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A new form of the equation for electroosmotic flow in capil­
laries has been developed. The equation appears to unify the 
Helmholtz-Smoluchowski theory, applying to large capillaries 
with double layers that are thin when compared with the capil­
lary radius, and the Schmid theory, applying to microporous 
systems with essentially uniform charge distributions. The 
major advantages of the new equation are simplicity and ability 
to be used for a wide range of capillary diameters. Analysis 
of the equation suggests that the electroosmotic velocity of flow 
in a porous medium such as soil is related to permeability, 
porosity, pore ion conductivity and soil plasticity properties. 

•UNDER the influence of an applied electric field, water will migrate through porous 
media. Termed electroosmosis, this phenomenon has proven useful in the solution of 
many engineering problems. 

At present only relatively simple theories are available for use in predicting the 
velocity of water flow during electroosmosis. These theories are mainly based on ex­
periments performed in individual capillary tubes and ignore many important but com­
plicating effects such as those resulting from temperature, ion exchange, and elec­
trolysis as a function of time, surface conductance, nonuniform geometry of capillaries, 
variable viscosity of the pore fluids, etc. Nevertheless, these theories have proven 
useful to engineers and scientists. 

The discovery of the phenomenon of electroosmosis is credited to Reuss in 1808. 
Helmholtz (2) proposed the first analytical theory to explain electroosmosis in 1879 
and this theory was partially generalized and improved by Smoluchowski (8) in 1921. 
The Helmholtz-Smoluchowski theory is now considered valid for large capillaries in 
which the electric double layer is small when compared with the capillary radius. To 
explain electroosmosis in the special case of very small capillaries (microcapillaries), 
a theory was presented by Schmid (7) in a series of papers between 1950 and 1952. An 
attempt to unify the Helmholtz-Smoluchowski and Schmid theories was made by Oel (5) 
in 1955; however, his equation cannot be integrated when the general case is considered. 

The theories of electroosmotic flow are generally referenced to the zeta potential, 
defined by van Olphen (9) as the "electric potential in the double layer at the interface 
between a particle which moves in an electric field and the surrounding liquid." It can 
also be defined as the potential across an equivalent condenser having one plate at the 
plane of shear in the fluid surrounding the particle and the other some distance away 
in the mobile part of the electric double layer. A more specific definition of the dis­
tance between the plates of the equivalent condenser would be useful in defining elec­
trokinetic phenomena. 

This paper presents a simple equation which appears to unify the Helmholtz-Smolu­
chowski and Schmid theories, defines with precision the distance between the plates of 
the equivalent condenser and, hopefully, provides a better basis for a physical under­
standing of the phenomenon of electroosmosis in porous media. 
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NOTATION 

A= cross-sectional area of porous medium, 
A1 = concentration of wall charges expressed in ionic equivalents per unit volume 

of pore fluid (number of charges per volume), 
a = cross-sectional area of capillary tube, 
C = capacity of condenser, 

Cs = shape factor, 

d = parameter to characterize electric double layer, 
E =applied electric field (potential gradient), 
F = average electrical driving force per unit volume of electrolyte in capillary, 

F 1 = 1 faraday (96, 490 coulombs), 

k = hydraulic permeability of porous medium, 
ke = electroosmotic permeability of porous medium, 

T 1 ____ .J..1-

.1..J - J. 1t:a15 LU.' 

L = length of capillary tube, 
M =mass, 
m = number of capillaries per unit area of porous material, 

mn = number of capillaries per unit area of porous material with radius l\i• 
n = porosity (also used for summation index), 
Q = quantity of fluid discharged per unit time, 

Q = electric charge, 
q =flow volume per second through individual capillary, 
R = effective radius of capillary, 

