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A method of solving for the deflected shape of freely discontinuous 
orthotropic plates and pavement slabs subjected to a variety of 
loads including transverse loads, in-plane forces and externally 
applied couples is presented. The method is applicable for plates 
and pavement slabs with freely variable foundation support includ
ing holes in the subgrade. 

Anisotropic elasticity governs the behavior of orthotropic plates 
and pavement slabs and is usedtodevelopthe necessary equations. 
The method is not limited by discontinuities and uses an efficient 
alternating-direction iteration means of solving the resulting ·equa
tions . The method allows considerable freedom in configuration, 
loading, flexural stiffness and boundary conditions. It solves the L . . . ... 

problem rapidly and should provide a tool for use in later studies 
of repetitive stochastic loading. Three principal features are in
corporated into the method: (a) the plate is defined by a finite
element model consisting of bars, springs, elastic blocks and 
torsion bars; these are further grouped for analysis into orthogonal 
systems of beam-column elements; (b) each individual line-element 
of the two dimensional system is solved rapidly and directly by 
recursive techniques; and (c) an alternating-direction iterative 
method is utilized for coordinating the solution of the individual 
line- elements into the slab solution. 

The computer program utilizes the equations and techniques 
developed and can be used by the reader. Several sample problems 
illustrate the generality of the method and the use of the computer 
program. The results compare well with closed-form soluti.ons. 

•THE analysis of pavement slabs is a difficult task. To date neither a theoretical ap
proach nor experimental work has solved the problem. In 1926 H. M. Westergaard 
completed an analysis of stresses in pavement slabs (32) and his equations have become 
the definitive design equations for pavement slabs in tlle United States. Many other 
engineers and mathematicians have attempted to solve this design problem. Unfortun
nately, limitations of conventional mathematics and of hand solutions have restricted 
developments. Thus the Westergaard solutions, as well as all others, are subjected to 
limiting severely assumptions which often are not realistic. 

Several large-scale road tests have been conducted in attempts to bridge the gap be
tween theory and reality. These include the Bates Test in 1922, the Maryland Road 
Test in 1950, and the AASHO Road Test in 1958. All three of these full-scale experi
ments have added to the knowledge of pavement design. However, only the AASHO Road 
Test was large enough to provide significant information. Work with the AASHO Road 
Test data has shown that a mechanistic model of structural behavior is essential in the 
study of load, environment and performance. 

The problem, then, is to develop a mechanistic model for describing slab behavior 
and to develop better methods for solving these equations. The method should allow 

Paper sponsored by Committee on Rigid Pavement Design and presented at the 45th Annual Meeting. 
l 



2 

for freely discontinuous variation of input parameters including bending stiffness and 
load. Combination loading should be providedforandshould include lateral loads, in
plane forces, and applied couples or moments. Freely variable foundation conditions 
are needed. Such a technique should apply not only to the general slab-on-foundation 
case, but also for orthotropic plates with various configurations of structural support. 

This paper describes such a method of solving for the deflected shape of orthotropic 
plates and pavement slabs. (Throughout this paper, the term slab is often used as an 
abbreviation for pavement slab and slab-on-foundation.) From this deflected shape the 
stresses, deflections, loads, and bending moments can easily be determined. The 
method developed takes advantage of groundwork laid by others. The finite-element 
method was developed byMatlock(l8, 19, 29), and variations and extensions of his 
methods have been made by Tucker, Haliburton, Ingram, and Salani (29, 18, 12, 24). 

The principal features incorporated into the finite- element method are Ta) repre
sentation of structural members by a physical model of bars and springs which are 
grouped for analysis into systems of orthogonal beams, (b) a rapid method for solution 
of individual beams that serve as line elements of a two-dimensional slab, and (c) an 
alternating-direction iteration technique for coordinating the solutions of individual 
beams which ties the system together. 
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NOTATION 

Definition 

Temporary bar numbering used in derivations. 

Coefficient in the matrix equation. 

Constants used to relate stress to strain in general anisot
ropic elasticity (i refers to stress component, j refers to 
strain component). 

Torsional stiffness of slab element i, j about the x- axis. 

Torque exerted on the x-beam due to the relative rotation 
in torsion bar i, j. 

Bending stiffness of an isotropic plate. 

Bending stiffness of an orthotropic plate in the x-direction. 

Bending stiffness of an orthotropic plate in they-direction. 
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Total strain in x-direction. 

Total strain in y-direction. 

Total strain in z-direction. 

Vertical forces at joint i, j. 

Angular rotation across a plate element. 

E 
Shear modulus = 12(l +v). 

Approximate orthotropic shear modulus 

(Ey (1 + vxy~x~y Ex (1 + llxy)) 

Shear strain . 

D
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+ 2D xy 

The increment length along the x-beams. 

The increment length along they-beams. 
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An integer used to number mesh points, stations, and bars 
in the x-direction. 

An integer used to number mesh points, stations, and bars 
in the y-direction. 

Support modulus of the foundation. 

Moment acting on Bar a about the center of the bar. 

Bending moment acting on an element of the plate in the 
x-direction. 

Bending moment acting on an element of the plate in the 
y-direction. 

Twisting moment tending to rotate the element about the 
x-axis (clockwise-positive). 

Twisting moment tending to rotate the element about the 
y-axis (clockwise-positive). 

The bending moment in the x-beam at Station i, j (equals 
x 

h M . . ). 
y 1, J 

The bending moment in they-beam at Station i, j (equals 

h M~ .). 
x 1, J 

Poisson's ratio which results in strain in they-direction 
if stress is applied in the x-direction. 

Poisson's ratio which results in strain in the x-direction 
if stress is applied in they-direction. 

Axial load in the x-beam in Bar i, j (equals h p~ .) . 
y 1, J 
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Unit axial load in the slab x-direction at Station i, j. 

Distributed lateral load. 

Concentrated lateral load. 

Externally applied load at point i, j. 

Load absorbed internally by the x-beam system at Station 
i' j . 

Load absorbed internally by they-beam system at Station 
i, j . 

Load absorbed by they- beam in bending. 

Load absorbed by they-beam due to axial load. 

Load absorbed by tlie y-beam in twisting . 

Fictitious spring stiffness or closure parameter. 

Fictitious spring representing the x-beams. 

Fictitious spring representing the y- beams. 

Elastic restraint used to represent the foundation in the 
finite-element model. 

Stress applied in the x-direction. 

Stress applied in they- direction. 

Stress applied in the z-direction. 

Slab thickness. 

External torque applied to Bari on the jth x-beam. 

Exter nal torque applied to Bar j on the ith y- beam. 

Shear stress. 

Shear in Bar a of the j th x-beam. 

LatcraJ deflection. 

Deflection of the jth x-beam at Station i. 

Deflection of the ith y-beam at Station j. 

Standard Cartesian coordinate directions. 

THEORY OF ELASTIC PLATES AND SLABS 

A review of the various theories involved in the analysis of plate and slab bending 
will be helpful in understanding the problem at hand. A brief discussion of the bihar-
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monic equation is presented in this section. A discussion of generalized Hooke's Law 
which leads into the derivation of the equation of bending for orthotropic plates follows. 
The effect of in-plane forces applied to the plate in combined loadings is presented next. 
Finally, elastic foundations are discussed as related to pavement support. 

General Plate Theory 

The bending of a plate depends greatly on its thickness as compared with its other 
dimensions. Timoshenko (28) distinguishes three kinds of plate bending: (a) thin plates 
with small deflection::;, (b) tliin plates with large deflections, and (c) thick plates. 

For thin plates with small deflections (i.e., the deflection is small in comparison 
with thickness), a satisfactory approximate theory of pending of a plate by lateral loads 
can be developed by making the following assumptions: 

1. There is no deformation in the middle plane of the plate. This plane remains 
neutral during bending . 

2. Planes of the plate lying initially normal to the middle surface of the plate remain 
normal to the middle su1·face of the plate after bending. 

3. The normal stresses in the direction transverse to the plate can be disregarded. 
(This assumption is necessary in the analysis of bending of the plate as will be seen 
later; approximate corrections can be made to account for pressures directly under the 
transverse load.) 

With these assumptions, all components of stress can be expressed in terms of the 
deflected shape of the plate. This function has to satisfy a linear partial differential 
equation which, together with the boundary conditions, completely defines the deflection 
w. The solution of this differential equation gives all necessary information for calcu
lating the stresses at any point in the plate. 

Timoshenko {28) develops the theory of bending of plates very thoroughly from the 
simplest problemof bending in a long r ectangular plate subjected to transverse load to 
the very complex problems of thick plates with various boundary conditions. 

The Isotropic Plate Equation 

Structural plates and pavement slabs are normally subjected to loads applied perpen
dicular to their surface, i.e., lateral loads. Timoshenko and others have derived a 
differential equation which describes the deflection surface of such plates, the bihar
monic equation. With one minor change, Timoshenko' s equation is given below. This 
change is to reverse the sense of the z-axis and make "up" positive. This new coordi
nate system is consistent with recent beam-column developments (18). The equation 
becomes -

q (1) 

in which Mx is the bending moment acting on an element of the plate in the x-direction, 
My is the bending moment acting on an element of the plate in they-direction, Mxy is 
a twisting moment tending to rotate the element about the x-axis (clockwise positive), 
and Myx is a twisting moment tending to rotate the element about the y-axis. Obse1·ving 
that_ Mxy = -Myx for equilibrium (rxy = ryx), the equation can be condensed into the fol
lowing form. 

(2) 

To evaluate this equation, it is safe to assume that expressions for moment derivedfor 
pure bending can also bt:> used for laterally loaded plates. This assumption is equivalent 
to neglecting the effect OJ?, bending of t he shearing forces and the compressive stress in 
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the z-di1·ection produced by the lateral load. Errors introduced into these solutions by 
such a ssumptions are negligible provided the thickness of the plate is small in compari
son with the other dimensions of the plate . 

The equations for moment are derived in Ref. 11 for the general case. For the 
special case of isotropy, they can be stated 

M (0
2

w o
2
W) D - + !J-2 x oX2 -O y 

M (°2
w 0

2w) = D --+ v -
y a y2 ax2 

M = -M 
a2w -D (1- v)-xy yx axay 

(3) 

(4) 

(5) 

where Dis the bending stiffness of the plate, v is the Poisson's ratio, and other terms 
have been previously defined. 

Substituting these expressions into Eq. 2 obtains 

q (6) 

The Generalized Hooke's Law 

To obtain the relations between the components of stress and the components of de
formation in an elastic body, it is necessary to choose some mathematical model which 
r eflects the elastic properties of the body . In these der ivations it is always as sumed 
that the components of strain are linear functions of the components of str ess. In other 
words, it is assumed that a continuous body satisfies the generalized Hooke ' s Law. 

For the most general case of a homogeneous anisotropic body, the equations which 
express Hooke's Law in Cartesian coordinates x , y , z have the form 

( Sncrx + s12cry + S1Pz + Sl4T yz + Sl5T XZ + Sl6T xy x 

( s 210'x + s 22cry + s23"z + S24Tyz + S25T XZ + S26T xy y 

f z - S31"x I S32"y 

"yz S41"x 

'Y ssi"x xz 

"xy = s 610'x + s 62 "y + + S66T Xy (7) 

These equalions contain 36 coefficients Si j, the so-called elastic constants. Solving 
these equations for stress components obt'ains an equivalent form for the equations in 
terms of stress: 
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O' C3lt'X + c32E"y z 

r = C41E"x yz 

r = C51E"X xz 

r = C61E"X + ce2E"y + + CaeYxy (8) xy 

Several authors @) have called the constants Si, j the coefficients of deformation, and 
the constants Ci j the moduli of elasticity . The moduli of elasticity can be uniquely ex
pressed in term's of the coefficients of deformation when the value of their determinants 
are different from zero. It has been shown by others that the number of elastic con
stants in the most general case of anisotropy is reduced to 21 if the deformations of the 
elastic body can be considered to occur isothermally, that is, the temperature of each 
element remains constant during the deformation process. 

