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The purpose of this study was to develop an analytical methodology or 
model for finding the optimal combination of two modes in providing 
transportation service. The specific case treated was that of provi~g 
automobile transport facilities and possibly some rapid transit facilities 
in a radial, downtown-oriented corridor. The objective was to find that 
combination of facilities which minimized transport costs-including both 
capital and operating costs of transit and auto transport-during the de~ 
sign or horizon year. 

Since transportation is a service to its environment, the services 
provided were required to have certain attributes. The capacity of the 
two modes had to be capable of accommodating the peak period flows. 
Furthermore, the system had to be designed so that the peak period and 
non-peak period interzonal travel times did not exceed their respective 
maximum acceptable values. Because a two-mode system was dealt 
with, the modal choice behavior of travelers had to be incorporated into 
the model. 

In order to insure the usefulness of the model, it was developed with 
reference to a specific real world situation in the Chicago area. The 
nature of the cost functions for U1e twv u10de1:1 a.nd the constraints re
lated to capacity, travel times, and modal choice was such that the pro
lem could be characterized within the framework of linear programming. 
This very efficient optimization technique was used to find the solution, 
which appeared to be quite reasonable. 

•THE URBAN transportation planning process has been advanced to a high level of 
sophistication. It is now possible to predict future demand for transportation and to 
evaluate any transportation plan against that demand in terms of many different mea
sures of performance. From any given set of alternative plans it is usually not difficult 
to select that one plan which is best according to some specified criterion, sur.h as mini
mization of total annual cost subject to service constraints. 

Despite the tremendous strides made in planning methodology, at least one serious 
weakness remains: the time and expense involved in developing and then evaluating an 
alternative plan precludes the consideration of the large number of plans which are 
quite different from one another yet are all reasonable alternatives and merit serious 

Paper sponsored by Committee on Transportation System Evaluation and presented at the 45th Annual 
Meeting. 
1Now with the Technical Analysis Division of the National Bureau of Standards. 

20 



21 

consideration. In only a few studies, such as the Chicago Area Transportation Study 
( 4), have a large number of highway alternatives been considered and evaluated. Even 
when this i s done, highway planning and evaluation often pr oceed independently of that 
for public transportation. Under these circumstances it is very difficult to believe that 
near optimal network configurations and combinations of expressways, arterials, and 
mass transit facilities are found. 

In this paper a mathematical model of urban transportation facilities in a radial cor
ridor is presented. The purpose of the model is to circumvent some of the objections 
to conventional techniques. The essential attributes of various combinations of arterial 
streets, expressways and rapid transit, and the predicted demand for transportation 
are characterized within the framework of linear programming. This efficient com
putational technique is then used to find the optimum plan. 

THE MODEL 

This model considers the travel along a single corridor in an urban area. The ob
jective function to be minimized is the total annual cost of transportation, during one 
design year: 

min j annual r oad l j vehicle operating I 
l capital cost ~ + l cost f 

+ j annual transit l j annual parking l 
loperating cost { + l facilities cost ~ 

jannual transit! 
+ l capital cost ~ 

The specific form of these cost functions is discussed in a later section, since these 
are based on empirical data. Assumed costs of the time of travelers, while used in 
several other transportation studies, is not included here. The authors feel that the 
value of time is so dependent on the amount under consideration and the time of day, as 
well as the individual, that the concept of an average value is probably not particularly 
useful. The constraint set includes various types of travel time constraints which we 
feel are more meaningful than some hypothetical value of time. 

With the above formulation, transportation costs would be minimized by producing 
no transportation. However, since transportation is a service to its environment, this 
service must have certain attributes in order to meet the needs of the environment 
satisfactorily. These requirements are reflected in the constraints of the problem. 

All transportation systems are characterized by a capacity limitation, and in this 
case, it is required that design capacity meet or exceed the predicted demand. It 
should be borne in mind that it is a choice of transportation decision-makers whether 
to provide sufficient capacity to meet demands-often at considerable expense-or to 
limit capacity and thereby force a displacement of some trips in time and space. 

Another set of constraints refers to the maximum travel time which will be per
mitted for trips between the various possible origin-destination combinations. These 
constraints can be precisely the interzonal travel times assumed in trip distribution; 
thus, this concept of travel time constraints is useful in fitting this model into the 
existing urban transportation planning methodology. 

These constraints also point out a public policy question regarding the level of serv
ice and accessibility which are to be given to each region. Within the technological 
constraints on speed there is nevertheless a wide range of choice as to level of service 
and accessibility, and these must be dealt with directly. Of course, public expectation 
as to reasonable travel times and the willingness to pay the price of speed and capacity 
significantly influence decisions here. In this program lower bounds on speed are 
specified along with the upper bounds imposed by technology, permitting the program to 
choose any speed within this range. 

Since the program deals with both road transport and rapid transit, the behavior of 
people regarding modal choice must be taken into account. This is also done in a con
straint set, which attempts to duplicate one of the more sophisticated modal choice 
models currently used in planning studies. The choice is based on such factors as 
door-to-door travel time, transit waiting time, out-of-pocket costs, trip purpose, and 
socio-economic status of the traveler. 
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Main Transportation Route__/ 

Figure l. The region. 

In order to demonstrate the usefulness 
of this model, it was implemented using 
cost and demand data from the Chicago 
area (1, 4, 6, 11, 14) and a modal choice 
modeCdevelopedforthe Washington area 
( 8). The sole reason for the~e choices 
was the availability of data. It should be 
remembered that we are not solving for the 
actualoptimum solution to Chicago's prob
lem, because we are treating the problem 
assuming no rapid transit or expressways 
exist, and we are treating a hypothetical 
average Chicago area corridor, not a real 

one. These conditions were imposed by the difficulty of obtaining more complete and 
detailed data in the short time available. It is also emphasized that in any real world 
application it is necessary to obtain detailed cost and demand predictions for the region 
in question before this model can be expected to yield valid results. 

Only the problem of transportation improvements in a radial corridor is considered. 
Because generally neither corridor travel demand nor costs follow any simple mathe
matical relationship with distance from the central business district, the 30-mi long 
corridor was divided into 2-mi long zones (Fig. 1). This permits approximations of 
any demand and cost distributions and greater accuracy, if desired, can be achieved 
by reducing zone length. Demands and travel times are treated on an interzonal basis, 
while cost parameters are uniform in each zone. In this particular application only 
travel to and from the central business district is considered, in order to simplify the 
computations, but the model can be used ior all interzonal travel in the corridor. 

Before discussing the model in detail, mention should be made of the relationship of 
this paper to the existing literature in the area. In this paper the concern is with the 
addition of capacity and improvement in the level of service in an existing network, 
where these additions can be in the form of incremental changes in existing streets or 
in the form of entirely new exp1·essways u1· freeway-type Iacililies with the associated 
high threshold costs. The studies by Garrison and Marble (9), Carter and Stowers (3), 
and Quandt (12), however, are solely concerned with essentially continuous additions
of capacity toexisting facilities, while the work of Roberts and Funk (13) is concerned 
only with new investments of a very lumpy sort. Also, in our study thelevel of serv
ice to be provided is treated explicitly as a choice variable, subject to explicit con
straints, whereas none of the other studies deal with this directly. 

Beckmann (2) presents a very general and sophisticated model for freight flows, but 
this model is implemented by use of the calculus of variations. Unfortunately, algo
rithms for solving such problems have yet to be developed, so that his model is effec
tively not operational. 

Creighton et al (7) treat investment in a two-mode system, but make some very 
questionable assumptions regarding the transport network configuration and the nature 
of cost characteristics. Moreover, it does not appear that systemic effects even on a 
link-much less a network-can be taken into account. We have attempted to develop 
the model so that it follows known cost functions and demand interrelationships closely. 

This model also differs from the others mentioned in that it deals with only one cor
ridor, not a complete network. Therefore, certain systemic effects cannot be dealt 
with. Nevertheless, it is felt that this model is useful, because in certain corridors
particularly radial corridors in larger cities-the flows are much larger than in the 
intersecting corridors. 

