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The two-dimensional viscoelastic displacement equations for a Voigt 
solid are approached on a numerical basis to examine the effect of 
viscosity on the load-settlement-time relation in an ideal soil. Curves 
indicating the viscosity effect on surface settlement and displacement 
within the soil mass as a function of time for an applied surface load 
are presented. In addition, the generality of the method for approach­
ing mixed boundary conditions is demonstrated by the determination of 
heave in the bottom of an excavation due to an applied surface load. 

•THE PROBLEM of determining the stresses and displacements within a homogeneous 
soil mass due to an imposed surface load has been extensively treated in the literature. 
It is usually assumed in problems of this type that the deformations and stresses der 
veloped within the soil can be computed on the basis of the classical theory of elasticity 
which assumes that a linear relation exists between stress and strain and that strains 
are small. The basic solution of this problem is the well-known Boussinesq solution 
for a single, vertical point load acting on the horizontal surface of a semi-infinite, 
homogeneous, isotropic elastic solid (1). This solution has been extended to include 
various surface load configurations by-a number of investigators (2, 3, 4, 5, 6, 7, 8). 
Their results have been useful and of proven practical value. - - - - - - -

However, the presence of viscous effects in the mechanical behavior of soil raises 
a question regarding the influence of this effect on the resulting stress analysis. In­
stead of being considered elastic, the foundation may, therefore, be more closely ap­
proximated by a viscoelastic medium. This problem differs from the corresponding 
elastic problem, since time appears in the stress-strain relations and, hence, the 
boundary conditions and the solution must involve the history of the process throughout 
the time range of interest. The variation of the displacements and the stress distri­
bution with time is sought, and it is found that, in general, the history of loading has a 
marked influence. This is in contrast to the corresponding elastic problem for which the 
displacements and stress distribution are functions only of the instantaneous values of 
the surface displacements and stresses, and not of the loading history (9). 

The two elements whose combination represents linear viscoelastic behavior are 
the linearly elastic spring and the viscous dashpot filled with a Newtonian liquid. The 
motion of the piston inside the dashpot produces a resisting force in the liquid which 
is proportional to the velocity of the piston. Figure 1 shows combinations of these 
elements which form the simplest linear viscoelastic models. If a soil mass is rep­
resented as a Voigt material, the displacements will eventually approach the elastic 
values, whereas with a Maxwell representation, the initial displacements will equal the 
elastic displacements. Thus, a Voigt solid is of interest with regard to short-term 
departures from classical elasticity, whereas a Maxwell material relates to long-term 
departures. More sophisticated models may be constructed by different combinations 
of the two original elements (10, _!!, g, 13, 14). 
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Figure 1 . Typical viscoelastic models. 

In recent years it has been shown that under certain circumstances the stress anal­
ysis of a system including linear viscoelastic components can be treated in terms of 
the analogous elastic problem having the same geometry and boundary conditions. In 
the case of a system, for which the geometry does not change and the boundary con­
ditions remain of the same type during the loading process, application of the Laplace 
transform removes the time dependence and transforms the problem into an associated 
elastic problem. Thus, the determination of transformed variables, e.g., of stress 
or displacement, becomes an elasticity problem and standard methods of inversion of 
the Laplace transform determine the stresses and displacements as a function of time. 
Hoskin and Lee (15) and Lee (16) have determined stress as a function of time for a 
viscoelastic Maxwell foundation acted on by a uniformly loaded elastic plate. Pister 
(17) obtained a solution to the same problem where the plate was also viscoelastic. In 
ali these cases, Laplace transforms were employed, so that it was first necessary to 
know the elastic solution to the problem before the viscoelastic solution could be found. 
If the elastic solution is unknown, the solution to the corresponding viscoelastic prob ­
lem cannot be obtained with this approach. 

In view of this situation, a desirable alternative would be to approach the visco­
elastic problem directly on a numerical basis, thus eliminating the requirement of an 
elastic solution which may not be available for a particular foundation problem. 