Since 

(9) 

and likewise, 

(10) 

Eq. 1 can be written in terms of 21 coefficients as follows: 

EX Su ax + s12ay + s1llz + sl4ryz + sl5r xz + sl6rxy 

E"y 81Px + s22cy + + s26rxy 

Ez = sl3 

(11) 

and, likewise Eq. 2 can be written in terms of 21 moduli. 
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(12) 

The problem of determining 21 coefficients to describe the behavior of an elastic 
body is still formidable. Fortunately, conditions of elastic symmetry permit still fur
ther reduction of this number. If the internal structure of a material possesses sym
metry of any kind, the same symmetry can be observed in its elastic properties. F. 
Neumann (8) set forth a principle for crystals which establishes a connection between 
symmetry of construction and elastic symmetry. In general, this principle says that 
a material has the same kind of symmetry with regard to physical properties as it has 
in its crystallography. This principle can be expanded to include bodies which are not 
crystalline but which possess a symmetry of structure such as wood, plywood, and 
reinforced concrete. 

If an anisotropic body possesses elastic symmetry, the equations of the generalized 
Hooke's Law are simplified. The simplifications can be thought of as follows: When 
viewed from the center of the symmetric coordinate system of the body, equal elastic 
properties are seen in both the positive and negative directions of any axis of symmetry. 
As a result, elastic bodies possessing symmetry have a smaller number of independent 
elastic constants than 21. The final number depends on the number of axes or planes 
of symmetry present in the body. 

Three Planes of Elastic Symmetry 

The case uf interest involves three planes of elastic symmetry passing through each 
point of a body orthogonally, that is, the planes occur at right angles to each other. If 
the axes of the coordinate system are directed perpendicular to these planes, the fol
lowing equations of the generalized Hooke's Law for an orthotropic body can be derived. 

( = s1i°' x + s12ay + S1Pz x 

( s12ax + s22ay + s2Pz y 

E sl3a x + s230' y + S3pz z 

'>"yz S44T yz 

'>"xz S55T xz 

i'xy = Se6'T' xy (13) 

Since the constants Si j are r edundant with Sj, i , it can be observed that there are nine 
independent elastic co'nstants remaining . 

Plane Stress Case 

For the particular case of thin plates in bending, O'z is taken to be zero (plane stress), 
and the following equations arc obtained: 

EX Su ax + S12Uy 

( S a + s O' 
y 12 x 22 y 

Yxy S66T xy (14) 
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These equations are derived directly from an orthotropic plane stress element (shown 
in Ref. 11) . The corresponding elements for stress in terms of strain are also devel
oped in Ref. 11, and can be stated 

where 

Isotropic Elasticity 

E x 
--1---- (E'x - llyxE'y) 

- I.I I.I xy yx 

E x 
1 - I.I I.I xy yx 

E' 
x = 

G 'Yxy 

E x 
1 - I.I I.I xy yx 

E' = 
E 

y 
1 - I.I . I.I xy yx y 

E' I v E' 
yx x 

E'E' -E"E 
y y x 

Hooke's Law for standard isotropic conditions can be stated 

E 
(E'x + l.IEy) a x 1 - I.I 

2 

E 
+ Ey) (J --a (VEx y 1 - I.I 

7' = xy 
Gy 

xy 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

where 'Yxy is the shearing strain, Txy is the corresponding shearing stress, and the 
shear modulus is 

G 
E (24) 2 (1 + v) 

Other terms have been previously defined. By comparing these equations with Eq. 14, 
it can be seen that four elastic constants are required to describe the behavior of thin 
orthotropic plates, whereas two independent elastic constants are required for isotropic 
plates. The orthotropic constants are E~, Ey, E' ', and G0 • The shear modulus, G0 , 
is an independent constant, and a method for determining it is discussed in Ref . 11. It 
can be approximated by relating the other three constants as follows: 
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(25) 

Orthotropic Elastic Plate Equations 

The complete derivation of the differential equation of equilibrium is given in Ref. 11. 
Utilizing the elastic constants previously described, this equation can be stated 

where 

E' t3 
DX 

x = 12 

E't3 
D = 

y 
y 12 

D1 = E' 't3 
12 

G t3 
D 0 

xy 12 

since 

H 

Then Eq. 26 reduces to 

.,4 w 4 4 
D -0 

- + 2H ~ + D 0 w = q 
x ax4 ax2cy 2 Y oY4 

For the particular case of isotropy, this equation collapses to the equation 

where 

Since for isotropy 

D = 

E' 
x 

E' 
y 

E 

1 - 1l 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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1 - 11
2 

E 
G = 2 (1 + 11) 

Therefore, it can be seen that 

H 

D x D 
y 

_f (E" + 2G) 
12 

D 

D 

.f(~+2 E ) 
12 1 - 11

2 2 (1 + 11) 

11 

(36) 

(37) 

(38) 

(39) 

These equations were derived for structurally orthotropic materials. A great deal 
of work today deals with geometrically orthotropic plates. The same equations are 
used in such cases, but an equivalent thickness t is derived as appropriate to account 
for the variation in moment of inertia. Hoppmann and Huffington treat this problem in 
Ref. 10. 

Pavement Slabs 

Solutions of pavement slabs, or slabs-on-foundation as they are sometimes called, 
are of particular interest in this paper. For these developments it is satisfactory to 
assume that the intensity of the reaction of the foundation on the slab is proportional to 
the deflection w of the slab . This intensity is then given by the expression kw, wliere 
the constant k, expressed in pounds per square inch per inch of deflection, is called the 
11 support modulus of the foundation. 11 Determination of numerical values for this mod
ulus depends largely on the properties of the foundation, but a discussion of these prop
erties is beyond the scope of this paper. Such determinations, however, have been 
made by Terzahgi (27). 

Although a greatdeal of work has been done on the pavement slab problem, probably 
the most significant accomplishments to date were made by Westergaard (31, 34) , par
ticularly with reference to the design problems encountered in concrete pavement. His 
analysis was done in the eat•ly 1920's and relates to three special-case loadings as fol
lows: (a) load applied near the corner of a large rectangular slab (corner load); (b) load 
applied near the edge of a slab, but at a considerable distance from any corner (edge 
load); and (c) load applied at the interior of a large slab at considerable distance from 
any edge (interior load). 

Other theoretical work was done by Gerald Pickett, et al. (21) in 1951 in studies of 
deflections and moments for concrete pavements. This study added additional solutions 
to those available for use by the practicing engineer. Perhaps more significantly, the 
results of these solutions were made available for practical use by incorporating them 
into influence charts similar to those developed by N. M. Newmark (20). 

Additional contributions include work by Spangler (25) Teller andSUtherland (26), 
Kelley (13), and others who have, in the past 25 years-:-conducted experimental studies 
on pavement slabs to correlate deflections under static load with those predicted by 
theory. The eva~uation of such work is beyond the scope of this paper, but it is dis
cussed briefly under the heading of needed research. 
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Nonuniform Conditions 

Unfortunately for the designer, most pavement slabs do not meet the stringent as
sumptions imposed by Westergaard. First, the slabs must in reality be finite (Fig. lb). 
Second, uniform support is hard to obtain since local loss of support under the pave
ment due to pumping or settlement of the foundation is common (Fig. le). Richart and 
Zia (22) have treated this problem by applying a general method developed by Brotchie 
( 4). Their solution relates specifically to a large slab-on-foundation sparuiing a circular 
void .. They provide the designer with several curves useful in evaluating this specific 
condition. They do not treat, however, the more general cases of (a) smaller slabs 
spanning a void of irregular shape, (b) the problem of random placement of a void near 
a corner or edge, or (c) in the more general case , several voids under a single slab. 

Leonards and Harr (16) also treat nonuniform subgrade support. They evaluate the 
effect of curling on a circular slab. The circular slab is not used in pavement design, 
but the methods developed may be useful in treating differential temperature effects in 
the future. 

In the methods of this paper, the foundation is represented by the modulus of support 
k. This approach provides the basis for future consideration of nonlinear elastic foun
dation support (17). The fr eely discontinuous inputs allowed by the method provide the 
capability of varying k anywhere under the slab. 

Cracks and other Discontinuities 

The theories described thus far relate to homogeneous materials. No provision has 
been made for cracks or other discontinuities (Fig. ld). other authors have treated 
this subject in some detail for special cases. These include Ang (1 , 2) , Wi ams (36) , 
Reissner (23) , and Knowles and Wang (14). Many authors , including Those listed, dis
cuss "Reissner bending of plates." This phrase refers to the equations for bending of 
elastic plates developed by Eric Reissner of MIT. Classical theory , that discussed at 
the begiruiing of this chapter, meets the so-called Kirchhoff boundary conditions at free 
edges, these being a vanishing bending couple and a vanishing sum of transverse force 
and edgewise rate- of- change of twisting couple at all free plate edges. These two con-

(a) (b) 

( c) ( d ) 

Figure 1. Comparison of real and infinite pavement slabs. 



13 

ditions are actually a compression of three independent conditions: (a) vanishing trans
verse force, (b) vanishing bending couple, and (c) vanishing twisting couple at free 
edges. "Reissuer bending" includes differential equations fulfilling these three boundary 
conditions . 

Reissuer's studies further show that stresses near a finite crack in infinite plates 
are somewhat greater than those calculated by classical theory. This is accentuated 
near the base of the crack Wher e extremely high str ess concentrations might be expect
ed. Such cracks are beyond the scope or application of this work and will not be treated. 

The discontinuities of interest are those which occur across the entire slab cross
section at any particular location. Ang, Williams, and Reissuer indicate that stress 
distribution can be predicted reasonably outside a distance half of the plate thickness 
from the edge of a crack. This is acceptable for the application of the method discussed 
herein, since this distance also approximates a half increment length in the finite anal
ogy. Furthermore, such accuracy is quite adequate for structural plates and pavement 
slabs. Corrections to this theory can be obtained from "thick plate" theory and intro
duced into any solution where needed (33). 

Summary of Elasti c Theory 

The theory described herein is helpful to the development of any method for analyzing 
plate bending . Closed-form solutions of the problems, however, become more difficult 
as complexities increase . Hand s olutions of isotropic plates are readily accomplis hed, 
but for solutions of homogeneous orthotropic plates one must usually resort to com
puters . The addition of elastic support or finite cracks forces the use of approximate 
methods and limiting assumptions. Furthermore, each solution represents a special 
case, and a multitude of special-case solutions are required for the problems of interest. 
A more general, more rapid method would be of great advantage to the engineer. It 
would also be helpful if these solutions could be accomplished without resorting to higher 
order functions such as Bessel and Hankel functions. Such a general theory is the ob
ject of the research described herein. 

FINITE-ELEMENT THEORY 

The theories discussed in the preceding section are based on infinitesimal calculus. 
There are many rules governing the use of such calculus. In general, the functions 
must be continuous, and fourth order systems must have two continuous derivatives. 
Many complex engineering problems do not properly fulfill these conditions and cannot , 
therefore, be solved by resorting to the calculus. Furthermore, many such classi cal 
or analytical methods may not be well adapted for use on high-speed digital computers. 
As a consequence, approximate, or so-called "numerical," methods have been devel
oped. Hardy Cr oss (8, p. 1) pioneered the use of such methods in civil engineer ing with 
moment distribution methods. Newmark (8, p. 138) and Southwell (8, p. 66) have also 
been instrumental in these developments. In such numerical methods, the differ ential 
equation concerned is replaced by its finite difference equivalent. The problem then 
reduces to solving a large number of simultaneous algebraic equations instead of one 
complex differential equation. 

The method described herein is slightly different and involves breaking a plate or 
slab into a system of finite elements, each consisting of rigid bars connected by elastic 
blocks. The algebraic equations describing the system are derived by free-body ana-
Y sis of the finite model . 

Assumptions 

It is impossible to develop a completely general theory describing the behavior of 
any structure. It is often difficult to find solutions for the mathematical equations de
scribing even limited theories; therefore, additional conditions and assumptions are 
often imposed to permit solution. While many of these assumptions are known, it seems 
worthwhile to restate the assumptions and conditions relative to the finite-element 
model describing slab behavior. 
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1. Planes of the plate lying initially normal-to-the-middle surface of the plate 
remain on the normal-to-the-middle surface of the plate after bending. 

2. Normal stresses in the direction perpendicular to the plate surface can be dis
regarded for the bending solution. 

3. There is no axial deformation in the middle plane of the plate and, thus, this 
plane remains "neutral" during bending. 

4. All deformations are small with regard to dimensions of the plate. 
5. The bar elements of the model are infinitely stiff and weightless. 
6. Each joint in the model is composed of an elastic homogenous and orthotropic 

material which can be described by four independent elastic constants. 
7. Loads, masses, and bending strains occur at the joint. 
8. Torsional stiffness of the plate element can be invested in torsion bars. 
9. The neutral axis lies in the same plane for all elements even for nonuniform 

cross-sections. (Violation of this assumption, as stated by Ang and Newmark (2), has 
been shown to cause little error.) -

10. The spacing of the beam elements, designated by hx and hy, need not be equal 
but must be constant for all parallel beams. 

