Income and Related Transportation and Land-Use Planning Implications

HAROLD D. DEUTSCHMAN, Tri-State Transportation Commission, and NATHAN L. JASCHIK, Monroe County, New York

•HOUSEHOLD income measures are among the most significant determinants of urban life and growth. Income is intermeshed with the location, nature, and type of housing; employment; recreation; community service facilities; and transportation systems. Moreover, it is tied to manifestations such as civic pride, community and neighborhood identity, and individual self-consciousness. Low income areas are often characterized by excessive living densities, poor social and economic conditions, and a high proportion of physical blight, while the more affluent areas commonly are associated with a higher degree of amenities and more attractive life styles.

Along with projections of such variables as population and employment, the planner must study the projection and distributional shifts of household income in order to consider the land-use and transportation plans to best serve the population. In addition, an obviously important consideration for municipal or regional planning is the economic status of the household, which is significant in financing improvements or innovations through direct costs and taxes, and more subtly, for the desire to spend public funds for a proposed plan.

Simple procedures are presented to measure the effect of income on such variables as (a) housing market, (b) auto ownership, (c) auto and transit-trip generation, and (d) time and distance separation of residence and worksite. The data source for this study was the home interview survey results from the Tri-State Transportation Commission, describing the New York metropolitan area. Methodology is presented to indicate the sensitivity of household income to these variables. Three different assumptions of the distribution of household income are presented (analogous to the different states of the world in decision theory). It is hoped that this study may serve as a starting point for needed revisions of data collection procedures pertaining to household income (as crossclassified with other variables) as well as for analytical work to systematically measure household income for its effects on transportation and land-use planning.

HOUSING MARKET VS HOUSEHOLD INCOME

Household income, along with household composition, is an important factor in the selection of a housing type and living style. Home ownership rate, a measure of living style, is a direct function of income. In the New York metropolitan area, for households earning less than \$4000, only 2 in 10 own their own home, while 6 households in 10 earning \$10,000 own rather than rent. The highest home ownership is in the \$25,000 + income group with 70 percent of the households owning a home. This is, in reality, a measure of the unconstrained desire to own. The income dividing line between renting and owning is approximately \$5000-6000, with the low incomes severely constrained in their selection of housing type. The joint effect of income and persons per household yields more of an insight to the actual desire expressed for home ownership (Fig. 1). Table 1 gives a comparison of households earning \$5500 with those earning \$8500.

Household income is a determinant of home ownership, even when holding household composition (persons per household) constant. Home ownership or the selection of a

Paper sponsored by Committee on Origin and Destination and presented at the 47th Annual Meeting.

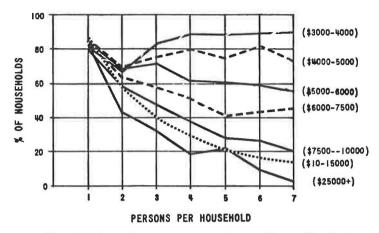


Figure 1. Percent of households renting vs persons per household, stratified by household income.

Persons per HH	Avg. House	hold Income	Home Ownership Rate			
	\$5500	\$8500	Ratio (\$8500/\$5500)			
	15\$	19%	1,26			
2	33	42	1.27			
3	31	53	1.71			
4	38	62	1.63			
5	39	72	1.85			
6	40	73	1.83			
7	44	79	1,80			

TABLE 1 HOME OWNERSHIP (\$) VS PERSONS PER HOUSEHOLD (Stratified by Avg. Household Income)

housing type is not just a selection of a place to live, it denotes a way of living. Associated with the selection of a house are such factors as cost of housing, relative closeness to work, residential density, tenure of residence, amount of space, degree of privacy, and type of neighbors. While income influences housing choice, once this choice is made, transportation-related variables are also influenced. To illustrate, for households of equivalent incomes, the number of autos owned per 100 households is more than twice as great in the single family units as compared to multi-unit structures.

Household income's influence on the selection of housing type must also be studied along with the racial composition of the region's households. Using the 1960 Census as a source, significant differences in home ownership rates are apparent for nonwhites vs whites in the New York metropolitan area. The rates of home ownership by race are given (Table 2) for the households in the region, stratified by household income.

		IADLE 4	6							
HOME OWNERSHIP (\$) VS RACE (Stratified by Household Income)										
Pres		All								
Race	(< \$2999)	(\$3000-6999)	(\$7000-7999)	(\$10,000+)	Households					
White	28%	37\$	55%	66%	45\$					
Nonwhite	10%	17%	32%	48%	18%					
Ratio home ownership (white/nonwhite)	2.8	2.2	1.7	1.4	2.5					

TADIE

Forecasting Housing Demand

A future housing demand may be simulated by studying the present relationship of household income vs home-ownership rates and then projecting the income distribution to a future year while holding the income-housing relationship fixed in time. Obviously, this is a simplified technique of estimating future housing demand. It does not implicitly consider such variables as persons per household, or age of head of the household, and does not reflect future federal policy, construction costs, or interest rates for mortgage money. Nevertheless, this technique offers a starting point to estimate the housing demands for a particular housing type, the single family unit. Furthermore, housing demands may be simulated under different assumptions or conditions of income distribution. (This is analogous to decision theory, viewing the rewards or consequences under varying states of the world. Of course, a probability must be associated or computed with each "state of the world.") Three different assumptions of income distribution are presented: (a) a uniform increase of income for each income class, (b) lowincome groups gaining at a higher rate of increase than the other income groups, and (c-d) middle or high-income groups gaining at a higher rate of increase. For each assumption, the associated demand for home ownership is computed. The analytical process is as follows:

