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Foreword 
The papers in this RECORD are concerned with analyses for determination of 
stresses and displacements in systems representative of engineering struc
tures. Three of the papers present the results of solutions for stresses 
and displacements in multi-layer elastic systems using numerical techniques 
to solve the classical equations of theory of elasticity. The other two papers 
illustrate the applicability of a direct numerical procedure, the method of 
finite elements, to the solution of stresses and displacements. 

Charyulu and Sheeler present the results of solutions for a series of four
layer elastic systems subjected to a parabolic distribution of pressure on a 
circular loaded area for particular values of material properties for each 
of the fom• layers. In addition, as distinct from previous solutions to the 
problem, some slip at the layer interfaces is considered. Computed results 
illustrate that interfacial shear strength, particularly the strength of the 
first interface, has an influence on the resultant vertical stresses, with 
higher stresses resulting in the second layer (base course) for the condi
tion of some slip as compared to the "no-slip" (Burmister) solution. 

Peutz, Jones, and van Kempen discuss a computer program for estimating 
stresses and displacements at any point in a multi-layer elastic system. The 
program is very versatile in that one or several surface loads can be used 
and principal stresses and strains, together with their directions, can be 
ascertained. 

On the basis of the substantial amount of data presented at the Second 
International Conference on the Structural Design of Asphalt Pavements held 
at the University of Michigan in August 1967 indicating that pavement re
sponse under moving wheel loads can be predicted, at least to an engineering 
approximation, using layered elastic theory, these papers should prove of 
value to engineers concerned with asphalt pavement design. 

Ueshitaand Meyerhoff present the results of solutions for stress distribu
tion in an elastic layer resting on a rigid base for rectangular and circular 
loaded areas subjected to a uniform pressure. In addition, results of solu
tions for a circular uniformly loaded area are presented for the case of an 
elastic layer resting on another elastic layer of higher stiffness. These 
solutions may be of assistance in evaluating stress distributions in soil
rock systems and, thus, would appear useful to foundation engineers in esti
mating settlements for structures. 

In the second general area, tbatof nwnerical techniques, Westmann pro
vides a discussion of the applicability of the finite element method to solving 
engineering problems and illustrates one form of this method for solvingtwo
dimensional problems with linear material properties. 

The paper by Duncan, Monismith and Wilson illustrates the applicability 
of the finite element procedure to examining the response of a pavement 
structure (layered system) to a uniform circular load applied at the sur
face. An app1·oximate method is utilized to consider in the analysis the 
nonlinear response of granular materials and fine-grained soils to loading. 

Because of the potential usefulness of the finite element method in ana
lyzing the response of engineering structures to load, both of these papers 
would appear to be of interest to soil engineers and pavement designers. 

-Carl L. Monismith 
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Surface Displacement of an Elastic Layer 
Under Uniformly Distributed Loads 
K. UESHITA, Nagoya University, Japan, and 
G. G. MEYERHOF, Nova Scotia Technical College, Canada 

The surface displacement of an elastic layer on a rigid 
base (a soil-rock system) under uniformly loaded areas 
of various shapes is evaluated, and the displacement of 
a two-layer elastic system, where the upper layer is 
more compressible than the lower, under a uniformly 
loaded circular area is computed according to a rigorous 
solution of the theory of elasticity. 

•THE stresses and displacements of a semi-infinite uniform elastic layer under a 
surface load was solved by Boussinesq (1). A solution for an elastic layer resting on 
a rigid base was initiated by Filon (2) . Solutions for this system in several different 
cases were published by Melan (3), Marguerre ( 4), Biot (5), Pickett (6) and others 
during the thirty years after Filon's work. All Of these works concerned the stresses 
on the base of this system. 

On the other hand, Steinbrenner (7) introduced an approximate equation of the sur
face displacement under a rectangular loaded area of an elastic layer on a rigid base. 
His equation has been widely used to estimate the elastic displacement of a soil-rock 
system, because not enough was known about rigorous solutions of the surface dis
placement of this system . 

One of the most important works in this field was that by Burmister (8). He eval
uated stresses at several depths in an elastic layer and also surface cITsplacement 
assuming Poisson's ratios of 0. 2 and 0. 4. Recently, Mandel (9), Egorov (10) and 
Sovinc (11) contributed in some evaluations connected with displacement of this 
system. -

However, not enough solutions of surface displacements of this system are available 
to determine the accuracy of Steinbrenner's equation. Thus, the present authors eval
uated the surface displacement of the system under uniformly loaded areas of various 
shapes according to a rigorous solution of the theory of elasticity. Also, they com
puted the surface displacement of a two-layer elastic system, where the upper layer 
is more compressible than the lower, under a uniformly loaded circular area, and 
they compared this solution with the previous case. 

SURFACE DISPLACEMENT OF AN ELASTIC LAYER ON A RIGID BASE 

Evaluated Items for an Elastic Layer on a Rigid Base 

In general, the vertical surface displacement of an elastic layer on a rigid base, w, 
in expressed as follows: 

w 
p 
EB I 
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(1) 
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where 
p uniformly distributed pressure on loaded area, 
B width of loaded area, 
E modulus of elasticity of upper layer, and 
I surface displacement influence value which is a function of Poisson's ratio 

of the upper layer, ratio of thickness T of upper layer to width of loaded 
area, shape of loaded area, and condition at the interface. 

The displacement influence values, I, approach limit values at thickness T = OJ as 
follows: 

For the center of a loaded circular area: 

(2) 

where 

Ico = 
Wco = 

a = 

Wco/i a 
the displacement at the center of the loaded circular area, and 
radius of the loaded circular area. 

For the corner of a loaded rectangular area: 

Ire (3) 

where 

Ire WrcA B, 
wrc the displacement at the corner of the loaded rectangular area, 

B width of the loaded rectangular area, 
>.. L/B, and 
L length of the loaded rectangular area. 

Uniformly Loaded Circular Area 

The displacement influence value, Ic0 , for the center of a uniformly loaded circular 
area was computed in the cases of an adhesive interface and a smooth interface be
tween the elastic layer and the rigid base with the same procedure as explained in 
another paper by the present authors (12). This influence value may be expressed as 
follows : -

Ico Wco/i a = f(lia, µ, assumption at interface) 

where 

(4) 

~w., u p 
p~\\ko=-yaloo 
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I 

Figure l. Displacement of an elastic layer under a uniformly 
loaded circular area: (a) elastic layer on a rigid base; (b) 
elastic layer on a stiffer layer. 

Wco 

a 

the displacement at 
the center of the 
loaded circular area 
(Fig. 1), 
the radius of tQ.e 
loaded circular 
area, and 
T/ a = the thickness 
factor for the loaded 
circular area. 

Other symbols are as explained 
before. 

Figure 2 shows the relations 
between the displacement in
fluence value and the thickness 
factor forµ= 0, 0.1, 0. 2, O. 3, 
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Figure 2. Relation between displacement influence value, lco' and thickness factor, Ba' at the center 
of a loaded circular area on an elastic layer on a rigid base. 

0. 4, and 0. 5. These curves approach the values of Boussinesq case, i.e., Ico 
2(1-µ2

), as the thickness factor becomes higher. 

Uniformly Loaded Strip Area 

The displacement influence value, 180, for the center of a uniformly loaded strip 
area, defined below for this case, was computed with the LGP-30 electronic computer 
according to the theory of elasticity in the cases of an adhesive interface and a smooth 
interface. 

lso f(ob, µ, assumption at interface) 

E. µ 
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jWoo 
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Figure 3. Displacement of an elastic layer on a rigid base under a uniformly loaded strip a rea: (a) dis
placement at the center; (b) displacement at the corner. 
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Figure 4. Relation between displacement influence value, lsc' and thickness factor, oB' for th e corner 
of a loaded strip area on an e las tic layer on a rigid base. 

where 

Wso the displacement at the center of the loaded strip area (Fig. 3a) , and 
ob T/b = the thickness factor for the center of the loaded strip area. 

From these computed results, the displacement influence value, Isc, for the corner 
of a uniformly loaded strip area was derived based on the principle of superposition. 

f(oB, µ., assumption at interface) (6) 

where 

Wsc the displacement at the corner of the loaded strip area (Fig. 3b), and 
OB T/ B = the thickness factor. 

The computed results for lsc are shown in Figure 4, which shows that Poisson's 
ratio and the condition of interface have remarkable effect on the displacement influence 

value around µ. = 0. 5, but small effect on the value 
around µ. = 0. 

1 
__J 

Wrc l -
E ' JJ 

T 

Figure 5. Displacement of an elastic 
layer on o rigid base under a uni
formly loaded rectangular area. 

Uniformly Loaded Rectangular Area 

The displacement influence value, Ire• for the 
corner of a uniformly loaded rectangular area was 
evaluated graphically based on the results for the 
center of a uniformly loaded circular area. 

where 

Wrc 

A. 
L 

f(oB, A., µ., 
assumption at interface) (7) 

the displacement at the corner of the 
loaded rectangular area (Fig. 5), 
L/ B = the length factor, and 
the length of the loaded rectangular area. 

The results in the cases of µ. = 0. 5 and µ. = 0 are 
computed. Figures 6 through 11 for µ. = 0. 5, 0. 4, 
0. 3, 0. 2, 0.1, and 0 were based on Burmister's 



Figure 6. Re lotion between displace
ment influence value, Ire' and thick
ness factor, li9, for the corner of a 
loaded rectangular area on an elastic 
layer on a rigid base (µ = 0.5, ad
hesive interface). 

Figure 7. Relation between dis
placement influence va.lue, lrct and 
thickness factor, 58, for the corner 
of a loaded rectangular area on on 
elastic layer on a rigid base (µ, = 
0.4, adhesive interface). 
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Figure 9. Relation between 
displacement influence val
ue, lrci and thickness factor, 
!SB, for the corner of a loaded 
rectangular area on an elastic 
layer on a rigid base (µ, = 0.2, 
adhesive interface). 

Figure 10. Relation between 
displacement influence val
ue, Ire' and thickness factor, 
118, for the corner of a loaded 
rectangular area on an elastic 
layer on a rigid base (u 0. l, 
adhesive interface). 

Figure 11. Relation between 
displacement inflvence val
ue, 1rc1 and thickness factor, 
cSB' for the corner of a loaded 
rectangular area on an elastic 
layeron a rigid base (µ = 0, 
adhesive interface). 
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Figure 12 . Relation between displacement influence value, Ire' and thickness factor, 08, for the corner 
of a loaded rectangular area on an elastic layer on a rigid base, according to the rigorous solution of 
elasticity, Steinbrenner's approximation and a modified approximation (:X = 5, adhesive interface). 

computation (8), authors' computation and a graphical interpolation. Based on the 
principle of superposition the displacement influence values, Iro for the center and 
Ire for the middle of edge of a loaded rectangular area can readily be determined. 

Steinbrenner (7) proposed an approximate equation to estimate the displacement in
fluence value, Ir~ for the corner of a loaded rectangular area of an elastic layer on 
a rigid base as follows: 

Ire (1-µ2) Il + (l-µ-2µ 2
) la (8) 

where 
(1 +..J~)v >-

2 (, +V >' • i:)v 1 • •B] [A log, 
+ e/ 

Il 
1 B 

= + loge ,Y iT 
A (1 + ..J A 

2 
+ OB + 1) A. + Xz + 6J3 + 1 

1:i 
OB tan-1 A. = 27T" 6B ..J A.

2 
+ 6B + 1 

This approximation is fairly good for µ = 0. 5 but a little smaller for other Poisson's 
ratios (Fig. 12 shows the case of A. = 5, for example). To estimate more accurately 
the rigorous values with the Steinbrenner approximation the equivalent thickness fac
tor 0B' instead of oB may be used. 

(9) 

Where n = equivalent coefficient = 1. 2 for µ = 0 to 0. 4. These approximations are 
also shown in Figure 7. 

