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The distribution of stresses within and under long elastic 
embankments continuous with the underlying material is 
presented. The magnitude and distribution of stress in the 
foundation material in the vicinity of the embankment is 
significantly different from that predicted by the usual as
sumption of stress proportional to embankment height ap
plied normal to the foundation. Influence charts for a 
variety of embankment shapes are given. 

•THE distribution of stresses within and and under earth embankments, due to the em
bankment weight, is of interest to civil engineers in a variety of applications. Consid
eration of deformations within ombankments, analysis of stabili.ty, ,_.,_m1<11l i,h,l ion nr 1111-

derlying compressible materials, all require determination of the distribution of these 
stresses. 

At the present time there is no means available by which a closed-form solution for 
such stresses can be obtained. Consequently, various approximations of the real prob
lem have been made with the objective of obtaining at least an estimate of the stresses. 
The first such effort was made by Carothers (3). He analyzed the stresses within a 
homogeneous, isotropic elastic half-space resulting from a "long embankment" loading. 
It was assumed that the load was applied normal to the boundary with a magnitude pro
portional to the height of the embankment. These results were pn!seuleJ lu tabula.i· 
form by Jurgenson (13). Osterberg (18) superimposed solutions given by Newmark (16, 
17) to develop an influence chart for the deter mination of the magnitude of vertical -
stresses induced in an elastic half-space by a long embankment loading with a variety 
of cross sections. Again, the magnitude of the pressure was assumed to be proportional 
to the embankment height and applied normal to the surface of the foundation material. 
This "normal loading approximation" to the actual embankment loading is illustrated 
in Figure la. 

Terzaghi (20) described an effort to evaluate the shear stresses transmitted to the 
foundation material by an embankment made by Rendulic (19). It was assumed that the 
embankment material was on the verge of failure and thusfue shearing resistance of 
the embankment was fully mobilized in order to maintain equilibrium. Consequently, 
Terzaghi (20) suggested that the magnitude of the computed shear stress at the base 
was likely to be lower than the actual in situ stresses. 

Trollope (22), and Davis and Taylor (6) com;ide1·ed Lite 8la.Lt: of str ss within a gran
ular emba1ikment resting on a foundationwhich yielded an arbitrary amount. No attempt 
was made to compute the amount of foundation movement which would be created by the 
embankment. 

Finn (8) suggested the use of the Schwarz-Christoffel transformation to map the em
bankment surface into a straight line, thereby utilizing the distribution of stresses within 
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Figure 1. Problem considered, 
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a semi-infinite elastic medium. However, 
he did not carry out the suggested procedure . 

Numerical methods have been used to 
obtain, for particular cases, solutions for 
the stress distribution in an elastic em
bankment resting on elastic or rigidfoun
dations. Zienkiewicz (24) used a finite dif
ference approach to analyze the stress 
distribution within a triangular gravity 
dam resting on an elastic foundation. This 
was extended by Zienkiewicz and Gerstner 
(27) to the case in which the foundation 
modulus differed from that of the dam. 
Dingwall and Scrivner (7) applied the meth-
od of finite differences fo the solution of 
an embankment on a rigid foundation. Carl
ton (2) used a similar method to study an 
elastic embankment continuous with an 
elastic foundation. 

The finite element method of numerical 
analysis has been applied by Zienkiewicz 

and Cheung (25, 26) in the study of stresses within buttress dams resting on elastic 
foundations. Clough and Chopra (5) and Finn (9), respectively, have also applied the 
finite element method to the study - of a triangular dam on a rigid foundation and a rock 
slope continuous with its elastic foundation. 

Brown (1) and Goodman and Brown (10) investigated the case of a long elastic slope 
constructed incrementally; it is not clear to what degree their results are influenced by 
the fact that compatibility is not satisfied by their solution method. 

In each of the cases approached by numerical methods, the solution was either re
stricted to a single embankment cross section or a complete stress picture was not ob
tained. Thus, despite numerous attempts to determine the distribution of stresses 
within and under an embankment, no closed-form solution is presently available. It is 
the objective of this paper to present such a solution. 

