Deflection Factor Charts for Two- and
Three-Layer Elastic Systems
S. THENN DE BARROS, Consulting Engineer, Sio Paulo, Brazil

Tables of deflection factor values for three-layer elastic sys-
tems loaded with uniform circular loads have been published by
A. Jones of the Thornton Research Center, in connection with
the development of a fundamental method of pavement design.
For convenience in the design and analysis of pavement struc-
tures, these factors should be presented in graphic form. The
analytical expression of the deflection factor was modified, and
the determining parameters were transformed to permit an
easier and more direct process of deflection analysis. Two-
layer factors were also computed as aparticular case of three-
layer systems. This paper presents a series of deflection
factor charts for two- and three-layer systems, for a wide range
of parameter values, based on Jones' tables. Severalexamples
were computed to show the practical application of the charts.

eTHE deflection beneath the center of a uniform load, p, applied on a circular, flexible
bearing area of radius r (Fig. 1) resting on the surface of a uniform elastic medium of
semi-infinite depth, of elastic modulus E and Poisson's ratio y, after Boussinesq is

W=2(1-1v®pr
E
foru = 0.5 W=L5££
for p = 0.35 W=£7—g—‘£

The reduction of Poisson's ratio from 0. 5 to 0. 35 increases the deflection of the
uniform medium by 17 percent.

If the load is applied by a rigid plate instead of a flexible bearing area, the deflec-
tion of the uniform medium computed by the foregoing formulas should be multiplied
by the factor m/4 or 0.785. For instance

Foru= 0.5 Wy-= LA pr

E

Let us now compute the deflection of the uniform medium below a certain depth,
considering the layer above this depth as incompressible. The deflection at any depth
is equal to the term EETI' multiplied by a deflection factor F. Figure 1 shows the values
of the deflection factor at various depths for flexible and rigid bearing areas. The two
curves show that the influence of the type of bearing area depends on the depth at which
the deflection is computed. At the surface, the deflection factor is 1. 5 for a flexible
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Figure 2, Deflection factor chart for two-layered elastic systems.
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bearing area and 1. 18 for a rigid plate (for g = 0. 5). At depths greater than three
times the radius the two factors are practically equal.

The deflection of a two-~layer elastic system can be expressed in a form similar to
the deflection of the uniform medium, but affected by an appropriate deflection factor.
Assume a two-layer system such as that in Figure 2, in which the first layer is of
thickness h, elastic modulus E;, and Poisson's ratio g, and the second layer is of semi-
infinite depth, elastic modulus Ez and the same Poisson's ratio p, with perfect con-
tinuity between the two layers. The deflection, after Burmister (l), is

W=1.5pr_FW (u = 0.5)

The deflection factor Fy, for u = constant, depends on the parameters Ei/Ez and h/r.
The Burmister graph (1) gives the values of the factor Fy, for several values of the
parameters, but allows little accuracy in the readings of Fy, especially in the region
of h/r < 1. Moreover, the range it covers is too small for the parameter h/r (up to 6)
and too large for the parameter Ei/Ea (up to 10, 000).

Jones (2) published a series of tables of deflection factor values for three-layer
elastic systems loaded with a uniform circular load, in connection with the development
of a fundamental method of pavement design. The Jones' deflection factors were com-
puted for a value of Poisson's ratio of 0. 35 in each layer. Two-layer systems are a
particular case of three-layer systems, in which one modular ratio is equal to one.
Hence, two-layer factors were computed from Jones' tables by a proper selection of
parameters. For convenience and uniformity of presentation, the two-layer factors
were transformed to comply with the equation

1.75pr

W = Es

- F (1 = 0.35)

The deflection factor F depends on the same parameters E;/Ez and h/r, for u = con-
stant. The numerical value of factor F is different from factor Fy, for the same values
of the parameters, but the deflections computed by the two last equations are very
close. The reduction of Poisson's ratio from 0. 5 to 0. 35 increases the deflection of
layered systems by less than 10 percent, for the practical range of the parameters.
The average increase is about 7 percent. The actual value of Poisson's ratio of pave-
ment structures is not known, but it is likely to be between 0. 35 and 0. 5. This dif-
ference can be ignored in practical applications.

