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An influence chart is presented for computing the vertical stress 
increase in the interior of a semi-infinite homogeneous isotropic 
elastic mass due to distributed horizontal shearing stresses applied 
at the surface. An example for a square surface area loaded with 
a uniform vertical stress and a wedge-shaped horizontal shearing 
stress is then worked out to illustrate the use of the influence chart. 
The mathematical development of the influence chart and a table 
summarizing the data required to construct the influence chart are 
also given. 

•THE COMPUTATION of vertical stresses in a soil mass due to applied loadings is 
required for many problems in soil mechanics. Usually, as in the case of the con­
solidation settlement of foundations, only the stress due to vertical loadings are com­
puted, and the effects of any horizontal shear stress that may be developed between 
the foundation base and the soil are neglected. This paper presents a simple graphical 
method for computing the vertical stresses in the interior of a semi-infinite elastic 
mass due to distributed, horizontal shearing stresses applied at the surface. 

As was done by Newmark (1) for vertical loadings, the vertical stresses duetohori­
zontal shearing loads are determined by drawing the foundation to a proper scale, and 
then counting the number of squares that the load covers when superimposed on an in­
fluence chart. Here also, the vertical stress is found by multiplying the horizontal 
shearing stress by the number of squares covered and a constant. 

In the following sections the method of solution is presented, and an example is 
worked out illustrating the use of the influence chart. The detailed mathematical de­
velopment of the influence chart and the data needed to construct the chart are given 
in the Appendix. 

COMPUTATION OF VERTICAL STRESSES ON HORIZONTAL PLANES 

The coordinate system used for the influence chart is shown in Figure 1. The x, y 
plane is taken as the horizontal surface of the semi-infinite soil mass, with the z axis 
extending vertically downward. Although any unidirectional distribution of horizontal 
shearing stress, qh, is permissible in the x, y plane, the directional orientation of the 
stress must be considered. This requirement, however, is not restrictive; it is meant 
only to demonstrate the applicability of this procedure in solving problems. 

The influence chart (Fig. 2) is constructed to give the increase in normal stress, 
6.uz, on a horizontal plane through point C ', vertically beneath point C (Fig. 1) due to 
a horizontal shear loading applied on the surface. The usual soil mechanics sign con­
vention is to be used for t.az; a positive t.az stress change represents a compressive 
stress increase. As shown on Figures 1 and 2, horizontal shear loadings in quadrants 
1 and 4 induce tensile t.az stresses at C ', and shear loadings in quadrants 2 and 3 
cause compressive stresses. 
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Figure 1. Notation used f or influence 
chart. 
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Figure 2. Influence chart for increase in 
vertical stress du e t o horizontal shearing 

The influence chart represents the 
horizontal surface of the semi-infinite 
soil mass. The surface is divided into 

stress. 

ring segments with the area of each ring such that if it is loaded with a uniform Cfu 
shear stress, the s tress incr ease l::.az at C 1 will be the same absolute value as for any 
other loaded ring segment. Therefore, the contribution to the l::.az stress of any load­
ing can be accessed by counting the number of r ing segments covered. 

To determine the stress increase /l.az at C 'due to a uniform surface shear loading %, 
the area loaded is drawn on a sheet of tracing paper to a scale such that the depth below 
the surface to the point at which t::.az is desired corresponds to the distance C C 1 (depth 
z) as given on the influence chart. The tracing paper is then placed over the influence 
chart and oriented so that the shear stress qh points in the positive x direction, and 
the point C on the tracing paper under which the stress increase l::.az is required coin­
cides with point C on the influence chart (the origin). The algebraic sum, N, of the 
number of ring segments covered by the entire loading is determined with partially 
loaded ring segments included as corresponding fractions of the total ring segment. 
The vertical stress increase l::.az (with correct sign) is then determined by: 

l::.az = 0. 00319 N% (1) 

Since superposition is valid, any distribution of shear loading can be approximated as 
% ' + <lli w + ... + qhn with proper regard for s igns, yielding the corre13pondi ng stress 
increase l::.az' + Aa 11 + Aaz n. Of course, this procedure can be repeated for any num­
ber of points C to y1eld distributions of llaz on horizontal planes th1·011gh :i. ny point C '. 