Rrt = effective radius of specific capillary, 

r = radial coordinate in capillary, 
dr = differential radial distance, 

r = radial distance to circle of electrical gravitation, 
T =time, 
t = shear stress in fluid, 

vs =velocity of first moving layer (slip velocity), 

V = average velocity of water migration in steady-state condition, 
dv = differential change in velocity, 
xs = x coordinate of surface of immobile portion of electric double layer, 

x, y, z = rectangular coordinates, 
e: = dielectric constant of fluid, 
y = fluid mass density, 
'TT= 3.1416 .. ., 

'TT n = pi product, 

p = mobile excess electric charge density, 

p =average mobile excess electric charge density, 
a = surface charge density, 
'T' = thickness of immobile portion of double layer, 
µ =fluid viscosity, 
i;: = zeta or electrokinetic potential, and 

d 9 = differential angle in polar coordinate system. 

VARIABLES CHARACTERISTIC OF ELECTROOSMOTIC FLOW 

It will be convenient to relate the variables characteristic of electroosmotic flow by 
use of dimensional analysis. The only restriction placed on this analysis is that a com­
plete set of variables must be chosen which completely define a physical system. Within 
this limitation, variables may be chosen a priori. If only the balance between viscous 
and electric forces at steady-state conditions is considered and all complicating effects 
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discussed previously are ignored, the variables affecting electroosmotic flow can be 
simply delineated. 

The shear stress, t, at any surface element in the capillary is proportional to the 
rate of change of velocity across the element dv / dr. The constant of proportionality 
is the coefficient of viscosity, µ, of the fluid. Thus, 

dv t = µ­
dr 

(1) 

This equation implies that the shearing resistance to electroosmotic flow is related to 
a surface area of shear, a thickness of the shear zone, a velocity, and a coefficient of 
viscosity. If only electroosmotic flow in a uniform capillary tube is considered, it is 
reasonable to characterize the surface area by the variable R, the radius of the capil­
lary; the shear zone by d, the characteristic distance of the mobile part of the double 
layer; the velocity by V, the average velocity of flow in a steady-state condition; and 
the viscosity by µ, the coefficient of viscosity of the fluid. 

The electric driving force is a function of the electric field and the charge. Conse­
quently, the variables E, the applied field (or potential gradient), and 75, the average 
excess mobile charge density, are introduced. (The characteristic volume has the 
same variable R introduced previously.) The point of application of both the electric 
and viscous forces is at the distance d from the surface of the immobile layer on the 
wall of the capillary. This is the same distance d introduced previously and it is dis­
cussed in considerable detail subsequently. At this point, however, d may most simply 
be considered a distance characterizing the electric double layer. 

It is also convenient to introduce as a variable y, defined as the mass density of the 
fluid in the capillary. This variable aids in the analysis and disappears from the final 
form of the expression developed. 

Development of Relationship Among Variables 

The variables necessary to characterize electroosmotic flow through a capillary 
tube under the influence of an applied electric field have been developed in the preceding 
section._ They have the fundamental dimensions of mass (M), length (L), time (T), and 
charge (Q), as follows: 

µ=coefficient of fluid viscosity, M (.:- 1 T- 1
; 

'Y = fluid mass density, M L - 3
; 

R = effective capillary radius, L; 

V = average velocity of water migration in steady-state condition, L T- 1
; 

d = distance to characterize electric double layer, L; 
75 = average mobile charge density, Q L- 3

; and 

E =applied electric field (or potential gradient), ML T- 2 "Q- 1
• 

All other variables that might affect electroosmotic flow, such as temperature, time, 
surface conductance, nonuniform geometry of pores, heterogeneity of material, vari­
able viscosity of pore fluid, electrolysis and possible ion exchange, are not considered 
further, and the system is assumed to be characterized completely by the seven vari­
ables. These assumptions are identical to those made in the development of the Helm­
holtz-Smoluchowski and Schmid equations. Consequently, the equations developed 
using them are subject to the same limitations as the Helmholtz-Smoluchowski and 
Schmid equations. 