The ultimate objective of this presentation is to examine the effect of the Voigt 
solid viscosity parameters on the short-term displacements of a soil mass subjected 
to boundary forces. Of particular interest is the development of lateral strains beneath 
a uniform surface load as a function of time which gives rise to displacements of the 
type schematically indicated in Figure 2. The importance of this effect has been re­
cently described by Lambe (18). 



Figure 2. Schematic representation of 
displacements. 
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Figure 3. One-dimensional stress strain. 
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DESCRIPTION OF VOIGT SOLID 

The development of the two-dimensional 
field equations for a soil requires a de­
scription of both the dilatational and dis­
tortional components of behavior. The 
inability of the conventional on.e-dimen­
sional test to provide this description is 
demonstrated with respect to the consoli­
dation test in Figure 3. Even if the soil 
is considered to be elastic and the appro­
priate stress-strain relations are written 
in terms of Lame's constants, the result­
ing response involves both volume change 
and shear, thus disallowing their individual 
determination. Any realistic viscoelastic 
description of a soil will eventually neces­
sitate the development of appropriate 
laboratory tests for the determination of 
the fundamental mechanical constants 
involved. 

The following development is most con­
veniently accomplished by formulating the 
elastic equation and then converting to the 
viscoelastic condition. In the absence of 
an exact stress-strain-time relation, a 
Voigt solid which is known to be similar 
to soil in some respects was assumed. 

The relationships between stress and 
strain for a homogeneous, isotropic elastic 
solid may be written as: 

O'xx = >..A + 2µexx, O'yy = >...!:!. + 

where 

Lama's coefficient >... 

Lame's coefficientµ 

(1) 

Ev 
(1 + 11) (1 - 2v)' 

E 
2(1 + v)' and 

0u ov 0w -+-+-. 
()X oY oZ 

Substitution of the stress-strain rela­
tionships into the equilibrium equations 
in the x-y plane yields in the absence of 
body forces: 
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0 

and 

where u, v and w are the displacements in the x, y and z directions, respectively, 

For a condition of plane strain ow = 0. Eqs. 2 and 3 reduce to: 
(lZ 

0 

and 

(2) 

(3) 

(4) 

(5) 

Eqs. 4 and 5 can be modified to express the behavior of a Voigt solid by an appro­

priate change of coefficients (19}. Substitution of :>.. + :>..' 0t for :>.. and µ + µ' 0t for 
µ into Eq. 4 yields: 0 0 

[
X+X'_Q._+2 ( + ,_Q_)~ 

cit µ µ cit ~ 

where X' and µ' are the viscosity coefficients corresponding to the Lame coefficients. 
On rearranging terms, Eq. 6 becomes: 

(X + 2µ) ~:~ + (X' + 2µ ') _£_ (ci
2

u) + µ ci
2

u + µ., _£_ (ci
2

u) + 
uX ot oX: ot ot ot 

A oV / 1 o [l. V 2 ( 2 ) 
( + µ) oXOY + (:>.. + µ ) cit oXOY 0 

Proceeding in the same manner for Eq. 5, Eq. 8 is obtained: 

2u o (a2u) (X + µ.) -- + (X I + µ ') -t -- = 0 
oXOY a oXOY 

Eqs. 7 and 8 are the equations of equilibrium in terms of displacements for a two­
dimensional linear viscoelastic Voigt medium for the particular case where a plane 
strain condition exists. 

(6) 

(7) 

(8) 

Eqs. 7 and 8 can now be reduced to finite difference form. A typical difference ap­
proximation to Eq. 7 along with the grid notation is given in Figure 4. By this tech-
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Figure 4. Finite difference approximation. 