The second equation may be put under another form, more adequate for the deter-
mination of the moduli by load bearing tests:

Eg = 1.75r%F

But p/W = k is the unit load per unit deflection or ""modulus of reaction.” Hence
Ea=17rkF (b = 0.35)

The deflection factor F varies from 0 to 1. It is inversely proportional to the load
spreading ability or reinforcing effect of the pavement over the bare subgrade.

Table 1 and the graph of Figure 2 give the values of the deflection factor F for
several practical values of the parameters. Parameter h/r varies logarithmically
from 0. 15 to 10, and parameter E;/Ez varies from 2 to 100. The curves for modular
ratios from 2 to 50 were computed from Jones' tables. The curve for E:/Ea= 100,
not computed by Jones, was drawn by logarithmical extrapolation and is accurate
enough for practical applications. The graph should not be further extrapolated. All
interpolations for intermediary values of E;/Ea should be computed logarithmically.

Jones' original deflection factors (2) for three-layer systems conform with the
equation -
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TABLE 1

DEFLECTION FACTOR VALUES FOR TWO-LAYERED
ELASTIC SYSTEMS
(Poisson's ratio = 0. 35)

7

E, | 2 L] 10 20 50
h Jir
0.156 1.000 .966 939 925 .908 .869
0.312 1.000 930 867 818 756 .654
0.625 | 1000 839 693 .600 512 -408
1.25 1.000 T 494 .388 307 227
2.5 1000 614 356 250 183 126
5 1000 .558 279 176 A7 0732
10 1000 | 529 240 138 .0836 0.466

¥

0 %

) Ep

-_1_'

\E

W= L.755pr. F
Es
Poisson's ratio = 0.35
E‘ =n Ez = = N
Ez 4 E3 nz "'.nz

F=t (h/r, hy/r , n,, n,)

W= deflection beneath the center of circular uniform load
r = radius p=unit load
h,, h,= thicknesses of layers
E,, E,, Ey= elastic modulii of layers
F = deflection factor

Figure 3. Deflection parameters of three-layered elastic systems.
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The functions pi (x), i (x) and ri (x) are polynomials with coefficients depending on the
non-dimensional parameters, J: is a Bessel function, A = r/hz and the other parameters
are shown in Figure 3. The factor F as such has no immediate physical meaning., Jones
computed and tabulated the factor F in function of the parameters

Ei/Ea = ki, Ea/Eg = ka, hi/h2 = H, r/ha = A

For convenience and ease of application, Jones' three-layer factors were also trans-
formed to comply with the following equation, similar to the two-layer equation

1.7 pr

W = E,

. F (u = 0.35)

The three-layer deflection factor F, for u = constant, depends on the parameters de-
fined in Figure 2

E;/Ez = m, Ea/Eg = Dg, hl/I', hz/I‘

The tables and graphs in Figures 4 to 18 give the values of the three-layer deflection
factor F for all combinations of the following parameter values

m = 2,5, 10 20, 50
nz='2 5
hl/r=01 to5
ha/T = 0.3 t0 5

Combining the graphs in Figures 4 to 18 with the graph of Figure 2 it is possible to
interpolate for values of ni or nz between 1 and 2.

Jeuffroy and Bachelez () proposed an approximate method of three-layer system
deflection calculation. The deflections computed by the Jeuffroy-Bachelez method are
close to the values computed by the Jones method.

All deflection factors given for two- and three-layer systems were computed for
the case of a flexible bearing area. For the case of a rigid plate, the computed deflec-
tions should be multiplied by a '"bearing factor.”" The exact value of this factor cannot
be determined at this time. It can be safely stated that for the layered systems of
interest in pavement design the bearing factor must be between 7/s and 1, probably
closer to 1. From analogy with the uniform medium (Fig. 1), it is evident that the
surface layers have a greater influence on the difference between deflections of rigid
and flexible bearing areas. If the surface layers are relatively stiff, this difference
should be small. Taking into account the overall inaccuracies of modeling the pave-
ment by an elastic layered system, it is suggested that the same deflection factors
should be tentatively used in deflection analysis of pavement systems loaded with rigid
plates.