SURFACE DISPLACEMENT OF AN ELASTIC LAYER ON A STIFFER LAYER 

Although the displacement influence value was defined and used for an elastic layer 
on a rigid base, the displacement factor, F, is customarily expressed for a two-layer 
elastic system by 

(10) 

(11) 
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where 

Fco 

Fee 

E.i 
/J;.a 

= 

= 

the displacement factor for the center of a uniformly loaded circular area 
on a two-layer elastic system, 
the displacement factor for the edge of a uniformly loaded circular area 
on a two-layer elastic system, 
the modulus of elasticity of the lower layer of the system, and 
Poisson's r atio of the lower l ayer of the system . 

Other symbols are as explained before. 
Concerning a two-layer elastic system, Burmister (13) computed the displacement 

factor of the system where the upper layer is stiffer than the lower layer, and the dis
placement coefficient of an elastic layer resting on a rigid base was evaluated exten
sively by both Burmister (8) and the present authors. But, there are no theoretical 
data for the displacement factor of an elastic layer on a stiffer elastic layer , except 
Kirk's computation (14) of the factor for the center of a loaded circular area in the 
special case of E/E.i-= 0. 2. Therefore, the displacement factor, F co and F ce • for 
the center and the edge of a loaded circular area on a two-layer system were computed 
for the cases where E/E2 = 0. 01, 0.1, 0. 2, and 0. 5, assumingµ 1 = ~ = 0. 5. 

To compare these results with the case of an elastic layer on a rigid base, it is con
venient to use a modified displacement factor defined as follows: 

I /[ 2(1-µ~) J E (1-µ2
) 

(12) Fco wco E1 pa 
1 2 F 

E (l- 2) co 
2 µ1 

Fee I :: /[ 2 (1-µ~) J E
1 
(1 -~) 

(13) wee ~ pa = F E (l - 2 ) ce 
2 µ. l 

The modified displacement factors, F co' and F ce~ for these cases are shown in 
Figures 13 and 14, compared with the Boussinesq case and the rigid base case. 

Approximate equations of the modified displacement factors, Fco' and Fee', were 
found based ,on the factors of the rigid base case. 

Fco
1 

= Fcor' + 

MODULAR RATIO 

Ei 
-E (1 - Fcor') 

2 

• I ( BOUSS<NESO CASE I 
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Figure 13. Relation between modified displacement factor,Fc
0
', and thickness factor, lia, for the cen

ter of a loaded circular area on an elastic layer on a stiffer layer (u1 = L':z = 0.5, adhesive interface ). 
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figure 14. Re lat ion between modified displacement factor, F ce' , and thickness factor, 1)
0

, for the edge 
of a loaded circular area on an elastic layer on a stiffer layer (µ

1 
= iJ-i = 0.5, adhesive interface). 

where 
I 

Fcor 

I 

Fcer 

= 

1 
--- Ico 
2(1-µ~) 

' E1 
Fcer + E (0. 637-Fcer') 

2 

(15) 

the modified displacement factor for the center of a uniformly loaded 
circular area on an elastic layer on a rigid base, and 

1 I 
2(1-µ~) ce 
the modified displacement factor for the edge of a uniformly loaded cir
cular area on an elastic layer on a rigid base. 

The factors calculated with Eqs. 14 and 15 are shown to compare with rigorous solu
tions in Figures 13 and 14. 

CONCLUSIONS 

1. The displacement of an elastic layer on a rigid base under a loaded circular 
area, under a loaded strip area or under a loaded rectangular area for any Poisson's 
ratio of the layer was evaluated in the form of the displacement influence value, based 
on the theory of elasticity. 

2. Comparing Steinbrenner's approximation with these rigorous solutions, it was 
shown that Steinbrenner's method gives smaller displacements than the rigorous solu
tions, except for the case of a thin upper layer of µ ~ 0. 5. Although this approxima
tion gives good estimation for the cas e ofµ· .,,. 0. 5, for the case of µ = 0 to 0. 4 more 
reasonable approxim ations can be made by the us e of ·an equivalent thicknes s fac tor, 
oB' =- 1. 2 6B, in Steinbr en ner 1s approximation. 

3. Pois son's r atio and the condition of the interface have a remarkable effect on 
the displacement of an elastic layer on a rigid base when Poisson's ratio of the elas
tic layer approaches 0. 5, but they have only a small effect on the displacement when 
Poisson's ratio tends to zero. 

4. The displacement of an elastic layer on a stiffer layer under a loaded circular 
area was computed in the form of the displacement factor or the modified displacement 
factor , based on the theory of elasticity assuming Poisson's ratio of 0. 5 for each layer. 
Approximate equations were proposed for the modified displacement factors of this 
kind of two-layer system from the displacement influence values of an elastic layer on 
a rigid base. 
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Theoretical Stress Distribution 
Elastic Multi-Layered System 
M. K. CHARYULU, University of Tulsa, and 
J. B. SHEELER, Iowa State University 

. in an 

A theoretical mathematical model of stress distribution in a 
multi-layered system under loads of axial symmetry is pre
sented. The model is generalized for any arbitrary number of 
horizontal layers and each layer is assumed to be linearly 
elastic, homogeneous, isotropic and of infinite extent in the 
horizontal plane, the last layer being semi-infinite. Vertical 
stress, vertical displacement and shear stress are considered 
to be continuous across any interface. In addition, the shear 
stress at an interface is assumed to be proportional to the rel
ative displacement. Five sets of curves, obtained by an IBM 
7074 computer, of vertical stress and displacement as a func
tion of relative depth under parabolic loads are presented. A 
comparison of vertical stresses is made to those calculated 
by the theories of Burmister and Boussinesq. 

•MATHEMATICAL models of vertical stress distribution for multi-layered systems 
have been presented by a number of authors. These models have assumed either that 
friction does not exist between the layers or that perfect adhesion exists between layers. 
This paper presents a model designed to represent a roadbed in which friction and rela
tive displacement between layers are considered. 

NOMENCLATURE 
a = radius of tire imprint; 
E = modulus of elasticity; 
H = distance from the upper surface of the system to an interface divided by a; 
j = subscript referring to the j th layer; 

P = tire pressure; 
r, e, z = cylindrical coordinates; 

u, o, w = displacements of a point in the r, e, directions; 
f3 = proportionality constant between shear stress and relative displacement 

at an interface; 
E = strain component; 

>.., µ = Lame's constants; 
er = normal stresses; 
T = shear stresses; 

X = stress functions; and 

V 2 
= Laplace operator ( ~ + ~ + £ ) 

0x2 0y2 0z 2 

THE MODEL 
The model is generalized for any arbitrary number of horizontal layers and each 

layer is assumed to be homogeneous, isotropic, linearly elastic, and of infinite ex
tent in the horizontal plane. The geometry and the physical properties may vary from 
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layer to layer and the underlying layer is considered 
to be vertically semi-infinite. Interfacial conditions 
considered are continuity of vertical stress, verti
cal displacement and shear stress across the in
terface. The shear stress is assumed to be pro
portional to the relative displacement at the in
terface as has been experimentally verified for 
silty and sandy soils by Terzaghi and Peck (5 ). The 
unit weight of the material is assumed to be zero, 
consequently only stresses due to surface loads are 
found. Total stresses may be obtained by addingthe 
stresses due to the column of material above the 
point in question. 

The system is assumed to be subjected to a 
parabolically distributed vertical load in simulation 
of the contact pressure of truck tires. Lawton's re
search (3) has indicated that such a pressure dis
tribution-results from truck tires. Overloads tend 
to produce a pattern approaching uniform distribution. 

The system is shown in Figure 1, and cylindrical 
coor dinates a re used to facilitate the solution of the 
t)roblem since axial symmetry exis ts . 

The general method of analysis involves the de
termination of a stress function for each layer. The 
stresses and displacements for the various layers 

are expressed in terms of the stress function which satisfied the boundary conditions 
of the layer in question. The problem is ultimately resolved (2) in a solution of the 
biharmonic equation: -

V 4 x = o (1) 

The following equations express the stresses and displacements in terms of the 
function X : 

cr = - >.. V X - - (>,, + µ) -a [ 2 2 o
2X] 

e ar r or2 

a [ a 2x] cr = - (3 :>.. + 4 µ) 2 X - 2 (A. + µ) --z a r 2 az 

= -2._ 
T rz a r 

u = -~ o2X 
µ a r a z 

(2) 

(3) 

(4) 

(5) 

(6) 
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W=(A.+2µ)V2X-~ o2X (7) 
µ µ. a r a z2 

The boundary conditions based on the aforementioned assumptions are as follows: 

At z = 0 

At z = 0 

At any interface 

At any interface 

At any interface 

At any interface 

As 

T = 0 rz 

crz=p [1-(r/ a)2 J foro < r < a 

O' = 0 z 
for a< r < co 

O' • = O' z (j + 1) 
ZJ 

wj = w j + 1 

r r rz (j + 1) 
rzj 

T = (3 ( U . - u
3
. + l) 

rzj J 

z -co x-o 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

The determination of stresses and displacements lies in a solution (of Eq. 1) that 
satisfied the boundary conditions described by Eqs. 8 through 14. This was accomplished 
through Henkel transforms. The transformed boundary conditions produce sufficient 
equations to solve for the (4n - 2) constants resulting from the solution to a system of 
n layers. The (4n - 2) equations were written in matrix notation and numericalevalua
tion was accomplished by an IBM 7074 computer. 

The program was developed for a parabolic distribution of load over a circular area 
and a four-layer system was used. Poisson's ratio was assumed to be 1/ 3 since an 
investigation by Peattie ( 4) found the probable value of Poisson's ratio to lie between 
o. 3 and o. 4 for granular road materials and bituminous materials. 

Vertical stresses, a z, and vertical displacements, w, were evaluated at the points 
of symmetry since maximum values exist on this line. The shear stress and the radial 
displacement on the line of symmetry are zero. The nondimensional parameters that 
were specified in the program are the thickness ratios and the elastic moduli ratios of 
all layers to the elastic modulus of the first layer. 

TABLE 1 

THICKNESS OF COMPONENTS OF 
PAVEMENT STRUCTURE 

Tire imprint radius, In. 9 9 

Surface course, in. 3 

Base course, in. 9 

Subbaee, In. 12 18 12 

12 12 

4 

8 12 

16 18 

Layer 

Surface course 

Base course 

Subbase 

Subgrade 

TABLE 2 

ASSUMED ELASTIC MODULI 

Silt Su bgTade 
(psi) 

5,000,000 

1,000,000 

100,000 

10,000 

Gravel Subgrade 
(psi) 

5,000,000 

500,000 

100,000 

500,000 
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Vertical stresses and displace
ments were evaluated for the thick
nesses of pavement structural com
ponents over a silt subgrade and 
over a gravel subgrade (Tables 1 
and 2). 

The values of f3, the propor
tionality constants between shear 
and displacement, were assumed 
to be tan 75 ° for the first inter
face and tan 85 ° for the second 
and third interfaces. The lower 
value was used for the first inter-

Figure 10. face since it is generally believed 
that less binding exists at this in
terface than at deeper interfaces. 

The results are plotted in Figures 2 through 11. Stresses at depth z are found by 
entering the graph at z/a (where a is the tire imprint radius) and determining the cor
responding stress influence coefficient; the coefficient is then multiplied by P. De
flections are found in a similar manner from the deflection charts. 

Details of the derivation of equations, Henkel transformation and matrix solution of 
this problem may be found elsewhere (2). 

A comparison of stresses as found by the theories of Boussinesq and Burmister (1) 
with those resulting from this study is shown in Figure 10. The values at similar -
depths determined by this study and those of Burmister agree quite well, whereas those 
found by the Boussinesq theory ai:e much higher. 

Flexible pavements are generally constructed so that successively deeper layers 
have smaller moduli of elasticity. This type of construction causes the stresses and 
deflection at any depth to be reduced from those obtained in an ideal homogeneous bed. 
The results of this study indicate that higher stresses are produced in the base course 
than would be predicted by the Burmister theory. These findings tend to strengthen the 
concept that the base course is the main structural member of the pavement. There is 
also a suggestion that the interfacial shear strength has some bearing on the resultant 
vertical stresses, particularly at the first interface. 

