Normative Model for Control of Vehicle Trajectory
In an Emergency Maneuver

THOMAS B. SHERIDAN and R. DOUGLAS ROLAND
Massachusetts Institute of Technology

This paper proposes a mathematical norm against which driving
simulation results (one driver and one vehicle interacting with an
environment of fixed and moving obstacles) can be directly com-
pared. Thenormis, ineffect, an optimal control strategy (interms
of steering, braking and accelerating) given specific constraints on
driver's visual span, dynamic equations of the vehicle, and the cost
function or trading relation between penalty for colliding with an
obstacle and the penalty function of increased control effort or time.
The mathematical model, embodied in a digital computer, isbeing
used by the authors in conjunction with both a closed-circuit TV
laboratory simulator and actual road tests. To illustrate the idea,
some empirical trajectories obtained on the driving simulator are
presented together with various computed trajectories which are
optimal for particular cost functions and a simplified dynamic model
of the automobile. Three appendixes describe the simulator, give
comparable data from both simulator runs and road tests with a
standard automobile, and provide a simple numerical example of
dynamic programming.

eA major hurdle to the satisfactory engineering of private vehicles and highways is the
lack of quantitative criteria for driver performance. How far can we trust the driver?
Under what conditions do we permit autonomous control of the vehicle by the driver with
a modicum of help by signs and traffic laws and policemen, and under what conditions
should we by-pass the driver and impose active control on the vehicle from outside, on
the basis that the expected behavior of the driver does not fall within satisfactory
tolerances?

Two theoretical approaches have borne some relevance to this problem. The theory
of traffic flow, deriving from classical fluid mechanics plus developments in applied
probability such as theory of queues, predicts flow phenomena based on average behavior
of large numbers of vehicles and drivers in relatively steady streams (1). The micro-
behavior of one vehicle relative to its environment is not tractable by this approach.

The second approach, the theory of automatic control, has been applied to the individ-
ual driver, but in a somewhat misguided way. While quasi-linear differential equations
are now available which predict the human controller's response surprisingly well in the
context of flying aircraft and spacecraft along smooth, well-charted paths (2), no such
success has been achieved in the automobile driving context. The explanation is simple.
In the former case the human cortroller's inputs are well defined, continuous, single-
valued functions of time, and "tracking'" or "error nulling' in the closed-loop servo-
mechanism sense is not too bad an explanation of what the human is actually doing (though
there is some room for argument here, and the aircraft takeoff and landing operations do
not fit the servomechanism paradigm). If automobile driving were a matter of follow-
ing a white line across the California salt flats, the servomechanism model would fit.

Paper sponsored by Committee on Driving Simulation and presented at the 45th Annual Meeting.
83

84

THE PROBLEM

Unfortunately, keeping the vehicle on the road is not the crux of the driver's problem,
and the driver's more difficult tasks are to:

1. Visually identify the obstacles in his immediate environment as to the penalty for
hitting them, relative to costs of effort and time expenditure;

2. Predict the future course of those obstacles which are in motion, i.e., other ve-
hicles and pedestrians;

3. Chart a course through all the obstacles which will minimize the expected penalty
over some "'interval of predicament"; and

4. Control his vehicle to effect the programmed trajectory.

It is these requirements for preview of the input and preplanning of control which make
driving a car a more sophisticated control task than keeping an aircraft or spacecraft
on a command course by error nulling.

The problem, it would appear, can be formulated in terms of the currently develop-
ing theory of optimal control. Given an initial state (set of initial conditions), a termi-
nal state or range of allowable terminal states, and a cost function which specifies the
incremental costs and constraints in moving from any one particular state to another in
the space between initial and terminal states, the minimum cost trajectory (and the op-
timal control strategy) can be straightforwardly and uniquely specified. Included in the
cost function are (a) the costs of colliding with each of the fixed or moving obstacles;
(b) the cost of time in getting between initial and terminal states; (c) the constraints on
maximum forward accelerating and decelerating forces and sideward accelerating force;
(d) the manual control dynamics (steering wheel or pedal displacement to vehicle posi-
tion). The suggested means for computing the optimal trajectory, because of its gen-
erality, is the dynamic programming algorithm of Bellman (3), and the means for im-
plementing this algorithm is a digital computer. These techniques will be described by
example.