An approximate formula is now proposed to calculate an "equivalent modulus' Ei,2
that can be substituted for moduli E; and Eg, for the same deflection. The three-layer
system is thus reduced to an equivalent two-layer system, composed of one layer of
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modulus Ei,2 and thickness hi + hz supported by the same subgrade of modulus Es. The

approximate formula is
E . [hl E; + ha SJ z]
1,2 =

h1 + ha

The term hy 3/— is called the layer rigidity factor. The approximate formula is exact
within 10 percent of the computed deflection for ha/r not greater than 1, and within

15 percent for hz/ r not greater than 2. This formula is not indicated for ha/r greater
than 2. Making n’ the modular ratio of the equivalent two-layer system and h;/hs = H,

it follows
. 3
n’=E1’2=nz H m + 1
Ea H + 1

The deflection of the equivalent two -layer system may be calculated by the graph in
Figure 2 with the parameters n’ and (h: +hz)/r.

An analogous expression has been proposed by Palmer and Barber (4) to reduce the
two-layer system to an equivalent uniform medium., Barber demonstrafed that his
approximate formula yielded deflections very close to Burmister's two-layer analysis
(1). The validity of the rigidity factor concept both for two-layer and three-layer
systems lends support to its tentative extension to multilayer systems. It is suggested
that intermediate layers may be modified if the rigidity factor is kept constant. It is
also suggested that multilayer systems can be reduced to equivalent three-layer sys-
tems for the purpose of deflection calculation, aggregating similar adjacent layers and
computing their equivalent modulus by the foregoing formula. The subgrade should not
be altered, in any case, and neither should it be included in the equivalent modulus
calculation, due to its infinite depth. Further research is needed on these points.

The modular ratio Ei/Ez for two-layer flexible pavement structures is always below
100, being closer to 100 for semiflexible soil-cement pavements (5, 6, 7, 8). The
modular ratio for rigid pavements is always well above 100. Therefore the graph in
Figure 1, including values of E,/E, from 2 to 100 is adequate for the structural analysis
of flex1b1e and semiflexible two-layer pavements. Rigid pavement design is based on
a stress criterion and not on deflection limits. Accordingly, surface deflection com-
putation is of little use for rigid pavement analysis, and it is not necessary to include
in the graph the higher values of the modular ratio.

In the case of three-layer pavement structures, there is normally a marked dif-
ference between modular ratios n; and na. For technical and economical reasons m
and ne are always greater than one, and n; is usually greater than n.. The effective
modular ratio for granular non-cemented materials is always between 2 and 5 (9, 10,
11). Hence, the value of na is usually between 2 and 5. The value of n; for flexible
and semiflexible pavements is usually between 5 and 50. The three-layer deflection
charts in Figures 4 to 18 provide an adequate range of modular ratios for the design
and structural analysis of flexible and semiflexible pavements.

The elastic moduli to be used in the structural analysis should be measured by load
bearing tests or other field tests conducted on the full pavement section. Laboratory
tests on small samples or molded specimens do not correlate well with field values.
Great care should be exercised in the determination of the layers moduli, for the
moduli values have a critical effect cn the deflections.