Much further study is needed, especially a comparison of actual stresses and de
flections with those predicted by theory. Values of shear constants at the interfaces 
are guesswork at best, the assumed moduli of elasticity should be known with more 
accuracy and Poisson's ratio for soil materials should be more clearly understood 
before theoretical predictions can be made with much confidence. Further clarifica
tion of these factors and further study of the effect that the variables have on stresses 
and deflections should lead to more efficient and economic design criteria for flexible 
pavements. 
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Finite Element Analyses of Pavements 
J. M. DUNCAN, C. L. MONISMITH, and E. L. WILSON, 

University of California, Berkeley 

This paper describes an application of the finite element technique to the 
analysis of systems r_epresentative of pavement structures. Use is made 
of a digital computer program which generates suitable finite element con
figurations for axisymmetric structures and accommodates approximations 
of nonlinearity which appear appropriate to represent the behavior of gran
ular base and cohesive subgrade materials under conditions corresponding 
to moving traffic. 

Examples are presented for systems with linear material properties 
showing comparisons between displacements and stresses computed using 
the finite element technique and those computed using elastic half-space 
and layered system analyses to establish criteria for boundary conditions 
in the finite element procedure. 

For the elastic half-space subjected to a uniform circular load, dis
placements and stresses computed by the finite element technique compare 
favorably with those determined from the Boussinesq solution where the 
nodal points in the finite element procedure are fixed at a depth of 18 radii 
for the bottom boundary and constrained from moving radially on the ver
tical boundary at a distance of about 12 radii from the center. 

To obtain a reasonable comparison between the two procedures for a 
three-layered system however, it was necessary to move the fixed bound
ary in the finite element procedure to a depth of about 50 radii while main
taining the same radial constraints as for the half-space analysis. 

Two analyses are presented for deflection determinat ions for a.11 in
service pavement near Gonzales, Calif., one for a condition where the as
phalt concrete was at a comparatively high temperature (stiffness modulus 
in the range 120, 000 to 280, 000 psi), and the other with the material at a 
low temperature (stiffness modulus approximately 1, 500, 000 psi). Non
linear material properties, determined from the result of repeated load 
triaxial compression tests, were used to represent the behavior of the un
treated granular base and subbase and the fine-grained subgrade soil. 

Deflections predicted by the finite element procedure are in the same 
range as those measured with the California traveling deflectometer in
dicating that the method has potential to simulate actual pavement behavior 
to a reasonable degree. 

The analysis also indicates that when the extensional strains in the as
phalt concrete are large for this pavement (i. e., where the stiffness of the 
asphalt bound material is low), the granular material exhibits a very low 
modulus under the loaded area and a large proportion of the surface de
flection can be attributed to deformations within this material. On the 
other hand, when the asphalt layer is stiff, the majority of the surface de
flection is conll'ibuted by the subgrade. 

An analysis is also presented for the results of plate load tests on a 
two-layer prototype pavement consisting of granular base and a cohesive 
subgrade soil using the same nonlinear characterization for material prop
erties as for the in-service pavement. The computed deflections were 
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found to converge much more slowly than those for the Gonzales Bypass 
pavement, apparently because of the dominant role in the behavior of the 
system which is played by the granular material, and the fact that the re -
silient modulus of this material is very strongly stress-dependent. 

The nonlinear analyses are considered to be preliminary, in that the 
method of analysis represents only one of a number of techniques which 
might be employed in conjunction with the finite element method. 

19 

•THE finite element method of analysis provides an extremely powerful technique for 
solving problems involving the behavior of structures subjected to accelerations, loads, 
displacements or changes in temperature. Problems involving the behavior of heteroge
neous, anisotropic structures with complex boundary conditions may be handled. 

By combining finite element computer programs for analysis of axisymmetric struc
tures with experimental data concerning the behavior of pavement materials under re
peated loading test conditions, it appears to be feasible to extend analyses of pavement 
structures to include nonlinear material behavior in an approximate manner. With suf
ficient attention devoted to determination of appropriate physical property values and 
to simulation of actual boundary and loading conditions, the finite element method of 
analysis promises to afford improved understanding of the behavior of pavement struc
tures under load. 

FINITE ELEMENT METHOD 

For analysis by the finite element technique, the body to be analyzed, such as the 
cylinder shown in Figure 1, is divided into a set of elements connected at their joints 
or nodal points. On the basis of an assumed variation of displacements within elements 
together with the stress-strain characteristics of the element material, the stiffness 
of each nodal point of each element is computed. For each nodal point in the system, 
two equilibrium equations may be written expressing the nodal point forces in terms of 
the nodal point displacements and stiffnesses.- These equations are then solved for the 
unknown displacements. With the displacements of all nodal points known, strains and 
stresses within each element are then computed. Detailed descriptions of the method 
and its application to a wide variety of problems are contained in a number of publica
tions (1, 2, 3, 4, 5). Analysis of realistic systems commonly requires formulation and 
solution Of several hundred simultaneous equations. For this reason the technique is 
only practicable when formulated for high-speed digital computers. 

The digital computer program used for the present study is described elsewhere ( 4). 
Modifications have been made to generate automatically suitable finite element configUra
tions for analysis of axisymmetric pavement structures and to accommodate types of 
modulus dependency on stress which would appear appropriate to represent the behavior 
of granular base and cohesive subgrade materials under conditions corresponding to 
moving traffic (13, 14, 15). 

For analysis withthis computer program, the structure to be analyzed is divided 
into a series of quadrilaterals and/ or triangles. (Only quadrilaterals were used in the 
present study.) Each quadrilateral is subsequently divided into four triangles by the 
computer program (Fig. 1). Displacements are assumed to vary linearly within each 
triangle; this assumption insures that no 
gaps will develop in the deformed structure 
and that displacements will be compatible 
throughout the structure as well as at the 
nodal points. 

Besides the finite element configuration 
to be used, additional items of input consist 
of specifying loads or displacements for 
each nodal point and material properties 
(Young's modulus and Poisson's ratio) for 
each element. In the nonlinear analyses, 
an initial gravity stress (corresponding to 
no applied load on the pavement) was 

Oblique View 

Figure 1. 
cylinder. 
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Figure 2. Finite element configuration used for analysis of homogeneous and layered systems. 

calculated for each element, requiring that the density of each material be specified as 
well. The computer output consists of radial and axial displacements at each of the 
nodal points exterior to the quadrilateral elements and the complete state of stress at 
the centroid of each quadrilateral. Quadrilateral stresses are computed as the average 
of the stresses in the four triangles. 

LINEAR ANALYSES 

The amount of computer time required to solve a finite element problem depends 
on the number of nodal points (or elements) used to represent the system. For ef
ficient operation, these should be kept to the minimum necessary for accurate repre
sentation of the system being studied. Although some judgment is inevitably required 
in choosing a system of finite elements, the number of elements required is strongly 
dependent on the criteria for element sizes and shapes and on the size of the region 
which must be represented for valid simulation of the actual problem. Thus, it is de
sirable to establish criteria for boundary conditions by examining finite element solu
tions to problems for which other solutions are readily available. 
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Figure 4. Comparison of deflections and 
stresses in layered system by finite element 
and layered system analysis. 

For this purpose the deflections and stresses beneath a uniformly loaded circular 
area were studied using the finite element configuration (Fig. 2). The nodal points on 
the bottom boundary were fixed, whereas those on the right boundary were constrained 
from moving in the radial direction. The nodal points on the centerline (left boundary) 
can only move vertically because of the symmetry of the problem. The nodal points 
beneath the loaded area are subjected to vertical forces which form the static equiva
lent of the pressure shown; the magnitudes of these forces are calculated by the com
puter program from the specified pressure. All other nodal points in the system are 
subjected to no forces or geometric constraints. 

The first problem studied was that of a uniformly loaded circular area on the sur
face of a homogeneous subgrade, i.e., layers one, two, and three were all assigned 
the same values of Young's modulus, E = 10, 000 psi and Poisson's ratio, v = 0. 4 The 
surface deflections and vertical normal stresses beneath the load are shown in Fig
ure 3. Also shown are the deflections and stresses in an elastic half-space subjected to 
the same loading; these values were computed using a digital computer program for 
layered elastic systems developed by the Chevron Research Company (6, 7). Both the 
deflections and stresses compare very favorably. Because the compressible layer ex
tended only to a depth of about 18 radii in the finite element analysis, the surface de
flections computed by the finite element method are somewhat smaller than those com
puted by the half-space analysis. The difference in deflection beneath the center of the 
loaded area amounts to about 7 percent. 

The stresses in Figure 3 for the finite element analysis are those computed at the 
centers of the furthest left elements in Figure 2, 0. 75 in. from the centerline. Even 
though the stresses in Figure 3 correspond to slightly different positions, it is evident 
that the agreement between the two methods is good, indicating that the choice of ele
ment sizes and shapes is acceptable. 
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Previous experience has indicated that 
quadrilateral element stresses will be 
accurate provided that the length-to-width 
ratio for the elements does not exceed five 
to one. Thinner elements may be used 
to increase the distance from the boundaries 
if accuracy in stresses in these regions is 
not important. Elongated elements have 
been used at the upper right and lower left 
of the configuration (Fig. 2). 

The same configuration was also used 
to analyze a three-layer elastic system. 
For this analysis each element in layer 
one was assigned E = 200, 000 psi; layer 
two, 20, 000 psi ; and layer three, 10, 000 
psi. Poisson's ratio, 11 = 0. 4 was used 
for all three layers. The surface loading 
was again 100 psi distributed over a 12-in. 
diameter circular area. The computed de
flections and stresses are shown in Fig
ure 4, together with those computed using 
the elastic layer computer program. 

The stresses computed by the two methods 
are again very similar, but the surface de

flections computed by the layered system analysis are some 25 percent larger than 
those computed by the finite element method. Thus, although the finite element con
figuration (Fig. 2) is adequate to simulate a homogeneous system, it is not adequate 
to simulate a layered system where the upper layer is much stiffer than those below. 
In a layered system the upper, stiffer layer contributes only a small amount to the sur
face deflection and the contribution of the deeper, softer layers is relatively much more 
important than in a homogeneous system. 

The difference in behavior between a homogeneous and a layered system is shown 
in Figure 5; where the contributions to surface deflection are functions of depth be
neath the surface. Compression of the material below a depth of two radii contributes 
only 40 percent to the surface deflection of an elastic half-space, whereas it contributes 
70 percent to that of the layered system. Similarly, at any other depth, the contribu
tion of the material below is always much more important in the deflection of the layered 
system than the half-space. Thus it appears that the finite element deflections (Fig. 4) 
are appreciably less than the layered system deflections because the depth to which the 
bottom layer extends is too small to approximate the behavior of a semi-infinite layer. 

The same layered system was reanalyzed by the finite element method using the con
figuration shown in Figure 6, in which the bottom rigid boundary is 50 radii beneath 
the surface. The layers were assigned the same values of Young's modulus (200, 000, 
20, 000, and 10, 000 psi) as in the previous analys is , and Poisson' s ratio was again 0. 4 
for all layers. The configurations shown in Figures 2 and 6 contain the same number 
of nodal points (234) and elements (204); in fact, the sizes and shapes of the elements 
above 66 in. in Figure 2 are exactly the same as those above 256 in. in Figure 6. In 
the reanalysis, only the heights of the bottom four rows of elements were changed. The 
vertical normal stresses, computed using the configuration in Figure 6, were, for 
practical purposes, the same as those computed using the configuration in Figure 2. 
The surface deilections in Figure 7 were much larger, however, being only about 4 
percent smaller than for an infinitely deep bottom layer. 

These analyses indicate that the thickness of the bottom layer or subgrade has an im
portant effect on the magnitude of the surface deflections of a stiff pavement. The im
portance of the subgrade has also been emphasized by Peattie and Jones (8). 

