longer span bridges where lane loading plus concentrations govern as a rule;

8. To resort to the method of substitution of an unsymmetrical loading by a set of
symmetrical loading and a conjugate set of antisymmetrical loading, as a powerful
analytical tool to reduce 2n unknowns to n unknowns, which is indispensable in using
the smaller versions of computers;

9. To introduce further a method of transformation from one type of many more un-
knowns to another type of many fewer unknowns, which enables the solution of a still
larger set of equations in a much smaller computer as demonstrated in Appendix B;

10. To elucidate the problem of solving very large sets of simultaneous equations,
with reference also to four matrix methods developed by the principal investigator;

11, To apply the proposed simplified matrix-energy method and relevant techniques
set forth above to the analysis of a three-span continuous highway bridge truss with
inclined upper chords, and to demonstrate the validity and accuracy of the results vs
those of the Montana State Highway Commission;

12. Topronounce that the methods advanced make it possible and expedient to deter-
mine two maximum stresses states: (a) maximum axial stress plus the larger simultaneous
bending stress and simultaneous transverse shear, and (b) the larger of the maximum bend-
ing stress plus simultaneous axial stress and simultaneous transverse shear;

13. To indicate that either of these two stress states has the same frequency of
occurrence, and that either has the likelihood to dictate the larger requirement for the
section of a member; hence,

14. To conclude that either of these two stress states may govern the design, and
thatboth should be computed in cases of important critical designs and investigations; and

15. To establish automatic logical checks for programmed electronic computation
throughout its initial, intermediate, sub-final, and final stages.
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W ™

INDEPENDENT PROOF FOR SYMMETRY OF COEFFICIENT MATRIX

Ry generalizing the n unknowns in the matrix-energy method as the column vector

{Xjl, it is seen, from the extended methods of moments, shears, and joints for deter-
mining the ax1a1 stress in each member of the truss, that the ax1a1 stress Njj of any
member IJ is represented by

where qj is the coefficient of the unknown Xj, and Sjj corresponds to the conventional
primary stress in member 1J.

Knowing the expression of Nij’ we conclude, from Eqs. b and 6, that the expression
of the total strain energy, U, of a given loaded truss is an algebraic expression
of the second degree in {Xj}. After collecting like terms in the expression of U, the
total strain energy becomes

U = ECiiXﬁ + Ecinin + ECiXi + p (83)

where cjj is the coefficient of Xv Cij is the coefficient of XjXj, cj is the coefficient of
Xj, p is the constant term, and i £ j.



221

By Castigliano's second theorem, we have

2 U .

g)-z‘i = 0 = 2011X1 + C1]X] + Z Cika + Cj (84)
and

3y . 0 = 2¢::X: + ¢;:X; + DepiXk + C; (85)

2%~ T i 1j kjok i

where cik, Cjj» Ckjs and cj are, respectively, the coefficients of XXy, X?, XgX;, and
Xj in the expression of U; and i £ k £ j. Therefore, if ajj is the coefficient XJ- in the

equation obtained from 5-}% = 0, and ajj is the coefficient of Xj in the equation obtained
i
from % = 0, Egs. 84 and 85 yield

ajj = ajj = Cjj (86)

Eq. 86 implies that if the equation obtained from -2—)% = 0is arrayed in the ith row
1
of the set of simultaneous equations, the coefficient matrix [aij] is always symmetrical
about its main diagonal.

Appendix B
DEMONSTRATION OF IDENTICAL RESULTS

The purpose of this demonstration is to show that (a) the simplified matrix-energy
method yields identical results as (b) the simplified Manderla's method, (c) the com-
pletely transformed energy method, and (d) the partially transformed energy method.

For the sake of mere demonstration, a very simple rigidly connected truss has been
chosen as shown in Figure 14 with all dimensions and section properties indicated.

The problem is to determine the unknown end moments in all truss members by these

four methods and compare their results.

50"

All A=1 in®
— 50" 4
i r All 1= 10 in

r 2 hr

5“T 6° Tik
[« 2@L40"= 80" o
| =

Figure 1k,
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Solution by Simplified Matrix-Energy Method

1. Choice of Independent Unknowns—The three statically independent unknowns are
(Miz Ma M| = |X X X

2. Determination of Axial Stresses —Axial stresses are determined by using the
extended methods of moments, shears, and joints. Thus, for Nis, taking the free body
diagram to the left of member 2-3, by ZMa = 0, we have

[(Ne X2 X, 3] (30 1 1 40) =0

from which
Niz = 0.03 (X2 + X3) + 4
Similarly,
Nis = -0.015X; - 0.0416X; - 0.026X; - 5
and

Nps = 0.05(X; + Xz2) + 6

3. Tabulation of Constants for Strain-Energy Expressions:

Member L/A L/16
1-2 40 0.6
1.3 50 0,83
2-3 30 0.5

4, Formulation of Strain Energy:

i by e, L (e " 2.
BU = 2 3k N i\ - Mg My - M

Specific equations are given in Table 16.

5. Simultaneous Equations and Their Solution—Three simultaneous equations will
be formed by taking partial derivatives of one-half the strain energy in the truss with
respect to each independent unknown as stated in the simplified matrix-energy method.
For example,

E2L - 0 = 0.602X:, - X;) + 50(-0.015) (-5) +
X,

D[ =t

0.832X, + Xs) + %(30) (0. 05) (6)
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TABLE 16
Member E Times Strain Energy
1 2
12 40 [0.03% + %) + 4+ 0.6 - XX, + XP)
2
1-3 %(50) (£0.015X, - 0.0416X, - 0.026X; - 5] + 0.83(X} + X,Xs + X3)
2
23 730) Poset + %) + &+ o0

Use only one-half of the strain energy in this member by virtue of symmetry.