ILLUSTRATIVE EXAMPLE 

We seek to determine the increase in vertical stress at point C ', 10 ft below the 
corner of the loaded 24- by 24-ft area shown in Figure 3. The load is composed of a 
uniform vertical pressure of 2 kips/ sq ft, and a unidirectional horizontally distributed 
shearing stress that varies linearly in the positive x direction from 0 to 4 kips/ sq ft. 

Since the horizontal shear stress varies with x, a method of graphical integration 
must be used. As shown in Figures 3 and 4a, the loading (triangular in elevation) will 
be divided into four steps. Each step will be approximated as a uniformly distributed 
load. The four equivalent loadings are shown in Figures 4b to 4e. The additional 
loading introduced by this approach (dashed lines, Fig. 4a) makes the absolute value 
of the computed stress increase due to shear greater than the actual absolute value . 
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Figure 3. Vertical and hori zontal l oadings 
for illustrative example . 

Figure 4. Divis ion of triangular shear 
l oading for graphical integration. 

TABLE 1 

TABULAR SOLUTION FOR CHANGE IN t:i.az DUE TO 
HORIZONTAL SHEAR LOADINGS 

Loaded q'h (k/FT2) 
Areaa 

b 1 
c 1 
d 1 
e 1 

Total 

aSee Figure 4. 

N 6.az = 2::(0.00319 N%~ 

-40.6 
-25.8 

0. 0319 % I r:N 
0. 00319 (1) (-82. 7) 

-12.0 -0. 264 kips/ sq ft (tension) 
-4.3 

-82.7 

The precision of the graphical integration method increases with the number of incre­
mental steps. 

The next step is to plot the loadings of Figures 4b to 4e to the proper scale for use 
with the influence chart (Fig. 2). Whereas z = 10 ft for point C ', the scale length for 
plotting the loadings is defined by the length C C' = 10 ft on Figure 2. By orienting 
each of the scaled plans so that point C coincides with the origin of the influence chart 
and then counting the ring segments, the results given in Table 1 are obtained. Since 
all ring segments are negative, the stress increase is tensile. Table 1 shows that the 
change in vertical stress, 6.az, at point C' is -0. 264 kips/sq ft (tension). 

If eight load increments are used in the analysis instead of four, the computed ver­
tical stress change would be 6.az = -0. 234 kips/ sq ft, or a reduction of about 11 percent. 

The increase in vertical stress due to the vertical loading was obtained from New­
mark's chart (1) and was found to be +0. 476 kips/ sq ft. By combining the stress change 
due to the shear and vertical loadings, the net computed stress change at C' is 6.az = 
+0. 242 kips/ sq ft. For this example the error introduced by approximating the shear 
loading as shown in Figure 4a is on the unsafe side. However, by taking the incre­
mental steps for this example on the inside of the actual loading, the error introduced 
would be on the safe side. 
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Appendix 
MATHEMATICAL DEVELOPMENT OF INFLUENCE CHART 

The vertical stress increase ~az at any point C' (Fig. 5) in a semi-infinite homo­
geneous isotropic elastic mass due to a concentrated horizontal surface loading~ was 
published in 1940 by Westergaard ~): 

az 
3~ 
21TR2 cos ijJ sin 0 cos2 0 (2) 

az 
3~ x z" 
21TR5 (3) 

(According to A. E. H. Love (~), this problem received earlier attention by J. Bous­
sinesq, V. Cerruti, and J. H. Mitchell.) 

Of greater interest is the determination 
of the vertical stress increase at some 
depth z beneath point C (Fig. 6) due to a 
uniform horizontal shearing stress of 

--r..r~~~...,..'"'7'"-r~----- x intensity qh, acting in the x direction over 

T 
z 

Figure 5. Notation used for determining 
vertical stress at point c' due to single 

horizontal load QR. 
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Figure 6. Plan view of horizontal surface 
loading on small area. 

part of a circular segment. The following 
expressions are apparent from Figure 6: 

dAi = (pd¢) . dp (4) 

d~ = % . dA1 - % (pd¢ dp) (5) 

Substituting Eq. 5 into Eq. 3 gives for 
the differential of the vertical stress at 
some arbitrary constant depth z below C: 

y 

Pt...At-..1 Vcc.w 

Figure 7. Notation used for Eq. 'Tb· 
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3 (pd¢ dp) (-p cos ¢) (z2) 
27T • % [ JS 

p2 cos2 ¢ + p2 sin2 ¢ + z2 r2 
(6) 