The radial external boundary, as well as the bottom boundary, will have some in
fluence on the magnitude of the computed surface deflections. On the basis of the pre
ceding analyses, however, this influence appears to be rather small. For practical 
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purposes sufficient accuracy may be obtained if this 
boundary is introduced at a distance of 12 radii or 
more from the centerline. 

For analysis of systems with linear material 
properties, the finite element method offers little 
or no advantage over layered system analyses, for 
which digital computer programs are also readily 
available. However, because it is feasible to in
corporate nonlinear material behavior in finite 
element analyses, the technique may be used for 
obtaining solutions to problems which cannot be 
solved by other available methods at the present 
time (1967). 

NONLINEAR ANALYSES 

Analysis of Recoverable Deformations 

Asphalt concrete, granular base-course materi
als, and cohesive subgrade materials have all been 
found to undergo both permanent and recoverable 
deformations under repeated load conditions (9, 10, 
11). In recent years, considerable effort has been 
directed toward determination of these recoverable 
deformations since there is considerable evidence 
to indicate that the transient or resilient deforma
tions which occur under moving wheel loads may 
eventually result in fatigue failure of the asphalt 
concrete (12, 13). 

Considerable effort has already been devoted to 
developing techniques for predicting resilient pave
ment deflections using laboratory test data and 
layered systems analyses (14, 15 ). In these analyses, 
the applied load is ti·eatedaSlf it were a static 
loading; since inertial effects have a small influ
ence, at least under slower moving wheel loadings 
(16), their effects are neglected in the analyses. 
The problem of computing the magnitude of recov
erable or resilient deformations is thereby reduced 
to the analysis of the behavior of an elastic pave-
ment structure under static applied load. The pseudo

elastic modulus values which are used in these analyses reflect the resilient behavior 
of the pavement materials as determined by means of repeated loading tests simulating 
the durations and magnitudes of the expected field 
loadings. 

For granular base and cohesive subgrade ma
terials, modulus values are determined by dividing 
the value of the repeatedly applied stress by the 
recoverable or resilient strain, and are termed 
the "resilient moduli" of the materials. For as
phalt concrete, the corresponding modulus, which 
isdeterminedinthe same way, is called the "stiff
ness" of the material in accordance with the ter
minology suggested by van der Poel (17). To avoid 
confusion between the two different meanings of the 
term stiffness as used by asphalt technologists in 
describing pseudoelastic material behavior and by 
structural analysts to express a force induced by 
unit displacement, the factor relating applied stress 
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~ 
Figure 7. Comparison of deflections in 
layered system by layered system ano ly
sis and finite element analysis with 
deep bottom boundary, 
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Repeated load tests on granular and cohesive ma
terials have shown that their resilient moduli are 
stress-dependent, i.e., these materials exhibit non
linear behavior under the stresses to which they are 
subjected in in-service pavements (14). In these 
analyses, nonlinear material properties were ap
proximated in the solution by solving the same prob
lem repeatedly, choosing for successive solutions a 

Figure 8. Structural section, Gonzoles value of resilient modulus for each element corres
Byposs pavement. ponding to the state of stress calculated for that ele -

ment in the preceding cycle. The success of the 
technique was judged on the basis of the tendency for 

the surface deflections to converge to a stable value within a reasonable number of 
cycles. 

Use of this technique thus involves representing the actual nonlinear pavement struc
ture by a linear, inhomogeneous structure in which the modulus values assigned to any 
element are related to previously computed values of stress for that element. The use
fulness of this approximate procedure may be judged by the agreement between com
puted deflections with those measured in actual pavements, and by the extent to which 
the actual behavior of the pavement is represented by the analysis. 

Gonzales Bypass 

Using this procedure, two analyses have been made of the resilient deflections of the 
Gonzales Bypass pavement (19), one corresponding to cold ("winter") and one to warm 
("summer") conditions. Thestructural section for this pavement is shown in Figure 8. 
Repeated load tests were performed to determine the stiffness modulus of the asphalt 
concrete and the resilient moduli of both the granular base and the cohesive subgrade 
materials. Repeated flexure tests were conducted on 1. 5 by 1. 5 by 15-in. beam speci
mens of the asphalt concrete sawed from a slab of the existing pavement obtained by 
the staff of the Materials and Research Department of the California Division of High
ways. Tests were conducted at 40 F and 68 F from which the relationship between 
temperature and stiffness modulus was constructed (Fig. 9 ). The temperature profiles 
through the asphalt concrete surface which were used to represent the summer and 
winter conditions are shown in Figure 10, and the 
corresponding ranges in values of stiffness modu-
lus are indicated in Figure 9; these ranges are 
120, 000 to 280, 000 psi for the summer condition 
and 1,420, 000 to 1, 550, 000 psi for the winter con
dition. Although the ranges of temperatures chosen 
do not represent realistic seasonal extremes at 
Gonzales, the corresponding analyses are illus
trative of the pavement behavior under divergent 
temperature conditions. 

Repeated load tests were performed on 3. 9-in. 
diameter by 7. 8-in. high triaxial specimens of the 
base course material which were compacted in the 
laboratory to c on d it i o n s simulating the in-situ 
water content and density of the base. These tests, 
which were conducted using a frequency of 20 ap
plications per minute and a load duration of 0. 1 
sec., indicate that the resilient modulus varies 
with confining pressure according to the expression 

M = 15 000 °· 48 
R , era (1) 
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Figure 9. Relationship between stiff
ness modulus· of asphalt concrete sur
face and temperature used for analysis 
of Gonzales Bypass pavement. 
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in which the units of MR and cr3 are both in pounds 
per square inch. Although no tests were con
ducted on the subbase material, experience with 
similar granular materials indicates that the re
lationship between resilient modulus and con
fining pressure would be represented by an ex
pression of the same form as Eq. 1. Because the 
subbase is of lower quality than the base, it seems 
likely that at any confining pressure its resilient 
modulus would be somewhat smaller than that of 
the base. Using tests on both the base and sub
base of the Morro Bay pavement as a guide (15), 
it was estimated that the resilient modulus ofthe 
Gonzales Bypass subbase would vary approxi
mately in accordance with the following expression 

r 
I~ 

- Estimalt1d Profile 

----usedfor Analysis 

o• 10• 20• .w· 40• 50• 60" To· eo· 90• 

Temperature - 0 F' 

Figure 10. Temperature profiles used in 
analysis of Gonzales Bypass pavement. 

(2) 

The relationships between resilient modulus and confining pressure expressed by 
Eqs. 1 and 2 are shown in Figure 11. The values of MR for both the base and the sub
base vary quite markedly with a3 , especially at small values of a3 , indicating the im
portance of the stress conditions in determiningthe resilient behavior of these materials. 
The relationships only apply to values of the principal stress ratio (a1 / cr3 ) which will not 
cause failure of the material during test. Test results show, however, that the resil
ient behavior of granular materials may be represented by a single relationship of the 
form of Eqs. 1 and 2 up to values of ail a3 as high as 10 (14). The relationships repre
sented by Eqs. 1 and 2 only have physical meaning for positive values of cr3 (compression). 
Although no test data are available for values of cr3 equal to or less than zero, it is as
sumed in the analyses that the resilient modulus is, for practical purposes, zero in 
this range of stresses. 

The resilient modulus values of granular materials might also be related to the stress 
conditions (14) by 

(3) 

in which am is the mean normal stress, j (a1 + a2 + a3 ). The values of mean stress cal

culated during the analyses indicate that in most cases when the value of cr3 is negative 
(tensile), the value of crm is also negative. On this 
basis, therefore, it seems likely that relating MR 

·!;; 50,000 
to am , as indicated by Eq. 3, would lead to results 
which would be much the same as those obtained by 
relating MR to a3 , as indicated by Eq. 1. The fol
lowing analyses were all conducted using the rela
tionship expressed by Eq. 1; it is planned in further 
analyses, however, to examine the usefulness of 
the relationship indicated by Eq. 3. 

To determine the resilient characteristics of 
the subgrade, repeated load tests were also per
formed on 1. 4-in. diameter by 3. 4-in. high tri
axial specimens of the undisturbed clayey sand sub
grade material taken from the Gonzales Bypass 

o.__~~~~~~~~.__~ 

o 2 4 6 e 10 pavement. These tests were conducted using a 
Mrnor Principo/Slre ss - -; -Jbpersq in lateral pressure of l, 4 psi and the same frequency 

Figure 11. Variation of resilient moduli 
of base and subbase with confining pres
sure used in analysis of Gonzales Bypass 
pavement. 

(20 applications per minute) and load duration (0. 1 
sec.) as used in the tests on the granular base 
material. During the initial stages, it was observed 
that the resilient modulus increased with increasing 
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number of load repetitions; after a large num
ber of load repetitions, however, the resilient 
modulus was found to be sensibly independent 
of the number of loading cycles, and the values 
determined after 60, 000 repetitions of applied 
load were selected as being representative of 
the subgrade behavior for the in-service 
pavement. 

The repeated load tests were conducted using 
various values of principal stress difference 
(cr1 - cr3 ), which represents the repeated axial 
stress applied to the specimen. The relation
ship between the principal stress difference and 
resilient modulus after 60, 000 applications is 
shown in Figure 12. This form of variation, in 
which the resilient modulus first decreases with 
increasing repeated stress, and then increases 
slightly, is similar to the behavior observed 
previously in repeated load tests on other co
hesive materials (18). The dotted line indicates 
the approximation to the actual behavior which 
was used in the analysis. 

The resilient characteristics of the pave
ment components (Figs. 9, 11 and 12) were incorporated in analyses of the Gonzales 
Bypass pavement through repeated solution of the problem. The variations of resilient 
modulus for the base and subbase materials were introduced by means of algebraic ex
pressions of the form 

(4) 

For each granular material, appropriate values of the constant K and the exponent x 
were read in as data. Prior to each solution of the problem the computer program eval
uated an expression of the form of Eq. 4 and assigned a new value of MR to each element 
of granular material, using the value of cr3 calculated for that element in the previous 
solution. Within the computer program, the assigned value of MR was treated as if it 
were a value of Young's modulus and the material as if it were linearly elastic. A value 
of Poisson's ratio, v = 0. 4, was assigned to the granular base and subbase materials. 

The variation of resilient modulus for the subgrade material was introduced by means 
of two expressions of the form 

(5a) 

and 

(5b) 

The relationship of the constants Ki , K2, Ka, K4 to the measured properties is shown 
in Figure 12. These four values were read in as input data. As in the case of the 
granular materials, the resilient modulus of each element of the cohesive subgrade was 
reevaluated automatically by the computer before each new solution of the problem, 
using the value of (a1 - a3 ) calculated for that element in the previous solution. A value 
of Poisson's ratio, v = 0. 47, was assigned to the cohesive subgrade. 

The relationship between stiffness modulus of the asphalt concrete and temperature 
was read in as a series of pairs of values describing the curve shown in Figure 9. The 
temperature of each nodal point in the asphalt concrete was also specified in the input 
data (these temperatures were the same for all nodal points at the same level). Ele
ment temperatures were determined by the computer as the average of the nodal point 



temperatures immediately above 
and below, and a value of stiffness 
modulus was assigned to each ele
ment by semilogarithmic inter
polation. A value of Poisson's 
ratio, v = 0. 4 was assigned to the 
asp ha 1 t concrete. Because the 
stiffness modulus of the asphalt 
concrete was considered to be in
dependent of stress, the values of 
modulus for the surface varied 
only with depth (since the tempera
ature varied with depth) and were 
the same in successive solutions. 

A simplified flow diagram for 
the computer program is shown in 
Figure 13. In order to make it 
possible to evaluate the stress
dependent moduli for the first so
lution, an approximate stress dis
tribution was calculated prior to 
the first solution using the load
spread concept with a one-to-one 
load spread. To these stresses, 
and to the stresses calculated in 
each of the successive solutions, 
the initial gravity stress distribu
tion was added. The vertical nor
mal gravity stress was calculated 
as the weight per unit area of the 
overlying material, and the hori
zontal normal gravity stress was 
taken to be three-fourths of the 
vertical. The gravity stress com
ponent was included in the value 
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Figure 13. Simplified flow diagram. 
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of C13 used to evaluate the resilient moduli of the elements in granular material, but 
only the load-induced stress component was included in the value of (cr1 - cr3 ) used in 
evaluating the moduli of elements in cohesive material. 