Having once determined an optimal trajectory, one can observe in a simulated or
controlled vehicle experiment with a human subject, how much and in what way the hu-
man driver deviates from the optimal control strategy (or the vehicle deviates from the
optimal trajectory). Alternatively one can assume the human is an optimal controller
(we know in the simple servomechanism case he is not far off) but that he is subject to
internal constraints additional to those posed by the vehicle and environment. In this
case one can try to find under what additional constraints the human driver is optimal.
(This so-called "indirect problem' of optimal control is less straightforward than the
"direct problem.") With either orientation, the aim is to discover the human's cost
trade-offs in a particular context of vehicle control. This cost or criterion problem is
not a consideration of available models of the human operator. In the preview situation
it would seem to be the governing factor.

The theoretical problem will be formulated under one set of assumptions, then the
computation technique will be described. Several alternative formulations will then be
given, and finally some associated problems of experimentation will be discussed.

CASE 1: COMPLETE PREVIEW, DETERMINISTIC PREDICTION

Physically, the problem is to start from the origin of an xy Cartesian space at some
initial time tq (Fig. 1) and chart a best course down the road. It will be convenient to
let x, y and t have values only at discrete points at regular intervals Ax, Ay, At. There
are k obstacles, some fixed (beer cans, parked cars, etc.) and some moving (vehicles,
pedestrians, bicycles, etc.). We will assume in this first case that all obstacles are
within the driver's preview and that all obstacles maintain constant derivatives so that
the positions of all obstacles at each time t are determined (can be predicted) by the
driver at tg:

xXklt) = xklo) + kglo)t + %(o) t_; +

v (o) L 1)
V) = Yk(O) + Yot + yk(o) g ot e

85

trajectory of optimally
controlled vehicle under
explicit dynamics and
costs

trajectories of

.~ \ moving obstacles
\A’fﬁ

t
“/
S time t

Figure 1. Physical space of desired trajectory and obstacles.

where xk and yk are the forward and lateral positions of the kth obstacles. For each
obstacle in any given increment of time At we assume the driver perceives a cost Ck,
which may have a value only for a collision, i.e.,

Ck = € | X% | <wg and | y-yi | <4y; Cyx = O otherwise (2a)
or Cx may be a function of the miss distance from some obstacles or targets, i.e.,
o

where x and y specify position of the controlled vehicle and wk and Lk represent effective
length and width of the kth obstacle.
We assume some equations of motion for the vehicle, such as

Ax + Bx = iy

Cy + Dy = f (3)

y

where fy and fy are tire forces. A simplest assumption for the sake of our example is
that steering cgmamics are sufficiently "tight" and accelerating or braking sufficiently
fast that the driver can command fx and fy directly, i.e., the dynamic lags of the human
neuromuscular response and steering, tracking and accelerating mechanisms are not
appreciable. (The elemental human reaction time of, say, 0.25 sec is compensated by
the driver's preview and anticipation.)

Since the driver is constrained by fuel expenditure, tire wear and social criticism
from too violent use of the steering wheel, brake and accelerator pedals, we must as-
sume an "effort' cost over a unit time increment, such as

Ce = Kex | fx° | + Key | fy® | 4)

The values fy and fy may be constrained to be less than certain limiting values, fx max
and fy max, which represeat skidding.

86

There is one more cost to consider, a cost CT per unit of time to reach a terminal
state x(t), y(tf), X(tf), ¥(tf) or one of a set of such states. This represents how big a
hurry the driver is in.

It is convenient to consider the total cost function as the cumulative cost up to last
time increment plus the incremental costs for collision, for effort and for time

Ct) = Ct-1) + Ik Cklt) + Celt) + Cr(t) (5)
cumulative incremental incremental incremental
cost to collision effort cost time cost to
last time cost reach required
stage terminal stage

It is the ratio of the weightings on these costs which we seek to determine for the
human driver in various situations. For example, we know that the weighting Ck he at-
taches to collisions is very high. Letting Ck - =, there is still presumably a variety of
control strategies which will trade off between how much of a hurry he is in, CT, and
his reluctance to be a wild driver, Ce.

