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•THE Tri-State Transportation Commission has a broad responsibility encompassing 
land-use planning as well as transportation facility planning. The possibilities of 
guiding land-use development towards some more desirable pattern are being explored
both because of the effect on transportation and as an end in itself, Tri-State's planning 
staff is thus faced with the question: What would be the best possible pattern of future 
land use? The city planning profession has not yet agreed on the answer to this ques
tion, and it is still largely a matter for speculation. The planner lacks the tools to 
make an objective evaluation of a land-use plan; he must rely on judgment, intuition, 
and some venerable precepts which have increasingly come under attack. 

It is hoped to develop some more scientific procedures-preferably some measurable 
criteria-to use in trying to formulate the best possible land-use and transportation 
plan. As one approach to this problem, I have abstracted a few of the essential param
eters of a city and have shown how they might be optimized. Although this was a theo
retical analysis performed on an idealized city, the results hopefully can provide some 
guidance to planners charged with drawing specific plans for real cities. 

Other areas of human endeavor do not suffer the same lack as city planning; they 
have developed well-accepted criteria for determining what is good. The businessman 
has one clear, overall objective: to maximize his profits. In engineering and welfare 
economics, benefit-cost criteria have been widely utilized. Benefit-cost analysis was 
applied to metropolitan transportation planning by the Chicago Area Transportation 
Study (CATS). Of particular note was the technique developed for calculating the opti
mal spacing of highways (1). This kind of "ideal city" analysis found cogent practical 
applications in developing-a highway plan for the Chicago region. 

The so-called "!Jenefit-cost analysis, " as used in transportation planning, does not 
actually distinguish between benefits and costs. Benefits are merely savings in costs, 
and thus the objective is really to minimize costs. The costs which are affected by the 
land-use pattern might be divided between transportation costs and other costs. Little 
progress has been made in identifying and measuring the non-transportation costs. 
Presumably, such things as utility costs, construction costs and land costs are af
fected by the land-use pattern, but there are also myriad indirect and elusive social 
and economic costs. Considerable work has been done in measuring transportation 
costs, so this seemed the best place to begin. Since the optimal spacing work dealt 
only with highways, the initial study has been limited to private vehicle transportation. 

There are many aspects to the land-use pattern, and again it was necessary to select 
one parameter as a starting point. The most logical and convenient one was the den
sity of development. Density can be measured in various ways, but since the study 
deals with the costs of motor-vehicle transportation, I measured the density of vehicle 
trip ends. This has the advantage that it represents both residential and nonresidential 
activities; population density tells only part of the story. 

To summarize, the influence of the density of vehicle trip ends on highway trans
portation costs was investigated. The specific objective of the study was to minimize 
the total transportation cost per vehicle trip. 
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DEVELOPMENT OF THE METHOD 

Total transportation costs for a motor-vehicle system are divided into investment 
costs and travel costs. Investment costs cover all expenditures involved in providing 
fixed physical facilities (i.e., highways), right-of-way acquisition, clearance, utility 
relocations, construction, etc. Travel costs include those costs borne by users of the 
facilities in operating their vehicles on them. These are subdivided into operating 
costs, accident costs, and time costs. This presumes that there is a monetary value 
to users' time; this value has been estimated by observing how much money people pay 
to save time. Expressing all of these costs in dollars does not reflect a materialistic 
bias, but rather the necessity of having a single common denominator. 

In general, an increase in investment will produce a better highway network and re
sult in lower travel costs. Investment cost is a one-time capital expenditure, while 
travel cost forms a daily recurring stream extending over an indefinite time period. 
Any savings in travel cost can be considered to be a return on invested capital. This 
puts the problem into a suitable format for benefit-cost analysis (2, 3). 