11. The number of increments into which each beam is divided is equal to the length 
of the beam divided by the increment length. 

The Physical Model 

Numerical methods are most often used as mathematical approximations of a govern
ing differential equation by the substitution of finite-difference forms for derivatives, 
or by the approximation of a continuum problem with a discrete nodal system. A second 
and perhaps preferable method is to model the plate or slab physically by a system of 
finite elements whose behavior can properly be described with algebraic equations. 
Newmark (8) pioneered such models for articulated beams' and plates. He states" ... 
the use ofthe model (finite-element model) offers certain advantages; there is no am
biguity concerning the boundary conditions; statical checks on the results haveaphysical 
meaning and can be made mor e accur ately; var iations in dimensions and physical prop
erties can be more easily treated." For many problems, the finite-difference equa
tions developed by direct substitution for the differential equation and the finite-element 
model equations developed from a free- body analysis of the model are equivalent. This, 
however, is not always the case. The physical model seems preferable because it 
facilitates visualization of the problem and formulation of proper boundary and loading 
conditions. It is useful, however, to use difference equations to describe the bending 
moments in the finite- element beams. 

Model of a Beam-Column 

The basic element in the plate model developed here is the model of a beam subjected 
to transverse and axial loads (termed a beam- column and developed by Matlock, et al.) 
( 18, 19). Figure 2 shows the development of this model. Figure 2a illustrates a beam 
element deformed by the action of pure bending and subjected to the assumptions of con
ventional beam theory. For linearly elastic stress and strain, the stresses acting on 
the beam element are shown in Figure 2b. If these distributed stresses are to be re
placed by concentrated forces as shown in Figure 2c, as they often are for design pur
poses, it seems reasonable to develop the mechanical model, Figure 2d. Here the de
formed beam element is replaced by a pair of hinged plates with linear springs contain
ing the elastic flexural stiffness of the beam restraining movement of the plates, top 
and bottom. Thus, a beam could be represented by a series of such beam element 
mudeli:; (Fig . 2e) . 

If the thickness of the plates between hinged joints is increased, a cruder represen
tation results (Fig. 2f). It has been shown, however, that representation of real beams 
by models containing as few as six elements or increments (a s they will be called here
after) give satisfactory approximation of real beams. As a specific example of model
ing, Figure 3 indicates a beam-on-foundation subjected to both lateral and axial loads. 
Supports may be linearly-elastic, non-linear, or fixed. Figure 4 shows these loads 
and supports depicted in the finite- element model. Many other loads and load com-
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(a) (bl (cl 

(d) ( •) 

(f) 

Figure 2. Finite mechanical representation of a conventional beam. 

Figure 3. Example beam on foundation subjected to latera l and axia l loads. 

LATERAL LOADS 

I 
AXIAL 
LOADS 

' 

ELASTIC SUPPORTS 

Figure 4. Finite-element model of Figure 3. 
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Figure 5. Finite-element model of grid-beam system. 

x 

Figure 6. Finite- element representation of torsional stiffness. 
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binations are possible. These include distributed or concentrated, transverse loads, 
transverse couples, axial loads, and bending moments. Elastic restraints are included 
as linear or nonlinear supports, or, as distributed or concentrated rotational restraints. 
In short, almost any physical combination of loads or restraints can be applied to a 
beam- column with this method. 

Simple Two-Dimensional Systems 

If one or more of these beams in each horizontal orthogonal direction are combined, 
they form a grid-beam system similar to the girder and stiffener system of a bridge 
deck or similar to the beam system of a waffle floor (Fig. 5). Tucker and Matlock (29) 
extended the use of the beam- column model to such systems. Each of the beams in this 
grid-beam system can be solved by the beam-column method as a line member. How
ever, the effect of one beam on the next beam is important if the beams act as a mono
lithic system. 

Such systems account for pure bending only. No torsion or Poisson's ratio effect is 
considered. In a true grid-beam system, these effects are small and do not affect the 
solution significantly. 

Plates and Slabs 

For the plate solution, however, the effects of torsion in particular are of significant 
importance, and the Poisson's ratio effects are more important than for grid-beam 
problems . Tucker (30) has worked on this pr oblem as have Ang and Newmark (2) . The 
next step was to determine some method for including these two factor s in the model. 

First, consider torsion in Figure 6. If a unit element is removed from the slab, a 
·twisting moment Mxy can be applied about the x-axis. The torsional stiffness C of the 
slab is defined as the applied twisting moment divided by the resulting angular rotation, 
cp , across the element. Then 

Mxy c =
cp 

(40) 

Considering this element as two beams connected by a torsion bar, the bar modulus 
can be chosen equal to C so that an applied twisting moment will produce the same rela-

Figure 7. Finite-element x-beam system with torsion bars acting between segments. 
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(a) Typical joint from the beam-column model. 

y 

/ 

(b) Typical joint from the plate model 
(partial cutaway). 

(c) Deformed joint from the plate model, 

Figure 8. Action of Poisson's ratio at a finite joint. 

Figure 9. Finite-element model of a plate or slab. 
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tive angle change <p as in the real unit element of the plate . Using this technique, tor
sion bars can be inserted between the adjacent bar elements of all the beams in they
direction of the grid-beam system as shown in Figure 7. These torsion bars are also 
inserted, of course, between the beams in the orthogonal x direction as shown in Figure 
9. It is convenient to think of one set of torsion bars acting with each set of beams 
since the solution proceeds in this manner . It should be emphasized here that these 
torsion bars represent the real torsional stiffness of the slab and are always active in 
the system. 

The effect of Poisson's ratio is easier to handle than torsion. Remember that the 
bending stiffness EI of a beam- column is vested in linear springs restraining the move
ment of the finite-elements at each joint. The analogous bending stiffness of a plate 

D = Et3 
( 41) 

replaces the EI of the beam and must also be concentrated. A pair of linear springs, 
however, is not satisfactory for this purpose since they can transfer no Poisson's ratio 
load. These stiffness springs are, therefore, replaced in the plate model by elastic 
blocks whose stress- strain relationship is equivalent to that of the real plate and which 
have Poisson's ratio equal that of the plate. Figure 8 illustrates the action of these 
elastic blocks. The blocks in Figure 8b replace the springs in Figure Ba. If the beams 
in the x-direction are bent up, the beams in the orthogonal y-direction bend down due 
to Poisson's ratio (unless they are restrained). The force required to restrain them 
results in an additional bending moment which equals 

(42) 

This is likewise true for the action of they-beams on the x-beams. As a result, the 
bending moment in an x- beam becomes 

Mx = D e:: + v :::) ( 43) 

Figure 9 shows the assembled slab model. The torsion bars in Figure 9 are con
sidered to resist only torsion. 

Input Values for Model 

Having developed a model, it is necessary to relate it to a real plate or slab. The 
plate is divided into increments in the x- and y-directions with increment length hx and 
hy, respectively. These "beam" increments are designated with i in the x-dfrection 
and j in t he y--direction. The mesh point or joint on the positive end of each increment 
is arbitrarily numbered the same as that increment . This numbering system then gives 
the i , j grid indicated in Figure 10. It is also convenient to denote segments of the plate 
bounded by increments in both the x- and y-directions, because these segments corre
spond to the torsion bars in Figure 10 . 

Stiffness and Lateral Load. -To describe the real plate with the model, it is appro-

priate to look at the jth x-beam. Figure 11 shows a side view of this beam which may 
be irregular in profile and may be loaded by a varying distributed load q. One incre
ment width of the load, centered on the ith mesh point, is assigned to Station i on the jth 
x-beam (Station i, j on the model). Qj_, j is the lumped load applied at Station i, j. Di, j 
represents the bending stiffness of the plate segment of which mesh point i, j is the 
center. The sketch is intended to illustrate that the stiffness may vary. In this case, 
it decreases from Station i-1 toward Station i+l. The load also varies but increases 
from Station i-1 toward Station i+l. Qi, j can be expressed by the equation 
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Figure 10. Plan view of the slab model showing all parts with generalized 
numbering system. 
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Figure 11. Fini te-element representation of a beam cut from slab with 
finite-element loads and stiffness. 
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i+% j +1/2 

Q .. = L: L: q +QC (44) 
l ,J 

i-Y2 j-% 

where Qc is any concentrated load which may be present at the station in addition to the 
distributed load. 

The stiffness Di, j for a plate is a unit value per inch oi width . It is convenient for 
use in computations to input average values over a full increment width. If Df j rep-
resents the average stiffness in the x-direction·, it can be calculated ' 

D~ . = 
1, J /

j + % D~ . 
1,) 

hh 
. 1/ x y 
) - /2 

(45) 

that is, the average bending stiffness of the plate over an area one increment wide and 
one increment long, centered at Station i, j. Full development of all input for the model 
is provided in Ref. 11. 

Other Input Values. -It is convenient to represent the torsional stiffness of plate 
segment i, j as torsion bars i, j acting at the midpoint of the model elements {Fig. 10). 
It is also helpful for external couples or torques applied to the plate to be input into the 
stiff beam elements. This is properly shown on the free-body in the next section. 
Axial loads, P, are also input into the bars with the changes, ~P, considered to occur 
at mesh points. 

Summary of Finite-Element Theory 

A physical m0del has beei.i chosen to represent the plate or slab for solution by nu
merical methods in preference to expressing the differential equation governing slab 
behavior in finite-difference form. The model is straightforward and assists visualiza
tion of the problem. Discontinuities and freely discontinuous changes in load, bending 
stiffness, torsional stiffness, and other parameters are easily understood with the use 
of a physical model, but limitations on continuity of the differential equation make direct 
difference approximations suspect. 

The greater the number of increments used to model a particular problem, the 
greater the accuracy of the solution. All exact solutions are based on infinitesimal 
changes in the real structure. Experience with this model indicates that reasonable 
results can be obtained with most problems using 8 to 20 increments in each direction, 
although the number of increments to be used will certainly depend on the dimensions 
of the problem as well as the accuracy required and the local complexity to be resolved. 
This is discussed in the section on "Example Problems and Verification of the Method." 

FORMULATION OF EQUATIONS 

The purpose of this section is to formulate from a free-body analysis the equations 
necessary to solve for the bending of a slab. It is intended here to give a readable and 
concise account of these developments rather than a complete mathematical treatment. 

Free- Body Analysis 

To derive the equations for solution of the bending of a plate or slab, it is helpful to 
refer to a free-body of the model. Consider first a section of the assembled slab model 
centered at any mesh point i, j {Fig. 12). For the present, the x-bar to the left of point 
i, j is called Bar a, and the x-bar to the right of point i, j is called Barb. 

Figure 13 shows these same bars as a free-body with other members of the model 
fixed and replaced by a system of equivalent for ces . Qt . r epresents the load ca rried 

l, J 
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z 

/ 

j-

Figure 12. Typical joint i,j taken from finite-element slab model. 

BAR A BAR B 

Figure 13. Free- body of joint i, j with other members of the model replaced by on equivalent force system. 

T; - 1/2, j 

---
Figure 14. 

i ,J 

Typical joint i, j with force and 
restraint inputs shown. 

by the l-beam at this intersection and the 
term a w/ay 2 represents the restraint of 
they-beam which provides the Poisson's 
ratio effect in the x-beam moment. The 

term sf(wf, j - wf, j) represents the load 

stored in the fictitious spring closure 
parameter . These closure springs will 
be discussed fully in the next two sections. 
Figure 14 shows the external forces which 
can be applied to these same two bars . 
Any of these forces may be zero but are 
considered to be present for generality. 
Combining the system of equivalent forces 

and external loads gives the general free-body of the slab model in Figure 15. This 
free- body is for a section of an x-beam. A similar free-body can be developed for the 
y-beam by changing all x's for y's, and all y's for x's. 