It is not correct to measure the subgrade modulus by load bearing tests on the
subgrade alone, and then to measure the pavement layers' moduli by new tests on
each superimposed layer, using in the calculations the subgrade modulus previously
determined. This process gives too high and erratic values for the pavement moduli,
as reported elsewhere (12). The effective in-place subgrade modulus is much higher
than the modulus of the subgrade alone. The main reasons are (a) an increase in com-
paction of the lower layers caused by the compaction of the top layers; (b) the confining
effect of the top layer; (c) the nonlinearity of the soil stress-strain curve; (d) the load
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spreading ability of the pavement, allowing lower stresses on the subgrade; (e) possibly,
lack of agreement between the theoretical elastic model and actual pavement response.
All these factors contribute in varying degrees to an increase of the effective subgrade
modulus. The saturation of the subgrade by capillarity after the construction of the
pavement acts in the opposite direction, but this effect is smaller than the sum of the
others. Consequently, the modulus of the subgrade alone is of no avail for the calcula-
tion of the pavement moduli. All moduli should be measured simultaneously by tests
conducted at the surface of the complete pavement. This determination is possible
with load bearing tests with several plate diameters or several pavement thicknesses.
Theoretically, the solution of a two-layer system requires at least two plate diameters
(or two thicknesses) and the solution of a three-layer system requires at least three
diameters (or thicknesses). The calculation of the moduli requires the solution of a
system of simultaneous equations. For greater precision, the deflection factor values
should be interpolated in the tables below each graph, instead of reading the values on
the graphs. The problem is further complicated by the scatter of test results, A
study of three-layer system moduli determination has been published (12).

A few examples of application are included to illustrate the use of the deflection
factor charts.

PRACTICAL EXAMPLES

1. Suppose a pavement is composed of penetration macadam base course and light
surface treatment, with total thickness of 15 ¢m (6 in.), resting directly on the subgrade.
Assume the following values for the elastic moduli: subgrade seoil 500 kg/cm? (7, 140
psi); base and surfacing considered as a single layer 30, 000 kg/cm?® (429, 000 psi).

The basic wheel load is 5 long tons (11, 200 1b), with contact pressure of 7 kg/cm®
(100 psi) and contact radius of 15. 1 em (6 in.). Calculate the elastic deflection.

h/r = 15/15,1=1
Ei/Ea = 30,000/500 = 60
W= 72?

The graph in Figure 2 gives the value of F by interpolation between the curves of E,/E; =
50 and 100, for h/r = 1. For better accuracy, several values of F should be taken from
the graph, at the intersections of the curves of E;/E2 with the vertical line of h/r = 1.

An auxiliary graph should be made on log-log paper, plotting values of F vs respective
vaiues of Ei/Ez, and connecting the plotted points by a continous curve. This auxiliary
graph gives the value of F for E,/Ea= 60

F =026

1.75x 7 X 15,1
500

W= x 0.26=0.1cm (0. 04 in.)

2. Design the thickness of the same pavement of Example 1 for the condition of the
deflection being less than 0. 05 cm (0. 02 in.).

E;/E; = 60
W= 0.05cm
h/r = ?
The required deflection factor is
0. 05 * 500

= ——— = (.1
1.76% 7 X 15,1 3

Inasmuch as the deflection factor is proportional to the deflection, this value of F could
be obtained taking half of the previous value. Now it is necessary to draw the complete
curve of E;/Ea= 60 on the graph in Figure 2 interpolating between the curves of 50 and
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100. The points near the probable solution, i.e., between h/r = 2 and 3, should be
plotted by logarithmical interpolation, as in the previous example. The point at the
intersection of the curve of E;/Ez = 60 with the horizontal line of F = 0. 13 gives the
solution

h/r = 2.3
. h 2.3%x15.1 = 35 cm (13. 8 in.)

It was necessary to increase the thickness to more than double the previous value to
reduce the deflection in half,

3. Compute the elastic moduli of the same pavement, with 35 cm (13. 8 in.) of thick-
ness, from the following results of load bearing tests

Diameter Modulus of Reaction
ecm  in. kg/cm?® pei

80 31.5 24. 6 888
20 7.9 317.5 11, 462

The equation is

E;=17rkF

For ¢ 80 h/r = 35/40 = 0. 875
k = 24.6 kg/cm®
F = 2?
Ez= 1.75%X 40X 24,6 X F'= 1722 F’
For ¢ 20 h/r = 35/10 = 3.5
F' = ?
k = 317.5 kg/cm®

Ex = 1.75x 10 X 317.5 x F” = 5556 F”
Comparing the two values of E,

1722 F'
R V4 o

5556 F”
3. 22

Take from the graph in Figure 2 several values of F, at the intersections of the curves
of E;/Ea with the vertical lines of h/r = 0. 875 and h/r = 3. 5, and calculate their re-
spective ratios