I L ___ _ 

I 
I 
I 
I 
I 
~ 

I 
I 
I 
I 

-- _ _I 

Figure 5. Statement of boundary conditions . 
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nique, the governing partial differential equations that are often impossible to solve in 
closed form can be transformed into a set of linear simultaneous algebraic equations . 
This transformation involves expressing the pertinent equations in terms of values of 
the desired function at finite points in the system under analysis. By utilizing a digital 
computer, the resulting equations can then be solved by a matching procedure with 
respect to the independent time variable. 

For the particular case of a uniform surface load, the dependent displacement vari­
ables must be defined on the boundary of the region beneath the load which requires o.n 
approximation in the case of a numerical approach to a half space. Thus, the displace­
ments wer e set equal to zer o along the dashed lines in Figure 5. The effect of this as ­
sumption will be subsequently discussed . 

DISPLACEMENT RESULTS 

Figure 6 is a graph of the displacement of the surface at the center line of the load vs 
the logarithm of time for various values of the viscosity coefficients. It is of interest 
to note the significant role played by µ ' which is equivalent to a shear viscosity . The 
largest value of µ.' = 5, 000 x E displays the most retarded displacement. This effect 
is considerably larger than the role played by >.. '. Thus, for the configuration of this 
problem, the resistance to lateral strains beneath the applied load as dictated by a 
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Figure 6. Vertical displacement at centerline of load. 
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large shear viscosity can significantly alter the deflection time relationship. The ulti­
mate settlement is, of course, independent of the viscosity coefficient for a Voigt mate­
rial, depending only on the elastic constants which are the same for all the cases in 
Figure 6. 

Figures 7 and 8 present vertical displacements as a function of depth and time. 
Again, the shear viscosity effect is graphically displayed. In Figure 7, which involves 
the smaller shear viscosity, an actual heave or bulge initially occurs adjacent to the 
applied load. Gradually, as volume change takes place, the top surface subsides, re­
moving the heave until the elastic equilibrium position is reached. 
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Figure 7. Vertical displacement as flll1ction of depth and time. 
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Figure 8. Vertical displacement as function of depth and time. 

In contrast, a large shear viscosity, as indicated in Figure 8, shows no initial heave 
at the surface. This essentially means that the development of lateral strains is re­
tarded which, in turn, retards the surface displacement. This is, of course, consist­
ent with the settlement time plots in Figure 6. 

To examine the boundary effect assumption, the vertical stresses at two different 
depths are compared in Figure 9. One distribution is the elastic case as presented 
by Jurgenson (20), and the other is the final viscoelastic value. The agreement ap­
pears to be acceptable in view of the numerical approximation involved. In addition, 
the motivation for the study was not to develop quantitatively a specific ,solution, but 
also to examine in a qualitative manner the effect of the time-dependent viscoelastic 
parameters on the form of the solution. 
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Figure 9, Vertical Stress distribution. 
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Figure ~O. Description of excavation problem. 
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Figure 11. Displacements at bottom of excavation . 

A final comment regarding the flexibility of the numerical procedure employed can 
be made with reference to Figure 10. The upward displacement of the bottom of an 
excavation due to the application of a uniform load at the s urface is desired . The sides 
of the excavation are assumed to be fixed against any movement (u = v = 0). 

The resulting heave at the bottom of the cut as a function of time is shown in Fig­
ure 11. The particular shape of these curves is , of course , a function of the geometry 
of the excavation. A very wide excavation with respect to depth would probably exhibit 
very little heave at the centerline . 

CONCLUSIONS 

A particular viscoelastic material , a Voigt solid, was chosen to represent the be­
havior of a soil for the purpose of analyzing the effect of viscoelastic behavior on cer­
tain common foundation situations. No illusion is entertained regarding the adequacy 
of a Voigt solid. A more complete equation of state is, of course, required. However, 
the importance of considering not only the time-dependent volume change character­
istics of soil but also the time-dependent distortional properties has been qualitatively 
demonstrated. A one-dimensional theory cannot be expected to describe the time­
dependent settlement of isolated surface loads located on deep layers of soil. 
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