By applying the Buckingham pi theorem, a mathematical technique to reduce the 
number of variables of a system to a smaller number of dimensionless parameters 
that characterize it, three dimensionless parameters may be developed. They are 
obtained by considering the following three pi products: 
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7T1 = fi(E, V, R, p y) 

7T2 = f2(d, V, R, p, y) 

7Ts = fa(µ, V, R, 75, 'Y) 

(2a) 

(2b) 

(2c) 

Completing the analysis of these pi products, we arrive at the following dimensionless 
parameters: 

Rt>E (3a) 7T1 = -2-v 'Y 
d 

(3b) 7T2 = R. 
7Ts = VRy (3c) 

µ 
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of electrolyte in the capillary and can be denoted as F. Thus, if the variables selected 
for the analysis truly represent the behavior of the system, electroosmotic flow is 
completely defined as a function of three dimensionless parameters by the following 
equation: 

(4) 

The relationship among the variables in Eq. 4 must be valid for both the Helmholtz­
Smoluchowski and Schmid conditions since no assumptions have, as yet, been made 
limiting the interval in which it is applicable. To develop the relationship among the 
dimensionless variables, several assumptions must now be introduced. 

Lomize et al. (1) argued that the flow through capillaries in an electric field was 
laminar and similar to hydraulic flow through pipes. Consequently, they reasoned 
that the product of 7T1 and 1Ts, which represent the friction factor and Reynolds number 
characteristic of hydraulic flow, must be equal to some dimensionless factor of pro­
portionality that is a function of the physical and chemical properties of the system. 
They showed that this assumption was reasonable and productive but did not define the 
proportionality factor further. 

If it is assumed that the proportionality factor is given by a function of 7T2, the re­
lationship among the dimensionless parameters may be written as: 

(5) 
or 

(6) 

To proceed further, it is necessary to define the distance d and to relate it to the zeta 
potential. Since d is meant to characterize the mobile portion of the electric double 
layer from both the electrostatic and fluid mechanical point of view, it may be defined 
as the distance between the center of electrical gravitation of the mobile portion of the 
double layer and the surface of the immobile portion of the double layer. This definition 
is indicated for a segment of a capillary tube or for a flat plate in Figure la. (Detailed 
investigation of the final equation using existing double-layer theories has shown that 
the definition of dis valid.) 

When the double layer is contained within a circular capillary tube, the locus of all 
points defining the center of electrical gravitation of the mobile portion of the double 
layer will lie on a circle, as shown in Figure lb, which can be called the circle of 
electrical gravitation. It may be found by noting that the moment of mobile charges 
on one side is equal to the moment of charges on the other side. Thus, 
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Figure 1. Definition of variables of electric double layer. 
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( 7a) 

where r denotes the distance from the center of the capillary tube to the circle of elec­
trical gravitation. 

When the thickness of the double layer is small in comparison to the radius of the 
capillary and, as a result, there is effectively zero excess charge at the center of the 
capillary, Eq. 7a can be reduced to the simple form: 
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"' I P·X ·dx 

d 
= _x ... s ____ _ 

- Xs (7b) 

For a circular capillary the distance d may be further defined (Fig. lb) as: 

A-n_-;:; (R\ - ........ 
Then by transforming the Helmholtz-Smoluchowski equation, a first approximation to 

the function fs (l) may be obtained. 

The Helmholtz-Smoluchowski equation, in the cgs electrostatic system, may be 
written as: 

V=~ 
4 TTµ (9) 

where I; denotes the zeta or electrokinetic potential, f denotes the dielectric constant 
of the capillary fluid, and all other terms have been previously defined. The Helm -
holtz-Smoluchowski equation is, by virtue of the original assumptions made in its der­
ivation, only valid for the large capillary and the thin double layer. 