Summing vertical forces in Figure 15 at joint i , j with up taken as positive gives 

rr .. = Q! . + vc . - Y.'b . - s .. (w.x ·) - Q . . - sf (w~. - w! ·) - 0 v1, J i, J a,J , J i,J i,J i,J i,J i,J - (46) 

To evaluate the shear v~,j' sum moments a cting on Bar a a bout the center of the bar 
(clockwise rotations are positive) . For equilibrium 
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Figure 15. Generalized free-body of joint i,j with all forces and restraints shown. 
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Multiplying through by hx and clearing obtains 

-h yX . 
x a, J 

x' 
= Mi-1, j 

x' x x' x' .....x ( x x ) M .. + T . + C .. + C .. l + .t' . - w. l . + w . . 
1,J a,J l,J l,J+ a,J 1- ,J l, J 
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(47) 

(48) 

Likewise summing moments about Bar b and multiplying through by hx obtains an ex

pression for the shear v~ . as follows: 
'J 

- h ~b. 
x 'J 

x' 
M . . 

1, J 
x' ...x x' x' 

M. 1 . + T.b . + C. 1 . + C. 1 . 1 l+ ,J ,] l+ ,J l+ ,J+ 

+ ~b . (- w~. + w~ 1 ·) 'J 1, J l+ 'J 
(49) 

Multiplying Eq. 46 through by hx and substituting Eqs. 48 and 49 for the shears ob
tains the equation of interest. After convenient grouping of terms and transfer of all 
known values to the right-hand side of the equation, with a sign change, it becomes 
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(M~,1 . - 2M~'. + M::C'l .) - (- e~'. - e~'. 1 + e~'l . + ex1·+,1,J·+1) 
1- , J 1, J 1 + , J 1, J 1, J + 1 + , J 

+ Px . (- w~ 1 . + w~ ·) - F.'b . (- w~. + w~ 1 ·) + S .. h w~. a,J 1- ,J l,J ,J 1,J l+ ,J l,J x 1,J 

= h [Q. . - Q':! . - sf (w~ . - w':! . ) J -~ . + rb . x 1,J 1,J 1,J l,J a,J ,J 
(50) 

This equation relates forces and deflections at point i, j, but all of the prime terms 
must be evaluated further before the required mathematical manipulations can be per
formed. It is necessary at this point to substitute the central difference formulations 
of moment. Accordingly, they are substituted at Stations i-1, j; i, j; and i+l, j. 

The term e{ j represents the force exerted on the x-beam due to the r elative rota
tion between thi's beam and its neighbors. These expressions must be written for ex' 
at Stations i,j; i,j+l; and i+l,j+l. 

After making these substitutions, Eq. 50 becomes 

[C~ 2 -

x + w') ( 1 · 1 - 2w~ 
1 

. + wi-1,j+I)] 2w. 
1 

. x l- '] 1- 'J l,J + v 1- ,J - 1- 'J h D. l . 
y 1- 'J 

n:c 
yx h2 

y 

[ (w~-1,j - 2w~. +~) ( , - 2w':!. + w! ')] 2h D~. 1, J 1,J 1,J- 1, J 1, J+ 
x 1, J h2 + vyx h2 

x y 

X 

[(

wx1·' J. - 2w~ 1 . + w~ 2 ·) (w':! 1 . 1 -_____ 1_+_ , J ___ 1_+~,_J + vyx l+ 'J -
+ hyDi+l, j h2 

x 

2w~ 
1 

. 
l+ , J 

h2 
y 

e~ . 
+ :,J (w~-1,j-l - w~-1,j - w~,j-1 + w~, :i) 

y 

ex 

+ ~ (- w~-1,j + w~,j + w~-1, j+l - w~,j+l) 
h 
y 

x 

_ ei+l, j ( x x x ) 
h - wi, j + wi+l ,j + wi,j - 1- wi+l,j - 1 
y 

c~ . 
i+l, J+l 

h 
( - w~ . + w~ 1 . + w~ . 1 - w~ 1 . 1) 1,J l+ ,J l,J+ l+ ,]+ 

y 
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+ px . (-w": 1 . + w": ·) - Pxb . (- w":. + w": 1 . ) + h (s .. + sf)w":. a, J 1- , J 1, J , J 1, J i+ , J x i, J 1, J 

= h (Q .. - cl_ . + Sfw~ ·) - ~ . + T.'b · x 1,J l,J l,J a,J ,J 
(51) 

It is convenient in computation to use the same numbering system for bars, torsion 
bars, and joints. So far in these developments bars have been referred to as a and b. 
Referring to the numbering system shown in Figure 10, it will be recognized that in 
reality a becomes i and b becomes i+l. Therefore, for example, ~ j becomes 'If j• 
P~, j becomes Pf +l, j, etc. ' ' 

This will be an implicit solution for wf j• the deflection of the jth x-beam at Station 
i. It is convenient for solution, however, ' to utilize the last estimated values for all 
deflections, wx , not falling on the jth beam for a particular iteration, and transfer them 
to the right-hand side of the equation. Furthermore, all of they-beam deflections w'! . 
will be assumed known from a previous iteration a11d will also appear on the right- 1' l 
hand side of the equation. After making the notation change of a to i and transferring 
known values to the right-hand side, it is helpful to clear fractions and rearrange 
terms. The resulting equation is the equation we seek and is most convenientlywritten 
in terms of five unknown deflections, i.e., 

where 

a x 

(n": 1 . +D":.)-
1- '] 1,] 

c":. 
1, J 

c":. 
1, J+l 

h ~. 
y 1, J 

h2 
...:t (n": 1 . + 4D~ . + n": 1 . ) + c": . + c~ 1 . + c~ . 1 h2 1- ,] 1,J l+ ,] 1,J l+ ,] l,]+ 

x 

+ c~ . i+l, J+l + h h (s .. + sf) + h (~ . + ~ 1 ·) x y 1,] y 1, J l+ 'J 

h2 
dx = -2.0 ...:t 

h2 
x 

(D~ . + D~ l . ) -
l,J l+ 'J 

c~ . 
i+l, J 

ex. • h ...x 
1 1 - .P. 1 . l+,J+ yi+,J 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 
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fx h h (Q .. - Q~ . + Sfw~ ·) + h (~. + ~ 1 .) x y l, J l, J l, J y l, J l+ ,J 

- v [n~ 1 . (w~ 1 . 1 - 2w~ 1 . + ~ 1 . 1) yx 1- ,J 1- ,J- 1- ,J 1- ,J+ 

- 2D~ . (w~ . 1 - 2w~ . + w~ . 1) + D~ 1 . (w! 1 . 1 - 2w~ 1 . 
l, J l, J- l, J l, J+ l+ 'J l+ 'J- l+ 'J 

+ c~ . (w~ . - w~ . ) + c~ . (w~ . - w~ . ) i+l,J l,J-1 i+l,J-1 i+l,J+l l,J+1 i+l,J+l 
(58) 

One term remains to be evaluated, ~ ., the load absorbed by they- beams at any ""i, J 
time. This load can be evaluated by numerical differentiation of the deflected pattern 
of they-beam system, but it can also be done from the free-body analysis by summing 

vertical forces in terms of load absorbed by both sets of beams, ~ . and Q~ . . This 
summation on the free~body in Figure 15 gives 'J 1

• J 

Q. j - Q! . - Q~ . - s. . w~ . + sf (w~ . -~ . ) : O 
i, l,J 1,J 1,J l , J 1,J 1,J 

(59) 

After necessary algebraic manipulations, the appropriate equation for evaluating ~ . 
is seen to be as follows ' J 

T~ . -r..1 
QBMY .. + QTMY .. + QPY .. + 1

• J 11 J+ 
l,J l,J l,J h 

y 

(60) 

If this process is repeated for a segment of y-beam, equations comparable to Eqs. 
52 through 58 can be developed for the y-beums. 

Summary 

Eqs. 52 through 58 conveniently describe the model at Station i, j and are statically 
correct since the summation of forces at any time during the solution will equal zero. 
There are two such sets of equations , one for the x- system and one for they- system 
at each mesh point i, j . The number of stations in each dir ection is equal to the number 
of increments plus 4. As an example, a problem divided into eight increments in the 
x- direction and eight increments in they-direction would require equations at 12 sta
tions in each direction. Thus the number of equations required to describe the system 
would be 288; 144 for they-beams and 144 for the x-beams. This readily explains the 
need to resort to digital computers to perform the mathematical manipulations. 
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SOLUTION OF EQUATIONS 

The equations derived in the preceding section are formidable. Two sets of such 
equations are required to describe each mesh point in the system, one for the x-beams 
and one for they-beams. To make these equations useful, some general technique for 
solving them rapidly is necessary. Although some hand methods have been developed 
for small mesh systems, the high-speed digital computer offers the desirable approach. 
This section presents several methods available for solution of these equations. A 
general description of the method chosen for use in this work is included. 

Current Methods for Solution of Simultaneous Equations 

The methods developed to solve systems of equations like Eq. 52 fall into about five 
major categories: (a) simple direct-elimination methods, (b) methods involving itera
tive techniques similar to moment distribution, (c) general relaxation techniques, (d) 
successive over-relaxation, and (e) alternating-direction-implicit methods. Actually, 
there are many other methods and many variations of the major methods listed above. 
The purpose of this writing, however, is not to survey the field of numerical analysis, 
but to apply a useful method to the solution of plates and slabs. 

White and Cottingham (35) found a simple elimination me.thod to be useful in their 
solution of plate buckling problems . Such elimination methods, however, are time con
suming, requiring time in proportion to the cube of the number of equations involved. 
Another major drawback of this method is storage space since every term in the matrix 
must be stored even though many are zero. 

Newmark (20) discusses several methods for solving simultaneous equations includ
ing successiveapproximation and step-by-step methods, as well as the distribution 
method. Distribution methods are somewhat more formal than relaxation methods and 
are organized for hand computations by technicians. Such methods are too cumbersome 
for efficient use in a digital computer. 

The relaxation methods, or more specifically the method of "successive relaxation 
of constraints," is based on the concept that the structure is maintained in a continuous 
state, but has acting on it residual loads which are not statically consistent with the 
correct loading. The "residuals" are reduced by introducing arbitrary changes in dis
placement until convergence or statical balance is obtained. Southwell (8, p. 66) pio
neered such methods. These were also originally developed for hand computation but 
are flexible enough for use in computers. Liebmann (8, p. 147) coded relaxation tech
niques for use on digital computers and speeded the process up considerably. Even so, 
he states, "The disadvantages of this procedure are the slow rate of convergence in 
many cases and the possible lack of convergence." Other work on this technique in
cludes that by Jacobi, Gauss and Seidel, Richardson, and Frankel. 

The SOR method, successive over-relaxation, provides still faster and better trial
and-error solutions by applying a complex relaxation factor which over-relaxes or 
over-compensates the adjustment of the existing data on any given trial. Otherwise, 
the method is basically that of relaxation. 

The alternating-direction method presented by Conte and Dames (5) appears to offer 
by far the best techniques for solving the plate equation. Others who- have used this 
method include Griffin and Varga (7) and Tucker ( 30). Because of its applicability, a 
more complete discussion of this method is warranted. 

Alternating-Direction Implicit Solution 

Conte and Dames (5) present an implicit alternating-direction iterative scheme which 
appears to be more efficient than any of the relaxation methods. Their procedure is 
an extension of methods developed by Douglas and Rachford. Conte and Dames (5) pre
sent a solution of the partial differential equation.which governs slab behavior. In 
simplest terms, the method divides the partial differential equation into two ordinary 
differential equations and couples their solution by trial and error in a methodical 
fashion, proceeding first in the x-Cartesian direction, then in they-direction, thus the 
name alternating-direction. The most difficult part of using this method is the selection 
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of proper iteration parameters. Proof of convergence' exists for certain parameter 
selection for regular, well- conditioned systems. For the diverse systems described 
herein, however, much remains to be done. 

Experimentation by Matlock, Tucker, Ingram, Salani, and Haliburton (18, 30, 12, 
24) with these methods has led to the use of the alternating-direction iterative method 
in the solutions in this report. This techniqu~ has many favorable characteristics 
which warrant its use, as follows: 

1 . The method is rapid and well adapted for computer use. 
2. The method fits well with the mechanical model used to describe the system. 
3. The process can be easily visualized as a trial-and-error solution of the model. 
4. The method is logical and can be understood by practicing engineers. 

The concepts developed herein are general in nature. They do not emphasize math
ematical rigor and completeness, but ar e shown to be applicable to many engineer ing 
problems. No attempt will be made to prove mathematically absolute convergence, 
although such proof is available for special- case uniform, homogeneous, isotropic 
systems. Rather, the advantages and capabilities of the method will be demonstrated 
by examples later in this report . The validity of these diverse examples and their ex
hibition of closure or convergence to acceptable tolerance (10- 6 in. for deflection or 
1. 0 lb for load) is offered as adequate proof of satisfactory closure. 