To proceed, it is necessary to establish the relationship betwee n t he density of trip 
ends and the several costs. For a real city this would be a forbiddingly complex task, 
but it can be done for a theoretical, idealized city. Fortunately, such a city has been 
founded by Morton Schneider, and he has described it in a paper which forms another 
key block in the foundation of this work (4, 5). Schneider had a different object in mind 
when he set up his city-namely, to estimate traffic-but it is readily amenable to the 
problem here, and the ability to estimate traffic volumes is essential to this analysis. 
The stipulations surrounding the idealized city are fully described in Schneider's paper. 
To understand the current argument, one must know the following assumptions: 

1. The city is absolutely regular and homogeneous, extends infinitely in all direc
tions, and has a uniform density of trip ends throughout. 

2. The city has three street systems of distinctly different quality. These can be 
regarded as expressways, arterials, and local streets. 

3. Each street system forms a perfect gridiron with uniform spacing everywhere. 
The spacing of the three different systems need not be the same. 

The major task is to develop equations expressing the several elements of transporta
tion cost. This is largely a matter of synthesizing previous work done by Schneider, 
George Haikalis, and others at CATS. 

Investment Cost 

In the hypothetical city, each square mile is exactly like every other square mile. 
If a gridiron street network has a spacing of z miles, then in a square mile there will 
be 2/z miles of that type of street. The total mileage of streets in a square mile of the 
city will be 

2( _!_ +__!_ +__!_) 
Z1 Z2 Zs 

(1) 

where z1 is the spacing of expressways, z2 the spacing of arterials, and z3 the spacing 
of local streets. 

If C1 is the per mile investment cost of constructing expressways, with C2 and C3 
representing the same for arterials and local streets, then the total investment cost 
for a square mile will be 

(2) 

We are interested in the cost per trip, so we must divide this total by p, which is 
the density of vehicle trip destinations per square mile per day. One other factor, K, 
must be added. This is merely a conversion factor which transforms the one-time 
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investment cost into an equivalent daily cost, assuming some interest rate and facility 
life span. Now, the investment cost per trip is 

(3) 

It is possible to assume that the C's are constant. This probably does little violence 
to the truth for local and arterial streets; their share of the total cost is small, anyway. 
But it clearly is not true for expressways-their construction and, particularly, right
of-way costs are very dependent on the kind of area through which they pass. I have 
hypothesized that expressway investment cost follows the following formulation: 

(4) 

in which a. and 8 are coefficients whose values must be determined empirically. There 
is a certain minimum cost which exists even in rural areas of zero density, and cost 
increases as density increases. Inserting Eq. 4 for C1 in Eq. 3 results in the final ex
pression for investment cost per trip: 

( 5) 

Estimating Traffic Volumes 

A prerequisite to determining travel cost is a method for estimating traffic volumes 
on each of the three street networks (under the assumptions made, the volume on each 
street type is the same everywhere). As the volume on any street increases, the travel 
cost increases because congestion slows the traffic. Furthermore, our problem stipu
lated three markedly different street types, and the difference would be reflected in dif
ferent travel costs, thus it is necessary to know the distribution of traffic among the 
street types. 

Schneider addressed himself to this problem of estimating traffic in his paper on 
direct assignment (4). Later he made a minor revision in his technique which elimi
nated certain bugs but did not greatly alter the estimates yielded (6). The revision did 
produce equations which differ from those in the original paper, and I have usect these 
revised equations for the traffic volumes: 

- 3 
Vi = - -~p_r_ z_1 _ _ _ (6) 

2 (r + z1) (r + z2) 

(7) 

V _ Z3 (r + z1) V 
3 - 2 (8) 

r Z1 

In these equations, V1 is the average daily volume on expressways, and V2 and V3 rep
resent the volumes on arterials and locals. The symbol r is the average trip length in 
miles. The other symbols should be familiar. Notice that the traffic volumes are de
pendent on the density of trip destinations, the average trip length, and the spacing of 
the street networks. 