By simplifying and setting appropriate limits, we get: 

I p= pf¢= ¢1 
3 2 q p2 cos ¢ d¢ dp 

az = - 27T z h [ J Bl 
P2 + z2 12 

= Po ¢ = ¢0 

(7a) 

which after integration becomes: 

% . . [( 1 )% ( 1 7'2 ] •z = - 2, [sm ¢, - sm ¢0) [' + (~.)'] - [' + (;;)']) 
(7b) 

Eq. 7b is the expression for the vertical stress at some arbitrary depth z beneath 
point C due to shear loading (in the x direction) over the partial circular segment A, 
shown shaded in Figure 7. 

The procedure used for developing the influence chart will be outlined. It is of ad­
vantage that Eq. 7b be expressed as: 

-% KG (8) 

where 

qh horizontal stress intensity in the x direction, 
K constant, and 
G f (z, ¢0, ¢1, Po, p1). 

If everywhere over an area such as Figure 7, each partial circular segment (A in the 
figure) is constructed so that its fraction of G is the same, with iih and K known, az 
could be obtained by multiplying the number of segments covered by the loading and a 
constant. 

The first step is to divide quadrants 1 and 4 (both having positive values of G) into 
concentric circles of radius an (Fig. 7) such that the area between each set of neigh­
boring circles has the same fractional value of G. For any circle of radius an located 

in the half surface defined by quadrants 1 and 

Ring 
No. 

A 
B 
c 
D 
E 
F 
G 
H 

TABLE 2 

DEVELOPMENT OF INFLUENCE 
CHART DATA 

G G G' 
(total an for Each No. of 

for an) Ring Ring Div. 

0.01 0.22 0.01 1 0.05 0.40 
0.19 0.70 0.04 4 

0.39 1. 07 0.14 14 

0.59 1. 54 0.20 20 

0. 79 2.42 0.20 20 

0.89 3.52 0. 20 20 

0.95 5. 36 0. 10 10 
0.06 6 

4, po=O, p1=an, ¢o=-1T/2, ¢1=1T/2. By 
letting z = 1 (unity), Eq. 7b becomes: 

(9) 

G 
1 (10) 

and K = 1/ 1T. Solving Eq. 10 for radius 
an gives: 
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(11) 

Values of an given in Table 2 were obtained by assigning values for G and then solv ­
ing Eq. 11 for the corresponding values of an. Each concentric ring may be divided 
into G' ring divisions where G' = 100 G. The value of G for any area loaded by~ is 
now equal to the number of ring segments covered by the load divided by 100; i.e., 
G = G './ 100. To do this requires that each ring segment be of such a size that G = 0. 01. 
Hence, from Eqs. 7b and 8, considering partial ring segments: 

G = 0.01 = i [sin ~+ 1 - sin ¢m] [1 ~0] (12) 

where n is number of ring divisions for each concentric ring. 
for ¢m + 1 gives: 

Solving this expression 

. [2 . ] lllm + 1 = arc sin n + sm <l>m (13) 

Thus, the angular location of the ring segment divisions (¢m + 1) can be obtained 

for -any ¢m (starting with either ¢m = 0 or ¢m = -TT/2). Then with this ¢m + 1 value 
taken as the new ¢m, the procedure is repeated until the ring is completely divided. 

Table 3 summarizes the required data for constructing the influence chart. The 
scale used in constructing the an circles should be chosen such that z, the depth below 
the surface to the point at which the vertical stress increase is desired, is equal to 
1 unit. 

TABLE 3 

SUMMARY OF INFLUENCE CHART DATA FOR QUADRANT 1 
(¢ in Degrees) 

Radius (an) 0.22 0.40 0.70 1. 07 1. 54 2.42 3. 52 

Ring No. Aa B c D E F G 

¢0 -90 0 0 0 0 0 0 
¢1 00 30 8.2 5.7 5.7 5.7 11. 5 
</i2 90 16.6 11. 5 11. 5 11. 5 23.6 
Q\3 25.4 17.5 17.5 17.5 36.9 
¢4 34.9 23.6 23.6 23. 6 53.1 
Ills 45. 8 30. 0 30.0 30.0 90 
Ille 59.1 36 . 9 36.9 36.9 
Q\7 90 44.5 44 . 5 44 . 5 
Ille 53.1 53.1 53.1 
Ille 64 . 1 64. 1 64 . 1 
¢10 90 90 90 

