Adjustment of Trilateration in
Fundamental Figures
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A fundamental figure is a quadrilateral or a central-point triangle
whichforms the basis of the problem of adjustment intrilateration.
Any trilateration may be planned, analyzed and adjusted in funda-
mental figures. Area equations are used for the formation of the
condition equations in the least squares adjustment of the sides of
the triangles of fundamental figures. Evaluation of the coefficients
of the error equation or correction equation is the first task inthe
adjustment and can be done systematically as shown. Cases for
both geodetic and engineering trilaterations are presented.

*TRIANGULATION has been the conventional method used for the horizontal control of
geodetic surveying and for some of the control of engineering surveys since Willebroad
Snellins (1591-1626) used it in Holland in 1617. In such an operation, few bases and
all of the angles are measured because long-distance measurement to the required ac-
curacy is tedious, time consuming and difficult. The adjustment of triangulation is
also complex and requires high technique.

Several years ago, the author tried to simplify the routine work of the adjustment of
triangulation in fundamental figures for the convenience of engineers and recommended
its use to geodesists (7, 8). Since then, the advancement of the electronic distance
measuring instruments such as Shoran, Hiran, Geodimeter, tellurometer and Electro-
tape and the increasing interest in the adoption of trilateration have caused him to con-
sider applying his ideas on this adjustment to the adjustment of trilateration,

Distance is the basic geometric element in the position science of surveying and
geodesy (6). We can not determine horizontal positions by triangulation measurements
without af least one known length, but we can determine positions by a trilateration
scheme without any angular measurement. We have been using triangulation because
we did not have a handy and reliable method of obtaining a great quantity of precise
distances. Since the revolution of distance measurement by electronic instruments,
trilateration has become increasingly significant. Field operations with electronic in-
struments have been cautiously carried on. The problem of adjustment has been along
the line of traditional triangulation method.

Mechanically, angular measurement with the optical theodolite has its limitations.
Even the electrooptical Geodimeter can substitute for the theodolite without difficulty.
Other electronic distance measuring instruments are limited very little by weather and
can measure long distances (6).

Current literature in the fields of geodesy and surveying generally contains two basic
analytical approaches to the adjustment of trilateration: (a) indirect adjustment by
conditional adjustment by conversion of the lengths of the trilateration into the angular
condition equations (1, 11, 15, 16, 18, 19, 20). There are still many other graphical
methods, analogue methods (5, 10) and methods for which the Laplace conditions are
attached (3, 4), but they are variations of the basic analytical approach.

In this paper, the problem of adjustment of pure trilateration (no angular observa-
tions) is attacked by the basic analytical approach of conditional adjustment by area
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Figure 1. Formation of quadrilateral and central-point triungle.

equations of direct linear measurements.
There are no angles, no coordinates and,
hence, no trigonometric functions in-
volved in the plane trilateration case in
this approach. In the development of this
method, both geodetic and engineering
purposes are considered.

FUNDAMENTAL FIGURES

A simple triangle is the basic element
of trilateration as it is in triangulation,
but unlike triangulation, there is no re-
dundant observation when the three sides
are measured instead of three angles.
When a new point is attached to a triangle
to form a two-triangle trilateration, there
is still no redundant observation unless
Figure 2. Formation of' complicated tri-  the attachment is led lu all three vertices

lateration. to form a four-triangle overlapped quadri-
lateral or central-point triangle as shown
in Figure 1.

The number of redundant observations is equal to the number of conditions in the
problem of adjustment. According to the theory of adjustment, there can be no adjust-
ment if there are no redundant observations. The quadrilateral or the central-point
triangle, each having one geometrical condition, starts the problem ot adjustment in
trilateration. We shall call them the fundamental figures.

For one geometric condition, unlike the traditional method of forming equations by
using angles in terms of triangle sides indirectly, there is only one way to torm the
area equation in terms of sides directly for a fundamental figure. Therefore, it is
unique and consistent in adjugtment and accuracy. This is another meaning of funda-
mental figures.

The fundamental figures are the fundamental units of more complicated trilateration
in the geometric consideration of the formation of the figures and also, as we shall
see later, in the mathemetical handling of a large number of equations. As shown in
Figure 2, 1 to 8 is a waste measurement unless we make another measurement from 1
to 7 or 8 to 2 to form one more fundamental figure, or from 1 to 6 or 8 to 3 to form
two more fundamental figures, in addition to the original three fundamental figures.
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Of course, we can measure from 1to 6, 1to 7, 8 to 2 and 8 to 3 to form six more
fundamental figures. If 1 and 8 are known fixed points, the original three fundamental
figures are sufficient for the adjustment of the observed sides to fix the six unknown
points.

The use of fundamental figures as an index to identify the number of conditions in-
volved and to study the accuracy of the figures of the more complicated geodetic tri-
lateration, with or without restraints and with or without Laplace orientation, can be
developed further. In this introductory paper, however, only the theory of using area
equations of fundamental figures and the possible application of these equations to the
systematic adjustment of geodetic and engineering trilaterations are presented.