Travel Cost 

The average travel cost per trip is the sum of the costs on each of the three street 
systems. It can be represented thus: 

(9) 
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P1 is the average distance traveled by a trip on the expressway system, and T1 is the 
travel cost per mile on expressways. Their product represents the average cost in
curred by a motorist on the expressway system. The second and third terms of the 
expression represent the same thing for arterial and local streets. It may be helpful 
to point out that 

Now, P1 can be readily calculated from V1, the relationship being 

p 1 = 2V1 
Z1P 

(10) 

(11) 

The vehicle-miles on expressways per square mile is the product of the average vol
ume (V 1) times the miles of expressways per square mile (2/ zi). Dividing this by the 
number of trip destinations per square mile (p) gives the average per trip. Similar 
equations hold for arterials and locals, namely: 

P2= 2V2 (12) 
Z2p 

p
3 

= 2V3 
Z3p 

(13) 

There remains the problem of determining the T's. In view of uncertainty about the 
relationship of operating and accident costs to average speed, it seemed wisest to as
sume that the sum of operating and accident costs per mile is constant. Let A repre
sent this constant. 

The only variable, then, is time cost. This increases as speed falls, which hap
pens as volume rises. Time cost is the product of the value of time and the amount of 
time. I assume the value of time is constant; let it be represented by B. 

Another convention is to break time into two parts: the amount of time required to 
travel at free speed (i.e., if there were no interference from other traffic) and the time 
delays resulting from congestion. If 81 is the free speed on expressways and D1 is the 
delay per mile on expressways, then the total travel cost per mile on expressways is 

T1 = A+ B ( ~
1 

+ oi) (14) 

and the travel cost per mile on arterials is 

T2 = A + B ( ~2 + D2) (15) 

This is as far as the abstract reasoning can be carried. In the illustration of the 
method that follows, I assume free speeds to be constant and formulate specific ex
pressions for the delays, based on empirical findings. Observe that free speeds are 
different on different street types, and by definition they are independent of traffic 
volumes. Delays should vary in response to the capacity of a street and to the volume 
it carries. As volume increases, delay rises very gradually at first, and then more 
and more sharply as capacity is approached and exceeded. Capacity is not taken as 
an absolute maximum, but rather a kind of standard or milepost which generally in
dicates the ability of a certain physical highway facility to pass vehicles. 

Local streets, T3, have been omitted from the discussion. As a rule, traffic vol
umes on local streets are so low that congestion rarely results. There would appear 
to be little reward from making a sophisticated analysis of T3, so it was assumed to 
be constant. 

Finding the Minimum Cost 

An equation was developed which represents the total transportation cost per trip 
in the hypothetical city. The equation is not recapped here because it is rather 
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cumbersome. When plotted against density, it yields a U-shaped curve. As density 
increases, the investment cost per trip declines, but the travel cost per trip rises. The 
problem is to find that density at which the curve has its minimum; this would be the 
optimal density. The problem is readily soluble by differential calculus. By holding 
all other factors constant and differentiating with respect to p, one can secure an equa
tion which locates the optimal value of p. Since p occurs at many places in the original 
equation, the work is rather involved, and I shall not bore the reader with the mathe
matics entailed. 

With this tool, it is possible to determine the optimal density for any given express
way spacing. However, this is not totally sufficient; the planner would naturally want 
to manipulate both density and expressway spacing and to find the best combination. 
Consequently, the two variables (density and expressway spacing) were optimized si
multaneously and the minimum cost per trip with respect to both was determined. This 
problem is also amenable to calculus by taking two partial derivatives, setting both 
equal to zero, and solving them simultaneously. The problem can be visualized in three 
dimensions, in which density and expressway spacing are the orthogonal horizontal a.'Ces 
and cost per trip is the vertical axis. The equation for total cost forms a surface shaped 
something like a pit, and by calculus one can locate the minimum point on that surface. 