As a result of the presence of the electric double layer, a cylindrical condenser can 
be assumed to exist at the walls of the capillary. This is the assumption made by 
Helmholtz in his original derivation. The capacity, C, of the condenser is given by 

c 
R 

2loge-=­
r 

(10) 

where L is the length of the capillary tube and all other terms are as previously defined. 
The zeta potent~al, (, i~ the electric potential across the equivalent condenser and 

must, therefore, charge, Q, divided by the capacity of the condenser: 

The ratio R/ r can be transformed in the following manner : 

R r-r+R 
r r 

1 R - r +--
r 

d 
1 + = r 

which, for the Helmholtz-Smoluchowski assumptions, is approximately equal to: 

R d =-r l + ­
r R 

(11) 

(12) 
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By substituting Eqs. 10 and 12 into Eq. 11 and noting that the average electric charge 
per unit volume p may be given as: 

it is found that 

2rrPR
2 loge ( 1 + ~) 

i: = -----"------'~ 
E 

Eq. 13 shows a relationship between d and the zeta potential. By now substituting 
Eq. 13 into Eq. 9 we find that: 

V = - loge 1 + - --1 ( d)R
2

F 
2 R µ 

(13) 

(14) 

in which Fis, as stated previously, pE or average electrical driving force per unit 
volume of electrolyte in the capillary. It is also important to note that R refers to the 
effective radius of the capillary, which is defined as the radius through which flow 
takes place. 

Eq. 14 is in the form of Eq. 6 where: 

(15) 

Consequently, an equation has been developed for circular capillaries which contains: 

1. All the variables required to satisfy the results of the dimensional analysis (Eq. 4), 
2. These same variables in a relationship compatible with the assumptions that have 

been made, and (d) 
3. A first approximation of the missing function fs R . 

Since Eq. 14 has been developed from a transformation of the Helmhotz-Smoluchowski 
equation, it apparently satisfies the requirements of that theory. It now remains to 
show that Eq. 14 satisfies the requirements of the Schmid theory. 

Development of Schmid-Poiseuille Equation 

The Schmid theory was developed for microporous systems in which the charge in 
the pore fluid can be considered uniformly distributed. Schmid considered his theory 
valid for capillaries with radii of less than about 500 A. By following the method of 
derivation of the Schmid-Poiseuille equation outlined by Winterkorn (!Q, 11), and in­
troducing into the Poiseuille equation for flow through a capillary tube having a para­
bolic velocity distribution (no slip at walls) the electric force per unit volume P where 

(16) 

the following equation results: 

q (17) 

where 

q =the flow volume per second, 
A1 = concentration of wall charges expressed in ionic equivalents per unit volume of 

pore fluid (number of charges per volume), 
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E = electric potential gradient, and 
Fi = 1 faraday (96, 490 coulombs). 

However, the average velocity, V, of the water flowing through the capillary is 
equal to q/a where a is the area of the capillary cross-section. Thus, the average 
velocity is equal to: 

V =!Ai Fi ER
2 

8 µ (18) 

Since the force function, P = AiFiE, is the electric force per unit volume of elec­
trolyte in the capillary and has been designated previously as F, Eq. 18 can be re­
written as: 

1 R 2 F v = 8-µ- (19a) 

Once again the dimension R, appearing in Eq. 19a, refers to the effective radius of the 
c:apillary through which fluid flows. No fluid can flow through the zone occupied by the 
immobile layer on the capillary wall. Since by definition tJJe dimension R is entirely 
within the mobile portion of the electric double layer (Fig. la), movement of fluid 
must be expected over the entire effective width of the capillai·y. As a consequence, 
slip must occur at the distance R from the center of the capillary tube and Eq. 19a, 
which has been derived assuming no slip conditions, should predict an average velocity 
that is too small. 

If the general form of the Poiseuille equation is solved using tl1e Schmid force func­
tion (Eq. 16), and assuming that slip occurs and the velocity of the first moving layer 
is given by Vs, the average velocity, V, is 

1 R 2 F 
V ::: Vs+ S - µ- (19b) 

It can be concluded, therefore, that the use of Eq. 19a is likely to predict a minimum 
average velocity of electroosmotic flow for microporous systems. 