Using the temperature profiles (Fig. 10), the Gonzales Bypass pavement was ana
lyzed for the summer and winter conditions. Each of these analyses comprised four 
solution cycles; the values of surface deflection under the center of the loaded area 
computed for each cycle are shown in Figure 14. For both the summer and the winter 
conditions the surface deflections appear to reach reasonably stable values after three 
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cycles or fewer. Also shown in Figure 14 are the 
deflections measured using the California traveling 
deflectometer. The 7500-lb load on dual wheels used 
with the deflectometer was represented by a uniform 
70-psi pressure on a 12-in. diameter circular area 
(7900-lb load) in the analysis. The pavement tempera
ture was not recorded at the time of the deflectometer 
measurements, but it is known that the mean air tern -
perature at that time was about 55 F. It seems likely, 
therefore, that the actual pavement temperature was 
slightly lower than temperatures associated with the 
summer analysis. Since the stiffness of the asphalt 
concrete increases with decreasing temperature and 
the surface deflections decrease, it appears that the 

Figure 14 . Con vergence of surface de- calculated surface deflections agree at least reasonably 
f lections of Ganze les Bypass pavement. well with the measured deflections. On this basis, it 
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Figure 15. Deformed shape of Gonzales Bypass pavement-
summer. 

may b e c o n c 1 u de d that the 
analytical technique is capable of 
simulating the actual pavement be
havior to a reasonable degree. 

The deformed shapes of the 
pavement for the summer and 
winter analyses are shown in 
Figures 15 and 16, respectively. 
The surface deflections for the 
summer condition increase much 
more sharply near the loaded 
area than do those for the winter 
condition. Also, the vertical de
flection of the bottom of the base 
is less near the centerline than 
beyond the edge of the loaded 
area, indicating that the portion 
of the base directly beneath the 
loaded area is subjected to con
siderable deformation in the 
summer condition. Within this 
zone there was a tendency for 
tensile stresses to develop in 
the granular material. As men- . 

tioned previously, when tensile stresses developed in the granular material the modulus 
was reduced to a small value for the subsequent solution (in these analyses the modulus 
was reduced to 10 psi). Thus, because of the tendency for tension in the base course 
immediately beneath the asphalt concrete, a zone developed within which the modulus 
was effectively zero. 

Contours of modulus within the base and subbase during the fourth cycle of analysis 
are shown in Figure 17. The modulus values jumped abruptly from 10 psi (within the 
zone of incipient tension) to about 10, 000 psi in the next row of elements. The varia
tion of modulus in the base for the 
summer condition may be con-
trasted with that determined for 
the winter condition in which there 
was no tendency for tension to de
velop. This difference in behavior 
must be attributed to the differ
ences in the stiffness of the as
phalt concrete surface since all 
other factors were the same in 
both analyses. It seems likely 
that when the stiffness modulus of 
the asphalt concrete is low, as in 
summer, fairly large radial ex
tensional strains develop at the 
bottom of the pavement that induce 
similar strains in the granular 
material. At the same time, the 
load carried by the granular ma
terial tends to cause it to com
press in the vertical direction and 
extend in the radial direction. The 
radial strains at the bottom of the 
asphalt concrete and at the top 
o f t he bas e mu st o f course 
be compatible. Thus, depending 
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on the amount of extensional strain in the asphalt concrete and the amount of vertical 
compression in the base, either compressive or tensile radial stresses might tend to 
develop in the base. It appears that while tensile stresses tend to develop in the summer 
condition, there is no such tendency for the winter condition. It seems likely that the 
tendency for tension to develop would be greatest for thick pavements with low values 
of stiffness modulus, because it is under these conditions when high extensional strains 
at the bottom of the pavement would be accompanied by relatively small vertical 
deflections. 

The contours of resilient modulus within the base and subbase (Fig. 16) indicate 
significant variations in the radial direction even outside the zone of incipient tension. 
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Plate Load Test on Granular Material 

Thus, it would be very difficult to simulate 
this behavior by means of layered system 
theory, where modulus values can be varied 
only in the vertical direction. For the winter 
condition, the values of modulus are sensi
bly constant throughout both the base and 
the subbase. It is perhaps worthy of note 
that the values of modulus within the base 
and subbase were not as stable as the sur
face deflections; it is therefore doubtful that 
great significance can be attached to the 
precise values represented by the contours 
in Figure 17 . 

The influence of the zone of incipient ten
sion on the performance of the pavement is 
shown in Figure 18. More than half of the 
compression contributing to deflection oc
curs within the base in the summer condition, 
and that the material within the zone of in
cipient tension carries only the gravity stress. 
Although significant compression occurs 
within the base under the winter condition, 
it comprises a much smaller portion of the 
total vertical deflection. 

Using the same procedure, an analysis was made of a repeated plate load test con
ducted on a two-layer system, 12 in. of granular material overlying a cohesive sub
grade (14). Repeated load triaxial tests were used to establish the resilience charac
teristics of base-course and subgrade materials. The relationship between resilient 
modulus and confining pressure for the base course was found to be 

MR = 7000 (as) o. 55 (6) 

in which MR and O's are both measured in pounds per square inch. The relationship be
tween resilient modulus and stress difference for the subgrade is shown in Figure 19; 
the finite element configuration used for the analysis, in Figure 20. 

Values of vertical deflection calculated on successive cycles are shown in Figure 21. 
Whereas the measured deflection of the plate was only about 0. 037 in., the calculated 
deflection for the eighth cycle was 0. 087 in. Although it is possible that the calculated 
value would have converged to the measured value after a large number of cycles, the 
analytical method would still not be practical for this problem, because of the large 
amount of computer time required, about 1. 8 minutes of 7094 computer time for each 
of the eight solution cycles. 

It seems likely that the reason for the divergence, or slow convergence, of the sur
face deflections in this plate load test analysis is the dominant role in the behavior 
which is played by the granular base material, and the fact that the resilient modulus 
of this material is so strongly stress-dependent. The procedure used would be ex
pected to converge rapidly only if the stress distribution, considered for the system 
as a whole, was not drastically altered by the variations in modulus from cycle to cycle. 
Whereas this may be true for the case where an asphalt concrete pavement overlies the 
base, it apparently is not true in the case of a plate load applied directly to the surface 
of the granular material. 
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SUMMARY AND CONCLUSIONS 

Axisymmetric finite element analyses may be readily applied to pavement problems. 
With appropriate attention to boundary conditions, accurate analyses of the behavior of 
pavement structures with linear material properties may be made using this technique. 

This study also indicates that it is feasible to approximate nonlinear material proper
ties in analyses of pavement structures. The nonlinear analyses which have been per
formed must be considered as preliminary, and the method used represents only one 
of a number of possible techniques. It is iikeiy, however, that studies of this type may 
eventually afford improved understanding of the behavior of pavement structures under 
load. 
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Layered Systems Under Normal Surface Loads 

M. G. F. PEUTZ, H. P. M. van KEMPEN, Koninklijke/Shell-Laboratorium, and 
A. JONES, Shell Research Ltd., Thornton Research Centre 

Using a matrix formulation the authors have extended a tech
nique first formulated by Thomson (19) which greatly simplifies 
the problem of determining the distribution of stress in a strat
ified semi-infinite elastic medium under the compressive ac
tion of a rigid body. This problem, first presented for an un
stratified medium by Boussinesq and generalized to layered 
systems by Burmister, becomes extremely cumbersome al
gebraically when more than one layer resting on a semi-infinite 
elastic solid is considered. The simplification proposed in 
the paper provides a ready solution of the boundary condition 
problem. 

A computer program in Fortran IV (IBM 7094) has been 
written for the numerical calculation of stresses, strains and 
displacements at any point in an ideally elastic multilayer road 
system, induced by one or more vertical axisymmetric sur
face loads uniformly distributed over circular areas. 

The calculation of the stress distribution with this program 
has proved to be effective and accurate, irrespective of the 
number of layers. 

•THE GENERAL analysis of stresses, strains and displacements in multi-layer sys
tems of linear elastic or linear viscoelastic media, has been the subject of many thorough 
and well-known studies (1-11). 

Because of the conside rable amount of algebra involved, a numerical evaluation of 
these stresses, strains and displacements has in most cases only been made for one 
or two-layer systems. There are some published papers, giving numerical values of 
stresses and strains in three or four-layer systems; but either the calculations were 
made for a limited number of particular points, or Poisson's ratio was taken to be equal 
to O. 5. 

By a more formal mathematical setup of the problem, we succeeded in simplifying 
the equations involved, which so far were thought to be too complicated to handle. With 
the help of the new setup a computer program has been written. This program makes 
it possible to calculate stresses, strains and displacements at any desired point in 
systems consisting of any number of layers and having arbitrary elastic constants. Re
sults have already been used in a number of road design studies (12-15). 

The system can be subjected over a circular ar ea of the free upper surface to a uni 
formly distributed normal stress. Using Hankel transform theory, the stresses, strains 
and displacements in each layer are found to be given in integral form (16, 17, 18 ). The 
integrand depends on four "integration constants." As they are functions of the transform 
parameter, they will be called the characterizing functions of the layer. These char
acterizing functions can be solved from the boundary conditions, the load situation at 
the surface, the requirement that the stresses and strains at infinite depth must be 
finite, and the continuity conditions for stresses and displacements at the interfaces be
tween two successive layers. 

Regarding the nature of this interfacial contact, two realistic situations are con -
sidered: (a) the adjacent layers are bonded together so that no slip occurs (rough in
terfaces), or (b) the interface is perfectly smooth and the two surfaces in contact are 
free from shear stress. 
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There are two methods to solve the characterizing functions. In the first, all the 
relations between the characterizing functions following from the boundary conditions 
are assembled in one matrix. This matrix is subsequently inversed. In the second, 
the relations between the characterizing functions of adjacent layers given by the con
tinuity relations of stresses and strains at the interfaces are used to derive recurrence 
formulas for the characterizing functions. When applied in a computer program for nu
merical evaluation of stresses, strains and displacements, this second method proved 
to be much faster and more accurate than the first. 

For highway engineering, it can be valuable to have an estimate of the stress and 
strain tensors under the simultaneous action of more than one uniform circular load. 
A subroutine gives these total stresses and strains under several loads, as well as the 
principal values and directions of the stress and strain tensors. 

On the basis of the analysis represented in this paper, a computer program has been 
written for numerical calculation of stresses, strains and displacements. 1 Its des
cription, some numerical computation aspects and the input and output schemes are 
given in Appendixes VII and VIII. 

GENERAL THEORY 

Assuming that there are no body forces or couples present and neglecting inertia 
forces, the equilibrium equation for the stresses is 

div a= 0 (1) 

Here, a represents the stress tensor. With Hooke's law for an isotropic ideally elastic 
material, and considering stresses and strains small enough to be described in an in
finitesimal elastic theory, this equilibrium equation can be expressed in terms of the 
displacement vector field~ (r, z) by 

- 1 -
Au + ~ grad div u = 0 (2) 

The symbolµ, is Poisson's ratio and A represents the Laplace operator. 
As a consequence of the circular symmetry of the problem the tangential component, 

u9, of the displacement vector field is zero. The radial and vertical components can 
be represented as derivatives of a stress function cf> (r, z) by 

u z 
2 (1 - µ

2
) A.cf> -~ o2 ~ 

E E 2 oZ 
(3) 

It can be shown that the stress function <fl is a biharmonic function satisfying the partial 
differential equation 

2 -( o
2 

1 0 o
2 

)

2 

A ~ (r, z) = - + r r + -- ~ (r, z) = 0 
o r 2 0 o z2 

With the aid of the Hankel transform of the stress function, defined by 

1This computer program and other appendixes are avai I able at cost of reproduction and hand ling. 
Refer to XS-15, Highway Research Record 228. 

