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A discussion is given of the problem of control of an over
saturated system comprising an expressway, a highway, and 
an exit ramp leading from the expressway to the highway. A 
traffic light is assumed to control the intersection of the exit 
ramp and the exit highway. When this intersection becomes 
oversaturated, the queue along the ramp may spill back into the 
expressway causing a reduction of its throughput. Any improve
ment in the service rate of the exit ramp can be effected at the 
expense of causing some additional delay to the traffic on the 
exit highway. The operation of the traffic light serving the 
intersection of ramp and highway is determined, which mini
mizes the delay of the vehicles served by the entire system. 

•ONE very common feature of congestion is the progressive deterioration of various 
sections of a roadway system due to the "spillback" from one section to its neighbors. 
Spillback is the r esult of queueing at certain points coupled with the troublesome fact 
that automobiles have nonzero length, and s ometimes appreciably so. Given this 
reality, spillback could only be avoided by providing ample parking space for the 
queueing vehicles. In practice, such parking space is limited or even nonexistent. 
The question arises whether or not judicious management of the inevitable queues 
might decrease the aggregate delay to the users of the entire system. 

In two previous papers (1, 2), examples were given of oversaturated systems in 
which the aggregate delay couTu be reduced by an appropriate allocation of the green 
time of the intersection signals throughout the period of oversaturation. The previous 
theory (1, 2) is used here for the treatment of the problem of optimization of an over
saturated system involving an expressway, 1, an exit ramp, 2, and the exit highway, 3 
(Fig. 1 ). The intersection of 2 aud 3 is controlled by a traffic light, 4, as in the case 
of an observed real situation. It is assumed that this intersection is oversaturated 
during a rush period. A queue may then build along the exit ramp, 2. When the length 
of this queue exceeds the storage capacity of the ramp, it spills back into the express
way. The spillback ties up at least one lane of this expressway. In practice, it ties 
up probably more than one lane, because drivers desiring to use the exit ramp may 
drive for a while along the lane next to the right lane and then slow down and try to find 
an opening into the queue. At the same time, some through traffic is invariably trapped 
in the right lane and fights its way out, very likely reducing the efficiency of the 
neighboring lane in this process. In any event, a substantial reduction of the throughput 
of the expressway is caused which frequently results in queueing along this expressway. 

In what follows, this spillback problem is treated as one of optimization of an over
saturated system involving three traffic streams along 1, 2, and 3. The control pa
rameter is the split of the green of the traffic light, 4, the operation of which is to be 
optimized during the rush period. 

Paper sponsored by Committee on Vehicle Characteristics and presented at the 44th 
Annual Meeting. 

39 



40 

- ---- - ® ---- -- ~ -

I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
0: 

I 

I l : I I 
I I 

Figure 1. Configuration of the system 
comprising an expressway, 1, an exit ramp, 
2, and an exit highway, 3; t he intersection 
of ramp a nd highway is con trolled by a 

traffic light, 4. 
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Figure 2. Optimum control of the system 
when spillback can be avoided altogether. 

SOLUTION OF THE OPTIMIZATION PROBLEM 

The cumulative demand curves Qi, Q2, and Qa, of the streams 1, 2, and 3 are shown 
in Figure 2. The maximum and minimum service rates for streams 2 and 3 are de
termined from the operation of the traffic light 4. Thus, n, y3 correspond to allocation 
of maximum green to stream 2, whereas Y2, r3 correspond to maximum green for 
stream 3. The light cycle is, for the moment, assumed constant. Also shown are 
two service rates for stream 1, n and Yi. The former is obtainable when the express
way is unobstructed, and the latter is the reduced expressway throughput in case of 
spillback. It is assumed that Qi can be adequately served by the normal service rate 
n. 

More often than not the saturation flows s2 and sa are such that 

S2 < 83 ( 1) 

According to the theory ( 1), the optimum operation of light 4 alone would be a two-stage 
operation involving the service curves Oa EF and 02 ef, with the highway stream 3 
receiving preferential treatment. However, in the present case one must take into 
account that the intersection 4 is not isolated, and a large enough size of the queue of 
stream 2 will cause additional delays on the expressway. Let us draw the curve 

(2) 

where Q; is the maximum acceptable queue which does not cause spillback. Let the 
curve Q2 intersect the service curve 02 ef at points g and h. This means that if one 
accepts the service curve 02 ef for stream 2, he will cause spillback during the time 
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tg::; t::; th· The result will be a delay for stream 1 proportional to the area between Qi 
and the service curve RST, which will be denoted by A1 . 