THE OBJECTIVE FUNCTION' 

'l'he cost functions for road transport, rapid tranAit, and parking are consi<lereci 
separately. The specific purpose of these functions is to relate the cost of producing 
transportation to measures of the amount and quality of the transportation produced. 
In each case some theoretical considerations are discussed first, and then the models 
are developed from data on actual systems. 
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Road Capital Costs 

The capital cost of highway facilities 
is related to the capacity of the road (the 
maximum vehicular flow rate it can ac
commodate) and the average speed at 
which this traffic moves. For one lane of 
any given road without signals or stop signs 
the speed and flow are related (Fig. 2). 
Thus an increase in speed with no change 

Width Lane 2 > Width Lane 1 in capacity can be obtained by an increase 
in the number of lanes or, up to a point, 
in the width of lanes, both at an increase 

O - ---------------- in cost. Similarly, increases in capacity 
0 Volume with constant speed are associated with 

the expense of wider lanes or more lanes. 
Because of these characteristics of 

Figure 2. Lane capacity. flow, the capital cost function for a given 
length of road resembles the surface in 
Figure 3. This surface is drawn without 
discontinuities to represent changes in the 

number o~ lanes, because it is felt that changes in road width will provide for the spec
ified changes in speed and capacity. In Figure 3 it is assumed that some sort of road 
already exists, for non-zero speeds and capacities can be obtained at zero cost. This 
is generally the case in urban areas, but the alternative can also be considered within 
the framework. 

In the case where different road technologies are available the best for any given 
combination of speed and capacity can be determined rather easily. For graphical 
simplicity, consider one speed, with varying capacity. The cost curves might resemble 
those in Figure 4, with the choice of road type being that which yields lowest cost. 

The above considerations lead to the linear road capital cost model for a road 
spanning zone i 

where 
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annual unit capacity cost, $ per vph; 

capacity, vph; 

annual unit peak period speed cost, $; 

peak period slowness, min/mi; 

maximum (technological) slowness, min/mi; 

minimum (technological) slowness, min/mi; 

annual unit cost of additional non-peak period speed, $ per min/mi; and 

non-peak period slowness, min/mi. 
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Capital Cost 

0 

Figure 3. Road capital cost function. 

Two factors require additional explanation: the use of minutes per mile or slowness 
rather than miles per hou::.· or speed, and the inclusion of non-peak period speed. ''Min/ 
mi" wa.s used so that the travel time between zone pairs would be a linear combination 
of the choice variables. Non-peak period slowness was included because it might be 
desirable to let a road operate at 30 mph, for example, during the peak period to keep 
i::apiial co1St low, but to destgn it so that non-peak drivers could saiely drive at 50 mph 
during uncongested periods. Clearly there is an additional expense due to such features 
as longer acceleration and deceleration lanes on expressways and more adequate signing 
and signaling on arterial streets. 

The parameters in this cost expression were estimated using data on some existing 
and proposed facilities in U1e Chicago area. Because of data limitations, no general 
validity is claimed for these estimates. As mentioned earlier, the purpose here is to 
demonstrate that this model is operational, not necessarily to solve a specific real 
world problem. 

Costs for two different types of urban roads located near the central business district 
are plotted in Figure 5. The lower curve is for an arterial street with through-lane 
overpasses at major intersections, on which traffic can flow at about 2 min/mi. The 
upper curve is for a freeway type facility, designed for flow at about 1. 2 min/ mi. The 
other curves are based upon extrapolation with the linear model. 

Costs for the arterials are taken directly from Haikalis (10), with an adjustment for 
the location. It was assumed that the ratio of downtown arterial to Haikalis' outlying 

arterial costs is the same as that ratio 

Capi t l Cost 
Arterial 

Arterial 
with 

essway 

Capacity 

Figure 4. Choice of technology. 

for freeways, $15,500, 000/$12, 000, 000 = 
1. 29. This yielded an arterial cost of 
$3,400,000 for a road with a 2,000 vph 
capacity at 2 min/mi. This total capital 
cost is converted to an annual cost with the 
assumption of a 30 yr life and n.n interest 
rate of 6 percent pe1· annum, for an an
nual cost of about $250,000 per mile of 
road. 

The freeway costs are based on the 
work of Aitken (1) and Satte:d y (14). Aitken 
reports that 6. 4~mi of an a.:. 1ane Treeway 
entering the downtown area cost in average 
of $15,500,000permi, or $1,130,000 
am1ually. According to Satterly the con
struction (but not right-of-way) cost of a 
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Figure 5. Cost surface for road near the CBD. 
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10-lane freeway with grade separations every one-half mile and interchanges every 
mile is $690,000 per lane-mi. Taking the marginal cost of a lane-mile to be Satterly's 
average construction cost plus one-half of Aitken's freeway right-of-way cost for one 
lane, the annual marginal lane-mile cost becomes $75,000, Each lane of a freeway 
can accommodate about 1100 vph at 1. 2 min/mi. The resulting cost curve is as shown 
in Figure 5. 

If the cost-slowness relationship is linear in the range of speeds under consideration 
(Fig. 6) the parameters can be evaluated readily. Unfortunately no data were available 
on high capacity urban roads built for travel times within the range of 1. 2-2. 0 min/mi, 
probably because none have been constructed recently, so that this assumption could 
not be tested. 

The resulting parameter values for a two-mile roadway are as follows: 

C = $250 per vph, 

M = 2.0 mi/mi, 

M = 1. 0 min/mi, 

M = $3,000,000, and 

s $600, 000 per min/mi. 

Since no information was available on the costs associated with S, this value was estab
lished from the educated guess that it would cost about $4, 000,000 to improve the r oad
way design so as to permit an increase in speed, at a very low traffic volume, from 30 
mph to 60 mph. 

All autos entering the central business direct must be stored, and therefore parking 
costs must be included. The cost of constructing ramp garages in the Chicago Loop 
during 1954 and 1955 varied from $2,260 to $2,830 per space (6), so an approximation 
of $2, 500 per space is used here. Assuming that demand patterns dictate that three 
spaces be provided for each one required during the peak hour, the annual cost coef
ficient becomes $550 per peak hour space. This can be added directly to the road cost 
coefficient for zone 1 to yield the capacity cost coefficient for that zone. 

The cost coefficients for all other zones were developed in a similar manner, with 
the omission of parking costs. These gave a reasonably accurate representation of the 
rather scanty historical costs available. All of the coefficients are given in Table 1. 
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Zone 
i Ci 

($/vph) 

1 800 
2 200 
3 170 
4 120 
5 70 

6-15 40 

Annu 
M. 
-i - -) 
Ri 

1 Cost 

~i M'.i 
Peak Period Slowness, mi 

Figure 6. Cost as a function of m., with m. = s .• 
I I I 

TABLE 1 

OBJECTIVE FUNCTION COEFFICIENTS 

Coefficients 

Mi Si pi vi 

( $) ($/min/mi) (2/ pass. /hr) ($/veh-mi) 

3,000,000 600,000 253 16.80 
2,500,000 500,000 253 16.80 
2,000,000 400,000 253 16.80 
1,600,000 300,000 253 16.80 
1,200,000 200,000 253 16.80 

800,000 100,000 313 16.80 

Vehicle Operating Costs 

Vehicle operating costs are based on information given in Smith (15). We assume 
that one-half of the drivers using transit would get rid of the car which would other
wise be used for the trip, and therefore one-half of the auto users should be charged 
the marginal operating costs of driving, whereas the other half should be charged with 
the full costs. 

Total operating costs, exclusive of garaging, parking, and tolls $0. 0751 per veh-mi 
Marginal operating costs O. 0368 

$0. 1119 per veh-mi 

Average operating costs = 11.19/2 = $0. 056_0 per veh-mi. Converting this figure to an 
annual basis, using 300 equivalent days per year, V = $16. 80 per daily veh-mi. 
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Figure 7. Annual rapid transit cost and capacity. 
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The rapid transit costs used in this study are based entirely on a separate model of 
rail transit costs developed previously by Morlok. This model relies heavily on the 
data found in Lang and Soberman (11), and is similar to their model. It does, however, 
distinguish more completely between fixed and marginal costs than their model. 

Although it would be inappropriate to discuss this model in detail here, the essential 
characteristics are as follows. The model represents a conventional rail transit line 
operating on a two-track elevated structure of modern design, which costs about $3. 5 
million per mi. Only high-speed, air-conditioned cars are used, but no automation of 
train operation or fare collection is assumed. Trains are operated for 16 hours of 
every day, and all passengers are provided with seats during the entire operating period. 