DETERMINING OPTIMAL TRAJECTORIES BY DYNAMIC PROGRAMMING FOR
GIVEN OBSTACLES, GIVEN VEHICLE DYNAMICS, AND
GIVEN COST WEIGHTINGS

For purposes of computing a minimum cost trajectory it is convenient to think in
terms of a state space, a space of sullicienl variables (and derivatives) of the system at
each stage in time that transition from given state S(t) at time t to another given state
S(t + 1) at t + 1 completely specifies the cost incurred over that time interval At.

CT is dependent only upon whether the present state satisfies the terminal conditions,
Sf. Ck for a collision with an obstacle positioned at xj and yj depends only on Sjj(t) =
xi(t), yj(t). Ce for a jump (Fig. 2) from a state Sijuy(t - 1) to a different state Spyyv(t)
depends upon Sijuv(t) = xj(t), yi(t), ku(t), yv(t) since the effective kif across the intervals
is xq(t) - xi(t - i) and the effective %yy across the interval is xy(t) - Xu(t - 1), and simi-
larly for ¥ and ¥ in Eq. 3. Thus at each time stage t we need a four-dimensional space
in Sjjuv with sufficient range of the variables chosen artfully at the outset to include
those states through which the optimal trajectory has reasonable probability of passing
(Fig. 2).

The basic idea of the dynamic programming algorithm is best explained by example.
For the reader not at all familiar with this optimization procedure a numerical example
is provided in Appendix C.

each vertical line repregents a four-
dimensional space in x, x, y, ¥y

SIJUV

STATL

S
ijuv

t t t
o t t
L : STAGE IN TIME m-1 max
Figure 2. State space of desired trajectory and obstacles, showing trial paths to determine least cost
path to S| Jyv (t2): 1JUV is a particular state to which all ijuv states at the previous stage are

considered paths.

87

In the present problem the dynamic programming algorithm proceeds as follows.
We start at either end of the time range of interest, i.e., at Sy(ty) or at Sg(tmax); it
does not matter unless there is no prespecified terminal condition. Assuming we start
at ty, the cost of jumping to each next start Sijuv(ti) is determined from Egs. 1, 2, 3,
4, and 5, and each resulting value Cijuy(t.) is ‘stored. Next we consider in turn each of
the states Sjjuy at t;, to determine the path by which the least cost trajectory arrives at
that particular Sgyyy(tz). In other words we choose the one of all Sjjyy(ti) from which
to set out for the particular Spyyv (t2) under consideration in order that the cumulative
cost CLJuV at t; be least. This involves a brute force application of Egs. 1, 2, 3, 4,
and 5 to each and every Sjjuv at the last stage paired with the single Syyyv at the pres-
ent stage. Since every Cijuv for the last stage is already in memory, the least cost is
easily obtained following Eq. 5 as

Cyuv(t) = minimum [Cijuv(t- 1) + (O Cx + Ce) + Crl (6)
ijuv from ijuv at (t - 1) S not an S
to IJUV at (t)

where now t = t.. This equation is essentially a statement of Bellman's principal of op-
timality. The optimal path is then simply the previous state by which to obtain least
cost for the present state., This value is stored:

Pyyy(t) = ijuv] ()
minimum

These cost and path values are stored in memory and the process is repeated for every
Siiuy in the state space at t;. We then have in memory a least cost to get to each Sijuv
at t, and the corresponding best path to get there. The cost information at stage t: may
then be thrown away.

The whole process is repeated at each successive stage forward in time, until tmax
is reached. At this last computation stage, either only a unique state Sf is allowed, or
the least cost state within a set of states Sf is chosen. Since any stored path P(t) speci-
fies the best state at the adjacent time stage, and P at that time specifies the best state
at the next time, and so on, the optimum path is easily traced through the stored table
of best paths. A computational flow chart is shown in Figure 3.