PROBLEM CONSIDERED 

The problem considered herein is the determination of the distribution of stresses 
within and under an embankment resulting from the self-weight of the embankment. The 
embankment is shown schematically in Figure lb. It is assumed that the embankment 
and the foundation material with which it is continuous are composed of homogeneous, 
isotropic, linear elastic material. Further, the embankment is assumed to be suffi
ciently long so that plane strain conditions apply. The shape of the symmetric cross 
section is defined by the slope angle a and the ratio of the half-width of the top of the 
embankment, L, to the embankment height, H. 

The solution is obtained by transforming the region of the embankment where the 
solution is unknown, into a half-space where the solution can be found. Application of 
the Cauchy integral formula to the boundary conditions permits determination of the 
stresses. An outline of the method is given in Appendix A. 

RESULTS AND DISCUSSION 

Vertical Normal Stress 

A typical result is illustrated in Figure 2. This figure shows contours of the verti
cal normal stress in dimensionless form ay/yH, for an embankment with a = 45~ 1/H = 3, 
and Poisson's ratio, µ = 0.3. The contour lines show only the effect of the embankment 
weight. Thus, at depths below the base of the embankment (y /H = 0) the material is 
assumed weightless. The effect of the medium weight can be superimposed upon these 
values to give the total stress acting at a point. The two dashed lines in Figure 2 show 
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Figure 2. Contours of vertical stress . 
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stress contours, in terms of O'y/yH, for the usual normal loading approximation c;orre
sponctmg to this emba11kment. These indicate that the verllcal nunmtl ::;Lr :·ses produced 
in the foundation material below the elastic embankment are generally smaller than com
puted for the normal loading approximation. 

The stress distribution due to the normal loading approximation is independent of 
Poisson's ratio; the stresses due to the elastic embankment arc dependent upon µ. How
ever, the ve1·lical stresses are insensitive to its magnitude; changingµ from 0.3 to 0.5 
changes the vertical stress at a point by less than five percent. 

The effect of embankment shape on the vertical stress along vertical sections through 
the centerline of the embankment and the toe of the slope is illustrated in Figure 3, for 
a = 45° and u = 0. 3. The figure is a composite diagram showing the embankment sche
matically, and the magnitude of the vertical stress at each section as a function of depth. 
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Figure 3. Distribution of vertical stress along vertical sections for varying L/H ratios: (a) at center
line and (b) ct toe of slope. 

Clearly, the L/H ratio has a pronounced effect on the distribution of vertical stress. 
As L/H decreases, the stress decreases. Furthermore, a smaller L/H ratio produces 
a more rapid dissipation of stress with depth. 

The dashed lines show the vertical normal stress for the normal loading approxima
tion equivalent in shape to the embankment for which L/H = 1. As indicated in Figure 2, 
the vertical stress for the corresponding elastic embankment is smaller. 

Figure 4 shows the distribution of vertical normal stress along the base of the em
bankment for µ = 0.3, four values of a, and several embankment shapes shown sche
matically in the figure. The curved solid lines represent the distribution of stress 
against the base; dashed lines show the distribution of stress assumed in the usual nor
mal loading approximation. The stress distribution is much more uniform under the 
elastic embankment than is ordinarily assumed. The difference becomes especially 
apparent as the L/H ratio of the steeper embankments decreases. Moreover, the 
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magnitude of the stress under the central zone of the elastic embankment is less than 
tha t shown by the dashed curves. Again the effect is enhanced for narr ow, steep em
bankments (for a = 45° and L/H = 0 the vertical stress is onl y 65 percent of that usually 
assumed). 

To satisfy equilibrium, the areas under corresponding dashed and solid curves must 
be the same. Hence the difference between these curves becomes less pronounced, at 
least near the central portion of the embankment, as L/H increases. However, near 
the outer edge of the embankment, the stresses are still significantly larger on a pro
portional basis than indicated by the normal loading approximation. Thus, for embank
ments with moderate L/H ratios, the normal loading approximation leads to larger es
timates of differential settlement, assuming one-dimensional compression, than would 
be computed by the method presented herein. 