Use of the alternating-direction iterative method is greatly enhanced by judicious 
choice of closure parameters. They have been shown to be related to the limiting 
eigenvalues or characteristic values of the set of equations involved. Many mathema
ticians maintain that closure parameter values selected for square systems must be 
used for both halves of any iterative cycle. Ingram (12) has demonstrated a method, 
however, which is not troubled by this restriction. Furthermore, diverse problems 
which prove troublesome to solve with the classical single-iteration control methods 
are readily solved using the Ingram dual- control techniques. 

Details of Solutions 

For solving the large numb'er of simultaneous equations which result in each half
cycle of the alternating-direction iterative method, Matlock and Haliburton (18) used an 
efficient two-pass method to solve linearly elastic beam-columns. The method involves 
the elimination of four unknown~ two each in two passes . The fir st pass from top to 
bottom eliminates deflections wi- 2 and wf_ 1 from each eguation (see Eq. 52) . The 
second pass, in reverse order, eliminates deflections wf+2 and wf+l from each equa
tion, and thus results in the solution for the desired deflection wf. Those readers not 
familiar with this technique are invited to r ead Ref . 18 . 

One of the valuable assets of this method is that boundary conditions as normally dis
cussed are automatically provided with two dummy stations specified at each end of 
each beam in the system. These dummy stations in reality have no bending stiffness; 
therefore, a bending stiffness equal zero is input for them. Equation 52 is then formu
lated for every station in the beam plus two dummy stations on each end. 

To solve for wf, j then, the plate is considered to be two systems of orthogonal beams 

interconnected at Station i, j by Sf, the fictitious closure spring constant. Figure 16 
shows the slab model with closure springs acting during closure. 

With the beam- column as a basic tool, the solution of the system of equations for 
plates and slabs proceeds as follows: 

1. Solve each x-beam successively through the system considering all they-beams 
to be held fixed in space. At any particular solution of any x-beam then, the 
fictitious closure spring acts as restraint on the x-beam of interest. 

2. After all x-beams are solved and their new deflection pattern is known, alternate 
or change directions and fix the x-beams in this new pattern. 

3. Solve for the deflected shape of each y-beam in turn. The fictitious springs now 
act as loads or restraints on they-beam, serving to transfer the load which has 
been stored in them from the deflected x-beams. 
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Figure 16. Plate represented in the closure process as two orthogonal systems with closure spring acting 
between them at Station i,j. 
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Figure 17. Plot of closure for Example Problem 102. 

4. This procedure is repeated alternately until all of the load is properly distributed 
throughout the system. At this point the summation of static forces at each joint 
in t he system will equa l zer o within the specified tolerance and the deflection of 
the x-beam system 'Vi' j• at any point will equal the deflection of they-beam sys
tem' w'! . , at the same point within the specified tolerance so that the term 

l , J 
Sf(wx

1 
. - w't . ) vanishes . 

, ] 1, J 

The process described is a rapid one requiring from 5 to 25 iterations for most simple 
problems with closure to six significant digits. 
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Closure Process 

Figure 17 illustrates the closure process for an 8- x 8-increment square plate. The 
parameters were chosen in accordance with the rules set forth in Ref. 11, p. 59 . 

THE COMPUTER PROGRAM 

The equations derived in the section on "Formulation of Equations" are not useful for 
hand calculations, but they are extremely well adapted for digital computer methods. 
During the 18 months of this investigation, 12 programs have been developed which are 
useful for solving slab and plate problems of various types. The earlier programs are 
simple in format and application. The most general program is known as SLAB 17. 
The number 17 signifies that this is the seventeenth version in the chronological se
quence of development of SLAB Programs. 

These programs are written in FORTRAN computer language for the Control Data 
Corporation 1604 Digital Computer which has a 48 bit word length and is operated with 
a FORTRAN- 63 monitor system. The compile time for the basic program is less than 
two minutes; however, normal operating decks may be compiled on binary cards, thus 
reducing compile time in the computer to about 15 seconds. The exact storage require
ments of the program as presently dimensioned are undetermined. In general, however, 
the dimension statements are such that the program will handle as large a problem as 
practical with present storage capacity. This program can be modified for use with 
the IBM 7090 computer by the modification of about 12 input- output cards. 

The time required to run problems varies, of course, with the complexity and size 
of the system, i.e. , the number of increments involved, and the number of iterations 
required to obtain the desired accuracy. To give a general idea of operating time, 
eight-by-eight problems close to a tolerance of 10-6 inches in 10 to 60 iterations, and 
require 30 to 100 seconds for solution. An increase in size to 16 x 16 with fairly uni
form stiffnesses in both directions can be closed to similar tolerances in about 100- to 
200- sec computer time. While this may seem high when compared to solution time for 
simpler problems, the cost of three minutes of computer time ($15 to $30, depending 
on rental rates) is small compared to three to four days of laborious computation time 
required to do the problem by hand. More important, perhaps, is the fact that this 
computer program provides a useful way of making some solutions for the first time. 

The FORTRAN Program 

A summary flow diagram for the SLAB Programs is given in Figure 18. This flow 
diagram describes the program tasks briefly. A detailed flow diagram and listing of the 
program SLAB 17 is provided in Ref. 11. 

The format used for inputing data into the program is arranged as conveniently as 
possible. No effort is made to be frugal with the number of cards required to input one 
problem. Instead, every effort is made to organize the program input logically and 
concisely. The problem input deck starts with two cover cards used to identify the 
program and the particular run being made. After these come necessary data cards. 

Output In.formation 

The program output is arranged to be useful to the user. A format which can be 
trimmed to standard 81/i- by 11-in. size is provided. For convenience and help in 
identifying problems, the program prints out all original input data at the beginning of 
each problem. These values are tabulated and labeled just as they were input. The 
first output computed by the program itself is Table 4, "Monitor Deflection." (See 
Appendix.) This table prints out deflections for both the x-beams and y-beams at the 
four pre- selected monitor stations specified in Table 1. (See Appendix.) This data can 
be plotted using other versions of the SLAB Program. 

The results desired from the program are printed out in Table 5. (See Appendix.) 
This table prints in two parts in keeping with the 81/z- by 11-in. format. The first half 
prints external station numbers, x- and y-deflections, bending moments in the x- and 
y-directions, the external reaction of the slab and the true error in statics as determined 
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BEGIN 

--------t READ proh nwn 

....-----~------. Yes 
Is the prob num zero ? 

No 

PRINT prob num and description 

READ Input Data for new prob 

Establish ite rat i on control 

Comput e load curren t ly carried by 
Y-Beam sys tem 

Solve for X-Beam deflections, WX(I,J) 

Compute load currently carried by 
X-Beam s ystem 

Solve for Y-Beam de flections, WY(I , J) 

Test for closure, (WX-WY) = 0.0? 

Yes 

Compute and PRINT output for each station; 
deflections, bending moments, twisting moments, 
reactions, and statics errors. 

Return to Read next prob num 

Figure 18. Summary flow chart, slab program. 

by summation of vertical forces at each station. Part 2 of Table 5 prints out station 
numbers and twisting moments in the x- and y-directions at each station. Four addi
tional spaces are provided for printing out stresses and direction of principal stress in 
later programs to be equipped with stress calculating options . 

An automatic plot routine can be coupled with SLAB 17 and used to plot any of the 
variables available at mesh points in the system, although its major use is normally 
plotting deflection contours. 

The bending and twisting moment outputs are calculated by numerical differentiation 
of the deflected shape. In both cases central differences are used to provide moments 
at each mesh point in order that these moments may be available for calculation of 
principal stresses. 

Summary of Program Details 

SLAB 17 is the most general and useful program available at the present time for 
solving the equations developed herein. The program is written in FORTRAN-63 lan
guage for the CDC 1604 computer and solves slab and plate problems very rapidly. 
Ref. 11 contains all information about the program from flow diagrams to output infor
mation, and can be extracted as an operating manual for use with the program. Twelve 
other programs are available for solving various types of problems. Several of these 
will be developed to provide special- case solutions which solve more rapidly than the 
general method. 
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Figure 19. Square steel plate simply supported at al I edges (Example Problem 101 ). 

EXAMPLE PROBLEMS AND VERlF1CATION OF THE METHOD 

Developments of equations and discussions of techniques are important in analytical 
work of this kind; however, application of the method and demonstration of technique 
in solving actual problems is equally important. This section provides the solution to 
several example problems to demonstrate Program SLAB 17 and its use in engineering 
calculations. Closed-form solutions for some of the problems are provided as a math
ematical check to the computed solutions. Sample computer output for example Prob
lem 201 is provided in the Appendix. 

Problem Series 100-Simply-Supported Plate With Variations 

As a first example, a series of problems illustrating many of the variations possible 
in the program are applied to a 48-in.-sq simply supported steel plate 1 in. thick (Fig. 
19). The modulus of elasticity is 30, 000, 000 psi. Poisson' s ratio is 0. 25. Loading 
variations will be discussed with the individual cases. Once the reader acquaints him
self with the physical properties of this plate, it will be possible to evaluate very 

i--------- 481n -----__, 
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0.2 

Figure 20. Deflection contours for Example Prob
lem 101 with 100-kip concentrated load at the 

cente r. 

rapidly five separate cases of load and 
variations of parameters. 

Problem 101-Concentrated Load.-The 
problem of a simply supported square or 
rectangular plate with concentrated load 
is considered by Timoshenko for various 
load conditions. Several equations for 
solving this problem are presented using 
single and double trigonometric series. 
A r.onsP.nRus va.lue of solutions for maxi
mum deflection, which occurs under the 
load, is 1. 07 inches. Figure 20 is a plot 
obtained automatically from SLAB 17 
coupled with a plot routine for the complete 
deflected shape of the plate when it is di
vided into eight 6-in. increments in each 
direction. The maximum deflection Wmax 
is noted to be 1.138 inches. This differs 
0. 07 inch, or 6 percent from the closed
form solution. If the number of incre
ments is increased to 16 in each direction, 
a maximum deflection of 1. 08 inches re
sults. Thus, the error is reduced to 1 
percent, probably as good as the accuracy 
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of the closed-form solution using a truncated double trigonometric series. Contours 
of maximum bending moment or twisting moment could have been plotted, if desired, 
just as easily as the deflections. 

Problem 102-In-Plane Forces.-In addition to the concentrated load at the center, 
add a uniform in-plane force in they-direction of 16, 667 pounds per inch of plate width. 
In the closed-form solution this term appears in the denominator of the series solution 
and does not have as much effect as might be expected. The maximum deflection occurs 
under the load and is 0. 787 inch. The computed solution for an 8 x 8 grid is 0. 854 inch. 
The difference of 0. 067 inch is almost identical with that in Problem 101. Increasing 
the number of increments would reduce the difference accordingly. 

Problem 103-Two-Way In-Plane Forces . -Add to Problem 102 an equal in-plane 
tensile force in the x-direction. The computed solution for maximum deflection reduces 
to 0. 661 inch. If the force in the x-direction is tensile or positive but the force in the 
y-direction is compressive or negative, the effects on maximum deflection offset each 
other as would be expected. This solution gives a maximum deflection of l, 14 inches, 
the same as Problem 101. 

Problem 106-End Supports With Line Loads. -Modify the basic problem slightly by 
removing the simple supports unde.r two edges of the plate. This leaves the plate sup
ported as a wide-beam on simple supports (Fig. 21). Unlike a beam, however, the 
plate should exhibit Poisson's ratio effects. Poisson's ratio manifests itself in such a 
structure by anti elastic bending. This may be explained in the following way. If 
moments are applied to the plate at opposite ends of the x-axis, a simple analysis would 
indicate that a uniform moment in the x-direction, Mx, would be present throughout the 
plate. Two conditions are known from physical equations governing plate behavior. 
First, the bending moment in they-direction at the free y-edges must be zero. And, 
second, the bending moment in they-direction may be stated as follows: 

M D aw aw 
( 

2 2 ) 

Y = Y aY 2 + vxy ax2 
(61) 

The first stated condition requires that the second condition, Eq. 61, be identically 
zero. Note that the bending in the x-direction is not zero, thus the differential ·?/w/ax2 

cannot be equal to zero. Then for Eq. 61 to be identically zero 

(62) 

Thus, bending in they-direction will be present at the two edges with a sense opposite 
that in the x-direction. This is illustrated in Figure 22. Figure 23 illustrates the 
same plate when Poisson's ratio equals zero. This can be recognized as bending equi
valent to that of a beam in which Poisson's ratio can be neglected. Brief reference to 
Eq. 61 indicates that if Poisson's ratio equals zero, the bending in they-direction is 
unaffected by bending in the x-direction since they are related only through Poisson's 
ratio. 