AREA CONDITION EQUATIONS

The area equations to be used in this new approach of adjustment of trilateration
are, for plane triangles,

= y/s(s - L1)(s - L2)(s - 13) (1a)

or as given earlier (9)

= [+ L)F — 2012l - (22 - L)1/ (1b)

and for spherical triangles, according to Lhuilier's formula,

R’E

4R” arc tan ~/tan 1/2(%) tan /2( = )ta /2( 42) tan 1/2(S IR22,3,)

4R? arc tan c (2)
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1
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where

L1, L2, 43 = sides in straight-line distances for plane triangles or in reduced
spherical distances for spherical triangles,

S = 1/3(&1 + Lo + {3);
R = mean radius of earth's sphere = 3, 959 mi = 6,371 km;
E = spherical excess; and
- 1, (s 8- 13
o fan ) un B w ) b C5E) o

For the fundamental figures, the conditional equations in terms of areas as shown
in Figures 3a and 3b are for a quadrilateral

wQ = Iy - fiy +fyy - fry = 0 (4)
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Fipure 3. Arvea conditiona.
and for a central-point triangle,
wT=fI+fH-fHI-fIV=0 (5)

For a more complicated figure of trilateration, the condition matrix of areas can be
easily written according to a number of r fundamental figures (e.g., Fig. 3¢, with
T =€)

We o1 - foo11 + fp-mmn - fpe1v

wg -fg1+ Ig-mm - fg-m - fp-1v

wyl=| fyr-fa+fmm-fv |=Wo =0 (6)
wg f5_1 - fo-m + f5-11 - f5-1V

We fey-fem+feom - feo1v |
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where
fg-111 = f8-1,
fg_1v = I5-1,

fy.1 =151, and
f5_1v = fe_r (see Table 2).

THEORY OF ADJUSTMENT

The relations of the one-column matrices of the observed lengths of the side 4's,
their error e's or correction v's and the most probable values 2,'s of the sides are

L-Lyo=E=-V
and
L+V=1L, (7

The condition matrix W is a function of area and in turn a function of length. Through
expansion by Taylor's theorem and omission of the terms of and over second order,
the condition matrix W in terms of a number of n observed lengths and their correc-
tions becomes:

Wo(to) = Wolt +v)

-ww) + PV y
oL
=W+B'V=0 (8)
where B’ is a transposed matrix of B,
Wy,
“g
w o= - (9)
rxl
wp
Vi
Ve
vV =| - (10)
nx1
Vn
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and there are only six non-zero «'s, 8's, . . . , p's in each row for the six sides of

each fundamental figure. By the method of least squares using Causs' correlate k's
and differentiating the conditional minimum,

& = V'PV - 2K'(W + B’V) = min.

a8 _
3V

V'P-K'B" =0
we obtain

V = PBK (12)

where P is the inverse matrix of weight. By substituting into Eq. 8, we obtain the
normal equation matrix

B'PBK = MK = -W (13)
and then
K = -MW (14)
Knowing P and B, we can compute
M = B'PB (15)

By solving for K, V can be evaluated.

EVALUATION OF B MATRIX

In computing M, the matrix B has to be evaluated if P has been already assigned or
assumed to be a unil matrix, as is justificd in the case of trilateration where the three
sides of each triangle are measured with equal accuracy.
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As stated in Eq. 10, the elements of B are derivatives of w's, the condition equations
of areas, with respect to the sides of each fundamental figure. For the ith side of the
oth fundamental figures, e.g., a quadrilateral as in Figure 3a, the differential coef-
ficient is:

a af 5§ af; af;
we 3ff ofg ofpy affy (16)

0 = e e

a4y 34j 3L 3§ o4

and, in turn, this coefficient is reduced to the problem of evaluating the derivative of
the area of the Ith triangle with sides 1, 2 and 3 with respect to the ith side, e.g.,
side 1. This has been derived from Eqs. la and 2 as:

aff _
a&i_

(SI - fﬂi)(SI - Lz)(SI - L3)+ [(SI - Li) - (SI - L2) + (SI - Li)(SI - 43) - (SI - 42)(s -4s) ]SI
4 (17a)

or in a new simplified form for a plane triangle (2):

af
;J—I = 2j (L2° + 23" - 2% /861 (17p)
C \«i

and for a spherical triangle:

lfl :__11_2_2__ { tan 1/2(51— Li) tan 1/2(51' é”) tan 1/2(sI 2 43) [1 +tan® l/z(ﬂ)] 4
oti  2(1+cr’)er R R R R
tan 1/2 (SI :i) tan 1/2(?%%1) [1 +tan® 1/2(SI ;: J)] tan 1/2(%) +
tan 1/2(%5) [1 +tan® 1/2(sI n})] tan'/, (5I ;3) tan 1/2<s_é)
[ ] T e ) 3

If spherical excess E's instead of area f's are used in forming the condition equation
w for spherical triangles, computations will be saved for the factor R? in all related
equations.