A logical extension is to consider arterial spacing, and to optimize three variables 
simultaneously. However, each partial derivative added causes a considerable increase 
in the mathematical work required. While an analytical solution for the triple optimum 
may be possible, I have been content to approximate it by selecting several different 
values for arterial spacing, finding the double optimum for each, and comparing the re
sulting costs per trip. 

ILLUSTRATION OF THE METHOD 

It is difficult for the reader to grasp the technique fully without a concrete example 
utilizing numbers instead of symbols. It is also of interest to the investigator to ex
amine how the results react as various factors take different values. Consequently, an 
illustration using numbers and producing concrete results was developed. It would be 
ideal to utilize values and relationships taken from the real world, and in particular 
from the Tri-State region. However, Tri-State's data analysis had not reached the 
stage where such information was available, therefore, hypothetical values and rela
tionships were used. In some cases, these were based on data from CATS, and in 
some cases things were fabricated which seemed intuitively reasonable. Therefore, 
this must be regarded as purely an academic exercise, and the specific results should 
not be accepted at face value. However, in general the substitution of empirical find
ings for hypothetical data would only change the particular values of the results; the 
method itself would remain valid. 

Values Assumed 

In the example, assume that the average trip length (r) is 6 miles, a value deter
mined by CATS, which appears to be approximately the same in all major metropolitan 
areas. For simplicity, local spacing (za) is held constant at 1/10 mile. The particular 
value assumed for K is 3081. 6; this is based on a 10 percent interest rate, 25-year fa
cility life, and 339. 5 equivalent weekdays to a year. In accordance with custom, this 
analysis deals with trips for an average weekday. Since on the average, weekend and 
holiday traffic is less, the number of equivalent weekdays in a year comes out to less 
than 365. 

For expressway investment cost, an equation developed at CATS was used: 

C1 = 1, 120, 000 + 520 p (16) 

I assumed that arterial investment cost (C2) was $ 500, 000 per mile, and that local 
street investment cost (C3) was zero. This is to argue that since the function of local 
streets is to provide access to land, their cost might properly be assigned to land de
velopment rather than the transportation system. 



TABLE 1 

TOTAL COST PER TRIP IN CENTS 
(When Arterial Spacing = 0. 5 Miles) 

Expressway Spacing In Miles 
Densitya 

2 6 8 

5, 000 84. 31 74. 59 72.13 71. 25 
10,000 74. 22 66. 39 64. 65 64, 16 
15, 000 70. 92 63. 93 62. 66 62, 54 
20, 000 69. 38 63. 14 62. 51 62, 97 
25, 000 68. 62 63. 30 63. 61 64. 96 
30, 000 68. 33 64. 22 65. 89 68. 53 
35, 000 68. 37 65. 88 69. 41 73. 86 
40, 000 68. 70 68. 32 74. 32 81. 16 
45, 000 69. 32 71. 60 80. 76 90. 66 
50, 000 70, 22 75. 80 88. 89 102. 61 

0
1n vehicle trip destinations per square mi le, 

10 

70. 89 
64. 07 
62. 76 
63. 68 
66. 47 
71. 22 
78. 19 
87. 65 
99. 93 

115. 36 
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The sum of operating and accident costs 
(A) was 3. 5 cents per mile and the value of 
time (B), $1. 50 per hour. For Ts, which 
,was assumed to be constant, a value of 14 
cents per mile was selected. All these 
values were based on CATS findings. Free 
speed on expressways (S1) was assumed to 
be 50 miles per hour, and free speed on 
arterials (S2) 30 miles per hour. 

The investigation of Haikalis was con
sulted to secure expressions for delay, 
although all his equations were not adopted 
verbatim because of their complexity (2). 
Equations which approximated the cun~ s 
he presented were formulated. The fol
lowing equation was used for expressway 
delay per mile (in hours): 

D1 = 0. 001 + 0. 00122 R/ (17) 

in which R1 is the volume-to-capacity ratio on expressways. Capacity of expressways 
was assumed to be 127, 000 vehicles per day. 