Two solutions were run, one with Poisson's ratio v = 0.0, the second with Poisson's 
ratio v = 0. 25. The hand solution as a beam gives Wmax at the center of the beam or 
plate of -0. 566 inch. The SLAB 17 solution for eight increments v = 0. 0 gives Wmax = 
-0.576 inch, a difference of 2 percent. A 16 x 16 solution reduces this difference to 
less than one percent. For Poisson's ratio of 0.25 a center deflection of w = -0. 575 
inch results. This increases to -0. 640 inch at the two edges due to anticlastic bending . 

. Problem i07-End Supports with Applied Torques.-This problem is the equivalent 
of Problem 106 except the moment due to the applied line loads acting at 6-in. distance 
from the two simple supports is converted to a uniform moment applied near the ends. 
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Figure 21. Plate simply supported on two edges with line loads {Example Problem 106). 

~ 
Figure 22. Anti elastic bending of plate subjected to uniform bending moment at opposite edges {Example 

Problem 107). 

Figure 23. A plate bending as a beam when Poisson's ratio is zero {Example Problem 106). 

It is illustrated in Figure 24. The results are exactly comparable to those of Problem 
106 as was expected. This indicates that Program SLAB 17 handles applied torques 
satisfactorily . 

Slabs-on-Foundation-Westergaard Cases, Problem Series 200 

For slab-on-foundation problems, the matter of checking theory becomes more com
plicated because of the lack of closed-form solutions. Three example problems related 
to the three Westergaard cases are presented here since these solutions are well known 
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Figure 24. Simply supported plate with a bending moment applied at opposite ends (Example Problem 
107). 
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Figure 25. Pavement slab subjected to JO-kip wheel load at the center, with and without uniform sub
grade support. 

and are currently used as a basis for most rigid pavement design. A single pavement 
slab was chosen for comparison and examined separately for the three Westergaard 
cases. The closed-form solutions come from Westergaard, (32, p. 102). A standard 
slab example is used for the computed deflection as shown in Figure 25a. 

The examples all involve a 10-in. slab thickness, 24 ft square in plan dimension 
with a modulus of elasticity of 3, 000, 000 psi and v = 0. 20. The subgrade modulus was 
assumed to be 200 pounds per square inch per inch of deflection and a single concen
trated load of 10 kips was applied in each case. 

Problem 201-Center Load , -With these physical constants the Westergaard solution 
gives the deflection under a load applied at the center of an infinite slab to be -0. 0057 
inch . The computed results are -0.0060 inch. In addition, one can see from Figure 
25b that the computed solution gives the complete deflection contours of the slab, where
as the Westergaard equation gives the deflection only under the load. This solution 
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Figure 26. Pavement slab subjected to 10-kip wheel load at the corner, with and without uniform sub
grade support • 
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Figure 27. Lug anchor example problem. 

involves 8 increments. A solution using 12 or 16 increments gives deflection results 
closer to that of Westergaard. 

Problem 202-Edge Load.-For thP. r.a.sP. of ede-e loading, Westergaard gives -0.019-
inch deflection for a point under the load at ithe edge of a slab and infinitely far from any 
other boundaries. These, of course, are not realistic boundaries since pavements 
certainly have finite limits. In reality, because of cracking or jointing, the load is 
nearly always relatively close to some boundary in any direction. The finite-element 
solution based again on the 24-ft-square slab, but with the load centered along one edge, 
gives a deflection of -0.018 inch. These results compare within 4 percent. Exact 
comparison need not be expected since one solution is for a real slab and the other for 
an infinite slab . 

Problem 203-Corner Load. -The third Westergaard case is the load applied at a 
rectangular corner, infinitely far from any other discontinuity. The comparable real 
slab is shown in Figure 26a. The Westergaard solution gives -0.049 inch of deflection 
under the load. The finite-element solution shown in Figure 26b is -0.050 inch. The 
deflection contours are also of interest and are not easily obtained from the Wester
gaar-d solution. 
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Figure 28. Deflection contours of lug anchor example problem in Figure 27. 

37 

To summarize these comparisons it has been shown that the finite- element method 
described herein agrees within 2 to 5 percent with the Westergaard slab-on-foundation 
solutions which are currently used for pavement design. In addition, the new method 
readily provides deflection contours. The same is not true with the Westergaard solu
tion although computer programs do exist to solve those equations explicitly. 

Nonuniform Subgrade Support. -To illustrate nonuniform subgrade support, the three 
cases previously described for center, edge, and corner loadings were rerun with a 
hole cut in the subgrade centered under the :load. For the center load case, the hole 6 
feet in diameter cut in the subgrade results in an increased deflection of 40 percent to 
-0. 0084 inch. For the nonuniformly supported edge load, a hole 6. feet in diameter is 
centered under the load. The resulting deflection under the load is - 0 . 3 5 inch (Fig. 
25c) or nearly double that of the slab with uniform support. Figure 25d compares an 
edge view with and without uniform support. The corner load case has a hole 8 feet in 
diameter cut in the subgrade centered at the corner. The resulting deflection increased 
to -0 .173 inch or about 31/2 times that of the uniform case as shown in Figures 26c. and 
26d. It is not intended to draw conclusions at this time concerning these relative in
creases in deflection nor their effect on pavement performance. It is merely desired 
to indicate that the method is easily adaptable to solutions for such nonuniform cases 
which probably represent a majority "of pavement actually in service in the United 
States. 

Lug Anchor Example, Problem 602 

One of the strengths of the method described herein is its ability to handle complex 
problems with combination loads and variations in flexure stiffness and support condi
tions. Figure 27 illustrates such a problem. A 10-in. thick reinforced concrete slab 
was used. Near one end the slab has a 24-in. deep lug anchor extending into the sub
grade. The slab has a centerline joint and a crack which developed from a combination 
of shrinkage and previous overstress. The joint and crack develop only 20 percent of 
the stiffness of the surrounding slab. The soil has settled under the crack in the slab 
and left a section unsupported. For any nonuniformly supported slab such as this, the 
dead weight of the slab must be considered when evaluating moments and stresses. 
This weight acts as a uniform load of 300 lb per station. Two 10-kip and four 8- kip 
wheel loads are considered in this example. An axial load of 5, 000 lb/in. is being 
resisted by the lug anchor. The resulting deflected shape is shown in Figure 28. The 
maximum deflection of 0. 048 inch occurs at the edge of the slab at the transverse 
crack. It is virtually impossible to obtain this general solution by any other existing 
methods of analysis. 
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Summary of Example Problems 

The foregoing example problems have been solved to indicate the broad capability of 
the new method. Two points are worth noting. For those cases having closed-form 
solutions, the finite-element solution with 8 to 10 increments produced results within 
2 to 5 percent of the closed-form solution. If the number of increments was increased 
to 16, the error comparison reduced to 1 to 3 percent. Perhaps more important are 
those cases for which no closed-form solution exists. The finite-element method per
mits, for the first time, the evaluation of such cases. It will be helpful if solutions of 
these new cases can be compared with experimental data obtained from field or model 
studies. 

SUMMARY 

This report examines the analysis of plates and pavement slabs. A study of the 
technical literature resulted in the selection of some sixty helpful references. Many 
of these papers contain solutions for special-case plates with simple supports and 
simple load patterns. These solutions are mathematically complex and are often 
shrouded in jargon not always relatable to real problems. A particular void is noted 
in the analysis of pavement slabs. The best work available (Westergaard's) is limited 
by special-case loads and severe assumptions including infinite or semi-infinite plan 
dimensions and uniform support conditions. 

A method has been presented which is not limited by the simplifying assumptions 
needed for closed-form solutions. The technique is based on a physical model of the 
problem which is described mathematically. The principal features of the method are 
as follows : 

1. Representation of the plate or slab by a fi nite-element model of beam- column 
element s with freely discontinuous stiffness and load. These line elements ar e grouped 
into two systems of orthogonal beams or beam- columns. 

2. A rapid, direct solution of individual beams using recursive techniques. 
3. An alter nating- direction iteration method for combining the solutions of the in

dividual beams into a coordinated slab solution. 

The finite- element model is helpful in visualizing the problem and forming the solu
tion. The model consists of: 

1. Infinitely stiff and weightless bar elements to connect the joints. 
2. Elastic joints where bending occurs, made of an elastic, homogeneous, and 

orthotropic material which can be described by four independent elastic constants. 
3. Torsion bars which represent the torsional stiffness of the plate. 
4. Elastic support springs which provide foundation support. 

All properties and loads can be freely variable from point to point. Concentrated or 
distributed loads can be handled including transverse loads, in-plane forces, and ex
ternal couples . Elastic restraints are provided by vertical support springs. 

The alternating-direction iteration method is used to solve the equations describing 
the behavior of the modP.1 hP.ca.use it is well adapted and easy to visualize. The model 
and method are too complex for hand calculations. A computer program which solves 
the equations implicitly for the deflection patterns has been developed. The program 
is written in FORTRAN-63 for the CDC 1604 computer. Minor changes of input formats 
are required to convert it for use on an IBM 7090. Compile time is 90 to 100 seconds 
but binary decks are available which compile in about 15 seconds. Automatic plot 
r out ines are available for use with the program. 

This method has application to a broad variety of complex plate and slab problems 
which cannot be solved by any other existing method. Applications to complex pavement 
design problems are of particular interest. The use of the method as a tool in stochas
tic modeling of pavement life and performance studies is of particular interest. Im
mediate use of the method in developing new pavement design information is suggested. 
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NEEDED RESEARCH 

The finite-element model described herein is a useful tool. The development of such 
a method opens the door to studies which heretofore could not be conducted. Such appli
cations of this method are discussed in this section. A look into the method pinpoints 
several areas of study which could lead to improvement. 

Study of Material Properties 

It would be helpful if the orthotropic properties of materials used in slabs could be 
determined for exact input into this program. In particular, information is needed on 
the relationship of Poisson's ratio and Young's modulus for orthotropic materials, and 
on torsional rigidity for "torsionally stiff'' and "torsionally soft" rib reinforced ortho
tropic plates. 

Comparison With Field Measurements 

"The proof of any pudding is in the eating." It is desirable that studies of pavement 
structures be made in the laboratory and in the field, and that corresponding mathema
tical analyses be made with the finite-element model. Correlation of these data will 
help in the evaluation of theory and will lead to improved methods for determining some 
of the unknowns in the field studies. Deflection measurements will be helpful in this 
regard as will curvature measurements. 

Evaluation of Support Characteristics 

Current methods of measuring and specifying pavement support are probably unsatis
factory. It is not adequate to describe a constant k-value for a subgrade or a subbase 
to be used under a pavement slab. This value is not a linear quantity but is highly de
pendent on the deflection of the slab lying immediately above. It is also related to 
overall slab deflections. The true support value is dependent on many things. The first 
step in such evaluation is the study of nonlinear support conditions for the finite- element 
model. 
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Appendix 

SAMPLE COMPUTER SOLUTIONS OF EXAMPLE PROBLEMS 

EXAMPLE DATA I NPUT 

201 axa SOF . PR= .20 CENTER LOAD, HWY REPORT 6 WRH 29AP5 
4 6 0 24 A 8 3.600E 01 3.600E 01 l.OOOE-05 0.200E 00 
4 4 0 0 0 4 4 0 

4.'JZOE 03 2.460E 04 l. 230E 05 6.l60E 05 
4.'l20E 03 2.460E 04 l. 230E 05 6. l60E 05 

0 0 a 8 0.652E 08 0.652E+08 0.650E 05 
0 l 8 7 0.652E 08 0.652E+OB 0.650E 05 
l 0 7 8 0.652E 08 0.652E+OB 0.650E 05 

l 7 7 0.652E 08 0.652E+08 0.650E 05 
l 8 8 2.080E+08 2.oaOE+Oa 

4 4 4 4 l.OOOE 04 
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PROGR'AM SLAB 17 - MASTER DECK - WR HUDSON, H MATLOCK REVISION DATE 26 JUL 65 

I 

CE051022 HWY SLAB PROJECT SLAB 17 ~ R HUDSON 
RUN EXAMPLE PROBLEMS FOR FINAL CHECK DECK 3 SLAB 17 . 