The great saving of the dynamic programming algorithm is that the amount of com-
putation is a linear progression with T and not a geometric progression. For N states
at T times only N®T comparisons need be made, not NT, the number of different tra-
jactories, and, more importantly, only NT values of path P need be stored, not NT
values. The dynamic programming algorithm can handle with ease various essential
nonlinearities in the vehicle equations and cost functions which some other optimization
techniques cannot,

EXEMPLARY FITS OF THE MODEL TO DRIVING SIMULATOR DATA

Using a driving simulator (described in Appendix A), an experienced subject was in-
structed to drive a straight course down the center of an open track, and thatuponreach-
ing a certain point along the track two "targets' (negative obstacles or obstacle "holes'")
would suddenly appear before him at fixed positions down the road. He was to overrun
the targets with equal penalty for lateral errors on both targets. He controlled only
steering. His forward velocity was held constant. The subject had been trained in the
same experiment and knew that the location of the targets wasa random distance from the
center of the track and was equally probable to the left or to the right. He also knew
that in some cases both targets appeared at once (type A) and in other cases the second
appeared just as he started responding to the first (type B), which was actually Y sec
after the first appeared.

Figure 4 is a plot of an ensemble average of ten runs of type A for one particular lo-
cation of the targets (heavy crosses) and an average of ten runs of type B for the same

88

=0
|set Ct_l(m) I
|set t=1
h
¥
lset n=1 l
]
l;t m=1 |
Iset Ct(n) = any large number I
I
v |
Evaluate cost to get to (t,n) by way of (t-1,m): test C (n) =C,_,(m)

+ Ck(t,n) + Ce(t,n,t—l,m) + CT(t)

s test Ct(n) < Cc(“) 29

ves

set P(t,n) =m , store P(t,n)

v

set Ct(n) = test Ct(n), store Ct(n) s m = SMAX

no

setm=m+ 1 | _pol

yes

setn=n+1 I

set gll values of
t+1—'-c_t-1?}=ct?)

[find minimum of Ct(n) J
¥
| m = P(t,n) , store as P*(t) J
no
| set t = t-1
yes

print out P*(t) sequence; this is optimal path

Figure 3. Computational flow chart for dynamic programming example: m is a running index for every
ijuv state atf stage t-1, n is a running index for every 1JUV state at stage t.

target locations. Note that the ordinate and abscissa are not the same scale. As indi-
cated, these runs had been interspersed with runs for other target locations.

On the same plot are exemplary optimal trajectories for various performance cost
functions. The latter are based on the extremely simple model in which the lateral posi-
tion of the vehicle (the ordinate of the graph) is the second integral of the vehicle's front
wheel (or steering wheel) position. The vehicle's forward velocity (rate of motion along

89

9 9 ki € < it 0]

1 I T T T T

198) 2]QISTA ST 39813 3ISITJ 219ym Jutod wolij dPUEISI(
puodas z/1 puodss /1
%
. -1

K103909[e1] Ax0323[®1] TEBI4TUT saieadde
pajepdn S3IBIS :SIEIUCE 1981e]
s3ae3ls 319341eB3] puodas IS113

mh + Nm 700° = LS0D

mu + mu

ose ¢ ki =18
! mm + 72 %0 LS
mh + mm 300" = 150D

198U0T °D3S g/ SuTI UOIIILIL pug
¢ ¢d 4 %00 = 180D

mm + d G

suni (1 Jo 3seaaae
-AHmﬂucm:vom wum@hﬂuVmma%u.muumuoumHSEwm

LS00

suni (7 3o 9Yeida® f(snosuBITNUIS SI2TIeI) y 2d4] ‘BIRP I0IRINUTS

*040p Joso|nwis BulALIp Yiim paiodwod (4) 1oy pup () 1018 JO SUOI4OUNS §SO2 SNOLIDA 104 s8LI0428louy [pwdo jo sejdwox] * aunbiy

sayou] ‘uolljsog [eBIL3ET]

90

abscissa) is constant. All of the computed optimal tra]ectorles shown presume a type B
stimulus situation where the second target appeared ‘% sec after the first appeared. Ou
model assumes that the driver planned an optimal trajectory with respect to the first
target which is to begin after his own ' sec reaction time (after 2 ft). The finite posi-
tion change is therefore at the 2'4-ft point. At the same time he started his initial opti-
mal trajectory the second target appeared, but he could not initiate an updated trajec-
tory until after his ‘%4 sec reaction time.

The empirical data seem to suggest that for all cost functions the trajectory updating
occurred after a longer delay with respect to the appearance of the second target than
with respect to the first target. However, it is not the authors' purpose to draw quan-
titative conclusions from these data but only to note qualitatively how different cost func
tions result in different forms of approximation to the empirical data.