The delay on arterial streets occurs principally at intersections with other arterial 
streets (which are normally signalized). Therefore, it is logical to determine the av
erage delay at an intersection and multiply it by the number of intersections per mile 
(which is the inverse of the spacing). The result of this was the following equation: 

02 = 0. 0032 + 0. 003 R/ (l8) 
Z2 

in which R2 is the volume-to-capacity ratio on arterials. The capacity was assumed to 
be 20,000. 

These are all the values needed to carry out the calculations and determine the opti
mum conditions. It may be of interest to show the resulting equation for the optimal 
density : 

978 . 282 (6 + z1) (6 + z2) g 
p = 

Zt 

2, 24 + Zt 
Z2 

2, 058 + Z1 z/ 
(19) 

This equation is very easy to use. Unfortunately, the companion equation for the opti
mal expressway spacing is not so simple. It is not amenable to a direct algebraic 
solution and must be solved by trial-and-e;rror or graphical means. 

Results 

Optimal combinations of density and 
expressway spacing for a number of dif
ferent arterial spacings were calculated. 
Before examining these optima, it will be 
instructive to see how cost per trip is 
affected by variations in density and ex
pressway spacing. Table 1 gives the sit
uation when arterial spacing is held con
stant at one-half mile. Reading down a 
column, one can locate the optimal den
sity for any given expressway spacing. 
Thus, for a spacing of 2 miles, it is 
30, 000. Reading across a row, one can 
locate the optimal spacing for any given 

TABLE 2 

INVESTMENT COST PER TRIP IN CENTS 
(When Arterial Spacing = 0. 5 Miles) 

Densitya 
Expressway Spacing In Miles 

•I 6 a 
5,000 37. 12 25, 05 21. 03 19. 02 

10, 000 27. 00 16. 74 13. 33 11. 62 
15, 000 23. 62 13. 98 10. 76 9.15 
20, 000 21. 94 12. 59 9. 48 7. 92 
25, 000 20. 92 11. 76 8. 71 7. 18 
30, 000 20. 25 11. 21 8. 19 6. 69 
35, 000 19. 77 10. 81 7. 83 6. 33 
40, 000 19. 41 10. 51 7. 55 6. 07 
45, 000 19. 12 10. 28 7. 34 5. 86 
50, 000 18. 90 10. 10 7. 17 5. 70 

0
1n vehicle trip destinations per square mi le, 

10 

17. 81 
10. 59 

8. 19 
6. 98 
6. 26 
5. 78 
5. 44 
5. 18 
4. 98 
4. 82 
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TABLE 3 

TRAVEL COST PER TRIP IN CENTS 
(When Arterial Spacing = 0. 5 Miles) 

Densitya 
Expressway Spacing In Miles 

2 6 8 

5,000 47. 19 49. 53 51. 10 52. 23 
10, 000 47. 22 49. 65 51. 32 52. 54 
15, 000 47. 29 49. 9 5 51. 90 53. 39 
20, 000 47. 45 50. 55 53. 04 55. 0 5 
25, 000 47. 70 51. 54 54. 91 57. 78 
30, 000 48. OB 53. 01 57. 69 61. 85 
35, 000 48. 60 55. 07 61. 59 67. 53 
40, 000 49 . 30 57. Bl 66. 77 75. 09 
45,000 50. 20 61. 32 73. 42 84. 79 
50, 000 51. 32 65. 70 Bl. 73 96. 92 

0
1n vehicle trip destinations per square mi le . 

10 

53. OB 
53. 48 
54. 57 
56. 70 
60. 21 
65. 44 
72. 75 
82. 47 
94. 95 

110. 54 

density. Thus, for a density of 2 5, 000, it 
is 4 miles. Scanning the entire table, the 
lowest value found is 62. 51 cents at aden
sity of 20, 000 and spacing of 6 miles. This 
is the optimum combination of density and 
expressway spacing. 1 Of course, this is 
a coarse-grained table; a more precise 
calculation of the optimum finds it to occur 
at p = 17, 440 and z1 = 6. 5 miles, with a 
cost per trip of 62. 37 cents. 