(4) 



36 

INTERFACE 0 

INTERFACE t 

INTERFACE 2 

INTERFACE N 

p 

Figure 1. Stresses in a multi-layer system. 

Je. 
0 

{ ~(r, z) } J r ~ (r, z) J
0 

((r) dr 

0 

(5) 

where Jo (tr) denotes the Bessel function of the first kind and of zero order, Eq. 4 be
comes an ordinary differential equation in the Hankel transform of the stress function: 

--(2 (JI! [cl>}=O ( d2 )2 
dz2 o 

(6) 

The general solution of Eq. 6 is 

(7) 

The "integration constants" A ( €), B ( t), C ( €) and D ( () depend on the Hankel trans
form parameter €and the elastic parameters of the material, Young's modulus E and 
Poisson's ratio µ. They are called the characterizing functions of the material and can 
be solved from the boundary conditions. 

For a system of N layers (Fig. 1) of different homogeneous ideally elastic materials, 
each layer being of uniform thickness and infinite dimensions in all horizontal directions, 
stratified vertically over the semi-infinite last one, one introduces for each layer n the 
stress function ~n (r, z). The Hankel transform of these stress functions is again given 
in terms of four characterizing functions An ( (), Bn ( ~), Cn ( ~) and Dn ( (). The subscript 



37 

gives the number of the layer n in which 4>n and the characterizing functions are 
defined. 

In total, there are 4 N unknown characterizing functions, to be solved from 4N bound
ary conditions. 

If the N-layer system, bounded by the surface z = 0, with the z-axis pointing ver
tically into the system, is uniformly loaded over a circular area (radius a) with normal 
load stress - P, then the first two boundary conditions, giving the load situation, are 

Cl' zz =-P 0 ~ r ~a, z = 0 (8) 

= 0 r >a, z = 0 (9) 

T = 0 O~r;:: oo , z = 0 (10) 
rz 

The situation at the N -1 interfaces between the N layers gives rise to 4 (N -1) bound
ary conditions. It is assumed that the layers remain in contact and that the vertical 
stress and vertical displacement are continuous at these interfaces. Two further real
istic assumptions about this interfacial contact can be made. Either the adjacent layers 
are bonded and no slip occurs at the interfaces (rough interface), so that shear stress 
and radial displacement are continuous, or the layers can slip over each other without 
any shear stress (smooth interface). In the latter case, the shear stresses on both 
sides of the interface are zero. Expressed in mathematical form these conditions 
become 

n n + 1 
n a zz = n CJ zz (11) 

n n + 1 u u 
n z n z 

(12) 

n n + 1 
T T rz n rz n 

(13) 

and 
n n + 1 u = u 
n r n r (rough interface) (14) 

or 

(smooth interface) (15) 

Super- and sub-prefixes refer to the layer number and the interface number in the sys
tem, respectively. Surfaces and layers are numbered from the top surface (zero inter
face) downwards. 

The two last boundary conditions result from the requirement that the displacements, 
stresses and strains are finite at infinite depth. From Eq. 7, the two characterizing 
functions AN ( ~) and CN ( ~) of the base layer N must be equal to zero. 

(16) 

In Appendix I it is shown how the stresses in an isotropic ideally elastic material can 
be expressed, with the aid of Hooke's law in terms of partial derivatives of the dis
placement field ii (r, z), and consequently in terms of the Hankel transformed stress 
function 'iJt 0 ( 4> (r, z) } or the characterizing functions A(~), and B( ~), C ( t) and D (t). 
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The continuity relations (Eqs. 11-14) for a rough interface lead to four linear rela
tions between the characterizing functions of the layers on both sides of each interface. 
In Appendix II, it is shown how the characterizing functions of each layer can then be 
given as a linear combination of the characterizing functions of one of the adjacent 
layers. First a change of variables is applied: 

a~=X 

r= aR 

z= aZ 

h = aH 
n n 

~ 4 A (~)=-aPS (x)J1(x) n n 

~ 4 B (~) = -aP T (x) Ji (x) 
n n 

~ 3 C ( O = - a P U (x) Ji(x) 
n n 

~ 3 D (0=-aPV (x)J1(x) n n 

1 + µ 
K = n 

n 1 + u 1 · n+ 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Her e hn r epres ents the depth of the nth layer. Denoting the transformed character 
izing fu_nc tions Sn (x), Tn (x), Un (x) and Vn (x) as the components of a characteristic 
vector Sn (x), we can wr ite 

S (x) = n + 1 R S (x) 
n n n+l 

(26) 

Here n ~ 1 R represents a 4 x 4 matrix giving the relation between the characteristic 

vectors of the layers on both sides of the interface. The elements of this matrix depend 
only on the elastic parameters of the layers, the depth of the interface in consider ation 
and the reduced dimensionless Hankel transform parameter x. By repeated use of Eq. 
26, the characteristic vectors for all layers can be expressed in terms of the charac
teristic vector of the base layer: 

and especially 

- n+l N - ( 
Sn (x) = n R ... N _ l R SN x) 

- 2 N - - () Si (x) = l R . . . N _ l R SN (x) = RN SN x 

(27) 

(28) 

The matrix RN is the product matrix of all the (N - 1) matrices n + 
1 R, where n = 1, n 

... ' N - 1. 
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Finally, the boundary conditions at the top surface give two relations between the 
characterizing functions of the top layer, which by means of Eq. 28 are expressed in 
the two non-vanishing characterizing functions of the base layer. With the aid of these 
relations, the characterizing functions of the base layer can be solved. Representing 
these boundary conditions at the top surface again in the dyadic form, 

(29) 

where A0 is a 2 x 4 matrix and Bo is a two-dimensional vector (see Appendix II), a re
currence formula for the characteristic vectors of the layers in a system with only 
rough interfaces follows: 

(30) 

In the more general case, where some layers can slip along each other without any 
shear stress and others make a rough contact, the recurrence formula for the charac
teristic vectors is somewhat more complicated. In Appendix III this general recurrence 
formula is derived. 

For large values of the reduced Hankel transform parameter x, Eq. 30 for the char
acteristic vector of each layer can be simplified. This is demonstrated in Appendixes 
IV and v. 

The characterizing functions being solved, the displacement field u (r, e) is calcu
lated by back transformation of the transformed stress function and subsequent differ
entiation according to Eqs. 2 and 3. 

cI>(r, z) = f ~ ;;t
0 

( cI>(r, z)} J
0 
(~r)d~ 

0 

(31) 

The stress function, the displacement field u (r, z), the stresses and strains are thus 
given in integral form (Eq. 31 and Appendix I). It is not possible to evaluate these in
tegrals analytically, but a computer program has been written for numerical evaluation 
(see Appendix VII). 

To minimize the computer work, the components of the stress and strain tensors and 
those of the displacement field u (r, z) are given as linear combinations of five funda-
mental integrals: ( ) 

- Ra 1 + µ 
ur (r, z) = n Int (4) (32) 

En 

< rr 

u 
-a(l+un) 

z 
(r, z) = 

En 
Int (3) 

1 + µ. 
= + 

( 
zz 

E n 

2 (1 - µn2) n [ Int ( 1) + Int ( 4) ] - Int (2) 
E n 

1 + µ 
< = - __ n Int (4) 

ee En 

1 + µ.n 2µn ( 1 + µn) 
~Int (1) + E n Int (2) 

(33) 

(34) 

(35) 

(36) 
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1 + µ n 
€ =---Int (5) 

rz En 

cr rr = + Int (1) - 2 Int (2) +Int (4) 

a = - Int (1) zz 

cr
9 

= - Int (4) - 2µ Int (2) e n 

T = - Int (5) rz 

(37) 

(38) 

(39) 

(40) 

(41) 

where the fundamental integrals are defined as 

00 

Int (1) =Pf [{-Sn+ ( 1 - 2µn - xz)un}exz 

0 

+{Tn+(l-2µn+xz)vn}e-xz] J
0

(xR)J1(x)dx (42) 

00 

Int (2) =Pf [ Unexz + Vne-xz] J
0 

(xR) J1 (x) dx 

0 

00 

Int (3) = Pf [ {- Sn + ( 2_ - 4 u n - x z) Un} ex Z 

0 

( 43) 

+{-Tn+ (-2+4µn-xz)vn}e-xz]Jo(xR~Ji(x) dx (44) 

00 

Int ( 4) = Pf [ {Sn + ( 1 + x Z) Un} ex Z + {- T n + ( 1 - x Z) V n } e - x Z J J 1 (x ~kJ 1 (x) dx 

0 
(45) 

00 

Int (5)= Pf [ {Sn+ (2 "n +xz) Un iexz + {Tn + (- 2 Un +x z)v n} e-xz ]J1 {xR)Ji(x) dx 

0 
(46) 

J1 (xR) and J 0 (x) are Bessel functions of the first kind and of first and zero order, 
respectivelv. 
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Given the actual conditions encountered in practice, it is sometimes of interest to 
know the sum of stresses, strains and displacements under the simultaneous action of 
more than one uniform circular load. The differential eq_uation for the stress function 
is linear, while the boundary conditions at the top surface are additive. The tensors 
of the total stress and the total strain, as well as the vector for total displacement can 
then be obtained as the tensor sum and the vector sum of the stresses, strains and dis
placements calculated under the separate action of each uniform load. But the tensors 
and vectors have first to be represented in one common coordinate system, for which 
a Cartesian coordinate system is chosen. 

Let the position vector from the origin of the common frame to each center of load 
be given by 

A. = i A . +]A . 1 x, 1 y, 1 
(47) 

The transformation of the representation of the tensors and vectors in the local cylinder 
coordinates (r, 9, z) of the load Pi to the common Cartesian frame (x, y, z), is gov
erned by the transformation laws (see also Appendix VI) : 

T cr
1
. (x, y, z) = F. a . (r, 9, z) F 

1 1 

T 
£

1
. (x, y, z) = F. £. (r, 9, z) F 

1 1 

- ( T -u. x, y, z) = F. u. (r, 9, z) 1 1 1 

(48) 

(49) 

(50) 

The suffix i denotes the stresses, strains and displacements induced by the separate 
load Pi. The transformation matrix Fi is given by 

x-A y - A . 
x, i l •l 0 

r. r. 
1 1 

- y +A . x - A . 
II F. II y,1 x, 1 0 (51) 

1 r . r. 1 1 

0 0 1 

The matrix is the transposed matrix of Fi, and r i is given by 

r . =~(x-A ·)
2

+(y-A · )
2 

1 x, 1 y, 1 

The total stress and strain tensors and the total displacement vector are, respectively, 

cr t t (x, y, z) = E a . (x, y, z) 
0 i 1 

(52) 
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E: tot (x, y' z) = ~ E: i (x, y' z) 
1 

lit t (x, y, z) =!:ii. (x, y, z) 
0 . 1 

1 

(E3) 

(54) 

PRINCIPAL VALUES AND DIRECTIONS OF THE STRESS AND STRAIN TENSORS 

It is possible to derive numerical values of a stress or strain tensor at a particular 
point in some representation such as cylinder coordinates or Cartesian coordinates. 
This means adopting a numerical value for a force in the direction of one of the coordi
nate axes, acting on a unit area of a surface normal to the same or normal to one of 
the other coordinate axes. 

The maximum and minimum values of normal stresses and strains at a particular 
point and the direction in which they act are the principal values and the principal di
rections of the stress and strain tensors, respectively. There are standard methods 
to develop these principal values and directions. 

The numerical values of the maximum shear stress and shear are equal to one- half 
of the algebraic difference between the maximum and minimum values of the principal 
stress and strain. This maximum shear stress (or strain) acts in a plane bisecting the 
angle between the directions of maximum and minimum normal stress. 
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Appendixes 
The original manuscript of this paper contained eight appendixes giving the deriva

tion and a description of formulas and expressions involved. These may be obtained 
from the Highway Research Board by special arrangement. Inquiries should refer to 
XS-15, Record 228. Short abstracts of each appendix follow. 