Horizontal Normal Stress 

Contours of horizontal normal stress, ax/yH, for a = 45°, L/H = 3 and µ = 0. 3 are 
shown in Figure 5. The dashed lines are contours determined from the usual normal 
loading approximation. The stresses shown are those due to the embankment only. The 
figure shows that the maximum horizontal stress occurs within the body of the embank
ment and decreases with increasing depth. In the foundation material in the vicinity of 
the elastic embankment, axhH is less than half of that usually assumed. 

The effect of embankment shape on the horizontal stress along vertical sections 
through the centerline of the embankment and the toe of the slope is illustrated in Fig
ure 6 for a= 45° and µ = 0. 3. As the embankment becomes narrower (L/H ,;; 1), the stress 
is actually negative at some points below the centerline. That is, the embankment causes 
a reduction in horizontal stress at these points. 

The dashed line shows the stresses determined from the normal loading approxima
tion for L/H = 1. The stress is larger than that due to the elastic embankment at all 
depths. In fact, in the vicinity of the embankment it is more than five times as large 
under the centerline and twice as large under the toe. In contrast to the elastic embankment, 
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the normal loading approximation does not 
produce negative horizontal stress at any 
depth. The reason for this difference be
comes apparent when the shear stresses 
transmitted by the embankment to the foun
dation material are considered. 

The effect of Poisson's ratio on the hori
zontal stress is illustrated in Figure 7. 
This figure shows the horizontal stress 
along vertical sections through the center -
line and toe of the e mbankment for o: = 45° 
and µ = 0.5. The dashed line shows the 
stress due to the normal loading approxi
mation for L / H = 1. Comparison with Fig
ure 6 indicates that a change in Poisson's 
ratio from 0. 3 to 0. 5 changes the stress at 
shallow depths below the central portion of 
the embankment by as much as a factor of 
three. The difference decreases as the 
L/H ratio increases. The influence of µ 
is less pronounced below the toe than be
low the centerline. 

Horizontal and Vertical Shear Stress 

Contours of horizontal n.nd vertical shear 
stress, Txy/yH, are shown in Figure 8, for 
o: = 45° and L/ H = 3. The solid con tours 
are for .Poisson's ratio of 0. 3. The long 
dashed contours are for µ = 0.5, and short 
dashed lines are for the normal loading 
approximation. The figure indicates the 
existence of horizontal shear stresses within 
the body of the P.mbankmP.nt, incrP.asing 
to a value in excess of 0.2 yH at the base 
near the toe of the slope. However, the 
maximum value of horizontal shear stress 
(approximately 0. 3 yH) occurs below the 
base of the embankment. 

Like the horizontal normal stress, the 
shear stre ss, Txy, is affected markedly by 
the magnitude of Poisson's ratio. However, 
the effect observed depends upon the posi
tion of the point considered, relative to the 
base of the embankment. In the zone below 
the embankment to a depth of y /H equal ap
proximately two or three, the shear stresses 
in the incompressible material (µ. = 0, 5) are 
less than for the case in which µ ~ 0.3. At 
greater depths the reverse is true. The 
shear stress determined from the normal 
loading approximation is less than that for 
either µ above a depth factor of appr oxi
mately three to five , and more at greater 
depths. The magnitude of this effect de
pends upon the horizontal location considered, 
as shown in the figure. 