In this model total annual costs can be predicted from capacity and headway during 
weekday peak periods, weekday non-peak periods, Saturdays and Sundays and holidays. 
Headways are fixed at 4 min during weekdays and Saturdays, and at 15 min on Sundays 
and holidays. Saturday, Sunday, and holiday capacity was set at one-eighth of that 
during weekday peak periods, and weekday non-peak period capacity was set at one
fourth peak capacity. These specifications leave peak period capacity as the only choice 
variable, yielding a cost function of the form 

where 

Crt annual capital cost of rapid transit, $; 

P. annual cost per unit of peak capacity, $ per pass./hr; 
l 

pi peak period transit demand from zone i, pass. /hr. 
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Cost estimates based upon Morlok's model are given in Figure 7. The cost coef
ficients for a 10-mi long route-the length of the transit line to be considered in this 
example problem-are fixed cost, $2,870,000, are variable cost, $253 per pass. /hr. 
(The use of an externally specified transit line length will be explained in the final sec
tion. Suffice it to say here that for each run of the program, costs will be minimized 
for a given transit route length, which is arbitrarily chosen at 10 mi for this example. 
The program is run for each of the possible transit line lengths, of which there are 
generally only a few reasonable alternatives.) 

In addition to train expenses, parking costs vary directly with the capacity cf the 
system. The unit parking cost used was that of constructing the lot at the outer termi
nal of Chicago's Skokie Swift line in 1964, approximately $275 per space (5). Again 
assuming a total of three spaces must be provided for each space requirecf during the 
one peak how·, and that these facilities are p:;iid for in 30 years at 6 percent interest, 
we have an annual parking cost of $60 per peak pass. /hr. 

Including the parking costs, the final cost coefficients for a 10-mi long transit line 
a-re as follows: 

crt $2,870,000, 

P. $253 per pass. /hr, i = 1, 2, 5, and 
1 

P. = $313 per pass. /hr, i = 6, 7, 15. 
1 

THE CONSTRAINTS 

This section examines the set of constraints which characterize our problem. The 
equations related to capacity, modal choice, level of service, and the calculation of 
vehicle-miles a::re considered separately. 

Linearity 

Our constraints as well as our objective function are, of course, in linear form. 
The real world is obviously not that neat. We do not feel, however, that any unjustifi
able liberties were taken in achieving linearity. For one thing, all the relations did, 
in fact, closely approximate linearity, at least in the range which was relevant for the 
problem. Furthermore, no sharp disr.ontinuities are apparent, suggesting that a, linear 
approximation will not give vastly unrepresentative results. Finally, and most impor
tant, nonlinearity has not proved destructive of linear programming in the past due to 
the existence of techniques such as piecewise linear approximation. Though the problem 
would no doubt become substantially more complicated, there is no reason to believe 
that such techniques could not be used here. It is left to critics to show that even a 
complicated problem is not superior to the next best technique available for the solu
tion of such an urban transportation problem. 

Capacity 

The capacity constraints are of the form 

n n 
Ee. + .r. pi ~ L D. 1, 

' 
k 

J 1 
1 = J i = j 

n 
Ee. :i!: .L. D. j = k + 1, , n 

J 
1 = l 1 

where 
cj capacity of the road in zone j, vph; 

E = 1. 5 persons per vehicle, average automobile occ,1pancy; 
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pi = peak nour transit passengers originating in zone i, pass. /hr; 

D. = total number peak hour passenger trips generated in zone i, persons/ hr; and 
1 

k = the last zone served by transit. 

The Di are generated from the estimated 1980 population figures in each radial ring as 
estimated by CATS (4). The ratio of trips to population for 1956 is given as 0.163. 
This figure is retained for 1980. Since we are dealing with a corridor representing 
one-seventh of the population, the Di are given by applying a coefficient of 0. 0023 = 
(1/ 7) (0.163) (0.1) to the CATS figures. The 0.1 is to convert daily into peak hour pas
sengers given that approximately one-tenth of daily trips are made during the peak hour. 
The specific Di are presented in Table 2. 

TABLE 2 

PEAK PERIOD TRIP GENERATION 

Zone 
Trips 

Zone 
Trips 

i Di 
i Di 

(persons/ hr) (persons/ hr) 

1 356 9 1040 
2 1281 10 1076 
3 2139 11 1006 
4 1976 12 1027 
5 1868 13 1093 
6 1391 14 584 
7 1325 15 720 
8 951 

This set of constraints stipulates that the total transportation capacity of the zone 
must at least equal the number of passengers who will pass through that zone during 
the peak hour . Obviously, if the capacity of the system is sufficient to meet peak hour 
demand, it will, because of the definition of peak hour, be able to meet all remaining 
demand as well. We have taken the peak hour demand to represent 10 percent of the 
daily total, and have estimated that 40 percent of total daily demand will occur under 
peak hour conditions, i.e., there are four "equivalent" peak hours. This latter con
sideration is important in estimating the modal split since the split will, in general, be 
different during the peak and off-peak periods. While Ci represents a true capacity 
(since it will not, in general, be reached except during peak periods), Pi is both the 
demand and the capacity for rail transit. Thus we assume that the rapid transit line is 
operated with no excess seating capacity at the location of maximum loading during the 
peak hours. This set of constraints, then, because of this identity, can be seen as 
stipulating the road capacity in each zone. 

Modal Choice 

The modal choice constraints are of the form 

h 
Pl· A. l: m. + B. h = j if j s: k and h =kif j > k 

J i = 1 1 

empirical constants related to modal choice characteristics and D .. 
J 
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Figure 8. Example modal choice curve. 

As previously explained mi denotes the slowness of the road system in zone i, during 
peak hour conditions. The basis for these equations is the Deen, Mertz and Irwin re
port (8), in which the percentage of passengers going by transit is formulated as a func
tion of the ratio of travel times of the two modes with certain cost and service charac
teristics entering as parameters, along with the income class of the group. Their 
curves, which express transit travel as a function of travel time by transit to that via 
automobile, were not, in general, of linear shape. However, we found that by plotting 

TABLE 3 

MODAL CHOICE EQUATIONS 

Income Range Zones Equation ( $/family/yr) i 

3100 or less 2 Pi 0. 65 + 0.125 (TTR)a 
Di 

3100-4700 3 Pi 0. 60 + 0.100 (TTR) 
Di 

4700-6200 4 Pi 0. 35 + 0. 350 (TTR) 
Di 

6200-7500 1, 5, 6 Pi 0. 35 + 0. 333 (TTR) -
Di 

7500 or more 7-15 pi 0.17 + 0. 500 (TTR) 
Di 

aTTR = Travel time ratio, auto to transit 
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the percentage of rail pas s engers against the inverse of their travel time ratio, we 
achieved a very nearly l inear relation. An exam ple curve is shown in Figure 8, and 
the equations a1·e given in Table 3. 

Deen, Mertz and Irwin ( 8) further divide their split estimates into work and non-work 
groups, but the data from which they derived the non-work estimates were so s parse 
that we ignored the minor differences between them and used their work trip relation
ships for all trips. There are still two modal split equations for each zone, however, 
since the peak hour travel time ratio and demand will, in general, be different from 
the non-peak ratio. Only the peak hour mode choice equations will affect the capacity 
constraints because of the definition of road capacity . 

Three points should be made concerning the modal split equations. First, the rel
ative income status of each zone was assigned on an intuitive basis aided by the author's 
experience in the Chicago area. A more rigorous method of assignment is, of course, 
desirable, but, unfortunately, not readily available on a zone-by-zone basis. Secondly, 
the Deen, Mertz and Irwin equations were derived primarily from data for Washington, 
D. C. It is assumed that these relations are valid for Chicago, partly because such 
features as income status are separated out of the equations as parameters. The ul
timate reason for the assumption is, as always, the lack of such data for Chicago. 
Finally, it should be noted that as the equations stand there is nothing in the mathematics 
which would prevent the percentage of passengers going by rail from exceeding 100. 
Ideally one would like to be able to formulate the equations so as to prevent this pos
sibility without putting restrictions on the travel time ratio. Unfortunately there seems 
to be no easy way of doing this without substantially cluttering up the model or resorting 
to nonlinear equations. However, the use of upper and lower bounds on slowness for 
both technological and service reasons not only serves these primary purposes but 
these constraints should also in general act to retain the percentage going by rail well 
within the 0-100 range. An additional check is present in the constraints which limit 
total travel time. 

The travel time ratio for zone j which appears in the modal split equations of Table 
3 is of the following form 

where 

R 

w. 
J 

h 

1: 
i = 1 

h 

1:-
i = 1 

L.R + WJ. 
· l 

h k if j :> k 

length of zone i (two miles for all zones); 

average time required for the traveler to go from his home to the main cor
ridor highway plus the Hme r equired to travel from the highway in the CBD 
to his destin· q ,m when h = j (i. e, j s: k) or simply the average time from the 
highway to hie downtown destination when h = k (i.e., j > k) since the travler 
in this instance is already on the highway and is considering the benefits of 
transferring to rail at zone k-thus, in our modal choice equation, only the 
time still left to be spent traveling is relevant; 

uniform average slowness of transit, min/ mi; and 

ave1·age walking and waiting time to and from the trans it station when zone j 
is served by transit (both ends of the trip), or the average t ransfer and wait-
ing time for transit when zone j is not served by transit, plus the walking time 
at the downtown end. 