An experiment similar to that described above was performed with a standard auto-
mobile in a large parking lot. This experiment is described in Appendix B, and some
results are given which compare vehicle trajectories of the actual car with those of the
driving simulator in the same type of task.

ARTFUL USE OF COMPUTER MEMORY

The dynamic programming algorithm poses severe demands on computer memory,
and it is important to understand these if practical solutions are to be implemented. Foi
example, suppose in the present problem x and y were reticulated into 40 increments,

X and ¥ into 10 increments, andt into 100 increments. Then we must keep in memory
at any one time the least costs of every state at two adjacent time stages, requiring
2:40-40-10-10 = 320,000 locations. In addition we must store paths for every state at
all 100 time stages, or 16,000,000 locations. Clearly we cannot put all of this in the
core memory. (Of course this is still better than separately evaluating the 160,000
separate trajectories which are possible.)

Fortunately there are ways out. These will not be detailed here, for they would com
prise at least another paper this size. Briefly, however:

1. One can store in core memory the cost information, i.e., the Cijuy values of onl;
a small part of the state space at only the two stages where least costs are being com-
puted, retaining the rest on tape or disk files and playing it back into core when needed.
Suppose one could allocate 1000 core locations to cost values at each of two adjacent
stages and do tape-to-core and core-to-tape transfer in blocks of 1000. The number of
block transfer cycles to make all possible comparisons of states at adjacent stages is
the square of the ratio of the state space size to the size of the memory block, which is
160® in our present example. More block transfers would be necessary for storing path:

2. To save storing on tape the required 16,000 blocks of best paths, the 160,000 path
specifications at each stage can be printed out on paper. A human clerk should be able
to trace from one stage to the next in less than a minute since he is told by the present
P(t) specification precisely where to go for the next P(t). But if only a one-character
printer is available at 10 numbers per sec, printing the required 160,000 best paths
would require close to 5 hours of printing per stage plus the paper, clearly not a prac-
tical approach for problems of this size, but certainly feasible for smaller problems
when long-term computer memory is not convenient (or when a high-speed printer is!).

3. The state space can be broken into blocks (hyperspace rectangles) and optimal
trajectories determined for a number of At intervals within these blocks by interpola-
tion techniques, storing in each case the costs and paths to get to the surfaces of these
blocks. This technique presumes a preferred direction of motion through the state spac
and still requires storage of optimal costs and paths in a large number of states at dif-
ferent time stages, but it greatly reduces the high-speed storage requirement (4).

4. Nominal trajectories can be drawn through the state space and improved trajec-
tories only in the neighborhood of the nominal trajectory can be considered. Thus, if
we consider 100 time-units in a state space of 5 increments in both x and y and 3 incre-
ments in both x and y, centered on the nominal trajectory, we have a state space of only
225 numbers. The dynamic programming solution is now easily within reach of the
smallest computer (far better than brute force comparison of 225'°° possible trajectories).

91

This small state space even makes practical the print-out technique of method 2 above
if it is necessary. Successive iterations can be made to keep improving the current
"optimal' trajectory (though one must be careful in order to avoid converging on sub-
optimal paths, a built-in limitation of all steepest ascent techniques in which the best
path is not within the range of original consideration). Much experimentation remains
to be done using people in roles of artfully posing nominal trajectories and working with
the machine in real time to improve them.

CASE 2: COMPLETE PREVIEW, PROBABILISTIC PREDICTION

Having looked at some computational aspects of the original formulation, let us re-
turn to a slightly different formulation. In case 1 we assumed that at to the future posi-
tions of all moving objects are known by direct extrapolation on present states and a
perfect optimal control strategy is computable from the outset. However, we may al-
ternatively assume the human driver does not plan his control on precise extrapolations,
that he knows he could not make accurate prediction anyway. Therefore, let us assume
that the locations (of the centers) of various moving obstacles are known only on a prob-
abilistic basis. In particular let us assume a two dimensional unimodal probability dis-
tribution with its mean at xk(t), yk(t) and with a variance which increases with time.
Thus, in evaluating the penalty for a potential collision with obstacle k,

Cy = of exp - [x-xg) o+ (lzk- yk)*1 {t + Kg) @

This adds a growing uncertainty or smudge to the prediction of obstacle positions with
parameters Rk (a "rate of smudge") and Kk (initial "smudge") in lieu of the length and
width parameters 4k and wk in Eq. 2a. This formulation presumes the human driver is
unable to take in new information and update the optimal control strategy during the
course of any one predicament time interval, ty,.