Eqs. 14 and l 9a can be shown to be essentially the same, and a fir st indication is 
obtained that Eq. 14 may be a general form oftl1eequationforelectroosmoticflowifthe 

factor! loge ( 1 + ~) is nearly equal to 1/ 8 when the Schmid conditions are imposed on 

the analysis. For these conditions in a circular capillary, the charge density p is a 
constant and the moment of charge on one side of the circle of electrical gravitation 
(Fig. lb) must be equal to the moment of charge on the othe1· side. Therefore, from 
Eq. 7: 

R 

f (r - r) . r . dr = J (r - r) . r . dr (20) 

0 

Integrating Eq. 20 and rearranging terms leads to the following: 

(21) 

Substituting d/R = 1/3 into Eq. 15 produces a factor! loge ( 1 +~)equal to 0.144. 

This value exceeds 1/8 by about 15 percent, which is considered a reasonable check 
of Eq. 19a. Part of the difference results from the fact that Eq. 15 represents only a 
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first approximation to the missing function fs (~) . Additional difference results from 

the assumption, for both the Helmholtz-Smoluchowski and Schmid conditions, that the 
slip velocity is zero. Recent work has shown that any slip velocity other than zero 
will have a relatively more important effect on the average velocity when small, rather 
than large, capillaries are considered. 

It appears from the preceding discussion that a simple expression has been devel­
oped for circular capillaries which unifies, within reasonable limits, the Helmholtz­
Smoluchowski and Sclunid equations. This expression has the advantage of treating a 
range of capillary diameters and can be used together with existing double-layer theo­
ries to predict velocities under a wide range of conditions. Recent work has shown 
that Eq. 14 is entirely compatible with the double-layer theories presented by Bolt (1). 
Eq. 14 also leads to some interesting conclusions with regard to electroosmotic flow 
through porous media. 

Implications for Porous Media 

The average velocity of flow of water in a single capillary subjected to an electric 
field may now be approximated by Eq. 14. The total quantity of flow per unit time , q, 
through this capillary is given by: 

7TR
4
pE ( d) q = 2 µ loge 1 + R (22) 

where pE has been substituted for F. 
It is apparent that the flow through the capillary is dependent on the capillary radius 

and that the flow through a group of capillaries of different radii cannot be truly a func­
tion of parameters like the average capillary radius or the porosity of the system. 
However, the error introduced by using these parameters can be shown to be small. 

Expanding the logaritlunic function in Eq. 14 in the Taylor series and using only 
the first term, d/ R, to represent the entire series introduces into the equation an error 
that must be smaller than 17 percent. Consequently, the average velocity of flow, 
overstated by no more than 17 percent, may be represented as: 

V 
_ ! dR pE 
- 2 µ (23) 

Moreover, the .average mobile charge density p is related to a uniform surface charge 
density by: 

p'ITR2 = (-cr) 2 'IT R (24) 

or 
~ p= R (25) 

where the minus sign indicates a surface charge opposite in sign to that in the mobile 
portion of the double layer. 

By substituting Eq. 25 into Eq. 23, we find that 

V = d(- cr) E 
µ 

(26) 

indicating that the average velocity of flow is, for the case of a uniform surface charge 
density, sensibly independent of radius of the capillary. 

The outflow per unit time , q, for the individual capillary is a function of the area of 
the capillary cross-section: 
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q =a· V (27) 

where a has previously been defined as the effective area of an individual capillary and 
is equal to 1T R2

• Therefore, for a bw1dle of mn capillaries per unit area of radius Rn, 
discharging from a gross area A, the total discharge, Q, may be written as: 

n 

n 
Q = r mn 1T Rn 2 A • V 

0 

However, the term :t mn 1T Rn 2 is exactly equal to the porosity, n, of the system. 