PROB 
201 BXS SOF , PR=. 20 CENT ER LOAD, HWY REPOR T-6 

TABLE l. CONTROL DATA 

NUM VALUES TABLE 2 
NUM CARDS TABLE 3A 
NUM CARDS YABLE 3B 
MAX NUM ITERATIONS 
NUM INCREMENTS MX 
NUM INCREMENTS MY 
INCR LENGTH HX 
INCR LENGTH HY 
CLOSURE TOLERANCE 
POI SSONS RATIO 

MONITOR STAS l,J 

TABLE 2A. ITERATION CONTROL DATA 

F. SPRING REPRESENTING X BEAM 

4,920E 03 
2.4bDE 04 
l.230E 05 
6. l 60E 0 5 

TABLE 21l. ITERATION CONTROL DATA 

F. SPRING REPRESENTING Y BEAM 

4.920E 03 
2.4bOE 04 
l.230E 05 
6.l60E 05 

TABLE 3A. STIFFNESS ANO LOAD DATA, 

FROM THRU ox DY 

0 0 8 8 6,520E 07 6.520E 
0 l 8 7 6.520E 07 6.520E 
l 0 7 8 6.520E 07 6.520E 
.l l 7 7 6,520E 07 6.520E 
l l 8 8 0 
4 4 4 4 0 

4 4 0 0 

FULL VALUES ADDED AT 

Q s 

07 0 6,500E 
07 0 6.SOOE 
07 0 b.500E 
07 0 6.500E 

0 0 
a l.OOOE 04 

0 4 

All 

04 
04 
04 
04 

0 
a 

WRH 

4 
6 
0 

24 
8 
8 

3.600E Ol 
3.600E Ol 
l.OOOE-05 
2.oooE-01 

4 0 

STAS I,J IN 

ex 

0 
0 
0 
0 

2.0BOE 08 
0 

29AP·5 

RECT, 

CY 

0 
0 
0 
0 

2.0BOE 08 
0 
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TABLE 3B. STIFFNESS AND LOAD DATA, FULL VALUES ADDED AT ALL STAS I,J IN REeT. 

FROM THRU TX TY PX PY 

TABLE 4. MONITOR TALLY AND DEFLS AT 4 STAS 

!TR FieT eve NOT NOT I,J 
NUM SPRING NUM STAB CLOS 4 4 0 0 0 4 4 0 

x 4.920E 03 l 43 l.l95E-02 0 6.29BE-04 0 
y 4.920E 03 78 76 5.451E-03 -5.746E-05 -3. ll3E-04 3.841E-04 

x 2 2.460E 04 2 81 8.522E-03 -6.072E-05 -5.283E-04 -2.819E-04 
y 2.460E 04 76 76 5.789E-03 -l.l89E-04 -3.l42E-04 -3.246E-04 

x 3 l.230E 05 3 74 7.334E-03 -l.426E-04 -3.809E-04 -2.665E-04 
y l.230E 05 68 62 6 .118E-03 -l.743E-04 -2.991E..,.04 -3.l59E-04 

x 4 6.l60E 05 4 65 6. 739E-03 -l.837E-04 -2.734E-04 -2.833E-04 
y 6.160E 05 46 39 6.414E-03 -l.921E-04 -2.795E-04 -2.628E-04 

)( 5 4.920E 03 l 44 6.576E-03 -2.457E-04 -2.788E-04 -2.747E-04 
y 4.920E 03 16 37 6.444E-03 -2.251E-04 -2.696E-04 -2.6l8E-04 

x 6 2.460E 04 2 9 6.562E-03 -2.460E-04 -2.798E-04 -2. 711E-04 
y 2.460E 04 4 28 6.457E-03 -2.351E-04 -2.669E-04 -2.651E-04 

x 1 l. 230E 05 3 8 6.548E-03 -2.410E-04 -2.739E-04 -2.695E-04 
y l.230E 05 4 17 6.473E-03 -2 .396E-04 -2.680E-04 -2.678E-04 

x B 6.160E 05 4 9 6.529E-03 -2.403E-04 -2.694E-04 -2.687E-04 
y 6.l60E 05 5 11 6.496E-03 -2.404E-04 -2.690E-04 -2.687E-04 

)( 9 4.920E 03 1 3 6.515E-03 -2.403E-04 -2.686E-04 -2.686E-04 
y 4.920E 03 0 10 6.500E-03 -2.408E-04 -2.689E-04 -2.694E-04 

)( 10 2.460E 04 2 0 6.513E-03 -2.405E-04 -2.686E-04 -2.686E-04 
y 2.460E 04 0 9 6.50lE-03 -2.407E-04 -2.688E-04 -2.691E-04 

x 11 l.230E 05 3 0 6.512E-03 -2.406E-04 -2~687E-04. -2.687E-04 
y l.230E 05 0 4 6.503E-03 -2.406E-04 -2.688E-04 -2.688E-04 

x 12 6.160.E 05 4 0 6.5lOE-03 -2.406E-04 -2.688E-04 -2.688E-'-04 
y 6.160E 05 0 0 6.505E-03 -2.406E-04 -2.688E-04 -2.688E-04 
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PROGRAM SLAB 17 - MASTER DECK - WR HUDSON, H MATLOCK REVISION DATE 26 JUL 65 
OE051022 HWY SLAB PROJECT SLAB 17 W K HUDSON 
RUN EXAMPLE PROBLEMS FOR FINAL CHECK DECK 3 SLAB 17 

PROB (CONTD) 
201 8XB SOF ' PR= .20 CENTER LOAD, HWY REPORT- 6 WRH 29AP5 

TABLE 5. RESULTS ITERATION 12 

I, J X-DEFL Y-DEFL BMX BMY REACT TR ERR 

-1 ·l -l.943E-04 -l.943E-04 0 0 0 0 
0 -1 -2.506E-04 -2.505E-04 0 0 0 0 
l -1 -3.067E-04 -3.067E-04 0 0 0 0 
2 -1 -4.812E-04 -4.Bl3E-04 0 0 0 0 
3 - 1 - 6.743E- 04 - 6.743E - 04 0 0 0 0 
4 -1 -7.640E-04 -7.639E-04 0 0 0 0 
5 -1 -6.742E-04 -6.742E-04 0 0 0 0 
6 -1 -4.B09E-04 -4.Bl2E-04 0 0 0 0 
1 -1 -3.072E-04 -3.068E-04 0 0 0 0 
0 -1 -2.504[-04 -2.505E-04 0 0 0 0 
9 -1 -l.947E-04 -l.947E-04 0 0 0 0 

-1 0 -2.506E-04 -2.506E-04 0 0 0 0 
0 0 -2.406E- 04 -2.406E-04 0 0 l.564E 01 2.021E-03 
l 0 -2.306E-04 -2.306E...,Q4 -4.l97E 00 3.056E-l0 2.999E 01 -9. 'l lBE-03 
2 0 -2.641E-04 -2.641E-04 l.638E 00 -2.219E-09 3.434E 01 -6.739E-03 
3 0 -2.806E-04 -2. 806E-04 2.740E 00 -7.276E-l0 3.646E 01 l.745E-02 
4 0 -2.688E-04 -2.6BBE-04 -2.284E 00 -6.985E-l0 3.492E 01 l.445E-02 
5 0 - 2. 80 6 E-0 4 - 2. 806E-04 2.727E 00 - l.2 95E- 09 3.6 55E 01 - 7. 672E-D 2 
6 0 -2.641E-04 -2.641E-04 l.655E 00 - l.397E- 09 3.424E 01 9.601E-02 
1 0 -2.306E-04 -2.306E-04 -4.214E 00 -l.310E-10 3.00SE 01 -7.l03E:-02 
8 0 -2.406E-04 -2.406E-04 0 0 l.562E 01 2.274E-02 
9 0 -2.507E-04 -2.507E-04 0 0 0 0 

- 1 l -3.06BE-04 -3.06BE-04 0 0 0 0 
0 l -2.306E-04 - 2.306E - 04 7 .235E-06 - 4.195E 00 2.99BE 01 l.905E- 03 
l l -l.458E-04 -l.458E-04 2.580E 00 2.SBOE 00 3. 790 E 01 4.549E-03 
2 l -5.029E-05 - S.030E- 05 1. 692E 01 2.456E 01 l.308E 01 -2. 777E-03 
3 l l.074E-04 l.074E-04 5.935E 00 6.263E 01 - 2.789E 01 -2.968E-02 
4 l 2.310E-04 2. 311E-04 -2.tl41E 01 9.665E 01 -6.0l2E 01 5.312E-02 
5 l l.075E-04 l.074E-04 5.912E 00 6.268E 01 -2.793E 01 3.091E-03 
6 l -5.033E-05 -5.034E-OS l.693E 01 2.450E 01 l. 320E 01 -l.133E-Ol 
1 l -l.459E-04 -l.457E-04 2.603E 00 2.594E 00 3.776E 01 l.512E-Ol 
8 l -2.306E-04 -2.307E-04 -3.446E-03 -4.l93E 00 3.004E 01 -5.606E-02 
9 l -3.067E-04 -3.067E-04 0 0 0 0 

-1 2 -4.Bl3E-04 -4.813E-04 0 0 0 0 
0 2 -2.641E-04 -2.641E-04 9.725E-04 l.640E 00 3.433E 01 5. 79SE-03 
l 2 - 5.030E-05 - .5-031E-0.5 2.4.56E 01 h693E 01 l.307E 01 5.382E-03 
2 2 2. 73 lE-04 2.731E-04 5.236E 01 5.238E 01 -7.096E 01 -4.441E-02 
3 2 8. l33E-04 B.134E-04 6.068E 00 l.195E 02 -2.llBE 02 3.0l2E-Ol 
4 2 l.261E-03 l.261E-03 -l.330E 02 2.008E 02 -3.269E 02 -9.502E-Ol 
5 2 8.125E-04 8.l37E-04 6.472E 00 l.l93E 02 -2.l29E 02 l.4H9E 00 
6 2 2. -/39E-04 2. r2 rE-o4 5.191E 01 !l.LIO!: 01 -6.'191E I) l -l.152E 00 
1 2 -5.059E-05 -5.0lOE-05 2.478E 01 l.675E 01 l.277E 01 3.214E-Ol 
8 2 -2.641E-04 -2.642E-04 tl.784E-03 l.667E 00 3.434E 01 4.296E-03 
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9 2 -4.811E-04 -4. 811E-04 0 0 0 0 

-1 3 -6.742E-04 -6.742E-04 0 0 0 0 
0 3 -2.8u6E-04 -2.806E-04 -3.976E-04 2. 738E 00 3.649E 01 -l.3lOE-02 
l 3 l.074E-04 l. 074E-04 6.262E 01 5.947E 00 -2. 792E 01 4.367E-03 
2 3 8 .13 3E-04 8.134E-04 l.l96E 02 5.954E 00 -2.ll7E 02 2. 7l5E-Ol 
3 3 2. l32E-03 2. l32E-03 3.410E 00 3.926E 00 -5.529E 02 -l.456E 00 
4 3 3.465E-03 3.467E-03 -5.024E 02 6.019E 01 -9.049E 02 3.721E 00 
5 3 2.135E-03 2.131E-03 2.127E 00 4.579E 00 -5.493E 02 -5.l78E 00 
6 3 8.109E-04 8.148E-04 l.210E 02 5 .13 6E 00 -2.150E 02 3.683E 00 
7 3 l.OSOE-04 l.066E-04 6.203E 01 6.392E 00 -2. 705E 01 -8.539E-Ol 
8 3 -2.804E-04 -2.8D4E-04 -3.260E-02 2.683E 00 3.654E 01 -8.526E-02 
9 3 -6.747E-04 -6.747E-04 0 0 0 0 

-1 4 -7.639E-04 -7.639E-04 0 0 0 0 
0 4 -2.688E-04 -2. 688E-04 l.53BE-04 -2.288E 00 3.491E 01 2.787E-02 
l 4 2.311E-04 2 .3 lOE-04 9.667E 01 -2.844E 01 -6.006E 01 -1. 778E-02 
2 4 l.261E-03 l.261E-03 2.005E 02 -l.327E 02 -3.271E 02 -6.930E-Ol 
3 4 3.466E-03 3.467E-03 6.l45E Ol -5.037E 02 -9.045E 02 3.309E 00 
4 4 6.510E-03 6. 505E-03 -l.471E 03 -1. 468E 03 8.315E 03 -7.357E 00 
5 4 3.461E-03 3.469E-03 6.358E 01 -5.048E 02 -9.099E 02 8.974E 00 
6 4 l .264E-03 l.25BE-03 l.9B4E 02 -l.315E 02 -3.226E 02 _-5.333E 00 
7 4 2.30BE-04 2.321E-04 9.726E 01 -2.903E 01 -6.052E 01 3.339E-Ol 
8 4 -2.694E-04 -2.688E-04 7.027E-02 -2.271E 00 3.446E 01 5.236E-Ol 
9 4 -7.641E-04 -7.641E-04 0 0 0 0 