CASE 3: COMPLETE PREVIEW, UPDATING OF TRAJECTORIES TO
COMPENSATE FOR EXTERNAL INFLUENCE ON OTHER OBSTACLES

When the potential collision predicament lasts more than several seconds there is
time for the driver to update his optimal control strategy based on new estimates of the
positions and velocities of moving obstacles. If the kth obstacle takes some arbitrary
path (subject to about the same dynamic constraints as the vehicle whose control we are
interested in), after some time ty the driver would make a new extrapolation, analogous
to Egs. 1:

xplt - ty) = xpelty) + Xelty) €-t) + ...
it - t) = yely) + yely) € -t + ...

Then he would take Sy(ty) as an initial state and recompute an optimal trajectory based
on the newly predicted obstacle positions at future time stages, with or without "smudge"
considerations on his predictions. This might be repeated several times during the
course of a total predicament interval tyax. The optimal trajectory in each case would
be based upon the range of x remaining.

(8)

CASE 4; CONSTRAINED PREVIEW, UPDATING OF TRAJECTORY

Suppose that either because of poor visibility or limited perceptive capability the
driver can attend only to obstacles less than x]j;, ahead. If X]jm were short relative to
the total range of x involved in the present collision predicament, we would certainly
expect the driver to update his optimal trajectory as often as he could, each time basing
his optimal strategy on all the obstacles in his present preview—some of those he saw
on the early computation plus the new obstacles which the "moving window'" of hispreview

3

92

might now reveal to him. All of the exemplary trajectories given earlier included one
updated computation based on new evidence when the second target (obstacle '"hole')
appeared.

CASE 5: SIMULTANEOUS OPTIMAL CONTROL OF TWO VEHICLES WITH
UPDATING OF TRAJECTORIES

Suppose, in case 3, that one of the k obstacles, instead of taking an arbitrary path,
is a vehicle being controlled optimally with respect to its driver's preview. And sup-
pose, further, that the drivers of both vehicles update their optimal control strategies
periodically during a collision predicament. The study of certain cooperation/competi-
tion, or "social" aspects, of driving would seem to be tractable in terms of the costs
netted each of the drivers as a function of the various parameters of the control situation
previously described plus the updating interval ty.

AN ORIENTATION FOR EXPERIMENTS

The aim, to restate, is to determine how much and in what way the human driver de-
viates from an optimal controller (the direct problem), or under what additional con-
straints to those posed by the vehicle and environment the human driver is optimal (the
indirect problem), and by either means discover the nature of the driver's control cost
criteria. It has been shown that the greatest difficulty in implementing computation of
optimal control strategies or trajectories by dynamic programming is the computer
memory requirement, and that the use of nominal trajectories artfully posed by a human
experimenter can reduce the memory requirement to a very workable level. Suppose a
driving simulation is setupunder careful control such that the dynamic parameters of
Eqgs. 3 are few and known, the states of the k obstacles are known, the constraints on
fx max and fy max are represented, and the relative costs assumed at the start of the
experiment for Ce ('wild driving'), Ck (collision) and CT (elapsed time) are at least
realistic and are made explicit to the driver. Then empirical trajectories recorded
from the simulation can be used directly as nominal trajectories for an optimal control
computation in a digital computer using the same parameters.

Having available such relative cost weightings for the human operator under a rea-
sonable range of circumstances, one can speculate on their use for design purposes.

A group of transportation designers in conference around a scale model simulation of a
highway intersection (or the futuristic equivalent) could pose different configurations to
the highway, the vehicles, the traffic signals, etc., by physically changing objects in
the simulation, or typing into a computer conditions of speed, weather, etc., for sample
vehicles. The answer to their "what would happen if'" questions would be produced in
short order by the computer and displayed by a mechanical plot of probable trajectories
of the various vehicles.