When numbers are chosen for the Hh and Wj and the value of R is entered, the modal 
choice equations take the form shown in the constraints. For our example we use 
Hh = 15 min for j s: k, Hh = 8 min for j > k, W = 5 for all zones, and R is a uniform 
1. 89 min per mi. 



32 

The third set of constraints in this group is of the form 

h j if j ,;; k and h = k if j > k 

where 

dj daily travelers from zone j traveling via transit, pass. /day; and 

X., Y., Z. empirical constants related to modal choice characteristics and D .. 
J J J J 

Thus the sum of peak and off-peak demand, dj , is obtained from a set of equations 
identical in form to those appearing in the previous set of constraints with the exception 
that Si, slowness in the off-peak periods, is used in addition to mi. This set of con
straints is, as seen, composed of equalities which are used in the next set to determine 
total vehicle-miles for the purpose of deriving operating costs of automobile travel. 

Vehicle-Miles 

The constraints which determine total daily vehicle movement are 

v . = i ( ¾ L. + F. + G) (10D. - d.) ,;; k 
J i=l l J J J 

2 (J, L. + G) (10D -d.) + i ' f L. + Fl) (lO·D;I >k v. E J l J J i = k +l l 

where 

v. = total daily automobile movement due to trips generated in zone j, veh-mi; 
J 

F j - average distance from the home to the main corridor road, mi; and 

G = average distance from the main corridor road to the downtown parking loca
tion, mi. 

In this problem we took Fj as 3 mi for all zones and G as 2 mi. 
These last two constraint sets, giving daily transit travel and vehicle-miles of auto

mobile movement, could have been collapsed into one set. The reason for this is that 
daily transit travel does not enter directly into the criterion function and there is a 
unique relationship between daily transit travel and vehicle-miles of travel for each 
zone. But these were left separate so that the solution would include the important 
statistic of total daily transit travel for each zone. 

Level of Service 

The constraints on level of service imposed by current highway technology, reflected 
in the upper and lower· bounds on slowness in this program, have already been dis
cussed. In addition, a set of overall travel time constraints is included: 

j 

r L.m. ,;; T. 1, 2, . J n 
i ... 1 l l J 

and 
j 

.r ... L. s. ,;; T: j 1, 2, 
' 

n 
l l J l = .L 
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where 

Tj maximum peak period travel time from zonej to the downtown, min; and 

T'. = maximum non-peak period travel time from zone j to the downtown, min 
J (Tj s: 'I)). . 

These specify that the total travel time from any particular zone to the CBD be not 
greater than an externally defined number. In general any model which attempts to 
specify facilities to meet a target demand should first be able to satisfy the total travel 
times assumed, since that factor is an important element in determining future de
ma~d. However, in other models of this type, it is often found that the travel time 
which is generated by the facilities which are planned is different from that which was 
specified in order to predict demand. It is then necessary to start the problem again 
with a different total travel time, correspondingly different demands and facilities, 
etc. It is hoped that this procedure will lead eventually to a solution which is consistent 
with the assumptions. It is clear that this problem is avoided in our model. The total 
travel time and therefore the demand can be specified with certainty and entered as a 
constraint. 

In our problem we chose to include only three sets of travel time constraints, feel
ing that 30 mph travel was satisfactory for zones within 18 mi of downtown. These 
constraining travel times are given in Table 4. 

RESULTS 

The Matrix 

At this point, we can present the complete matrix of the linear programming prob
lem: 

Subject to 

n 

I 

p. ~ 

J 

D. Ee. ~ 
l 

j = i J 

i 
p. :: A. I m. 

l l 
j = 1 J 

k 
pi = A. I m. 

l 
j = 1 J 

i 
d. = X. I m. 

l l j = 1 J 

k 
d. = X. I mj l l j = 1 

i = 1, 2, ... , k 

i = k + 1, k + 2, ... , n 

+ B. i 1, 2, ' k l 

+ Bi i = k + 1, k + 2, ' n 

i 
+ Y. I· s. + z. i = 1, 2, ' k l 

j = 1 J l 

k 
+ Y. I s. + z. i = k + 1, k + 2, ,n 

1 
j = 1 J 1 
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+ F. + G\ (10 ,D. - d.) 
1 '/ 1 1 

i = 1, 2, . 'k 

v. = 
1 

i ( I L. + G' (10·D. - d.) + i / t L. + F,) (lO·D.) j = l J / 1 1 \j = k + l J 1 1 

= k + 1, k + 2, ... , n 

i = 1, 2, ... , n 

i 

r 
j = 1 

L.s. ~ T' 
J J i ' 

i = 1, 2, . 'n 

m
1
. ~ M., 

-1 
i = 1, 2, ' n 

i = 1, 2, ,n 

TABLE 4 

MAXIM:UM TRAVEL TIM:ES 

Maximum Travel Time to Iimer 
End of Zone 1 

Zone 
i Peak Period Non-Peak Period 

Ti T-' . 1 
(min) (min) 

10 35 30 
13 41 36 
15 45 40 

TABLE 6 

FRACTION OF TRIPS VIA TRANSIT 

Fraction of Trips Via Transit 
Zuue 

i Peak Period Daily 
<i) (%) 

1 99.0 99.0 
2 H5.2 H5.2 
3 74.1 74.1 
4 79.1 79.1 

5-6 75.5 75. 5 
7-15 78.0 78.0 

si ~ mi, i = 1, 2, ... , n 

si~Mi, i=l,2, ... ,n 

The tableau is shown in Figure 9. 

T ABLE 5 

FRACTION OF FLOW VIA TRANSIT 
IN ZONES 1 TO 5 

Fraction of Flow via Transit 
Zone 

i Peak Period Daily 
(%) (%) 

1 78.2 78.2 
2 77.8 77.8 
3 77.2 77.2 
4 77. 8 77.8 
5 76.8 76. 8 

TABLE 7 

ROAD DESIGN SPEEDS 

Design Speed 
Zone 

i Peak Period Non- Peak Period 
(mph) . (mph) 

1-5 30 30 
6-7 30 60 

8 40 60 
9-15 60 60 
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Figure 9. The tableau. 
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Figure 10. Road capacity at peak period speeds. 

Solution and Interpretation 

The main results of the computer program are presented in Tables 5 to 7 and 
Figure 10 which indicate, respectively, the percentage of traffic handled by rail in 
zones 1 to 5, the percentage of passengers from each zone who go by rail (within the 
last 10 miles), the peak and non-peak speeds, and the prescribed road capacity for 
each zone. Of course, the program is designed to yield normative rather than deiicrip
tive results, but one is comforted when the prescribed results are in the same vicinity 
as observations of current conditions. This seems to be the case with our particular 
example. For instance, the values in Table 5 coincide well with the empirical observa
tion that 87 percent of Chicago's current peak hour downtown oriented traffic goes by 
transit. 

The optimal choice is to build the more expensive high speed facilities in the outer 
zones, provided the travel time constraints can be met. This is in contrast to the 
planning in many areas where full freeways are called for even in the heart of down
town areas. However, if in our problem lower travel times in the zones near the down
town areas are desired, higher type facilities would have to be constructed in those 
areas also. 

The dual to the road plus transit capacity constraints appears to be amenable to inter
pretation. As expected, the constr aints are satisified with equality and hence the duals 
exist and are positive. They range from $ 5.300 in zone 1 to $. 027 in zones 7 to 15. 
This we interpret representing the maximum amount one could profitably bribe a pas
senger in a given zone to do his traveling through that zone during an off-peak hour. 

From Minimum to Minimum Minimorium 

At this point we attempt to explain the meaning to the solution we have found. We 
have set the length of the transit system at 10 miles (extending through zone 5) and have 
set up the program to select those values of the choice variables which minimize the 
total-annual-cost of-.building-and operating the multi-mode system.subject_to.the con~. 
straints, given that k = 5. The value of the objective function at the optimum is approx
imately $ 52. 3 million to which must be added the capital cost of the given transit sys
tem (since this is constant for a given length transit) to arrive at the total annual cost 
of the given program-$55. 2 million. This, of course, is only a minimum. To find 
the overall solution we must select that value ur k, lhe leuglh of lhe transit line, which 
yields the minimum minimorium; in other words, that complete system for which total 
annual coi;t (including capital cosls) is minimized. The complete problem, then, re
quires additional runs of the program in which some (but not all) of the coefficients will 
change. 
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We feel that we are justified in restricting k to a few values because of the real 
world observation that transit stations and the corresponding parking lots are feasible 
at only certain points. Further, if the curve relating total costs to transit length rep
resents any kind of a smooth function we can be reasonably confident that allowing k 
to take on continuous values will not have any significant effect on the solution. 