The normal loading approximation as
sumes that there is no shear stress at the 
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Maximum Shear Stress 

base of the embankment. Figures 8 and 9 
indicate that, for the elastic embankment, 
this assumption is not reasonable. Fig
ure 9 shows the horizontal shear stress, 
Txy/yH, at the base of the embankmentfor 
µ, = 0. 3, four values of a., and a variety of 
embankment shapes shown schematically 
in the figure. The horizontal shear stress 
is zero at the centerline, as required by 
symmetry, and reaches a maximum near 
the toe of the slope. The magnitude of the 
maximum and its location depenrl upon rt. 

and the embankment shape. As L/ H de
creases for a given a., the maximum Txy/YH 
increases and moves closer to the toe of the 
slope. The magnitude of the increase is 
slight for a. "' 15° but becomes more sig
nificant as a. increases. Note that a maxi
mum Txy/yH in excess of 0.4 implies that 
the horizontal shear stress at. the hase of 
a 40-ft high embankment may be greater 
than one ton per square foot (unless the 
shear strength of the material is such that 
failure is induced). 

To assist the designer in evaluating the 
3ignificuncc of thcoc results to his particu
lar problem, influence diagr am.s fur ver Lit.:al 
normal, horizontal normal and shear stress 
distribution for u variety of casos are pre
sented in Appendix B. 

It is often useful to consider whether the maximum (i.e., principal) shear stress, 
TmaxhH, at any depth beneath the embankment exceeds the available shear strength. 
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Figure 11. Magnitude and location of maximum (Tmax/yH) as a function of depth forµ = 0.3, a = 15°. 
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Figure 12. Magnitude end location of maximum (Tmcx/yH) cs a function of depth forµ,= 0.3, Cl'= 30°. 

Thus, it is desirable to know the magnitude and distribution of maximum shear stresses 
due to the embankment. Contours of Tmax/vH are shown in Figure 10 for the embank
ment section of Figures 2, 5 and 8. Note that the magnitude of Tmax transmitted from 
the embankment to the foundation material is approximately 0.25 yH at the base of the 
embankment in the vicinity of the toe. However, the largest shear stress, 0.33 yH, oc
curs beneath the centerline at y / H = 1.8. It is also interesting to observe that within 
the embankment, the maximum shear stresses are larger near the top than in the mid
depth region, and that they increase again as depth increases. This is believed due to 
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Figure 13. Magnitude and location of maximum (Tmcx/yH) cs a function of depth forµ,= 0.3, Cl'= 45°. 
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Figure 14. Magnitude and location of maximum (Tmax/yH) as a function of depth forµ= 0.3, a = 60°. 

the relatively large horizontal stresses which are induced by the deformation mode of 
the embankment (cf. Fii::;. 5). 

Two contours of Tmaxh H for the nOl'mal loading approximation corresponding to the 
embankment considered are shown in Figure 10 as dashed lines. They indicate a shear 
stress less than that produced by the elastic embankment in a shallow zone below the 
embankment, but larger shear stresses at depth. 

Da ta for a variety of embankment shape s, with µ = 0. 3, and a = 15, 30, 45, 60 and 
75° are shown in F igures 11 to 15, r espectively. In these figures, the maximum value 
of T max at a particular depth is plotted as a function of depth for various L/H ratios. 
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Figure 15. Magnitude and location of maximum (Tmax/yH) as a function of depth forµ= 0.3, Cl' = 75°. 
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The horizontal location of the point at which this maximum value occurs is also shown. 
Figure 11 shows that as the L / H ratio increases for a= 15°, peak Truax increases in 
magnitude and acts at an increasing depth below the embankment. The horizontal loca
tion of the maximum shear stress at a particular depth moves from a position near the 
toe of the slope immediately beneath the embankment to the centerline of the embank
m ent at a depth which depends upon the L/ H ratio. 

A similar trend is shown in Figure 12 for a = 30°. However, in Figure 13 (a = 45°), 
the lar gest shear stress occur s near the toe of the slope for L / H = 0.0. Although the 
smallest L/ H r atio shown in F igures 14 and 15 is 0.5, the development of large shear 
stress near the toe of narrow steep embankments is clearly indicated. 