APPENDIX I 

When only infinitely small deformations are considered, the appropriate measure of 
the deformation is the symmetric part of the gradient tensor of the displacement vector
field, the infinitesimal strain tensor E (r, z). For the linearly and ideally elastic and 
isotropic material considered, the stress in the medium is related to the strain by 
Hooke's law. So we can express both the strain and the stress in terms of partial de
rivatives of the stress function 4' (r, z), or the Hankel transformed stress function 
Jf o ( 4' (r, z) } . 

Using the inversion theorem of the Hankel transform theory we can obtain the stress 
function <I> (r, z), the components of the displacement vector-field u (r, z) as well as the 
components of the strain and stress tensors in an integral form, the integrand containing 
the reduced characterizing functions Sn (x), Tn {x), Un (x), Vn (x) and the Bessel func
tion J 0 (xR) or J1 (xR). Of all these integrals only the five integrals given in Eqs. 42-
46 are linearly independent. 

APPENDIX II 

It is shown that the conditions for continuity of stress and displacement on an inter
face between two layers result in four relations between the characterizing functions of 
the layers on both sides of the interface. When the interface is rough, the four charac
terizing functions of one layer are linear combinations of the four characterizing func
tions of the adjacent layer. As a consequence, when all interfaces are rough, the four 
characterizing functions of the top layer are, by repeated application of this principle, 
linear combinations of the four characterizing functions of the base layer, and vice versa. 

The boundary conditions for stress, strain and displacement at infinite depth require 
that two of the four characterizing functions of the base layer are equal to zero. From 
the boundary conditions at the top surface, giving two linear relations between the four 
characterizing functions of the top layer, the remaining two characterizing functions of 
the base layer can be solved. 

For greater lucidity and ease of handling, matrix formulation has been used in our 
calculations. 
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APPENDIX III 

In the more general case where some layers can siip over each other without any 
shear stress, the solution of the boundary condition problem is more complex. No 
"direct" linear transformation can be found by which the characterizing functions of the 
layer on one side of the smooth interface can be expressed in those of the layer on the 
other side. 

Again the continuity conditions for stresses and displacements on a smooth interface 
give four relations between the characterizing functions of the layers on both sides of 
the interface. We divide these relations into two pairs. By one pair we express the 
four characterizing functions of the layer above a given smooth interface as a linear 
combination of only two, so far independent, characterizing functions. With the aid of 
the two remaining relations we solve, in a way wholly analogous to the method developed 
in the preceding appendix, the characterizing functions of all the layers between this 
given and the next smooth interface as linear combinations of the two independent char
acterizing functions of the layer just above the given smooth interface. 

Beginning with the base layer, we repeat this procedure until we can solve the char
acterizing functions of the layers between the top surface and the first smooth interface. 

APPENDIX IV 

For large values of the reduced Hankel transform parameter the recurrence formulas 
for characterizing functions of the elastic layers can be simplified considerably. The 
4 x 4 matrices, representing the linear transformation between the characterizing func
tions of adjacent layers, can then be subdivided as to the magnitude of numerical values 
into four 2 x 2 submatrices. 

The product of the 4 x 4 matrices, incorporated i{l the recurrence formulas, reduces 
for large values of the Hankel transform parameter t0 the product of 2 x 2 matrices, 
each being a certain submatrix of the '1 x 4 matrices. This means in particular that the 
inverse matrix occurring in the solution of the boundary value problem can now be de
veloped as a product of the inverses of the 2 x 2 matrices considered. The result, the 
asymptotic form of the recurrence formulas for the characterizing functions of the 
layers, only contains the physical parameters of the overlying layers. 

APPENDIX V 

In the more general case where some interfaces in the multilayer system are smooth, 
the asymptotic evaluation of the recurrence formulas for the characterizing functions 
of the layers proves to be as simple as in the case of a system with rough interfaces 
only. 

APPENDIX VI 

This appendix describes in some detail how the representation of the displacement 
vector, the stress tensor and the strain tensor in cylinder coordinates is transformed 
into a representation in Cartesian coordinates. 

APPENDIX VII 

On the basis of the analysis presented in this paper a computer program has been 
written for the numerical evaluation of the stress, strain and displacement in any arbi
trary point of a multi-layer system. The program selects the integrals to be computed 
by com[Jariu~ Lhe aclually required stresses, strains and displacements with Eqs. 32-
41. Then the zeros of the relevant products of Bessel functions are calculated. 

The integrations are performed successively over intervals between two zeros of the 
product of Bessel functions. The values of the characteristic functions are calculated 
and the expression between square brackets of the integrand is computed and subse
quently multiplied by the relevant product of Bessel functions. The Bessel functions 
are evaluated from their Chebyshev series. 
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Once the numerical values of the integrand between two zeros are !mown, the Gauss 
quadrature integration method is used to evaluate these contributions to the integrals. 

Whenever the difference between the values of the characterizing functions and their 
asymptotic values becomes smaller than 10-8 the integration is performed by using the 
asymptotic form. 

If more than one load on the top surface is considered, the program calculates in 
each prescribed place in the multi-layer system the stresses, strains and displace
ments caused by any separate load. From these values the total stresses, strains and 
displacements are calculated. 

The computer program also contains a subroutine for the calculation of the principal 
values and directions of the stress and strain tensors. 

APPENDIX VIII 

This appendix describes in detail the practical use of the computer program, the 
form of the input and output data and the run time. 



Stress Analysis by Finite Elements 
R. A. WESTMANN, University of California, Los Angeles 

•DETERMINATION of stress and displacement fields for realistic geometries often re
quires use of numerical procedures. The applicability of any particular numerical 
technique rests upon the speed of solution, accuracy of method, and capability of han
dling complicated geometrices and different materials as well as mixed boundary conditions. 

Two numerical methods are currently in vogue. The method of finite differences (1) 
has been long established. In 1966, Schimming and Haas (5) described the application 
of finite differences to the solution of a variety of problems in soil mechanics. 

An alternate numerical technique, the so-called method of finite elements, was orig
inally employed in the aerospace industry (7) and has been extensively developed recent 
ly. It has reached the stage of receiving textbook presentation (6); its use is becoming 
widespread (2, 3, 4, 9). -

This presentatiOn-outlines the method of finite elements in one of its most elementary 
forms. Attention is restricted to static two-dimensional problems involving only linear 
materials. To illustrate the chief features and advantages of the technique several ex
amples are solved and typical results presented. 

BASIS OF PROCEDURE 

This paper devotes attention to plane strain problems in classical elasto-statics. For 
discussion purposes, the region of interest is denoted by A, the bounding surface by S, 
and an x -y coordinate system utilized (Fig. 1). If u, v are the x, y components of the 
displacement then the stress-displacement relations are given by 

ax = (1 + v)~l - 2 v) ~ (1 - v) ~~ + v ~; f 

cry= (1 + v)E(i - 2 v) l v ~~ + (1 - v) ~; ~ 

E ( a u av) 
r xy = 2 (1 + v) o Y +ox 

(la) 

(lb) 

(le) 

where E, v are the usual engineering elastic constants. In addition, the stress com
ponents must satisfy the differential equations of equilibrium: 

acrx arxy 
--+--+X=O oX oY 

a r a a 
~ + --y +Y= 0 ax aY 

where X, Y are the components of the body forces. 
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(2a) 

(2b) 
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One suitable formulation of the problem is 
achieved by substituting from Eq. 1 into 
Eq. 2 yielding the displacement equations of 
equilibrium: 

+ X (1 + r.i) (1 - 2 11) _ 0 (3a) 
E -

(1 - 211) o2
v + (l _ 11 ) 0

2
v +.!.~ 

2 2 2 2 oxay 
ox oY 

Y (1 + 11) (1 - 2 11) = 0 
+ E . (3b) 

which must be satisfied throughout the region A. Statement of the problem is completed 
upon observing that on the boundary S either the displacements or certain components of 
the stress Eqs. 1 are specified. 

While Eqs. 3 and associated boundary conditions are a suitable starting point for the 
method of finite differences, an alternate approach is used for finite elements. An 
equivalent formulation of the problem may be stated in terms of the minimization of an 
integral instead of the solution of a system of partial differential equations. 

The integral for the potential energy n of a body in a state of plane strain (1) is given 
by -

n = 2 ( 1 + 11~( 1 - 211) f 11 ( 1 - II) [ ( ~ ~ r + ( ~ ; )2 J + 2 II ~ ~ ~ ; 
A 

(1-211) (au av)
2 

d d + -+- x y 
2 aY ox 

(4) 

The double integration is carried out over the entire area A, whereas the line integral 
is evaluated on only the put of the boundary, 81, on which the surface tractions Tx, 
Ty are prescribed (Fig. 1). 

The theorem of minimum potential energy then states: among all the displacement 
fields which satisfy the geometric boundary conditions (u = U, v = V on 82, Fig. 1), that 
displacement field which makes the potential energy nan absolute minimum is the solu
tion to Eqs. 3 and associated boundary conditions. 

A well known technique for obtaining approximate analytical solutions is as follows. 
First, displacement fields which are functions of arbitrary parameters are selected. 
These displacements (which must satisfy the geometric boundary conditions) are sub
stituted into Eq. 4 and the indicated integration completed. Minimization of the po
tential energy n with respect to the arbitrary parameters in the displacement field then 
yields the approximate solution. The accuracy of this solution is consistent with the 
approximations made in the assumed displacements. 

The minimization process of Eq. 4 may be illustrated as follows. Let u, v be given 
functions of x, y and parameters Ci which satisfy the geometric boundary conditions on 
82; 

N u = I: f. (x, y, c.) 
i = 1 1 1 

(5a) 
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L. 
Figure 2. Figure 3 . 

v = ~ fj (x, y, cj) 
j = N + 1 

(5b) 

Substitution from Eqs. 5 into Eq. 4 and completion of the spatial integration eliminates 
the dependence upon x, y . The potential energy n is then a known function of only the 
parameters Ci. 

i = 1, 2, •.. , M 

In this way the minimization of n is reduced to a standard maxima-minima problem 
in the differential calculus of several variables. The minimization is assured upon re
quiring that 

i = 1, 2, ... , M (6) 

This leads to M simultaneous equations in the M unknown parameters Ci . Provided u, 
v (Eqs. 5) are linear functions of the parameters, Eq. 6 yields simultaneous linear 
equations. 

FINITE ELEMENTS 

In principle, the method of finite elements is identical to the preceding approach. The 
technique is simply a numerical procedure which systemizes the selection of the dis
placement fields and at the same time enables a greater degree of freedom to be intro
duced into the assumed displacements. 

To begin, the region A is divided into triangles , as s hown in F igure 2 (other approac hes 
and element shapes are possible; the method as outlined here is in its simplest form) . 
The nth triangle is illustrated in Figure 3. T he i, j, k nodes have coor dinates Xi, Yi ; 
Xj , Yj; Xk, Yk defining the shape, size and location of the triangular element. The dis
placement field in the nth element is assumed to be linear; 

un = un (x, y) = a x + b y + c n n n 
(7a) 

v = v (x, y) = d x + e y + f n n n n n 
(7b) 

where the constants an' bn' en, dn' en' fn are to be determined. 
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Due to the linearity of the field, compatibility between elements is assured provided 
adjacent elements have the same displacement components at common nodes. It is this 
factor which determines the constants an, bn, en, dn. en, fn. Letting ui, Vi; Uj, Vj ; 
uiv Vk denote the nodal displacement at the i, j, k nodes leads to the following relations 
which the constants must satisfy: 

u. == a x. + b y. + c 1 n1 n1 n (Ba) 

(Bb) 

(Be) 

v. = d x. + e y. + f 1 n1 n1 n 
(Bd) 

V. == d X. + e y. + f 
J n1 nJ n 

(Be) 

(Bf) 

Solution of Eqs. B permits the expression of an, bn, en, etc., in terms of the unknown 
nodal displacements and the coordinates of the nodes: 

an ={(yj - yk) ui + (yk - Yi)uj +(yi - Yj )uk} ~ (9a) 

bn ={(xk-xj) ui +(xi - xk)uj +( xj - xi)uk} ~ (9b) 

en = { ( xjyk - yjxk) ui + ( xky i - xiyk) uj + ( xiyj - y ixj) uk } 2 ~ (9c) 

dn ={(yj -yk)vi +(yk - Yi)vj +(yi - Yj )vk} 2 1~ (9d) 

en={ (xk - xj )vi +(xi - xk )vj +(xj - xi) vk} ~ (9e) 

where ~n is the area of the nth element. 