Extensions 

The model oversimplifies the real world in two important respects which we feel 
should be the main targets for additional research and refinement. First, the model 
deals with a single corridor, one of seven rays emanating from the CBD. The ideal 
program should treat the entire network, including the radial and circumferential fa
cilities. Second, the notion of planning for a target year, although frequently employed, 
is patently unrealistic. The program should be dynamized to find that sequence of con
struction of new facilities and extension of existing ones which would optimize some 
cost criterion while providing transportation for a population which is expanding year 
by year rather than in discrete jumps of twenty years. However, although the solution 
we have presented does not fully represent the needs of the real world, we feel that it 
provides a good point from which to begin. 

SUMMARY 

This paper presents a linear programming model of an urban transportation problem, 
viz, the design of a two-mode transportation system in an urban corridor for a target 
year. The specific example used to test the feasibility and efficiency of the model 
employed data for the city of Chicago for a target year of 1980. The model differs from 
other methods of solution in that it selects that system which is optimal among all pos
sible systems of a given type rather than merely examining a small number of alter
natives. 

The objective function to be minimized represents the total annual cost of the entire 
system. The standards of service are specified in the constraints. The primary choice 
variables are the transit capacity, the highway capacity, and the peak and off-peak 
highway speeds. The length of the transit route enters parametrically but by a finite 
number of runs of the program this also becomes a choice var1able. 

The model does not force any persons to a particular mode of transportation against 
their will, except insofar as the transit line extends only a certain length into the cor
ridor. Rather, each individual makes his choice on the basis of several parameters, 
the most significant of which is the relative travel time of the two modes. It is these 
travel times which are the primary operational variables of the planners. 

The model proved computationally feasible and appeared to yield reasonable results. 
Certain caution is urged, however, in the use of the model without the proper data. 
Furthermore, the model represents only a first (but important) step in the approxima
tion of reality; the usual trade-off between model validity and operational ease still re
mains. 

We hasten to assert that much of the application of linear programming to real world 
problems represents a learning process. One starts with a basic model and tests for 
validity and feasibility. This is what we have done. Moreover, one gains insights into 
what must be added to the model and how it might be changed by examination of the re
sults of the simple problem. The theoretical work is not yet completed. But perhaps 
the most vital area of work which remains is the empirical. The model, as a tool for 
practical policy, is a function of its coefficients. Without the proper coefficients or at 
least reasonable approximations the model remains an abstraction . 
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Discussion 
EDWARD F. SULLlVAN, Tri-State Transportation Committee-Mr. Mo1·lok and Mr. 
Hay under Dr. Charnes' direction have made an interesting attempt at applying the 
power of linear programming to development of urban transportation plans. As the 
authors are quick to point out, their work is just a beginning. But they have pointed 
the way towards development of mathematical programming mell1ud:,; whid1 might pro
vide assistance to transportation planners and decision-makers. Although the com
plexities of transportation system capacitie1:1 and demands defy simple formulation, 
mathematical programming (linear, dynamic, etc. ) holds sufficient promise to warrant 
encouragement of further development of such methods for transportation planning. 
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What may we expect of mathematical programming? It is not simply another set of 
formulas. Rather, it is a conceptual approach in which an entire system is described 
in a comprehensive (even though simplified) way, from the viewpoint of how to allocate 
resources most effectively for a whole enterprise-in our case, the transportation 
system. 

An integrated transportation system offers a wide choice of alternatives. Different 
costs are associated with different operational and investment alternatives. Resources 
are allocated to the component parts of this integrated enterprise. In a business the 
ultimate objective is to allocate resources to maximize overall profitability. This 
objective applies equally well to a public enterprise (such as transportation) if instead 
of "profit" we say "difference between gains (benefits) and costs." 

In linear programming an objective (cost) function describes an economic objective 
in terms of which the system is described. Operational variables describe the inter
dependence of various activities of the system corresponding to physical conditions. 
Investment variables establish the physical configuration of the system and introduce 
the effect of additional capacity on operations. The value taken by the cost function 
depends on the values assigned to all of the operational and investment variables. 
Determining the best plan of action or the "optimum solution" for a transportation sys
tem consists of finding a set of values for all the variables so as to maximize (or mini
mize) the cost function while, at the same time, satisfying all the relationships wnich 
describe the physical operation of the system. This set of interrelationships includes 
not only equations describing interdependency, but also inequalities which describe 
limitations imposed on the system. 

Sets of optimum solutions can readily be generated corresponding to various levels 
of demand and facility investment. Likewise, the results of different policies can be 
tested by restatement of the objective function. For example, we might examine optimal 
solutions based on minimizing total transportation costs, minimizing public costs, or 
maximizing benefits minus costs. Useful by-products are generated with each solution 
which make it possible to study the sensitivity of each variable, and costs imposed by 
each constraint. Coefficients can be checked to see how far their values might be 
changed before changing the strategy indicated by the solution. 

Thus, mathematical programming is a potentially powerful tool for transportation 
system development and evaluation. It deals efficiently with large amounts of informa
tion and can explore systematically a great number of alternatives and restrictions 
characterizing the functioning of a complex transportation system. 

The paper under discussion meets some of these expectations, but falls short of 
others. 

In the model, transportation costs (both capital and operating) are minimized. Limits 
to be satisfied include demand volumes, minimum speeds and maximum times. Cost 
formulas reflect capital and operating costs corresponding to facility demand levels. 
Another formula determines mode choice as a function of auto vs transit travel time. 

A noteworthy feature inherent in this approach is that the formulas describe all 
feasible possibilities within a broad range . Within this range of feasible solutions, the 
most economical combination is found by systematically converging calculations. The 
authors have set out to provide a means for assuring that alternatives considered in the 
transportation planning process are within the optimal range, taking into account the 
cost and performance characteristics of the various elements of the highway and tran
sit systems. 

The general applicability of the method as presented is severely limited by the 
simplified assumptions, such as dealing only with CBD trips through one corridor. 
Recognizing that in this first effort such assumptions were necessary to keep the prob
lem manageable, the question remains whether a more comprehensive description of 
the system might be achieved. 

The only operational variable is highway speed. Within the model the percent using 
transit varies only with the travel time ratio (auto/ t ransit) . Person trip demands are 
held fixed, and only CBD trips within a single corridor are considered. Thus, there 
is no provision for changes in magnitude or orientation of demand with changes in 
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capital investment. Whereas the model does reflect changes in mode usage in response 
to system investment, it does not reflect changes in trip orientation, which may be of 
equal significance. Therefore, the optimal linear programming solution would have to 
be checked by more explicit system-wide trip distribution and assignment. 

Likewise, the only investment variable relates highway capital cost to highway speed. 
Here, the formulation seems needlessly oblique, expressing the increments in cost in
curred to provide sufficient capacity to maintain levels of service. The off-peak term 
seems an wmecessary and unlikely provision, since it is difficult to conceive of saving 
significant costs by reducing geometric and traffic design standards. The other invest
ment variable, transit capital cost, is actually introduced as a constant. 

The fixed set of person trips implies the same average length of trip, regardless of 
mode. Recent evidence seems to point to longer CBD trips by transit than by auto. 
This greate_~ length is a counterbalance to the small increment of transit trip cost with 
distance (Fig. 7). 

Only one set of highway capital costs is employed (Fig. 5). It appears that exist
ing facilities can be handled by the present model simply through appropriate cost coef
ficients. Further development of the model might well incorporate highway cost as a 
function of area characteristics such as development density. 

The assumption of one radial road competing with a transit line in each corridor is 
troublesome, leading to gross assumptions, such as an average of 3 miles from home 
to the radial road and 2 miles from the road to downtown parking. Such a constant as
sumption may well dictate the solution more than the variables. It also neglects to re
flect alternatives within the highway system:, such as sharing the traffic load between 
arterial streets and freeways. In other words, the description of the system is not ex
plict enough to describe its operation properly. 

The model doe~ nut consider whether the optimum solution is fiscally feasible. Cal
culations of highway and transit revenues, however, could readily be made from the 
outputs, along with the assumptions regarding fares and tax revenues. If the optimum 
solution were too costly, re-orientation of demand might be indicated, or constraints 
would have to be relaxed, such as lowering minimum speeds. Conversely, the cost of 
providing better service could be assessed by tightening the constraint limits. 