ACKNOWLEDGMENT

The work herein presented was sponsored in part by the U.S. Public Health Service
and in part by the National Aeronautics and Space Administration.

REFERENCES

1. Herman, R., and Gardels, K. Vehicular Traffic Flow. Scientific American, Vol.
209, No. 6, December 1963.

2. McRuer, D., Graham, D., Krendel, E., and Reisener, W. Human Pilol Dynamics
in Compensatory Systems. AFFDL-TR-65-15, May 1965.

3. Bellman, R., and Dreyfus, S. Applied Dynamic Programming. Princeton Univer-
sity Press, Princeton, New Jersey, 1962.

4, Larson, R. E. Dynamic Programming With Reduced Computational Requirements.
IEEE Transactions on Automatic Control, AC-10, 2, April 1965.

93

Appendix A
A BRIEF DESCRIPTION OF THE LABORATORY DRIVING SIMULATOR

The driving simulator consists of a 16-inch long vehicle (Fig. 5a) which carries a
television camera. Its front wheels are steered remotely by means of a servomechanism,
and it is accelerated and braked remotely by means of an electric motor and an electric
clutch. The vehicle is designed to have steering dynamics similar to those of a conven-
tional automobile. The vehicle is driven along a 40-ft long model roadway (Fig. 5b)
and into a "'test section'" where a variety of fixed and moving objects can be made to sud-
denly appear; e.g., cardboard "obstacles' (or, alternatively, "targets") are driven up
through slits in the test track at random
positions by means of electronically timed
solenoids. The electrical umbilical is sus-
pended from an overhead rail in such a way
that it does not cause a significant drag
force.

The experimental subject sits in adark-
ened cab controlling the vehicle with actual
steering wheel, brake and accelerator (Fig.
5¢) and has a 30-degree view in the TV
monitor equivalent to what he would see if
seated in the model vehicle.

Figure 5a. Servo-controlled model vehicle with Timing is accomplished by means of
vidicon and periscope. photocells strategically placed along the

%

Figure 5b. Model vehicle approaching targets in Figure 5¢c. Experimental subject in darkened
test section. booth viewing targets on TV.

model roadway. Records of the vehicle's trajectory are generated by a device on the
vehicle which makes a continuous mark on a piece of black paper laid along the test sec-
tion of the model roadway.

11

94

Appendix B

COMPARISON OF TRAJECTORIES FROM SIMULATOR AND
FULL-SCALE VEHICLE TESTS

A standard automobile (late model Ford Mustang) was accelerated along a straight
course (in a large parking lot) to about 40 miles per hour. The driver's forward vision
was blocked; he maintained lateral alignment by vision through the side window. Ata
predesignated point along the course the driver's forward view was restored by a pas-
senger and the driver attempted to overrun two successive targets (rubber lane marking
cones), centering them on the front bumper, with equal importance attached to lateral
position errors for both targets.

«———— several hundred feet 100 ft, 60 ftr several hundred —
acceleration run to (5 ft, in simulator) (3 ft, in feet for braking
reach 40 mph (or simulator)

equivalent in simulator)
at onset of preview

A-1/3 ft. (5 in. in simulator)

L 5 ft. (3 in. in simulator)
J— ®
o [}
®
four alternative two alternative
positions of positions of
first target second target

nrawvd aw

Figure 6. Plan view of experimental course.

A plan view of the experimental course is shown in Figure 6. As indicated, the anal-
ogous course and task were set up on the driving simulator described in Appendix A.
(This was a different group of subjects and slightly different task from that described
earlier in the body of the paper.) The first target was randomly placed in one of the four
alternative positions shown and the second target in one of the two alternative positions
shown.

On each run with the standard automobile a record was obtained (using stripes of
toothpaste spread on the parking lot) of the position and the angle at which the vehicle
crossed each of the target lines. Comparable measurements were made using an ink
marking device built into the driving simulator.