After taking similar derivatives with respect to X; and Xj;, the following matrix
equations result:

3 -0.6 0.83|[ X, 8.25
-0.6 1.3 0 Xa2| = -120.25
0.83 0 1.6 X 12

Being non-singular, the matrix has the solution:

(X, X, Xs) = -[5.5 17.9375 4.45]

Solution by Simplified Manderla's Method

1. Unknowns—The same unknown moment vector LX1 Xz XgJ used in the energy
method will be found here. Since these unknowns may be expressed in terms of tangent
rotations, they result in one unknown reference r vector |7, 7,, 7 at joints 1, 2,

and 3. Using rand Ax as defined for the method of transformation, t:ille Ag's may be

evaluated by the usual angle change formula. Thus,

E Aoy, = L(fa . fb) (fa - fC)J {coty cot 8)

where £ is the unit stress and Loc B y_] and [_a b c| are as defined in Figure 15.
Tabulation of Unit Stresses:

Member  N/A (ksi)

.~

3-1
2-1

3
J

DD =
)
W W
(o200 “ S, |
OO O

3. Expressing All r's in Terms of
Reference r's—In joint 1, the reference
T is T g Then,

Figure 15.
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E A, = [(6+5 (6-4) {% o}: 8.25

Therefore, at joint 1,

le ET

=
]

Tia Er, + 8.25

Applying the angle change formula, we have then:

At joint At joint

2 8

Tore  Tan 20,29 -12
E T,s Tap | = 0 0

T T -20. 25 12

21 31

4. Formulation of Equations and Evaluation of Unknown End Moments —The unknown
end moments may be expressed as a function of r's; thus,

ZEI]'_J'
Xk = Mij S Ll] (21-1]' + TJJ

By joint equilibrium, at joint 1,
ZMI] = 0 = M}z + M13

where j represents far end joints. On substituting Mj; in terms of r's, we get

2(10 2(10
—(40—) (ZEnz - 20.25) s —(50—) [2(E1-12 ¥ 8.25) - 12:] -0

from which
Er, = 4.625
All the unknown end moments may now be found by back substitution, resulting in:

X 5.5
Xao| = -|17.9375
X3 4.45
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These results are identical with those of the energy method.

It should be noted that due to inherent simplicity, no simultaneous equations need be
solved here in using Manderla's method. An unsymmetrical truss under any loading
will result in a set of n equations in n unknowns, where n equals the number of joints
in the truss.

Solution by Method of Complete Transformation

In this method, the unknown end moments will be written in terms of 7. There re-
sult, in this particular case, three equations involving one unknown r,. Any one of
these equations will yield the correct value of ETlZ'

1. End Moments as Functions of 7:

%] [ M) ;11% (2(Er,) - 20.25]
X|=| M |[= 2 % [2(-20.25) + Er,;)

10
% | | Mo 5 2(-12) + (Er, +8.25)

2. Transformation of Energy Equations—Making use of these equations, the set of
simultaneous equations of the matrix-energy method may be transformed into a new
set as functions of the mono-unknown Er ,:

Xj

1]
3 -0.6 0.83 Er, - 10.125 8.25
-0.6 1.3 0 0.5 Er,, - 20.25 | = -[20.25
0. 83 0 1.6 0.4 Er, - 6.3 12

The solution of any one of these equations yields Er, = 4.625. Back substitution into
the column vector Xj yields:

X % XJ= -15.5 17.9375 4.45)

which are identical with the results of the simplified energy method and the simplified
Manderla's method.

There is no advantage in using the completely transformed energy method since,
after the end moments have been expressed in terms of the reference r's, it is much
easier to obtain relations between the end moments by using joiut equilibrium equations
than by using the simplified energy method.

Solution by Method of Partial Transformation

This method becomes useful in case it is necessary to reduce the number of simul-
taneous equations by a small number so that an existing program may be used.

The number of unknowns that will be reduced by substituting for part of Xj's depends
on the configuration of the truss and the end moments chosen as unknowns. In the
present simple case, X, and X; will be transformed resulting in two simultaneous
equations with Er, and X; as unknowns, thus
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Xj
"
3 -0.6 0.83 Er, - 10.125 8.25
Xa = -
-0.6 1.3 0 0.4 Er, - 6.3 20.25
which by simplification becomes:
10 -2 || Eryp 82.125
-2 4 Xa -81

whose solution gives
|Er, Xs| = |4.625 -17.9373|
By back substitution into the Xj vector, the complete solution becomes
X, X X = -|5.5 179375 4.45

which is identical with all preceding solutions.

Conclusions

This demonstration has conclusively shown that the simplified energy method yields
results identical with the simplified Manderla's method which is the forerunner of the
modern slope-deflection method. Thus, the simplified energy method has the same
accuracy as the classical methods in the determination of secondary stresses, but it
has dispensed with the unjustified assumption of analyzing rigidly connected trusses as
ideally pin jointed in the determination of primary stresses, especially if its exact
counterpart is applied.

It has also been demonstrated that the completely transformed and the partially
transformed energy methods are equally valid, and each has its particular usefulness
in reducing more or less unknowns to enable solution of a larger set of equations by a
smaller computer,