(9g) 

Substitution from Eqs. 9 into Eqs. 7 then gives the displacement field of the element 
in terms of the unknown nodal displacements and the known geometry of the triangle. 
The displacements obtained in this way for the entire region are continuous as all the 
elements have the same nodal displacements at common nodes. 
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The stress state corresponding to the selected displacement field is readily calcu
lated. From Eqs. 7, it follows that 

oU 
n - = a ax n 

av 
n --=e 

ay n 

au av 
____E+--.E:=b +d 
ay ax n n 

so the components of stress in the nth element are 

(lOa) 

(lOb) 

(lOc) 

(lla) 

(llb) 

(llc) 

The state of stress in each element is constant but, of course, varies from element to 
element. 

It remains to substitute from Eqs. 7 into the expression for the potential energy. The 
potential energy of the nth element then becomes 

+ (l -l v) ( bn + dn r} .An -{ { x ( anx + bny +en) 

n 

+ Y(dn' + •ny + 'n) } dxdy {s, )!Tx(•nx + bny +en) 

+ T (d x + e y + f ) } d L (12) y n n n 

The boundary integral on (s1) n occurs only if an edge of the nth element forms part of 

the 81 boundary of the region A. The total potential energy of the system is just the sum 
of the potential energy of all the elements. If there are N elements altogether· then 
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-J
1 
~/{x(v + bny +en)+ Y(dn' + V + 'n)} dxdy 

n 

- ~ J {T (a x + b y + c ) + T (ct x + e y + f )}ctL 
n 0 1 (s,). x n n n y n n n 

(13) 

In Eq. 13, the first sum is quadratic in the coefficients an, bn, dn, en and therefore 
quadratic in the nodal displacements Ui, Vi. The second and third sums are linear in 
the coefficients and therefore linear in the nodal displacements. 

The minimization of the potential energy is performed with respect to the 2 M un
known nodal displacements: 

on E o 1 2 2 2 
( N { ( ) --= - - v a + e + va e 

aui 2(1+v)(l-2v)oui n~l ( ) n n nn 

~= E _o_ 1 - v a2 + e2 + 2 va e 
ovi 2(1+v)(l-2v) ovi n~l ( )( n n) nn ( 

N { 

+(I -,' v) ( bn + dn )'} "n )- a'v
1 

( J
1
{[H•nx+bn" en) 

+ Y (ct x + e y + f ) } d x d y)- -0 ( ~ j ~ T (a x + b y + c ) 
n n n av i n ~ 1 ( 

81
) l x n n n 

+Ty ( dn' + eny + fn)} dL) o 0 i o I, 2, , ~, , M (14b) 



52 

The summation indicated in Eqs. 14 need only be carried out for the n elements im
mediately surrounding the i th node . This leads to a system of simultaneous linear 
algebraic equations which may be stated in the matrix fo rm 

U2 

K21 ......... . = (15) 

uM B2M 

K2Ml' ' ' ' ' ~M2M vM 

The stiffness matrix, Kij, arises from the first sums in Eqs. 14; the nonhomogeneous 
terms Bi arise from the second and third sums in Eqs. 14 and depend only on the body 
forces and boundary conditions. One very important feature is that the stiffness matrix 
Kij is symmetric. This follows from the quadratic nature of the pertinent terms in the 
expressions for the potential energy. 

To illustrate the preceding formulation a simple example is presented in detail. Con
sider an isosceles triangle with sides t, t, ,_f2' t and loaded and supporled as shown in 
Figure 4. Each side is subjected to a uniform normal pressure, p, so that the triangle 
is in overall equilibrium. The supports are only included to prevent rigid body motion. 

The triangular area is considered as one element (n = 1) with nodes 1, 2, 3 (Fig. 4). 
From the support conditions it is clear that 

Noting that ~1 = t 2/2, Eqs. 9 yield 

Figure 4. 

(16a) 

(16b) 

(17a) 

(17b) 

In this particular example, the body forces X, Y 
vanish but there is a contrib:ution to the potential 
energy from the boundary forces. Since all three 
sides of triangle are on the 81 boundary of the re
gion A, they must be included in the boundary inte -
gral. Completion of the details of this integration 
gives 
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Substituting from Eqs. 17 and Eq. 18 into Eq. 13 gives the expression for the po
tential energy of the system: 

_ E I (1 - v) ( 2 2) (l 2 ) 2 pt Il - 2 (1 + v) (l _ 2 v) ~ U2 +Vs + VU2Vs + - V Us+ 2 (u2 +Vs) 

Minimization of Eq. 19 requires that 

leading to the matrix equation 

E [lo:v 
2 (1 + v) (1 - 2 v) 

The solution of Eq. 20 is 

v 

1 - v 

0 

0 ] U2 l 0 Vs 

2 (1 - 2 v) us 

-pt 
-i-

v - pt (1 + v) (1 - 2 v) , us= 0 u2= s= E 

Substitution of these values into Eqs. 11 gives the element stresses 

a result which could have been anticipated from the start. 
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In general Eqs. 15 are not as simple as in 
the preceding example, Eq. 20. Invariably the 
solution must be obtained numerically on the 
digital computer. Several standard routines 
are available for the efficient solution of large 
systems of banded, symmetric, linear equa
tions. Once the nodal displacements are deter
mined from Eqs. 15, the approximate displace
ment field is fixed and the stress state in each 
element may be evaluated from Eqs. 9 and 11. 

Accuracy obtained depends heavily on the 
number, size, and distribution of elements as 
well as the character of the stress fields. [ It 
should be noted that the formulation is improper 
for incompressible materials, 11 = 1/2; for 
nearly incompressible materials, say v >0.490, 
an alternate formulation must be adopted (see 
Herrmann, 10).] Only the experience of solv
ing example problems and comparing with exact 
solutions permits one to assess the errors in
herent in the approximate technique. The first 
of the following examples helps to serve this 
purpose. The other three examples have been 
selected to illustrate other essential features 
of the method of finite elements. 

Example 1 

The first example is concerned with the linear 
elastic analysis of a test configuration for con

crete specimens. The specimen is a long circular cylinder subjected to diametrically 
opposed line loads (Fig. 5). A closed form solution for this problem may be found in 
Muskhelishvili (8); the numerical results are compared with this exact solution in 
Figure 5. -

These numerical results are indicated by circles and triangles. The different sym
bols are used to distinguish between elements of different size. Since the stress states 
are averaged over the element, it might be expected that the numerical stresses best 
correspond to the centroid of the element; 
therefore, the elements closer to the di-
ameter s ho u l d give results in closer 
agreement with the exact solution. 

The exact solution shows that the nor
mal stress across the vertical diameter 
is constant but that a lateral concentrated 
force exists directly under the load. The 
approximate solution deviates from this 
close to the boundary. This deviation is 
partly due to the fact that the triangular 
elements are not centered on the vertical 
diameter. 

In addition to assessing the accuracy 
of the method, this example also demon
strates its application to a problem in
volving a curved boundary. 

Example 2 

The s e c o n d example deals with the 
linear elastic analysis of a plane strain 

~V(X,Ol 
p 
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Figure 11. 
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Figure 12 . 
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version of the triaxial test for soils. Fig
ure 6 illustrates the geometry and distribu
tion of elements. The specimen is loaded 
by rigid platens, and it is assumed that the 
displacements across the platen-soil inter
face are continuous. The components of 
stress at different cross-sections are shown 
in Figures 7, 8, and 9; it is clear that in 
the upper one-quarter of the specimen the 
elastic stress state is far from uniform. 

It should be mentioned that the nonuni
formity of the stress field depends on the 
value of Poisson's ratio of the material. 
In the event the material has a Poisson's 
ratio of zero, the stress state is uniform, 
cry = P/ 2a, crx = Tx.y = 0. In this example 
Poisson's ratio is taken to be v = 0. 35. 

This example was selected both for its 
interest in soil mechanics and to illustrate 
how mixed boundary conditions are handled. 

Example 3 

The third example is concerned with the 
problem of an elastic footing resting on an 
elastic foundation. There is complete con
tinuity between footing and foundation and 
the footing is centrally loaded by a normal 
force of P = 106

• 

In Figure 10, the geometry is indicated 
as well as the distribution of elements; each 
rectangle is composed of four triangles. Due 
to the symmetry of the problem only one
half of the geometry is shown. As the soil
structure interaction is of prime interest, 
this problem was solved for a variety of 
ratios of the elastic moduli of the footing 
and foundation materials. 

Figure 11 shows the normal interface 
displacement; the constant C has been left 
undetermined on purpose, because the dis
placements for this type of problem in
v o 1 v in g a ha If plane are not uniquely 
determined (11). 

In Figure 12, the interface normal stress 
is presented for different ratios of material 
moduli. For comparison purposes the an
alytical result for a rigid footing, E2/ E1 = 
oo, is included as well. The assumption of 
a uniform pressure dist r ibution under the 
footing leads to a constant value of cry/105 = 
2. 5. 

Example 4 

The final example deals with the stress 
analysis of a series of linear elastic in
clusions in a linear elastic layer loaded by 
anormalsurface pressure p= lOOO(Fig.13). 
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is an important simplification as such 
solution. 
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Quantities of chief interest are the normal 
surface displacements and the stresses in
duced in the inclusion and surrounding ma
terial. Figures 14 and 15 illustrate these 
quantities for several different ratios of the 
material moduli. In Figure 14, the stresses 
are not plotted for those values of x for which 
the numerical solution did not give satisfactory 
resolution. 

This exam p 1 e illustrates how parameter 
studies of soil-structure problems involving 
several materials can be made. 

CONCLUSIONS 

The preceding examples illustrate some of 
the chief advantages of the finite element 
method. The ease with which problems in
volving complex geometrices (two-dimensional), 
nonhomogeneous mate r i a 1 properties, and 
mixed boundary condiUons are handled make 
this technique particularly attractive. In ad
dition, it is not necessary to introduce ficti
tious points at the boundaries or interfaces 
and the formulation automatically leads to a 
symmetric banded matrix. This latter point 

systems are amenable to efficient numerical 

One disadvantage is that the method of finite elements is not as widely applicable as 
finite differences. Only those problems which have an equivalent variational formula
tion may be attacked by finite elements while any partial differential equation may be 
approximated by finite difference operators. Another disadvantage of the finite element 
method, as presented herein, is that the stresses are averaged across any one element. It 
is never clear what point in the triangular element corresponds to the averaged stress state. 

The running times have been indicated for each example. All problems were run on 
an IBM 7094 digital computer; the commercial costs are about $10 per minute. The 
computer costs generally are small compared to the personnel time necessary for prop
er evaluation of all output. 

Many universities produce graduate students well versed in the details of finite ele
ments. In addition, short courses and extension programs are being offered so those 
interested may learn the techniques involved. Because of this, it is anticipated that the 
method of finite elements will become a standard tool for elastic analysis within the 
next few years. 

Currently, industrial and academic groups are actively engaged in further develop
ment and extension of the method. Problems in three dimensions, nonlinear material 
properties, large deformations, viscoelasticity, and thermoelasticity are being re
searched. With the continued improvement in computer technology it is apparent that 
our analysis capabilities are significantly improved. Shortcomings in analysis need no 
longer be a stumbling block in the solution of realistic problems. 
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