The da shed line in Figure 13 shows the magnitude of the maximum T1nf\-x as a function 
of depth for the normal loading approximation corresponding to the 45 embankment for 
which L/ H = 1. It is evident that the peak magnitudes are nearly the same for the two 
cases, but it occurs at appr oximately twice the depth in the case of the normal loading 
approximation. A similar effect is evident in Figure 10 for L/ H = 3. Thus the influence 
of the elastic embankment is more pronounced nearer the surface where softer soils 
might be expected. As a r e sult, it may be that current estimates of stability, -potential 
cr eep and other shear stress related phenomena, for soils at shallow depths beneath 
embankments, are unconservative. 

Relationship of Results to In Situ Stresses 

It is not immediately clear what relationship these results have to stresses which 
actually exist in the field. In the case of a built-up embankment, it is likely that the 
embankment material will exhibit significantly different mechanical properties from the 
foundation material. For a cut-down slope, the assumption of homogeneity in the two 
zones may be more nearly justified. The non-linearity in the mechanical response of 
most natural materials will undoubtedly also influence the results. However, the fea
ture which may be most significant, at least in the case of built-up embankments, is 
the fact that they are constructed in layers rather than instantaneously. Thus when the 
topmost lift is placed on an earth embankment, the upper material does not undergo 
strain due to elastic deformation of the embankment resulting from the stresses imposed 
by the entire mass. Rather, the strains are due only to the increment of stress im
posed by this layer. The degree to which the results would be changed is not clear. 
However, it is believed that the results presented herein provide a more realistic esti
mate of stress conditions than that computed from the normal loading approximation. 

Effect of Results on Stress Path Determination 

Lambe (14 ) has suggested that the "stress path" method for prediction of vertical 
settlementso f cohesive soils is superior to conventional analyses in cases where com
pression is clearly not one-dimensional. This approach involves three basic steps 
(Lambe, _!i): 

1. Estimation of the effective stress path of an "average" element in the compres
sible layer, for the field loading. 

2. Performance of a laboratory compression test which duplicates, insofar as prac
ticable, the field effective stress path. 

3. Computation of settlement by multiplying the thickness of the layer considered by 
the axial (vertical) strain from the laboratory test. 

Because the strains in the laboratory sample depend upon the applied stresses, the method 
requires a means of correctly assessing the in situ stresses. 

A comparison of the total s tress paths for several points under the centerline of an 
elastic embankment (a= 30°, L /Hnnal = 0.5, µ, = 0.3), with those computed using the 
normal loading approximation, is shown in Figure 16. The dashed "initial stress" line 
shows the state of stress in an elastic half-space, for whichµ,= 0.3, before construc
tion of the embankment. The three points shown on the line correspond to the stress 
states depths of 0.5, 1.0 and 2.0 times the final height of the embankment, Hnnal• The 
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Figure 16. Stress path for three points under the centerline during embankment construction. 

open points show the stress paths during "construction" of an elastic embankment con
tinuous with the foundation material. The solid points show the stresses for corre
sponding embankment heights, determined by the conventional method. Several features 
of this comparison are especially noteworthy. 

1. At r e latively shallow depths (y /H = 0. 5) the conventional method leads to a total 
stress path which lies entirely below the Ko line. That is, one would predict relatively 
small shear settlement::;. However, uu Lhe uasis of the elastic embankment analysis, 
the estimated shear induced settlement would likely be larger, and compre ssion settle
ment would be less. 

2. At greater depth (y/ Hfinal = 2.0) both methods lead to stress paths which lie above 
the Ko line. The two paths are closer, and the shear stress under the elastic embank
ment is actually less than that due to the normal loading approximation. 

3. At intermediate depths (y / Hfinal = 1.0) the normal loading approximation remains 
relatively close to the Ko line. The stress path due to the elastic embankment is still 
considerably steeper. 

Because of the influence of the applied stress path on the measured laboratory set
tlements, and therefore on the computed field settlements, it would seem essential to 
estimate accurately the predictive capability of the method to the field stresses. In the 
case considered, the stresses produced by the elastic embankment are significantly dif
ferent from those due to the normal loading approximation, at least at shallow depths. 
The effect of this difference on the results predicted by the stress path method is not 
obvious, however this question would appear to deserve further attention. 