Assuming now that we operate the light 4 so that the queue along 2 remains smaller 
than or equal to Q! at all times, any such service curve of stream 2 must be between 
the curves Q2 and 02ktmnf. The portions kt and mn of the latter curve are tangent 
to the curve Q2 and correspond to service rates r2 and Y2, respectively. The curve 
02ktmnf corresponds to the minimum possible service rate of the stream 2 which 
prevents spillback, with full utilization of the green light in both directions 2 and 3. 
The complementary service curve of stream 3 is 03KLMNF. Choosing these two 
service curves rather than the curves Q3EF and 02ef involves an increase of the 
aggregate delay at intersection 4 equal to the difference between the areas A2 and A3 
which are contained between the pairs of curves (KEN, KLMN) and (ken, ktmn), re
spectively. It may be seen that any trade-off of delay between streams 2 and 3 involves 
quantities proportional to the saturation flows s2 and S3. This is so because the trade
off is accomplished by taking green time from stream 3 and giving it to stream 2. The 
utilization rate of this green time is then reduced from SJ to s2 cars per second of 
green. Accordingly, the ratio Az/ AJ is given by 

(3) 

The total change in the aggregate delay of all three stream::: is given by 

(4) 

or, in view of Eq. 3, 

o = A1 + A2 ( 1 - : : ) ( 5) 

A net reduction of delay results if o is positive. In this case it pays to adopt the 
strategy of keeping the queue along the ramp below the critical value Qt. If o is 
negative, U1en spillback is not as damaging as it appears, at least in terms of total 
delay, which is minimized by an optimum operation of the traffic light 4, assumed 
isolated (1 ) . However, it may still be desirable to prevent congestion on the express
way for safety reasons which may override delay considerations. If this is the case, 
one may accept a small negative delay trade-off, o. 

Assuming that the delay criterion is the dominant one, we find that a critical con
stant rate, qr, of demand along the expressway exists, which is related to A-2 -
according to a relationship obtained by setting o in Eq. 5 equal to zero. Thus, 

where the left-hand side of Eq. 6 is equal to Ar, and 

Solving Eq. 6 for qr, 

If the demand rate is smaller than qr, then spillback is the lesser of two evils, 
since it corresponds to minimum total delay. 

(6) 

(7) 

(8) 

By similar arguments we may investigate the possibility of allowing spillback during 
a portion of the interval (th - lg). If the rate of demand along the expressway falls 
sufficiently below n it may be profitable t o adopl a str ategy such as that couesponding 
to the dashed line r/J in the middle diagram of Figure 2, and the complementary service 
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Fi gure 3, Optimum control of the system 
when spill bac k is unavoidabl e f or at least 
a shor t period between the ons e t of o v~r -

saturation and the time T2 • 

curves for streams 1 and 3 (the last one 
not shown in Fig. 2). This policy will 
introduce some additional delay to the 
stream 2, and because of spillback it will 
also delay s ome vehicles in the stream 1. 
It will reduce somewhat the average delay 
t o stream 3. The net change can be com
puted by an expression similar to Eq. 5, 
if the exact shapes of Q2 and Qi are known. 
Finally, if the demand rate along the ex
pressway falls below Y1, it is always 
profitable to allow spillback. 

So far, we have discussed only the case 
when it is possible to prevent spillback 
during the entire rush period, if so de
sired. This is not the case if the tangent 
to the curve Q2 with slope equal to r2 
intersects the abscissa axis to the left 
of 02, as shown in Figure 3. In this case 
spillback is inevitable, due to a very fast 
rise in demand along the exit ramp. The 
best one can do is maintain maximum 
service for the stream 2 Wltil the spillback 
is eliminated at time T2. This alternative 
is to be compare d with that corresponding 
to the service curves Q3EF, 02ef, and 
01 RST. The net change in total delay, o, 
is again given by Eq. 5, where A1 and A2 
now denote the total delay to streams 1 
and 2 minus the inevitable one shown by 
the shaded areas of Figure 3. If o is 
positive, then spillback should be prevented 
after T2. 