By deduction, any 3w/3% can be written or computed from equations similar to the
forms of Eqs. 16, 17a and 18 for any side of the triangle in a fundamental figure, Thus,
the B matrix can be formed,
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EXAMPLE

The method discussed in the last sections can be accomplished systematically either
by a desk calculator or by an electronic digital computer. An example for the analysis
of a trilateration net based on Figure 3c is given in Tableg 1 through 4. The number-
ing system of the points, the sides, the triangles and the fundamental figures or the
condition equations, which are being tested in a computer program, is self-explanatory
in the tables. The results of the adjustment of the trilateration net of Figure 3c accord-
ing to the basic principle presented in this paper are also shown. The detailed sample
computation of the adjustment of a plane quadrilateral has been given earlier (9).

TABLE 1
SIDES OF TRILATERATION NET

Distance

O“ZTJZM br‘l:l.t i) Figure-Triangle-Side No,
1-2 1 6,873.270  mefel = pelle}
1-3 2 10,201.000  o-[-2 = @-11I-1 = A-1-1 = 8-II-1
14 3 4,474,050 o-)1-2 = a-TH-2 = 8-1-2 = f-l0-L
1-8 4 7,061,170 8-11-2 = fi-I-2
3-2 5 9,418,530 a-I-3 = o-Tv-1
4-2 6 8,376.250 a-11-3 a-1v-2
3-4 7 6,599,990 o-M-3 = a-1V-3 = A-I-3 * 8-IV-1 = y-I-1 = y-0-1 =6--1 = 5-T0-1
3-5 8 9,101,230 y-1-2 = y-[U-1
3-8 9 11,054,280 y-0-2 = y-I0-2 =6-1-2 6-MMI-1
3-8 10 12,443.030 f-11-3 =8-1V-2 =6-11-2 = 6-0I-2
4-5 11 10,972,020 -3 - y-1V-1
4-6 12 8,540,750 y-1I-3 ® y-IV-2 =6-1-3 “0-1V-1= ¢-1-1 = ¢-0-1
4-1 19 10,142,050 c1-2 = ¢--1
4-8 14 6,362.350 A-1I-3 = B-TV-3 =6-I1-3 6-1v-2 = ¢J1-2 = e-II-2
-5 15 6,601,030 y-1L-3 = y-1V-3
6-7 16 5,288,990 (B8] c-1v-1
6-8 17,109,720 6-110-3 = §-1V-3 - tsMa3 . 1v-2)
74 18 4,970,630 walllel w -1V-3
TADLE 3
TRIANGLES OF A TRILATERATION NET
Triangie  Triangle Arca e ) . Bide User ;
Point No. You (sq 10 Pigure-Triangle No. iNo. TABLE 3
il ke —_— — —— = INFORMATION ON FIGURES OF TRILATERATION NET
1,2,3 1 31,767, 802. 8270 o-1 1,2 5 e — - ——
12,4 2 15,597, 506, 3250  o-IT 13 6 Figure Figure  Triangle Used Side Used -
1,34 3 10,754, 874.0270  o-l1f = B-1 9 %7 Poinl No. No. (No.) (No.)
1,3,8 4 36,014, T81. 3490 [ 2, 4,10 = ' =
14,8 5 13,984, 5 e-1m 3, 4,14 1,2,3,4 - [T T ‘% 8 56 -176, 0600
2,0,4 6 26,924 o1V 5 G 7 1,3,4,0 a 3, My 5y O 2, 3, 4, 110,14 12,689.1130
34,5 1 29, 996 71 7, 8,11 3,4,5,6 y 7, 8,10,12 T B 9,00, 12,15 53, 71690
3,4,6 8 28, 148 y-1 o et 7, 9,12 3,4,6,8 ] 8, 9,11,14 7, 9,40, 42, 14, 17 4,059, 9150
548 9 11, 200, ATV " 710,14 4,6,7,8 ' 13, 14,15, 16 12,13,14,16,17, 18 -125,6970
3,80 10 20,020,311, y-lI 4, 9,15 e ——
A6.8 1 19, 010, 020. 0090 U 9,10, 17
4,50 2 28,172, 289, 21 y-1v 11,12,15
ey 12 657, vl 12,19,16
4,08 14 BV e ael 12,14,17
00 15 M 13,14, 18
67,8 15 13,133, 108. 2150 IV 16,17,18
TABLE 4
ADRISTMENT OF A TRILATERATION NET
Obgevyrd - s = . ¢ Correctinn
Side v
1-2 1,632,533 - 0,197
1-1 3,462,901 -8, 362.605 0,021
1-4 -3,094,385 90,448,741 0,122
-8 -4,451,629 0,234
2-3 -1,277,335 - 0,154
2-4 2,313, 738 - . -0,279
3-4 2,643,823 17,269,190 SLSW 6,649,493 -0,237
3-5 66, 738 “« -0,039
3-6 -85.728 1,223,571 0,185
3-8 -9, 717,541 -9, 047,626 0. 129
4-5 E 86,308 - . 0,050
46 AT -4,38T.762  -1,870.126 6169
e . 1 A71.24A 0,118
4-8 12, 799. 005 9, 148, 742 2,477,902 0.253
5-6 51,571 -0.030
6-7 . -1, 952, 866 0,059
6-8 2,633,135 2,674,465 0,029
7-8 - - - 2 9,092
w -176,0600 12,680,1130 51,7800  4,050.9150 .

1.
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