CONCLUSIONS 

The analysis presented herein permits determination of the stresses within and under 
long elastic embankments which arc continuous with the underlying foundation material. 
The results indicate that the horizontal distribution of vertical stress is more nearly 
uniform than is usually assumed. Thus, differential settlements computed using the nor
mal loading approximation will be larger than those determined using the stress distri
butions presented herein. 
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The horizontal vertical shear stresses created in the foundation material by the em
bankment are found to be significantly higher at shallow depths for the elastic embank
ment than for the normal loading approximation. 

The influence diagrams presented provide the designer with what is believed to a 
more realistic estimate of the vertical stresses than that usually employed. 
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Appendix A 
SOLUTION OF THE PROBLEM 

The method of solution is a modification of the Muskhelishvili (15) method. A brief 
outline of the solution is given below. A more complete discussionof the details will 
be presented in a forthcoming paper. 

For the plane strain problem, the stresses can be defined in terms of an Airy stress 
function, U (x, y) as: 

2 U(x, y) u 
+ ~ yy 

oY2 1 - µ 

;,,2 U(x, y) 
cry = + yY 

o X
2 

(1) 

_ 32 U(x, y) 
Txy - - axoy 

whe1·e ax, ay, Txy are the ho1·izontal normal, vertical normal and shear stress, re
spectively, y is the unit weight of the material, p iR thP Poisson's ratio. For a case in 
which weight is the only body force acting, the requirements of equilibrium and com
patibility will be satisfied if (Timoshenko and Goodier, ~): 

v4 U(x, y) = 0 (2) 

where v2 is the Laplacian operator. 

When the boundary conditions of the specific problem are also satisfied, the unique 
solution has been obtained. 
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(c) Transformation of "Fictitious Stresses" 
on Boundary-lmag. Part 

Figure 17. Graphical representation of 
transformation procedure. 
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In considering the boundary conditions 
associated with the embankment, it is con
venient to represent the Airy stress func
tion in complex form. Referring to the 
plane in which the embankment section is 
shown in Figure 17a, as the z-plane, a 
point within the medium can be represented 
by the complex number, z = x + iy. As
suming that the stress function is analytic 
within the medium, the function can be 
written as 

U(x, y) = Re (zfb(z) + x (z)J (3) 

where z = x - iy, ¢ and x are single-valued 
analytic functions throughout he z-plane. 
The functions rt, and x are determined from 
the conditions that the normal and tangen
tial stresses on the boundary are equal to 
zero. Substituting Eq. 3 into Eq. 1, and 
expressing the stresses in terms of the 
boundary tractions leads to 

N + iT = ¢ '(z) + ¢ '(z) - e2ie 

[z¢"(z) + x'(z) + f (11 -_ 
2
;)] + 

·1t (1 ~ µ) (4) 

where a bar indicates the complex conju
gate of the quantity, e is the angle between 
the slope and the x-axis measured in a 
clockwise direction, µ is Poisson's ratio, 
N and T are the normal and tangential com
ponents, respectively, of the boundary 
traction. 

Evaluation of the stresses is then ac
complished by a two- step transformation. 
First, the boundary of the z-plane is trans

formed into the straight-line boundary of an auxiliary plane, the t-plane, t = ; + iry, by the 
application of the Schwarz-Christoffel transformation (Churchill, j ): 

1 
t ii 

z = f(t) = R / (
1

; !a~/) dA + S (5) 

A = O 

where R and S are constants, f3 is the modulus, A is a dummy variable and n = -rr /a . 
Note that when n = 2, corresponding to a slope angle of 90°, the integral expression 
in Eq. 5 is an elliptic integral of the second kind, for which tables or charts (Henderson, 
11) are available . For those cases where n is larger than 2, the integral can be eval 
uated numerically on the computer. In this analysis, Eq. 5 was evaluated for all values 
of n on the IBM 7094 digital computer by a Simpson's rule integration (Hildebrand, _g). 