The preceding discussion has certain 
similarities with the examples of Refer

ences 1 and 2 and ce rtain differences. As in those examples, the solution given is 
a determinisfic one depending on the demand during the entire rush hour rather than 
the instantaneous sizes of the queues. Also, the need for anticipating the critical 
behavior of queues, on the basis of available data regarding recurrent demands, is 
shown in Figures 2 and 3. Thus, if spillback is to be avoided, one must s ometimes act 
before the queue along the exit ramp attains the critical size Q! . Thus, the optimum 
strategy calls for maximu m service of this queue starting at tk ( Fig. 2) and at 0, i. e . , 
the onset of oversaturation (Fig. 3 ). 

One special feature of the present problem is that the size of the queue along the 
exit ramp affects the service rate of the expressway 1. This was not the case in the 
problems of References 1 and 2 where it was pointed out that the asymptotic behavior 
of the demand curves, ne-ar the- end of the rush period, might be sufficient for deter
mining the optimum operation of the traffic lights. In the present problem, however, 
the exact shape of Q2 (t) is needed. Moreover, the solution is more sensitive to fluc
tuations of demand along 2. In any case, the discussion given can be used as a guide 
for designing an adaptive control system which takes into account fluctuations of demand. 
For example, if spillback is to be avoided, the system must keep the size of queue 
along 2 below the critical size Q! at all times. 

VALUE OF PARKING SPACE 

Let us try to get a gross estimate of the value of an increase of the parking space 
along the exit ramp , or equivalently of the critical queue size Qt An increase of Qf 
by one car permits a reduction of the area A2 (Fig. 2) by 
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(9) 

Assuming that spillback is to be avoided, the increase in Qt will result in total reduc
tion of delay for streams 2 and 3 equal to 

(10) 

Cons ider an exa mple : assume s3 / s2 = 2, th - tg = 1 hour, and a cost of delay equal 
to $1. 50 per hour . Also , assume that oversaturation occurs approximately once a clay 
or, say 300 times per year. During a 30-yr amortization period, the increase in 
capacity by one car will result in a reduction of delay which may be valued at $13 , 500. 
A highway planner may take such an estimate into account in deciding whether to in
crease the capacity of an exit ramp or not. It should be pointed out, however, that 
the return per unit increase of Qt diminishes as one approaches the maximum vertical 
distance between the curve Q2 and the line 02 ef (Fig. 2). The decrease in rate of 
return is equal to the decrease of (th - t g), or r oughly linear . 

Incidentally, a substantial decrease in delay may also be accomplished by a drastic 
reduction of the average length of the automobile. This will be the case, provided that 
the overall performance of the automobiles is not affected by the reduction of their 
size, a conjecture which will be easily refuted by Detroit. 

OPTIMUM LIGHT CYCLE 

Up to this point, the light cycle at intersection 4 has been assumed constant. It 
should be interesting to find the value of the light cycle which optimizes the overall 
performance of the system in terms of delay. The light cycle influences delay in the 
following ways: 

1. A long cycle decreases the delay by increasing the utilization rate of the cycle, 
assuming that the lost time due to acce leration and clearance is essentially independent 
of the light cycle length. 

2. A long cycle increases the additional per cycle delays due to intermittent service. 
These delays are proportional to the sawtooth areas of Figure 4. 

3 . A long cycle decreases the effective parking capacity, Qt, of the exit ramp. This 
is so because Q! is the actual capacity of the exit r amp minus the extra queue l ength 
built during the red phase of the cycle along 2. A decrease of Q? causes additional 
delays as seen in the preceding section. 

STREAM 
2 

T 
t 

Figure 4. Influence of a variation of the light cycle on the aggregate delay of 
stream 2. 
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The optimum cycle is such that small variations about its value produce essentially 
zero variation of delay due to the three previous factors. An estimate of the optimum 
light cycle is obtained as follows: 

Let the cycle be denoted by c, the total lost time per cycle by L, and the percentage 
of effective green allocated to direction 2 by p(t), where t is the time. The service 
rates along 2 and 3 are 

Y2(t) = (1 - L/ c) s2 p(t) 

y 3 ( t ) = ( 1 - L / c ) s 3 [ 1 - p( t ) ] 

The decrease of delay due to an increase of the light cycle, t:..c, is approximately 
equal to 