Thus, 0 

Q = nA. V 

(28) 

(29) 

Eq. 26 is only correct to within 1 7 percent when a uniform charge density exists on 
the walls of the capillaries, the capillaries are straight, and the electric field is uni­
form. In a porous medium, such as soil, the charge density cannot usually be assumed 
to be uniform because of irregularities in the structure of some of the clay minerals 
and the common occurrence of several clay minerals intermixed with sand and silt 
grains. Thus, the velocity is most probably a linear function of capillary radius as 
indicated by Eq. 23. The capillary radius, in turn, may be related to the hydraulic 
permeability and porosity ~) by: 

R = fc E~)% 
\' s y n 

(30) 

where Cs denotes a shape factor that takes into account the tortuosity of flow channels 
in porous media. Substituting Eq. 30 into Eqs. 29 and 23 we find that: 

(31) 

where C1 is a constant related to the shape factor. Defining electroosmotic flow in a 
form analogous to Darcy flow as follows: 

(32) 

where ke represents an electroosmotic coefficient of permeability and E is the potential 
gradient, we find that 

(
kn)% -ke = C1 µy d · p (33) 

and ke is related to the hydraulic permeability and the porosity of the system. 
One side advantage of relating electroosmotic flow to hydraulic permeability as done 

here is that, in the form of Eq. 31, the electroosmotic flow equation includes a correc­
tion for the tortuosity of the flow path in the porous media. This correction factor is 

not exactly correct since C1 is related to (Cs) ~fa, and the shape factor for electro­

osmotic flow may be different from that for hydraulic flow, but it is a convenient step 
in the proper direction. 

Other implications of Eq. 14 are that electroosmotic flow is directly related to 
double layer thickness which is, in turn, related to pore ion concentration. Thus, 
electric conductivity measurements should be obtained when attempting to predict the 
usefulness (and economy) of electrokinetic treatment. 
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When applied to saturated soils, Eq. 14 implies that the higher the water content of 
the soil mass, the greater is the electroosmotic flow, except when the soil-water sys­
tem becomes fluid and the soil particles are able to move. By definition, the fluid 
state would be expected at water contents in the neighbor hood of the liquid limit of the 
soil. A reduction of the electroosmotic flow has been shown by Piaskowski ~) and 
Winterkorn (!_Q) to occur at these water contents. 

The relationship between surface charge density and velocity of flow leads to the 
conclusion that the effectiveness of electrokinetic treatment of soils should be related 
to the plasticity properties of soils since the higher the surface charge density, the 
higher are the expected Atterberg limits. Consequently, greater effectiveness ofelec­
troosmotic treatment would be expected in montmorillonitic soils than in kaolinitic soils. 

CONCLUSIONS 

A general equation for electroosmotic flow in circular capillaries appears to have 
been developed. The new equation has been checked against the Helmholtz-Smolu­
chowski and Schmid-Poiseuille equations, which are the two limiting cases. Its ad­
vantages are that it has a simple form, it can be used with any existing or improved 
double-layer theories, it permits the prediction of velocities for a wide range of cap­
illary diameters , and it provides better physical insight into the process of electro­
osmotic flow than most existing theories. It is, however, subject to essentially the 
same limitations as most equations. Analysis of the new equation suggests that for a po­
rous medium such as soil, the electroosmotic velocity of water flow is related to perme­
ability, porosity, pore ion conductivityandsoilplasticity properties. Thesevariables 
must be investigated in determining the suitability of a soil for electrokinetic treatment. 
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Discussion 

H. C. LEITCH, Graduate Research Assistant, McGill University, Montreal, Canada­
This paper is of considerable interest in that it provides a fresh approach to the prob­
lem of establishing the physical significance of the coefficent of electroosmotic perme­
ability. The dimensional analysis used to derive the equation presented here closely 
parallels that used by Leonards ~)to establish the generalized Hagen-Poiseuille equa­
tion for hydraulic flow: 

(34) 

where 

v superficial hydraulic flow velocity; 

~s shape factor, introduced to account for the shape of the pore cross-section; 
1 __ __ , _____ ,.! - --- ..].! ___ _ 

.1..\.ff - uy UI. Q.UJ.J.L .&. Q.\,.U.uo, 

y = unit weight of fluid; 
S = hydraulic gradient; and 
µ = coefficient of absolute viscosity of the fluid. 