28 

Because Eq. 5 represents a conformal transformation, straightlines, ; = constant 
and r, = constant in the t-plane, correspond to orthogonal curvilinear coordinates in the 
z-plane. This is illustrated in Figure 17a. Thus, the boundary conditions in terms of 
¢(z) and x(z) can be written as functions of ¢[f(t)J = ¢(t) and x[f(t)J = x(t), Then the 
boundary tractions become 

N + iT = 0 = <l>(t) + ~ + 2(1Y_ µ) Im [f(t)J + 

f ' (t) [rm cl> '(t ) + w(t) + 2':2 (11-- 2µµ) Im [f(t)J] (6) 
f7"{tJ f '(t) 

where cl>(t) = ¢'(t), w(t) = x'(t) and f'(t) is the integrand of Eq. 5. Recognizing r, = 0 and 
t = ; in Eq. 6, and rearranging leads to 

cl>(;) + cI>(f) + f'(;) [TT[) <I> _' (( ) + w(;~ = 
TT"[) f (~) J 

2(l y ) [1 + (1 - 2µ) f'(~) ] Im [f(;)J (7) 
- µ. f '(; ) 

In this form, Eq. 7 expresses the effect in the t-plane of the geometric shape of the em
bankment. This effect can be visualized as a "fictitious loading" applied to the bound
ary of the t-plane . The r~'ll and imaginary parts o! this :·11ct1t1ou.s bo•mdary i.oaUiug" 
are shown in Figures 17b and 17c, r e spectively. 

Having expressed the desired fW1ctions of the boundary, it is necessary to deter
mine them inside the boundary. This is accomplished by the application of Lite Cauchy 
integral formula. This formula states that for a given function g(~) along a closed con
tour, C, which satisfies certain conditions, the value of the function at an interior point, 
t, is (Wylie, E ) 

g(t) = ~ / g(O d~ 
2rr1 t - t 

C 

(0) 

If the point tis exterior to the closed contour, then the integral expression equals zero. 
By this means, the desired functions can be evaluated inside the boundary. Knowing 
cl> (t) and -l' (t), and substituting Eq. 3 into Eq. 1, leads to the determination of the stresses : 

ax = 2 Re cl> (t) - Re [ I{f) ¢, '(t) + 
f '(t) w(t)] + ( 1 ~ 1)y Im [ f(t) J 

C1y 2 Re <l>(t) + Re [ I{f) <I> '(t ) + 
f '(t) w(t)] + 'Y Im [f(t)J (9) 

'T'xy - Im [nn 4i'(L) + ~(t)] 
f '(t) 



29 

Appendix B 
This Appendix contains influence diagrams for vertical normal stress and horizontal 

normal stress along vertical sections for µ = 0.3, a. = 15, 30, 45, 60 and 75°, and vari
ous embankment shapes. Influence diagrams for horizontal and vertical shear stress 
for a = 46°, µ = 0. 3 and various embankment shapes are als9 given. 

The diagrams indicate the stress due to the embankment weight alone. Stresses due 
to the weight of material underlying the embankment must be superimposed to obtain the 
total stress. The stresses are expressed in dimensionless form as cry/ YH, ax/yH or 
rxy/yH. The coordinates are also in dimensionless form. For convenience in the semi
logarithmic plot, the depth is measured from the top of the embankment, and designated 
y / H. This is in contrast to the discussion in the body of the paper where the vertlc::il 
distances are measured from the base of the embankment and designated y / H. 

Each of the four diagrams in a given figure refers to a particular vertical section, 
shown schematically on the diagram. The upper left diagram indicates stresses along 
a vertical section midway between the centerline and the toe of the slope; the lower left 
diagram indicates stresses along a vertical section through the toe of the slope; the 
lower right diagram indicates stresses along a vertical section located a distance from 
center line equal to 1. 5 times the distance from the center line to the toe of the slope. 

The influence diagrams are reproduced as Figures 18 through 28 on the following 
pages. 
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