Experimental results from four of the eight alternative target configurations are show.
in Figure 7. This set of four all started to the left; the target configuration in the four
not given was the mirror image, and the resulting trajectories were roughly comparable

Comparison of results from the full-scale tests and from the driving simulator re-
vealed one striking difference: there was a marked tendency to oversteer the driving
simulator by the relatively inexperienced subjects used. (It will be noted in reference
to the simulator results given earlier for a comparable task with an experienced subject
that there was no such tendency to oversteer.) This is believed to have been due pri-
marily to the lack of kinesthetic and vestibular cues (velocity and acceleration senses)
available to the driver of the simulator, for these senses are known to play the same
role that artifical rate feedback does in automatic control of otherwise undamped system

95

*9|21Y9A 9|DIs~[|Ny = SUI| PI|OS {I0JD|NWIS = sasayuaIDd Ul SIBQUINU PUD SUI| Paysop (A *3|D1YsA 3|PIS—||Ny PUD JOID|NWIS WOy S9110409lD1] -/ B1nbiy

UoIjISO4 |D434D7

(uig-) (ug)
Wes-g- $es1-8- |
—— ., a—— .
[VGTE s W 57977 (e~
Tl Q I~
~ .
t'voe) (1) 2 (v 06) upg) .
4 091 14 001 o & 1 09/ 4400/ ol &
uolisod | piomio4 w uoljisod | piomiod v
) - (o)
1 - @
= e X
. [~} = - i o
cug) | 3 i W b - el | 3
e = _- g
(ug) _ (urg) |
1es1-8 i €/1-8
W
./J. (Ug-) (uIg-)
,; 4es-8- 4€/1-8 -
A
A —————— . N7 77 Ul £
gz 979 () ~ ZATE R
Tl o
o
rur 06) v ps) b (v 06) (urpg)
4 09/ 44001 ol W 091 ‘ool o
uonIsod | piomioy 2 uojIsod | pipmiod
o
0
=
gl | S (urg) |
e X
tug) | (uig) |
N — o 1 £/1-8 44 €71-8
NN i P
AN =
//..../..I.|\“ -~

]

96

Appendix C
A SIMPLE NUMERICAL EXAMPLE OF DYNAMIC PROGRAMMING

Assume at each of four stages in time after the initial stage there are three possible
states of a system, represented by circles in Figure 8, and that from each state at a
given stage, the cost to get to any state at the next stage is directly a function of the twe
states. These costs are represented by the numbers along the lines connecting the states

#

STATE

8] 1 2 3 4
STAGE IN TIME —_—

Figure 8. A simple numerical example of dynamic programming: numbers above lines represent state
transition costs; numbers in circles represent cumulative least cost values C and best path values P.

Starting with stage 1, the cost, C, indicated within each circle at stage 1 is simply
given by the number along the line from the initial state; the least-costs path, P, is 2
in every case since this is the only previous state available.

At stage 2, the cost to state 1 is the least of path 1 (cost =2 + 6 = 8), path 2 (cost =
2+4=6), and path3(cost = 3 + 4 = 7), The state 1 circle is thus marked with the least
cost and best path. Similarly the cost to state 2 is the least of path 1 (2 + 4), path 2
(2 + 5) and path 3 (3 + 2) and is thus marked as cost 5 and path 3, and similarly for stat
3 at stage 2.

Having completed the least cost and best path determination for stage 2 we can throw
away all cost information about stage 1, since in determining costs at stage 3 we need
know only the costs to the states at the previous stage. But the best path information
must be retained.

At stage 3 we similarly obtain the least cost and corresponding path to reach each of
the three states, and so with stage 4.

Now, assuming stage 4 is the terminal stage we could require that state 2 be Lhe ler.
minal state. We observed from our stored path information that we should have come
there via state 1 at stage 3, and at state 1 at stage 3 we observe we should have come
via state 2 at stage 2, thence via state 3 at stage 1, and finally back to the initial state.
This is the optimal trajectory, the least-cost way of reaching state 2 at stage 4.

On the other hand we could have looked for the least-cost state at stage 4, which is
found to be state 3. The optimal trajectory to reach this state is found to be entirely
different: state 2 at stage 3, state 1 at stage 2, state 2 at stage 1, and back to the initia
state.

97

All trajectories need not be different. The optimal trajectory to state 1 at stage 4
is seen to be the same as to state 2 except for the last step.

The reader should note that in determining the least-cost paths from any one stage
to the next the number of trial comparisons was 9, the square of the number of states,
and only the three best path values were stored. Both the total number of comparisons
and the total number of stored path values was linear with the number of time stages
traversed.