5.36 

H 

0 
19. !l 
41. 9 
90 

aThis ring segment goes f r om ¢ = -90° to ¢ = 900 ( i.e .' f r om ¢ = 0 to Ill = n/2 
is 

one- hal f a ring segment) . 
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From Eq. 7b it follows that loadings in quadrants 1 and 4 induce negative vertical 
stresses and loadings in quadrants 2 and 3 correspond to positive vertical stresses. 
Recognizing that symmetry with respect to both the x and y axes is preserved, the 
tabulated data in Table 3 are sufficient to construct the entire influence chart wherein 
the vertical stress increase is given by: 

(14) 

where N is the algebraic sum of the segments covered by the horizontal loading. 

Discussion 
E. S. BARBER, Consulting Engineer, Soil Mechanics and Foundations-The paper is 
clearly presented and the chart is useful. However, a similar chart was already 
available. As been pointed out by the writer (4), the vertical stress from a shear load 
is the same as the shear stress from a verticai load. Therefore, Newmark's Figure 
5 (1) is the same as the authors' chart except that Newmark's figure has finer divisions 
wifh a more convenient influence value of 0. 001. 

There is a similar correspondence between the shear stress from a shear load and 
the parallel horizontal normal stress (for Poisson's ratio equal to 0. 5) from a normal 
load. Influence charts for horizontal normal stresses from a shear load are presented 
in the June 1965 issue of Public Roads. 

For nonuniform loading the choice of approximations is important as illustrated in 
Figure 8 for the shear load in the authors' illustrative example. No. 1 is the authors' 
first approximation using columns instead of layers to reduce the number of blocks to 
be counted. The stress was calculated from Eq. 6 integrated over a rectangular area 
from 0 to Az in the x direction and from 0 to Bz in the y direction, giving, with % 
directed toward negative x, 

O'z (15) 

The resulting stress 0. 271 is a little higher than the authors' value; an exact value is 
not to be expected from a graph. It is well to have two perpendicular depth scales on 
the influence chart to compensate for nonuniform shrinkage of the pape·r. 

2A 28 

--- APPLIED SHEAR STRESS 

PLAN 

DWITJ 

7 8 

LJ 

D 6MINUS D 
5 BEYOND 
LOADED 

AREA 

TOINFINTY 

0 .27 I 0.065 0 .206 0.262 0 .2 06 0.209 0.216 0.206 0.206 

RESULTING STRESS AT DEPTH 10 BELOW C 

Figure 8. Va rious approx lluaLlom; ur loa d distribution. 
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To make the total load of the approximation the same as the load to be approximated, 
No. 2A of Figure 8 is subtracted from No. 1 to obtain No. 2B. The resulting stress 
O. 206 is the same as No. 8 obtained by exact integration. For a stress increasing 
from 0 at x = 0 to % at x = Az: 

% (11 B 
C1z = 211 4A - (l + A2) ~l + A2 + B2 

1 . -1 A
2 

B
2 

- 1 - A
2 

- B2
) + -sin 

2A A2 B2 + 1 + A2 + B2 
(16) 

No. 3 is an unsatisfactory approximation but Nos. 4 and 5 are good. No. 4 balances 
over and under approximations and requires only two areas. No. 5· uses a single area 
with the centroid at the same location as the load to be approximated. No. 6 shows 
the small effect, in this case, of extending the loaded area to infinity. 
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R. D. BARKSDALE and M. E. HARR, Closure-The authors thank Mr. Barber for 
pointing out that influence charts for computing the verticat stress at a point from a 
shear load on the surface are the same as those for computing the horizontal shear 
stress from a vertical load. This correspondence is implied by the Maxwell-Betti 
reciprocal theorem (5) since the semi-infinite solid is assumed to be elastic and fol­
lows Hooke's law. -

The manner in which the load is approximated is certainly important in obtaining 
an accurate answer, as pointed out by Mr. Barber. The authors realized that the ap­
proximation used in the example would give an answer slightly on the high side and 
pointed this out in the discussion. The main purpu~e uI the example was to illustrate 
the use of the chart and a simple numerical method of integration which could be applied 
to any load distribution. 
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