In summary, these remarks are intended to encourage further explorations into 
applying mathematical programming to transportation system planning. 
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KENNETH J. SCHLAGER, Southeastern Wisconsin Regional Planning Commission- It 
is important to comment that the relative lack of previous interest in design models as 
opposed to forecasting models is intlicated by the fact that only one paper presented 
herein deals with a design model. The other models are related to forecasting and 
policy formulation problems. The lack of plan design models, or at least conceptual 
-plan-design -frameworks,--has severely-limited-the determination_ of requirements_for_ 
data collection and analysis in urban transportation studies. The largest costs in urban 
transportation planning relate to the collection and analysis of data. The great majority 
of these data are used for describing the current state of the system and for forecasting 
probable future development. Very little data are collected that allow for the considera
tion of alternative plan designs. Since most studies do not provide IuL· such dala, much 
less a model framework for evaluating plan designs, the degree to which real alterna
tives are considered in a final plan is open lo questions. Transportation planning seems 
to be in the same situation as defense planning was in this country before the planning-

, programming-budgeting approach to planning that for the first time allowed for the con
sideration of alternatives to meet stated objectives. 
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In the area of model formulation, one question that might be directed at the paper 
is the treatment of a transportation plan design without regard to land use. It has be
come an accepted concept in urban planning that transportation and land use interact. 
At the very least, transportation models should be constrained by land-use require
ments because one of the possible solutions to a transportation model so constrained is 
that no new transportation facilities will be needed at all. Difficulties exist sometimes 
in quantifying certain land-use constraints in a transportation model, but an imperfect 
quantification of such constraints is usually better than ignoring such constraints al
together. 

Many of the practical problems raised by such a model relate to the estimation of 
costs used in the model. Previous estitt>.ations of transportation costs have not usually 
been in a form suitable for use in design models. Much work remains to be done on 
the estimation of capital costs and costs relating to the bperation of the transportation 
system. It is also important that such costs be developed so as to allow the considera
tion of real transportation alternatives. Transportation should be treated as a system 
with technological alternatives and not as a commodity to serve an aggregate travel 
demand. 

The use of linear programming has some limitations as a framework for a transpor
tation design model in that some of the constraints are discrete rather than linear in 
nature, and it is difficult to express these in a linear programming algorithm. Integer 
programming models have not proved practical for transportation networks of any size. 
Linearity also presents problems in the statement of cost relationships, but these 
linear limitations are probably still small compared to the errors in the cost parameters 
themselves. At the present state of the art of design model development, much may 
still be gained through the use of linear programming with all its limitations. 

The principal suggestion that this commentary would make for the improvement of 
the subject ·· 1odel would be a model modification that would allow for joint considera
tion of the eidsting as well as the proposed two-mode transportation system. The re
vised model would consider a transportation system using a primal linear programming 
model to represent the loading of the present network and would study the benefits and 
cost of alternatives to this basic network through parametric analysis of the model of 
the existing S)..,cem. Such an application would allow for long-run changes in the light 
of the optimal short-run use of the existing system. In this way, a better relationship 
between the alternatives of improving the existi 1g system versus the construction of 
new facilities may be weighed. Such a model may indicate that funds could be better 
spent for the development of command and control systems to improve the efficiency 
of the existing system rather than the construction of new facilities. 

An interesting result of the model application is the correspondence between the 
model output and the existing modal split between highway and transit in the city of 
Chicago. Such a correspondence indicates that the transportation market is perform
ing admirably well, and it makes one wonder if the market is working so effectively, 
whether at our present level of understanding of the activities we are modeling that we 
should not leave the market alone. · 

DANIEL BRAND, Senior Project Engineer, Traffic Research Corporation-This paper 
proposes a linear programming solution tc an important transportation planning prob
lem. The problem is that of providing a minimum cost combination of two modes of 
transportation service from a corridor to a downtown area. The solution includes de
mand for the transportation service as well as the cost of supplying the service. Hence, 
the method gives a solution which is both optimal from the standpoint of supplying and 
which is capabJ.e of being achieved in practice, i.e., being utilized to the extent planned 
for. · 

The major points where the raper needs discussion are (a) the lack of mutual inde
pendence of several variables in the cost function, (b) the inability to calculate properly 
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vehicle operating costs in the cost function, and (c) the assumption of fixed total de
mand for transportation service. 

Critique 

Interde endence of Terms in the Linear Road Ca ital Cost Model. -Informulatir!_gthe 
fi r st three terms of the objective func tion the linear road capital cost model for a road 
spanning zone i) the assumption is made that money may be spent to add peak period 
road capacity, peak period speed, and additional off-peak period speed, independently 
of each other. This is contrary to the fact that design measures to increase peak period 
capacity (additional lanes, grade separations, etc.) are highly correlated with mea
sures to increase peak period speeds, as the traditional speed-capacity curves would 
indicate. The same independence is also largely true for increasing off-peak speeds . 
Examples are given in the paper only for design measures to increase off-peak period 
speeds independently of the other two variables. Of the examples given, the longer ac
celeration and deceleration lanes normally increase ramp capacities as well as off-peak 
speeds by reducing relative speeds of merging vehicles and increasing gap acceptances . 
Another measure given, more adequate signals, is perhaps the only independent design 
measure, since signals are not fixed in their effect on different traffic flow patterns. 
They can be made to vary in their response to traffic at various times of day. Thus, 
additional money may be spent to add off-peak progressive timing or detailed traffic 
responsive control to increase speeds of off-peak period traffic. However , this ad
ditional money will be small compared to the cost of building new physical facilities . 

Contrasted to this, an assumption that additional money may be spent for lower off
peak transit t ravel times (lower waiting times) may be appropriate, since the costs of 
running additional trains to shorten headways a H: the pdma:ry moneys involved. Studies 
of transit operating costs in the Boston area show these additional costs to be quite 
important. 

An inability to provide an optimal mix of capacity and speeds eliminates the ability 
to calculate optimal speeds, and hence to predict transit trips, remaining auto trips, 
and vehicle miles of auto travel. This is a blow to the model as presently formulated. 

Calculation of Vehicle Operating Costs. -In the calculation of vehicle operating 
costs, the assumption is made that one -half of the drivers using transit would get rid 
of the car which would otherwise be used for the trip and, therefore, one-half of the 
auto users should l,e charged the marginal operating costs of driving while the other 
half should be charged with the full costs. 

The model uses the same fraction of one-half in two calculations, even though the 
fraction is computed with different bases, i.e., transit riders in the first instance, and 
auto users in the second. In addition, there is no provision to use the proportion of 
trips using transit, predicted by the model, to calculate the fractions of auto trips to 
charge full and mar ginal costs to. 

Other diffi culties in calculating vehicle operating costs are that these should be cal
culated using average interzonal car occupancy rates, which r ates may vary from 1.1 
to 2. 0 or more, depending on the origin and destination of the trip, the trip purpose, 
the time of day, etc. Also, the assumption that one-half the drivers using transit would 
sell their car is a very difficult assumption to make . This number would vary with the 
location of the trip origin because of varying compositions of transit trip purposes and 
income-of-trip-makers-at-the different- or-igins. 

Assumption of Fixed Total Demand for Tr ansport Service. -The authors state: 
" ... in other models of this type (the type treated in the paper), it is often found that 
the travel time which is generated by the facilities which are planned is different from 
that which was specified in order to predict demand. It is clear that this problem is 
avoided in our model. The total travel time and therefore the demand cau l.Je specified 
with certainty and entered as a constraint. " 

The contention that their model avoids the stated probl<:J.w may be contended. Only 
the range in which tr avel times are generated by the model is limited. Demand is fixed 
but peak period trunk line travel time is allowed to vary on individual links (in their 
example) from 30 mph to 60 mph. (In t he example, the model does in fact additionally 
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restrict travel speeds over and above the 30 mph to 60 mph range by limiting overall 
travel time to a certain maximum from the six zones farthest out; about 30 percent of 
the trips are made from these six zones.) This is not an abnormal speed range to find 
in traffic models (gravity models with capacity restrained assignments) which vary 
travel demand by iterating over demand prediction and travel time calculation. It would 
appear, therefore, that total demand cannot be specified beforehand in this model with 
much more accuracy than in other models. Hence, it is not clear that the problem has 
been avoided. 

To carry the discussion one step further, a reduction in the allowable range of speeds 
would enable the fixing of total demand in this model with more certainty. However, 
this would narrow the range of alternatives which could be tested by the model. It also 
may be possible that the model application yielded "reasonable" modal splits, because 
within the speed ranges given, the modal splits are reasonable. Hence, the setting of 
allowable speed ranges has important meanings for the model as presently formulated. 