F/ F//

Ev/Ea /v 0.875) (n/r=3.5 F/F
2 0.78 0. 58 1. 34
5 0. 59 0. 31 1.90
10 0. 49 0. 21 2. 33
20 0. 40 0.14 2. 86
40 0. 328 0.106 3.10
50 0. 305 0. 096 3. 18
60 0. 290 0. 090 3. 22
70 0. 278 0. 085 3. 27
100 0. 250 0. 075 3. 33

The points near the probable solution (E;/Ez more than 40) should be computed by
logarithmical interpolation, as in the first example.
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The computed value of F'/F” equals the required value of 3.22 at the point
E)/Ez2= 60 or F'= 0. 290. The moduli sought are

Ea
E,

1722 x 0. 29C = 500 kg/cm?® (7, 140 psi)
60 x 500 = 30, 000 kg/cm? (429, 000 psi)

4. Calculate the deflection of the following three-layer Eavement. The wheel load
is 5 long tons (11, 200 1b), the contact pressure is 7 kg/cm® (100 psi) and the contact
radius is 15.1 cm (6 in.).

Layer Thickness Modulus
cm  in, kg/cm? psi
1. Asphaltic-concrete
surface course 15 6 50, 000 714,300
2. Stabilized base course 20 1.9 2,500 35,700
3. Subgrade - - 500 7,140
n: = 50,000/2,500 = 20 hy/r = 15/15. 1 =1
nz = 2,500/500 = 5 ha/r = 20/15.1= 1. 32
Es = 500 kg/cm*
From the graph in Figure 14 : F=0.185
LW = %’ﬂ X 0.185 = 0.07 cm  (0.027 in.)

5. Modify the thickness of the pavement of Example 4 so that the deflection is less
than 0.05 cm (0. 02 in.). The required deflection factor is

0.05%500 _ o 1q

F={msxax151"

A new curve for F = 0. 13 should be interpolated between the curves of 0. 10 and 0. 15 in

the graph of Figure 14. All points on this curve correspond to thicknesses hi and ha
satisfying the required condition of W = 0. 05 cm. Possible combinations are as follows.

hy/r ha/T
1 4.1
1. 25 3
1.5 1.7
1.6 1. 32

The best combination of h; and ha should be selected by considering economic and
engineering aspects, taking into account the unit costs of surface and base courses.
In most cases, it is cheaper to increase the base thickness. Suppose the first com-
bination is selected

hy/r
ho/r

Total thickness: 15 +71 = 86 cm  (33.9 in.)
If the fourth combination were preferred

hy/r
hs/T

1 h = 1x151=15¢cm
4.7 ha = 47%x15.1=71 cm

24 cm
20 cm

nou
-
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Total thickness: 24 + 20 = 44 cm  (17. 3 in.)

Increasing the surface course from 15 to 24 cm permits reducing the total thickness
from 86 to 44 cm. In this particular case, ! cm of surface course is equivalent to
5.7 cm of base course.

The deflection of the latter combination may be checked by the approximate formula,
since ha/r is less than 2.

H=1.6/132=1.22
oo [122%0+1]°
n_5[ 122 +1 ] = 968
n'/r=M=2.91
15. 1

Entering the graph of Figure 2 with parameters n’ and h’/r F= 0. 128

_L75x7x15.1
500

W X 0.128 = 0. 047 cm

The result is close enough to the specified deflection of 0. 05 cm.

6. If the given modular ratios are intermediate between the values of the graphs in
Figures 4 to 18, it is necessary to construct an auxiliary graph of similar aspect, by a
series of logarithmical interpolations between the given graphs. Consider for instance
the following case.

15 h1/r
4 ha/T

1
1.5

n;
Na

nn

The deflection factor is bracketed by the following values

n; X na F

20 X 5 0. 175
20 x 2 0. 265
10x 5 0. 210
10 x 2 0. 315

The deflection factor, obtained by three interpolations on log-log paper, is
F = 0.208

If an analysis of several thicknesses is required, it is necessary to trace the auxiliary
graph corresponding to n; = 15, na = 4 for the whole range of thicknesses.
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