Thus, it is not surprising that a similar result can be obtained from a modification of 
Eq. 34. The required modification is achieved by replacing the hydraulic gradient, S, 
by an equivalent electroosmotic gradient, Se, which may be written as: 

(35) 

where 

E = applied electric field, and 
p = average excess charge density of mobile portion of diffuse ion layer. 

By the use of this substitution, it is possible to write an electroosmotic flow equation 
of the form 

where 

V superficial electroosmotic flow velocity, 
Cse electroosmotic shape factor, and 

R electroosmotic radius, related to the hydraulic radius. 

(36} 

The approximations used in the original presentation allow the evaluation of the elec­
troosmotic gradient, Se, as 

s = f ~~t""g_ .§i 
e 1Y~Ry 

(37) 

where d is a parameter introduced to characterize the properties of the diffusion layer 
(see Fig. la}. Thus, Eq. 36 becomes: 

and if 

V = C B:d-pE 
Seµ 

Q nAV 

(38) 

(39} 



where 

Q discharge per unit time, 
n = equivalent porosity (based on free volume of pores), and 
A = cross-sectional area of soil, 

Eq. 39 becomes 

R -Q = C - d pnEA Seµ 
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(40) 

If it is further assumed that R '°'"RH, a combination of the Hagen-Poiseuille equation 
with Darcy law yields the relationship: 

(41) 

where k is hydraulic permeability. 
Electroosmotic flow has been described (!_~_) by the empirical equation: 

Q = ke EA (42) 

where Ke is electroosmotic permeability. Using this relationship, 

(43) 

Therefore, Eq. 41 may be simplified to 

(44) 

which is Eq. 33 of the paper under discussion. Y: 
It would s eem, however, that C1 is related to (Cs) - 2 and, thus, serves to gener­

alize by taking into account, at least partially, any deviation from the circular in the 
shape of the cross-section of the soil pores. It does not, however, offer any correc­
tion for the tortuosity of the flow path within the soil. 

From Eqs. 41 and44 and from Eq. 14 of the paper under discussion, it would seem 
that the effectiveness of electroosmotic treatment would vary directly with the excess 
charge of the cations in the mobile portion of the double layer. The high surface charge 
density and, perhaps more important, the high specific surface associated with mont­
morillonitic clays would reduce this quantity to below that of a less active kaolinitic 
soil, all other factors being equal. The reduction in the excess charge of the diffuse 
ion layer would be at least partially offset by an increase in the parameter d and in the 
hydraulic permeability, but experimental evidence shows that electroosmotic perme­
ability decreases slightly with increasing activity. Casagrande ill) found that ke -
2 x 10- 5 cm/sec for Na bentonite at a water cont.ent of 170 percent and 5x10- 5 cm/sec 
for a less active clayey silt. 

The efficiency of electroosmotic dewatering, as opposed to hydraulic dewatering, 
may be chai' acterized by the ratio ke/k. In the case of the two soils mentioned, ke/k 
is 2 x 106 for the Na bentonite and 6. 25 x 102 for the clayey silt. Thus, even though 
the electroosmotic permeability of the bentonite was found to be slightly less than that 
of the clayey silt, its suitability to electroosmotic treatment is considerably greater. 

It should also be pointed out that a significant change in outflow under a constant 
macroscopic electric potential gradient can occur over a period of time, particularly 
in active soils at high water contents. It would appear that this effect is due largely to 
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local changes in the resistivity of the soil-water system which lead to changes in the 
microscopic electric gradient (g). 
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M. I. ESRIG and S. MAJTENYI, Closure-Mr. Leitch's discussion raises several im­
portant questions about electroosmotic flow of water in soils and about the equations 
we have developed. These questions are related to the use of the Poiseuille equation 
!~ ~~~::::.~te:-!~!.!!~ e!e~!!'00!:!!'!0!!~ f!01.V 
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pores on this flow, the physical significance of the new equation we have proposed, and 
the effects of time on electroosmotic flow. 