Model Application 

Solutions Tending Toward Boundary Values of Variables. -Are the authors disturbed 
that many of the variables solved for, yielded values on the boundaries of the region of 
possible values of the variables? For example, the optimal results for peak and off
peak speeds (mi and Si) are either 30 or 60 mph for 29 out of the 30 solutions. In par
ticular, the question may be asked, does the propensity of linear programming methods 
to yield values on the boundaries of possible solution space affect the ability of this 
model to yield reasonable results? 

Consistency of Results for Modal Splits and Speeds. - The similarity of the peak and 
daily fraction of trips via transit yielded by the model (Table 6) does not appear con
sistent with the solution for peak and off-peak speeds (Table 7). The latter vary be
tween the two periods of the day. It is the varying speeds which are used in the deter
mination of the similar peak and daily fractions of trips via transit. 

A Possible Extension of the Model 

The application of the model in the paper yields optimal values of 30 mph for both 
peak and off-peak speeds in downtown and neighboring zones. The authors' comment: 
"This is in contrast to the planning in many areas where full freeways are called for 
even in the heart of downtown areas." 

It must be noted that only trips to the single downtown destination zone are being 
considered. Through trips and trips to intermediate destinations are not being con
sidered. 

An extension of the model to be origin -destination specific rather than origin specific 
is needed if real planning problems are to be solved. This would complicate certain 
aspects of input data preparation, in particular the modal choice constraints and their 
associated parameter values. Also the notion of how to interpret capacity between many 
origin-destination pairs is of interest. 

A discussion by the authors of whether such an origin-destination formulation of 
their model could be solved would be useful. · 

Conclusion 

Despite the criticisms in this discussion, I feel this is a very important paper. The 
present linear programming solution may fall short of being meaningful to the problem
oriented planner; however, with additional work and reformulation, linear programming 
may be capable of providing efficient low-cost solutions to meaningful transportation 
planning problems. 



44 

EDWARD K. MORLOK, Jr., and GEORGE A. HAY, Closure- The discussions can be 
divided into two broad categories: (a) comments about applications of mathematical 
programming in general and (b) comments about the specific application in our paper. 
We shall concentrate on those comments specifically about our paper, since we are in 
agreement with virtually all of the comments in the other category. However, we would 
like to add two general but relevant observations about modeling and decision-making 
to the general comments of the discussants. 

There seems to have been considerable misunderstanding of the road capital cost 
function. Mr. Brand makes the comment "the assumption is made that money may be 
spent to add peak period road capacity, peak period speed, and additional off-peak pe
riod speed, independently of each other." We have not made this assumption nor even 
intended it, at least with respect to peak period values. We fully recognize the inter
dependence of these variables. In fact, we are considering a single class of improve
ments, whose benefit may be taken in additional speed, increased capacity, or some 
combination of the two. The interdependence, and therefore, the combinations which 
are achievable are defined by the speed capacity tradeoff diagram (Fig. 2). Additional 
expenditure need not be directed specifically toward speed or specifically toward ca
pacity, but can be thought of as yielding an outward shift in the whole speed capacity 
frontier. This frontier is defined by the functional relationship f(m, c) = k where k is 
the expenditure, and it is this frontier which is represented in Figur e 2. In deriving 

om· capital cost function [cici + M1• (1 - ~? )] we have s_imply given a specific form to 

this functional relationship, a linear onl 11 There may be objections to this form of the 
relationship, but they are not those to which Brand has referred. 

Among the possible objections are the following: (a) we have approximated a set of 
non-linear curves with a set of linear ones; (b) we have assumed that the reiationship 
f(m, c) = k is homogeneous of degree one. This, together with the linearity, implies 
not only constant returns to' scale but also that the marginal costs of increasing one 
variable (e. g., speed), is independent of the level of the other varial.Jle, capacity. The 
first implication is probably acceptable within the range of acceptable alternatives. The 
second should be accepted or rejected on technological rather than theoretical g1·ow1ds. 

Both Mr. Brand and Mr. Sullivan mentioned that the additional cost of increasing 
off-peak period speed over that for the peak period probably would be small in com
parison to the cost of building a new facilities. We· were unable to find any definitive 
evidence on this. We decided to include the third term in U1e cusl .fwlCtion, because 
we felt that this cost could be significant in some situations. 

Turning to another aspect of road costs, Sullivan states that the only investment 
variable relates highway capital cost to highway speed and that this formulation seems 
oblique. Highway costs are related to capacity, peak per iod speed, and non-peak period 
speed (where capacity is defined as that volume at which the specified speed is achieved). 
We related cost to measures of output capability (capacity and speed) rather than to the 
physical road itself and then to output capability because the former is more efficient. 
The physical road its speed-volume characteristics are referred to in developing the 
cost function, but once this is developed there is no reason to return to the road it-
self. Mr. Sullivan also states that only one set of highway capital costs are used and 
suggests that in future applications these costs might be a function of development den
sity. Actually ,this was done in the application given in the paper. The road capital 
·cost coefficients used-decrease with-increasing distance from-the G-BD (Table l}. 

In addition, Sullivan says that the other investment variable, transit capital cost, is 
actually int roduced as a cons tant. This, of course, is not true. While introduced as a 
consta nt in the first run o! U1e sample program (the only n m presented in the paper) it 
must be r emembered that this run is one of several which must be per formed (in each 
run the transit system is extended one zone further with transit capital costs increasing 
correspondingiy) according to the minimum minimorium technique outlined in the paper. 
The run which yields the lowest total cost of all those considered will be the true opti
mum solution. 

Brand's points concerning the difficulty of accepting our assumptions about average 
automobile occupancy rates and the fraction of drivers who would sell their autos if 



they used transit are well taken. The reason for our assumption was the absence of 
more detailed data for the region we considered. 

It is important to note that both of these parameters can depend on the residential 
zone of the travelers in question simply by approximately subscripting the relevant 
parameters. In the case of auto ocupancy, the capacity constraints become 

n Di n pi 
cj ~ r Ei .r. Ei 

j 1, , k 
i = j l = J 

n Di 
C. ), L j = k + 1, , n 

J i = j Ei 
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Since each vehicle-•mile constraint calculates the total daily vehicle-miles generated 
by trips from a single zone, the occupancy rate E and the cost parameter V only need 
be subscripted in the present formulation to take care of zonal differences. 

Also, a further distinction between peak and non-peak periods can be made very 
simply. Since the capacity constraints refer to only the peak periods, they present no 
problem. In order to distinguish between peak and non-peak values of Ei, Vi , -and vi, 
we m ight add a second subscript, p for peak per iod and n for non-peak period. The 
constraints which determine vehicle-miles of travel thP.n become 

v. = : (. ¾. L. + F. + G)- (2D. - 2p.) j~k 
JP jp i := 1 l J J J 

. C ~ v . := E L L. + G · (2D. - 2p.) 
JP 'jp k = 1 1 J J 

2 ~ t L. +F} (2D.) j >k +-
Ejp i=k+l l J J 

2 C \ V. L L. +F. +G)· (8Dj - dj + 2pj) j ~ k 
Jn Ejn i = 1 1 J 

2 't L. + ~ · (8D. - d. + 2p.) v. = r Jn Jn 1=1 1 J J J 

2 (. i +- r 
Ejn i = k + 1 

L1 + F1. (8D;) j >k 

Brand's conclusion that in this model one canEot specify interzonal travel times at 
the outset with much certainty of achievement appears to be based on a limited exami
nation of the example application rather than the general form of the model. While in 
the example we used only three peak and three non-peak period time constraints, the 
model as given contains two for each zone-one for the peak period and one fo-r. the non
peak period. These constraints are upper bound[: on travel time. 

Because extra speed costs money, minimum cost solutions will generally call for 
travel times very close to or equal to the maximum allowed. This was verified by 
experimentation with the model, ?.,nd is exhibited in the example given. Thus we feel 
justified in our statement that interzonal travel time expectations will be met ( or nearly 
so), so that interzonal demands can reasonably be taken as fixed. 
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The reason for no travel time constraints for zones 1 through 9 in the example was 
that we felt that 30 mph average main road speeds were adequate for travel to points 
up to about 18 miles from the downtown area. Since this speed is already embodied in 
other constraints (zonal speeds), there was no reason to add redundant travel time 
constraints. It was felt that the constraints for zones 10, 13 and 15 sufficiently nar -
rowed the range of travel time choices for zones 11, 12 and 14 that no explicit con
straints for these were included. This suspicion was confirmed by the outcome. 