Tables 2 and 3, in the same format but 
showing investment cost and travel cost 
separately, should make it easier to un
derstand what is happening. The values in 
Table 1 are the sums of values in Tables 2 
and 3. Note that the last two tables do not 

have minima, except at extreme values of zero and infinity. It is only when the two are 
superimposed that a minimum occurs at some meaningful point. 

To compute all the values shown in these tables by hand would be quite laborious. 
Therefore, a FORTRAN program was written and the values were calculated by a 1401 
computer. Tables 1 through 3 are actually excerpts from much larger tables which 
the computer produced. 

It is possible to find the optimal combination of density and expressway spacing for 
any given arterial spacing by hand calculations in a reasonable length of time. This 
was done for a number of arterial spacings ranging from one-quarter mile to 2 miles. 
The results are shown in Table 4, with the cost per trip occurring at each optimum. 
The lowest cost per trip in this table is associated with arterial spacing of three
quarters of a mile, expressway spacing of 7. 7 miles, and density of 13,900. The triple 
optimum is apparently in this vicinity. 

This analytical method yields may interesting by-products. Various other param
eters of the hypothetical city are calculated along the way, or can easily be derived. 
Table 5 gives some of the more significant characteristics associated with the optimal 
solutions given in Table 4. The speeds are average speeds including the delays due to 
congestion. It is also possible to calculate the distribution of vehicle-miles among the 
three street networks, volumes for certain turning movements, the average time for 
a trip, a...."ld the portion of that time caused by congestion. 

ANALYSIS AND INTERPRETATION 

Some background information may help the reader to put the results of the illustra
tion in scale. The CATS surveys showed that, outside of the CBD, densities of vehicle 
trip destinations in the central city mostly fell between 15, 000 and 3 5, 000. In the 
close-in suburbs, densities of 10, 000 to 20, 000 were typical, while figures from 5, 000 
to 10, 000 were common in suburban communities further out. An exclusively residen
tial area with one-acre lots would probably have a density between 1, 500 and 3, 000. 

The optimal spacing work at CATS resulted in recommended expressway spacings of 
3 miles in Chicago and 6 miles in the suburbs. Arterial spacing of one-half mile al
ready prevailed in Chicago and 1-mile spacing was recommended for the suburbs. 

Inspection of Table 1 shows that the minimum cost is only slightly below many neigh
boring values (the differences would certainly be within the margin of error due to the 
grossness of estimated inputs). Thus, there is a rather large "region of indifference" 
embracing widely varying conditions. Costs below 70 cents are obtained for conditions 
ranging from p = 45, 000 and z1 = 2 to p = 10, 000 and z1 = 10. This type of result is 

1For densities of 5,000 and 10,000, the values shown in the table do not turn up. Extension of the cal
culations indicates that for 5,000 the minimum cost is 70.69 cents at a spacing of 15 miles. For 10,000 
the minimum turns out to occur at the 10-mi le spacing. 



common in optimization problems, and 
the curves have a U shape rather than a 
V shape. I feel that this is an advantage 
rathe r than a disadvantage. It provides 
considerable leeway within which other 
factors (perhaps social, political and aes
thetic) may be allowed to influence any 
concrete decision. What the optimization 
study really shows are what extremes 
to avoid, because when you go beyond 
the region of indifference, costs do rise 
steeply. 

Table 4 indicates that there is also a 
considerable region of indifference with 
regard to arterial spacing. Quite dif-
ferent combinations of arterial and ex-

Arterial 
Spacing 
(miles) 

o. 25 
o. 50 
0. 75 
I. 00 
I. 25 
I. 50 
I. 7 5 
2. 00 

TABLE 4 

OPTIMAL SOLUTIONS FOR 
VARIOUS ARTERIAL SPACINGS 

Optimal 
Densitya 

24, 470 
17, 440 
13,900 
11, 560 
9,980 
8,770 
7,820 
7, 080 

Optimal 
Expressway 

Spac ing 
(miles) 

4. 5 
6. 5 
7. 7 
8. 8 
9 . 8 

11. 0 
12. 4 
13. 9 

0
1n vehicle trip des tinat ions per square mile. 