(t:..D)a = t:..c {LT LT [s2p + ss(l - p)] dt} 
2c 2 0 

(lla) 

(llb) 

(12) 

where T is the duration of the rush period. It is assumed that p(t) and T are essentially 
unaffected by a small change Ac. An approximate value of the integral in Eq. 12 is 
(s2 + SJ )T/2, assuming a more or less symmeh'ic distribution of the values of p(t) 
about the value ½, during T. Using this approximation, 

LT 2 

(t:. D) a ~ ~ (s2 + s3) t:.. c 
4c 

The delay corresponding to the sawtooth area of Figure 4 is 

a2 = ½ p( 1 - p) S 2 ( C - L) C 

per cycle, for stream 2, and 

1 as = 2 p(l - p) Ss (c - L) c 

(13) 

(14a) 

(14b) 

per cycle, for stream 3. An increase in c produces an increase of this delay equal to 

(AD), = Ac{
8

' ; s, f p(l - p) di} (15) 

We need an estimate for the integral of Eq. 15. The integrand is equal to 0. 25, for 
p = 0. 5 and 0. 09 for p = 0. 1. In view of the fact that the optimum control c alls for 
extreme values of p, we shall assume (a better estimate may be obtained ii one has , 
from a trial solution, a good approximation for the function p(t) ) for the integral, the 
value 0.12 T, in which case 

(t:..D)b = 0.06 (s2 + ss) Tl::.c (16) 

Finally, the decrease in QI due to an increase de is equal to 

(17) 

Hence, according to the preceding section, assuming 

(18) 
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we find an increase in total delay 

("D), • "'{is, - s,)~T p(l - p)dt } ~ "e[0.12(s, - s,) T] (19) 

Now setting 

we obtain an equation for c, namely, 

LT2 

-
4

c2 (s2 + Sa) + (0. 06) (s2 + sa) T + (0 . 12) (s 3 - s2) T 

which yields 

c "" [ LT (s2 + sa) ] ½ "" O. 2 [LT ~ ]½ 
0.24(3sa-s2) 3p-l 

(20) 

0 (21) 

(22) 

where p = sa / s2. For example, assuming p = 2, T = 1 hour, and L = 4 sec, we find 
c "" 3 min . 

It will be noted that although the exact value of the coefficient multiplying the square 
root in Eq. 22 will vary after a more accurate computation of the integrals of Eqs. 12 
and 15, the dependence of c on the square root of T and L remains as an intrinsic fea
ture of the present theory. It should be remarked that the capacity of the exit ramp 
imposes an upper limit on the light cycle which may be of primary importance in the 
case of a very short ramp. Thus, the queue buildup during red must not exceed the 
actual ramp capacity. If this capacity is Qmax, then 

Hence, 

Qmax ~ p(l - p) s2 (c - L) 

Qmax 
c~L+ ----

s 2 p (1 - p) 

(23) 

(24) 

For example, assuming p = 0. 2, Qmax = 10 cars, s2 = 0. 3 cars/ sec, and L = 4 sec, 
we find that c must be at most 3 ½ minutes. 

The preceding discussion assumes, of course, that the queue 2 can be served 
critically by an appropriate choice of p. 

CONCLUDING REMARKS 

The discussion is based on the assumption that the system comprising the express
way, the ramp, and the highway is isolated from other oversaturated regions. If this 
is not the case, one must consider an enlarged oversaturated system which can be 
considered isolated. For example, the stream 3 along the highway may contain a 
large amount of traffic coming from an exit ramp of the direction of the expressway 
opposite to direction 1. In this case, both exit ramps may be likely to produce spillback 
if the expressway is heavily traveled both ways. One general rule, in such a case, is 
that queueing can be permitted where there is greater parking capacity. A more detailed 
investigation is needed to determine where spillback, if inevitable, must be allowed in 
order to minimize the delay in the entire system. 

Perhaps an explanation is due regarding the meaning of the demand curve Q2 (t) used 
in this paper. This curve represents all t:he cars which would have demanded ramp 
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service at time t, had the approach to the ramp been completely open. In practice, if 
spillback takes place, a large number of these cars will be mingled with through traffic 
in the queue formed along the expressway. Therefore, care must be exercised in 
ascertaining the appropriate value of Q2 (t) by observing the composition and length of 
the queue along the expressway. 
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