If any difficulties with travel times were to arise, it would be possible to add a second 
set of constraints. A second constraint for each one would place a lower limit on travel 
time. Thus the travel time from any zone could be constrained to a range as small as 
desirable. 

Brand's doubts concerning the consistency of our modal split results are easily 
cleared up. The set of equations which yields the number of passengers who take tran
sit daily is as follows: 

h 
P . = A. L m . + B. 

J Ji= 1 1 J 
h = j if j ~ k and h = k if j > k 

Note that when j > k, the zone in which transit ends, the modal split depends only on the 
speeds in the first k zones. In our example k = 5 and the peak and off-peak speeds are 
determined to be the same for those zones. The peak vs off-peak discrepancies in zones 
6-8 do not, therefore, affect the modal split. 

Both Mr. Brand and Mr. Sullivan emphasize the importance of extending the model 
so as to include consideration of trips which neither originate nor terminate in the CBD. 
We could not agree more fully. 

The consideration of trips made solely along the axis of the corridor would not be 
too difficult: the capacity constraints must be changed so that the combined road and 
transit capacity in any zone is at least as great as the total flow throug-h thal zoue. The 
e uation.s for calculating vehicie operating costs would become much more complex, 
but these presen no pro6fem- frointlie programm~rof·vtew. fn principle-, - nc-

equation for modal choice should be included for each origin- destination zone pair which 
is served (at least for part of the trip) by transit. This is possible, but would tend to 
make the program unwieldy, and we would suggest consideration of the assumption that 
trips to some zones served by transit would not be made l>y l1·a11sit. This assumption 
could be defended for zones in which only a small fraction of the zone's total business 
activity occurs near the transit stations. 

As to the extension of the model to consideration of trips with one or more ends out
side of the corridor, we feel that this would be much more difficult than the previous 
extension. While we are certain that the extension to inclusion of all trips solely with
in the corridor could be made, success in making this further extension without s ome 
majol' (and possibly unacceptable) ai;ouruptions is not certain. One such posstb111ty lt:i 
to fix the point at which trips enter and leave the corridor. This reduces the problem 
to one very similar to the extension covered in the preceding paragraph. 

Sullivan brings up the additional point that there is no provision for changes in the 
magnitude or orientation of trips with changes in capital investment. To the extent that 
changes in capital investment correspond to changes in travel time, cost, etc., these 
changeswillcause some-changes in-trip-volumes and orientation. However-, in-the -
model we constrain road travel times to a narrow range, and, of course, transit run
ning times are fixed. Pricing is also assumed fixed for each run of the model. There
fore, we feel justified in the assumption of a fixed total demand. Major changes in 
travel times and pricing arc accommodated only with additional runs of the model, in 
which the total demand and modal choice parameters have been revised to reflect these 
changes. 

In a broader ,,sense, however, we must agree with Sullivan's comment. Over a long 
period of time the nature of the transportation faciltties and services provided in a 
region undoubtedly strongly influences the pattern of development of the region. An 
example within the context of our model might be: the provision of rapid transit in the 
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corridor could attract a concentration of dwelling units and business establishments 
along its route, which would be more widely dispersed throughout the entire region if 
the rapid transit line were not constructed. Presumably this increase in development 
in the corridor would result in more travel within the corridor. Thus, if one takes 
into account the differences in developmental consequences of alternative transporta
tion services, then there certainly is an effect of alternative transport choices upon 
travel patterns and land use. The question is: How strong are these influences? 

The question posed has not been answered, to our knowledge. The urban studies 
which we have seen do not appear to have actually taken the developmental influences 
of alternative systems into account in their models. Much more research directed at 
identifying and quantifying the appropriate relationships is necessary before we would 
have any justification for inclusion of such relationships in our model. We do earnestly 
hope that this research will be carried out. 

Closely related to Sullivan's remarks, but of amore general nature, is Mr. Schlager's 
comment that the model should take greater account of the interaction of transportation 
and land use. To the extent that this interaction is reflected in traveler movements in 
the corridor, our discussion in the preceding three paragraphs is relevant. Schlager 
undoubtedly is also referring to environmental constraints on such items as the location 
of new facilities and the extent to which additional land can be taken for improvements 
to existing travel arteries. 

As to routing, the model in its present form presumes that the routes of new roads 
and transit lines are specified outside of the model. It assumes that the cost and other 
coefficients are applicable to routes which are feasible, both from the economic and 
social standpoint. There is, however, no provision to limit the land area occupied by 
the new or improved facilities. Similarly there is no means for restricting other de
sign features, such as elevation, which might affect the environment. The inclusion 
of these types of restrictions might be quite difficult given the present form of the model, 
although the subject must be investigated in detail before a statement as to the feasi
bility of adding such restraints could be made. 

Sullivan also discusses the problem of fiscal feasibility, which is not explicitly han
dled by our model. His suggestion that demand and travel time constraints be varied 
so that estimates can be made of the additional cost of accommodating more travelers 
or increasing speeds has great merit. In this way one could compare the benefits and 
cost of improvements to the transportation system. 

An alternative, which we do not consider as useful as that described above, is to in
clude a budget constraint in the model. This would limit the capital expenditure to a 
predetermined amount. 

In his discussion of the assumption of demands fixed in magnltude and orientation, 
Sullivan suggests that if strong assumptions are made in the mathematical programming 
formulation the solution should be checked by the more complex network and demand 
simulation models. We doubt that any mathematical programming models could ever 
rival computer simulation models in their ability to accommodate all the details of a 
phenomenon. However, they do have the distinct advantage of efficiently finding the 
optimum of a very wide range of alternatives, while the searching for optimum solutions 
with computer simulation models usually is extremely expensive. Therefore, we feel 
that these two types of models can be complementary, with the optimization models 
being used to narrow the choice to a few distinct alternatives. The simulation models 
then would be used to explore these alternatives in more detail. 

Schlager's suggestion that the model be revised to consider the loading of the pre
sent system as the primal programming problem is very interesting. The constraints 
in this formulation presumably would reflect the characteristics of the existing net
work. The dual variables then would indica.te the value of various marginal changes 
in the existing network, as these would be reflected as changes in the constraints. 

The results of such a program would be very different from the results of the pres
ent program. The revised program would yield the most beneficial marginal improve
ments, whereas the present program yields specifications for a system which is optimal 
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at some future date. Of course, the question as to whether the problem could be for
mulated in the suggested manner still remains. However, we feel the suggestion has 
considerable merit and intend to examine the feasibility of a revised formulation before 
developing our model further . 

There are two additional ideas relevant to models and decision-making of the sort 
considered in this paper which we feel are important but which have not been mentioned. 

The first is that a model of some real world phenomenon is necessarily a simplittca
tion of that phenomenon. Those who evaluate a model must decide-on partly subjective 
and partly objective grounds-whether the model includes all of the important or relevant 
relationships and factors and ignores all others. It is not clear to us, for example, that 
the most fruitful direction for further development of our model is toward considering 
an entire region, or toward considering the staging of improvements, or toward con
sidering the developmental consequences of alternative transport decisions. 

Moreover, if all of these were included, the model might become so complex and 
costly to run that it would be of little value to the problem-oriented planner. The com
plexity might defy comprehension, so that understanding the various solutions is dif
ficult. Costliness would tend to limit the number of alternatives considered, defeating 
the purpose of the model. Under these conditions; transport decision-making would not 
be improved by the extensions. We do not claim that these conditions would result from 
major extensions, just that they could. 

The other major idea we wish to transmit is not our own and has been stated often 
( especially in the writings of William Garrison and Tillo. Kuhn), but seems to be heeded 
rarely. If one is dealing with a transport decision of such magnitude that it will in
fluence travel patterns and the pattern of development of a region, simple economic 
criteria related to transport phenomena are wholly inadequate. At the least, the cri
teria used should reflect the broad spectrum of society's benefits and costs (both mone
tary and non-monetary) resulting from alternative decisions. 

We feel that it will be extremely difficult to quantify and transform into the same 
units (such as dollars) this spectrum of benefits and costs. This is especially difficult 
in situations where the benefits and costs are non-uniformly distributed over the pop
ulation and the region. If this cannot be done, it will not be possible to utilize the 
optimum-seeking capabilities of mathematical programming, for the optimum is not 
defined. It may not be that broad choices as to transport development are inherently 
social choices, best left to the citizens and the political process ( 17). For these broad 
questions, the value of programming formulations is probably in identifying alternatives
not specifying solutions. 
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