29 

Cost per 
Trip 

(cents) 

66. 42 
62. 37 
61. 70 
61. 85 
62. 29 
62. 82 
63. 39 
63. 96 

pressway spacing and density produce very similar. costs per trip. Again, this gives 
the planner considerable leeway for choice. It is important that he select a good com
bination of density and spacing, but there are many combinations of approximately equal 
merit (from the standpoint of transportation cost). 

Looking at Table 5, the ref1.de r may wonder why arterial speed goes up at the same 
time as arterial volume. The reason is that arterial spacing is also increasing at the 
same time, so that while there are more vehicles on the highway, there are fewer stops 
for intersections. 

One of the important findings of this exercise is that an optimum does exist, where 
cost is minimized, at conditions which are meaningful and reasonable. An optimiza
tion study must remain suspect until it is shown that it produces results which bear 
some relation to the real world. The reason why this optimum exists is because there 
are several opposing forces at work with certain trade-offs among them. It may be 
helpful to recapitulate how these forces operate. 

As the density of trip ends increases: (a) investment cost is distributed over more 
trips, so the cost per trip declines ; (b) there is no effect on the distribution of traffic 
among the three street systems (this is totally dependent on spacing); and (c) the av
erage volumes on the streets rise, causing more delay, and so the time cost rises. 

As the expressway spacing increases (becomes wider): (a) expressway investment 
cost goes down; (b) some traffic is shifted from expressways to arterials, which have 
a lower free speed, so time cost rises; (c) the average expressway volume rises , 
causing greater delay and increasing time cost further ; and (d) the average arterial 
volume also rises, again causing greater delay and still further increasing time cost. 

As the arterial spacing increases: (a) arterial investment cost goes down; (b) some 
traffic is shifted from expressways and arterials to local streets, with a consequent 
increase in time cost; (c) the average expressway volume declines, which raises av
erage expressway speed and lowers time cost; (ct) the average arterial volume increases, 
causing an increase in time cost; and (e) the frequency of delay points on arterials drops, 
which lowers time cost. 

TABLE 5 

SOME CHARACTERISTICS OF OPTIMAL SOLUTIONS 
(As Given in Table 4) 

Arterial Expressway Arterial Local 
Expressway Arterial 

Spacing Volumea Volumea Volumea Speed Speed 
(miles) (mph) (mph) 

o. 25 181, 200 7, 550 294 40. 7 21. 4 
o. 50 150,690 12, 560 403 43. 5 24. 3 
0. 75 124,970 15, 620 463 45. 1 25. 3 
I. 00 106, 100 17, 680 496 46. 1 25. 9 
I. 25 92, 210 19, 210 51 6 46. 6 26. 3 
I. 50 81, 680 20, 420 526 46. 9 26. 6 
I. 75 73, 400 21, 410 529 47. 1 26. 8 
2. 00 66, 760 22, 250 53 1 47. 2 27. 0 

0
1n vehic les per 24 hours, 
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IMPROVEMENTS AND EXTENSIONS 

While the limitations of the various assumptions on the applicability of the results 
were realized from the start, a number of additional weaknesses came to light as the 
exercise proceeded and the sample calculations were made. 

In some cases, volumes and travel costs reached unrealistically high figures. Some
times arterial speed exceeded expressway speed and local speed exceeded arterial 
speed. These difficulties showed up only under rather extreme conditions, and never 
in the vicinity of the optima. It appears that they always led to an underestimate of 
cost, and never an overestimate. It would be desirable to have some kind of capacity 
restraint feature in the traffic estimation procedure. As traffic on one street type ex
ceeds capacity, there should be a way of redistributing some of it to the other street 
types which still have spare capacity. The local street system almost always has spare 
capacity. 