-1 s -6.742E-04 -6.742E-04 0 0 0 0 
0 s -2.806E-04 -2.806E-04 -l.825E-03 2. 740E 00 3.654E 01 -6.301E-02 
1 s l.073E-04 l.074E-04 6.266E 01 5.937E 00 -2.796E 01 5.036E-02 
2 s B.l34E-04 8.135E-04 l.197E 02 5.924E 00 -2.125E 02 9.802E-Ol 
3 5 2.l33E-03 2.131E-03 2.697E 00 4. l6QE 00 -5.SOlE 02 -4.287E 00 
4 5 3.463E-03 3.469E-03 -5.009E 02 5.960E 01 -9.096E 02 8.S46E 00 
5 5 2. l38E-03 2.l29E-03 6.181E-Ol S.342E 00 -5.455E 02 -9.088E 00 
6 s 8.lOlE-04 a.rsaE-04 l.215E 02 4. 739E 00 -2.155E 02 4.100,E 00 
7 5 l.066E-04 l.068E-04 6.256E 01 6.363E 00 -2.885E 01 l,lOOE 00 
8 s -2. 796E-04 -2. 809E-04 -8.486E-02 2.813E 00 3.745E 01 -l.Ol2E 00 
9 s -6.726E-04 -6.726E-04 0 0 0 0 

-1 6 -4.814E-04 -4.814E-04 0 0 0 0 
0 6 -2.641E-04 -2.641E-04 2.617E-03 1. 63 6E 00 3.42SE 01 a.·sa1e-02 
l 6 -5.0l9E-05 -5,035E-05 2.450E 01 l.694E 01 l.318E Ol -l.123E-Ol 
2 6 2. 730E-04 2. 730E-04 5.224E 01 S.243E 01 -7.026E 01 -7.218E-Ol 
3 6 8.l24E-04 8.l41E-04 6,857E 00 l. l92E 02 -2.146E 02 3 .1 79E 00 
4 6 l.264E-03 l.259E-03 -l.346E 02 2.0lSE 02 -3.223E 02 -5.674E 00 
5 6 8 .099E-04 8. l55E-04 7.919E 00 l.l84E 02 -2.l62E 02 4.905E 00 
6 6 2.743E-04 2. 720E-04 5.16lt 01 5.304E 01 -6.997E 01 -1.0SOE 00 
7 6 -4.905E-05 -5.045E-05 2.416E 01 1.689E 01 l.467E 01 -1. 734E 00 
8 6 -2.64BE-04 -2.636E-04 4.675E-02 l.514E 00 3,346E 01 8,902E-Ol 
9 6 -4.832E-04 -4.832E-04 0 0 0 0 

-1 7 -3.067E-04 -3.067E-04 0 0 0 0 
0 7 -2. 30 6E-04 -2.306E-04 -l. l71E-03 -4.191E 00 3.005E 01 -6,400E-02 
l 7 -l.459E-04 -1.458E-04 2.625E 00 2.565E 00 3.778E 01 l.390E-Ol 
2 7 -S.023E-05 -5.026E-05 1.697E 01 2.453E 01 1.289E 01 1.722E-Ol 
3 7 1.079E-04 1. 0 70E-04 S.578E 00 6.286E 01 -2.689E 01 -1.040E 00 
4 7 2.2YBE-04 2.31BE-04 -2.778E 01 9.617E 01 -6.l4BE 01 l.473E 00 
5 7 1.083E-04 l.069E-04 5.509E 00 6.310E 01 -2.749E 01 -4.893E-01 
6 7 -4.998E-OS -5.057E-05 l.683E 01 2.449E 01 1. 3 86 E 01 -7,844E-01 
7 7 -l.465E-04 -l.453E-04 2.914E 00 2.370E 00 3.702E 01 9.054E-Ol 
8 7 -2.304E-04 -2.308E-04 B.3~9E-03 -4.108E 00 3.027E 01 -2.882E-01 



46 

9 1 -3.057E-04 -3.057E-04 0 0 0 0 
,, 

-l 8 -2.506E-04 -2.506E-04 0 0 0 0 
0 8 -2.40;6E-04 -2.406E-04 7. l49E-ll 3.575E-10 l.562E 01 1. 737E-02 
l 8 -2.306E-04 -2.306E-04 -4.206E 00 l.455E-ll 3. 003E 01 -5.303E-02 
2 8 -2.641E-04 -2.641E-04 l.636E 00 4.293E-l0 3.430E 01 2.947E-02 
3 8 -2.807E-04 -2.B05E-04 2.780E 00 l.l35E-09 3.646E 01 2.5 llE-02 

-2. .. .JO 52-(ii;- -2.689E-04 -2.337E 00 2.874E-09 3.485E 01 8.0l4E-02 
5 8 -2. 306c-O'' -2. 80/'E-0'> 2.708E 00 7.UOE-10 3 .6 84 E 01 -3.586E-Ol 
6 () -2. Cl:-5C-Oi;. -2 .. 63~2-Ql; l.7'>2E 00 -7.l30E-l0 3.395E 01 3.983E-Ol 
7 B -2.300:E-f..4 -2.303~-04 -4.267E 00 7.713E-l0 3.009E 01 -l.098E-Ol 
a 8 -2.4062-0'~ -2. l;-06E-04 -7 .149E-ll -3.575E-l0 l .5 63E 01 4.37BE-03 
9 8 -2.507E-04 -2.507E-"04 0 0 0 0 

9 -: . • <J~.s.::-c~ .. -~ 0 9Lt-5E-QL; 0 0 0 0 
0 9 -2. sos::-o:,. -2. 505E-04 0 0 0 0 
' 9 -3.06%-QL;- -3.06f.E-04 0 0 0 0 . 
2 9 - 4 .. 01. lt:- QI;. - ';.813E-04 0 0 0 0 
~ 9 -~o739E-04 -6.738E-04 0 0 0 0 

'" 9 -7 .637'.::-0';· -7 •. 647::-04 0 0 0 c 
5 9 -6"763E-C4 -6. 7:1-0E-Oti 0 0 0 0 
6 9 ·-4·. 7912-QL; -1,. so1::-04 0 0 0 0 
~ CJ -3, C.692-CC;. -3.075E-04 0 0 0 0 , 
8 9 -2.SlSE-0'> -2.503E-04 0 0 0 0 
<;. <;; -1.957E-C'' -l.957E-04 0 0 0 0 

P.:\C£ (CC.Nm: 
201 BXS SOF , PR=.20 CENTER LOAD, HWY REPORT-6 WRH 2 9AP5 

T AE.:.E 5. l<ESLJLTS:CGNTDJ -- 1TcR.C.TION l.2 

I i1 J rnx TMY 

:J 0 
c D 0 

- -!.. \) (j 

2 - 0 0 
;, - J Q 

.!~ -1 i) 0 
5 (, 0 
(:, -. :., 0 
7 -1 G' 0 
G - 0 c 
<) - 0 0 

0 G 0 
0 0 2. 74~= co - 2. ~.,,.2.:: 00 
.. 0 8. 2'.-5E Gv -8.2l;·7i: 00 
2 v l. 2',:0E o: -l.2'>5E 01 
; 0 l .. l32E c: - 2. .131~ O! 

"' 0 a. z-19::-0:,. l.6:.9:::-03 
:; J -!..132E -~- :.1322 Cl _,, 

" 0 -1.2.!:5~ c: l.2f:-5: o: -, D -8 ... 21.; ~-E 00 8.2472 00 • 
e c -2.742E 00 2. 740:: 00 
9 c 0 0 
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l l 0 0 
0 l e.246E 00 -8. 246E 00 
l l 2.250E 01 -2.250E 01 
2 l 3.666E 01 -3.666E 01 
3 l 3.9B3E 01 -3.981E 01 
4 l -3.227E-02 -l.063E-02 
5 l -3.980E 01 3.982E 01 
6 l -3.664E 01 3.666E 01 
7 1 -2.253E 01 2. 248E 01 
8 l -8.233E 00 8.244E 00 
9 l 0 0 

l 2 0 0 
0 2 l.245E 01 -l.245E 01 
l 2 3.666E 01 -3.666E 01 
2 2 7 ol09E 01 -7.107E 01 
3 2 9.511E 01 -9.519E 01 
4 2 9.510E-02 4.493E-02 
5 2 -9.520E 01 9. 513E 01 
6 2 -7. ll6E 01 7.106E 01 
7 2 -3.655E 01 3.671E 01 
8 2 -l.24BE 01 l.244E 01 
9 2 0 0 

-1 3 0 0 
0 3 l.131E 01 -l.131E 01 
l 3 3.9B2E 01 -3. 981E 01 
2 3 9.513E 01 -9.518E 01 
3 3 l.7lOE 02 -1. 708E 02 
4 3 -l.386E-Ol -7.556E-02 
5 3 -1. 709E 02 l.709E 02 
6 3 -9.499E 01 9. 522E 01 
7 3 -3.996E 01 3.973E 01 
8 3 -l.132E 01 l.134E 01 
9 3 0 0 

l 4 0 0 
0 4 -2.lB9E-03 2.596E-04 
1 4 2.239E-03 -3.631E-03 
2 4 3.485E-02 2.586E-02 
3 4 -9.773E-02 -5.706E-02 
4 4 7.729E-02 5.058E-02 
5 4 6.506E-02 2.284E""'.02 
6 4 -l.648E-Ol -8.230E-02 
7 4 6.059E-02 5.622E-02 
8 4 6.9llE-02 -3. 794E-02 
9 4 0 0 

-1 5 0 0 
0 5 -l.131E 01 l.131E 01 
l 5 -3.982E 01 3.982E 01 
~ 5 -9.517E 01 9.5l5E 01 
3 5 -l.709E 02 l.709E 02 
4 5 6.813E-02 3.388E-02 
5 5 l.708E 02 -l. 709.E 02 
6 5 9.516E 01 -9.514E 01 
7 5 3.99lE 01 -3.978E 01 
8 5 l.l25E 01 -l.131E 01 
9 5 0 0 
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-1 6 0 0 
0 6 -l.245E 01 1. 245E 01 
l 6 -3.666E 01 3. 666E 01 
2 6 -7. llOE 01 7.106E 01 
3 6 -9.506E 01 9.522E 01 
4 6 -l.582E-Ol -9.235E-02 
5 6 9.520E 01 -9.511E 01 
6 6 7.126E 01 -7.lOlE 01 
7 6 3.649E 01 -3.677E 01 
8 6 l.244E 01 -l.242E 01 
9 6 0 0 

-1 7 0 0 
0 7 -8.249E 00 8. 24 7E 00 
l 7 - 2.250E 01 2. 2 4 9E 01 
2 7 -3.662E 01 3.669E 01 
3 7 -3.993E 01 3.976E 01 
4 7 l.OBOE-01 6.090E-02 
5 7 3.987E 01 -3.980E 01 
f> 7 3.647E 01 -3.675E 01 
7 7 2.259E 01 -2.243E 01 
8 7 B.305E 00 -B.283E 00 
9 7 0 0 

-1 8 0 0 
0 8 -2. 740E 00 2. 740E 00 
l 8 -B.245E 00 8.249E 00 
2 8 -l.246E 01 l. 243E 01 
3 8 -l.129E 01 l .134E 01 
4 8 -5.604E-02 l.309E-03 
5 8 l.132E 01 -l.136E 01 
6 8 l.252E 01 - l .2 4 1E 01 
7 8 8. 1 8 7E 00 - B.239E 00 
8 8 2.112e oo -2.731E 00 
9 8 0 0 

-1 9 0 0 
0 9 0 0 
l 9 0 0 
2 9 0 0 
3 9 0 0 
4 9 0 0 
5 9 0 0 
6 9 0 0 
7 9 0 0 
8 9 0 0 
9 9 0 0 

TIME MINUTES, 40 AND 43/60 SECONDS 