As Mr. Leitch has suggested, the use of the Poiseuille equation, whether or not it 
is developed from a dimensional analysis, to characterize electroosmotic flow in cap­
illaries can, under a limited set of circumstances, be correct. Use of this equation 
is only correct when the driving force is uniform across the cross-section of the cap­
illary. This limitation was recognized by Winterkorn (!Q, .!.!) when he developed what 
we have termed the Schmid-Poiseuille equation that characterizes electroosmotic flow 
in microcapillaries. However , when the capillary diameter becom es so large that the 
Helmholtz t heory is applicable (d/ R is small and approaches a minimum value), the 
electrical driving force is no longer uniformly distributed but is localized in a small 
region near the capillary wall. For this condition, the Poiseuille equation is not ap­
plicable. 

Mr. Leitch's implication, that the introduction of the electroosmotic force function 
into the Poiseuille equation produces simply and quickly the new equation for electro­
osmotic flow, obscures the main problem (and contribution) of the paper . That is, a 
first approximation to the function f s d/R has been developed which unifies the Helm­
holtz-Smoluchowski and Schmid theories. Using Mr. Leitch' s approach, which is an 
extrapolation of the Poiseuille equation, it is not possible to develop this function. 

Mr. Leitch's comments about the correction for shape and tortuosity are correct if 
the factor C 8 is defined in accordance with the development presented by Leonarda ~) 
only as a correction factor to account for th1? shape of the capillary cross-section. 
However, it was our intention to define this factor as a combined shape and tortuosity 
correction, since these corrections are essentially inseparable when determining soil 
permeabilities. In our opinion, such a definition does not change the analysis presented 
in the paper. In addition, if it is assumed that the imposition of the electrical field on 
the soil mass does not alter the shape or tortuos ity of the capillaries (an assumption 
that may be subject to some question) it is appar ent from Eq. 41 that C1 =Cs 7'2. Since 
Cs must be less than unity, it is also readily seen that C 1 is closely equal to unity for 
a wide range of va lues of Cs. Thus, in the form of Eq. 31, the coefficient C1 can 
probably be assumed equal to unity with a loss in accuracy which is small in comparison 
to the many other uncertainties present when one tries to predict electroosmotic flows. 

Mr. Leitch has also pointed out the rather important interrelation of the parameters 
d and p. H~ has argued that the product of d and p should increase with soil activity 
and that the electroosmotic permeability of the soil should, therefore, increase. He 
points out, however, t hat incr'easing the activity of a soil from that of a clayey silt to 
a bentonite has been shown to decrease ke· We are in agreement with Mr. Leitch's 
analysis and have experimenta l evidence to suggest that it is correct but that he has 
not carried it quite far enough . For examplu, referring to Eq . 31, which is only a 
simplification of Eq . 14 into which the relevant engineering index properties of soil 
have been inb:oduced it is apparent that the net effect Of a reduction in the permeability 
of soil from that of the clayey silt ( 8 x 10-8 cm/ sec) to that of the bentonite (1 x 10- 11 
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cm/ sec) would be a decrease in ke. A further decrease could be expected because 
the pore fluid conductivity of the sodium bentonite was reported to be 5 times greater 
than that of the clayey silt, tending to decrease the parameter d significantly. Com­
plicating this sort of qualitative analysis is the fact that in bentonite a reduction in 
electroosmotic outflow would be expected as a result of the presence of positive charges 
on the edges of the particles while negative charges are present on the faces. Con­
sideration of these factors, together with those indicated by Mr. Leitch, leads to the 
conclusion that qualitative evaluation of our equation predicts changes in ke in agree­
ment with experimental evidence. 

Finally, we have specifically excluded from our analysis the effects of time on the 
electroosmotic permeability of soils. It is recognized that physical and chemical 
changes occur with time in soils subjected to an electric field. These changes will 
change the electroosmotic permeability of the soil, generally tending to decrease it. 
We only intend that our analysis be considered applicable for a very short period after 
an electric field is applied. 