I had some concern over the correct nature of the relationship between expressway 
investment cost and density. I assumed that the cost rises slower than density, causing 
a lower cost per trip as density increases. This is certainly true at low densities, but 
at high densities near the city center, it may well be that cost increases faster than 
density. A curvilinear equation depicting such a relationship could be formulated. It 
would produce a minimum in each column of Table 2. Undoubtedly, an overall mini
mum of total transportation cost would still exist. 

Because of the planning context of the study, there is some question as to what den
sity should be included in the equation for expressway investment cost. This cost is 
probably influenced more by existing density than by ultimate density. Yet it is ulti
mate density that is considered in this exercise. 

In general, the utility of a theoretical solution is inversely proportional to the num
ber and importance of assumptions it is necessary to make. A natural course for im
proving the method, therefore, is to attempt to remove some of the assumptions and 
to deal with a more realistic case. Obviously, it would be desirable to be able to han
dle a real city in which density does vary, highway networks are not regular, and there 
is no artificial distinction among street types. These improvements have apparently 
been accomplished by Schneider for the problem of estimating traffic (7). As yet this 
new methodology has not been applied to optimization problems, but it -may be suitable. 

One of the questionable assumptions is that of a constant average trip length. Den
sity may have some effect on average trip length, but the precise nature of the relation
ship remains mysterious. Another candidate for elimination is the assumption that free 
speeds are constant. It seems reasonable to argue that free speeds vary as a function 
of the density of trip ends. The higher the density of surrounding development, the 
lower posted speed limits are likely to be. For arterials, higher densities are apt to 
mean more side frictions from driveways, parking, and pedestrians. For that matter, 
probably capacities should also be varied as a function of density. Capacity and free 
speed are both really aspects of the same thing: the ability of a highway to pass traffic. 

A major extension of this study would be to consider the transit mode. This would 
require breaking some new ground in optimization of transit systems, which have not 
received as much attention as highway systems. Perhaps the first cut would be to con
sider an alternative hypothetical universe in which transit is the only mode. Later the 
two worlds could be merged, requiring some treatment of model split-a subject which 
has generated heat but little light. 

For the land-use planner, it would be interesting to go to some measure of density 
which is more familiar to him, such as population, employment, or floor area. This 
brings in the whole problem of trip generation, which as yet is only dimly understood. 
Certainly this transition is necessary at some point. 

There is the matter of non-transportation costs, which would be important to any 
comprehensive evaluation of land-use costs. This will be a tough nut to crack, and 
perhaps it will never be possible to make more than a partial accounting of these costs. 

A final point to consider is whether minimization of costs is the proper criterion for 
selection of the best plan. Is there some way to measure benefits and compare them to 
costs? Is there some alternative to this approach? It is obvious from the behavior of 
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people, at least in our affluent society, that they do not necessarily attempt to minimize 
costs any more than they attempt to minimize travel. 

CONCLUSIONS 

The emphasis in early transportation studies was on finding the optimal transporta
tion network for an assumed land-use pattern. Now the goal at Tri-State and many 
other studies is to find the optimal combination of land-use pattern and transportation 
system. Both land-use and transportation facilities are considered to be planning vari
ables which are subject to control. It is necessary for the planner to get some idea of 
the interaction of these two realms-not just to see what happens when one is held con
stant and the other changes, but to see what happens when both change simultaneously. 
This study has attempted to establish a beachhead on this uncharted and perhaps un
friendly continent. A land-use variable (density) and transportation variables (highway 
spacing) are considered to be joint determinants of an optimal solution. The method 
provides a bridge between land-use planning and transportation planning and indicates 
the kind of theoretical analysis by which it may be possible to narrow in on the best 
land-use and transportation plan. 
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