1. From survey results, the income distribution is determined for the present or survey year (in this case, 1963).

Household Income	Home Ownership Rate	Household Income	Home Ownership Ra		
\$0-2000	19.6%	\$6000-7500	44.0%		
2000-3000	20.5	7500-10,000	55.0		
3000-4000	20.9	10,000-15,000	60.8		
4000-5000	23.8	15,000-25,000	60.8		
5000-6000	29.3	25,000 +	71.1		

HOME OWNERSHIP RATE VS HOUSEHOLD INCOME

2. Associated with each income group is its calculated (also from survey) rate of home ownership per household.

3. For each income class, a percent growth of income is assigned for the survey year to forecast year.

4. The home ownership rates from item 2 are held constant, with the percent of households in each household group changing at the same rate as the real income change. An illustration of this process is as follows:

Income Class	Percent of Households in Survey Year	Change		
\$0-2000	7	0 -2,3		
\$2000-3000	6	+2.3%		

ANALYTICAL PROCEDURE TO DISTRIBUTE HOUSEHOLD INCOME

Explanation: If everyone's income is increased by 50% (over 25 years) and a uniform distribution is assumed for each income class, then all households earning \$1333 or more in the survey year will be propelled to the next class. Thus, $\binom{1}{3}$ (7%) or 2.3% of the households move to the \$2000-3000 income class and $\binom{2}{3}$ (7%) or 4.7% of the households remain in the \$0-2000 classification. This process continues throughout each income class and is summed up to produce a final (new) distribution.

Condition (Assumptions)	Survey Findings (1963)	Uniform Increase In Real Income of 2% Per Year	2 ¹ / ₂ # Increase for \$0-5000 Income (All Others 2# Increase)	2 ¹ / ₂ [#] Increase for \$10,000 Income (All Others 2 [#] Increase)	2 ¹ / ₂ % Increase for \$5-10,000 Income (All Others 2% Increase)	Uniform Increase in Real Income of 3 ^g Per Year
Time (yr)	то	T ₀ + 25	T ₀ + 25	T ₀ + 25	T ₀ + 25	T ₀ + 25
Results (a) Home ownership demand per 100 households	40.6	50.5	51.1	50.6	50.8	53.0
(b) Autos per 1000 households	850	1096	1113	1097	1097	1166
	Incon	ne Distributions—Per	centage Distribu	tion of Househol	ds	
Income Class			S			
\$0-2000	7	4.7	4.3	4.7	4.7	4.0
2-3000	6	2.3	2.7	2.3	2.3	3.0
3-4000	9	4.0	2.8	4.0	4.0	2.9
4-5000	10	5.0	4.1	5.0	5.0	2.3
5-6000	13	6.0	8.1	6.0	6.0	6.7
6-7500	16	10.0	6.0	10.0	10.0	5.1
75-10000	17	20.2	24.2	20,2	14.6	17.1
10-15000	14	25.8	25.8	25.8	26.0	29.2
15-25000	6	15.0	15.0	14.2	20.4	19.8
25000 +	6 2	7.0	7.0	7.8	7.0	10.0
	100	100.0	100.0	100.0	100.0	100.0

TABLE 3 HOME OWNERSHIP VS INCOME

5. The total number of home owners per 100 households is determined by multiplying the new number of households (shifted by the income growth) by the established (fixed) home ownership rate, and summing up the results for all income classes. The results of this process are given in Table 3, under Results (a).

Analysis of Results-Housing Demand

A 2 percent increase in real household income (adjusted for cost of living increases) over the next 25 years creates a new pattern or demand for home ownership. The income structure shifts to the right, producing more middle-class families, with (for the first time) sufficient income to contemplate owning a house and enjoying a life in the suburbs. Current construction rates (rate of single family home construction vs multi-family) may have to be modified for the future. To illustrate—in the period between 1957-1964 over 8, 500, 000 new dwelling units were constructed in the New York metropolitan area, of which 43 percent were single family units. (Regional Plan Association Bull. 103, Dec. 1965.) Trends indicate that this percentage of single-family construction should increase to meet the demand of the households. For example, a conservative estimate of a uniform real income increase of 2 percent per year increases the rate of single family home ownership from 40 households in 100 to over 50 per 100.

By perturbing the income distribution, causing each of the income groups to grow at different increase rates, it is possible to view the sensitivity of home ownership demands for the \$0-5000, \$5000-10,000, and \$10,000+ income groups. Three cases were considered at a uniform 2 percent income increase for all groups, and with either the low, middle, or high income group increasing at a slightly higher rate of $2^{1/2}$ percent. The results of this analysis show that the lowest household income (\$0-5000) is most sensitive to home-ownership demand with slight changes in income. The middle-to-high incomes are relatively insensitive to this same income change.

It is also noted that the increase from present conditions to a uniform 2 percent income increase (over 25 years) produces a significantly greater change of home ownership increase per year, per 1 percent income growth, when compared to the change from a 2 percent to a 3 percent income increase.

Although this analysis on household income vs housing-market demands is simplified, it is hoped that it also reveals the necessity to improve and enrich the data collection

and analytical methodology in the housing-market field. Much research is needed to describe the housing consumer, his needs, and the supply of housing to most efficiently fit his demand. The study of household income vs housing demands is but a first step in this direction. The authors of Housing, People and Cities¹ state that

No major industry in the United States is as deficient in systematic research as the housing industry.... Probably the most spectacular deficiency of the housing industry is the lack of adequate market data. The census of the farm population and farm housing involves the expenditure of \$1.90 per capita on the farm population. The corresponding census on urban housing and population involves an expenditure of only \$0.45 per capita on the urban population.... Our major industries conduct systematic and detailed surveys of the buying habits, incomes, residential locations, and social characteristics of their purchases. They use all the elaborate methods of modern market research to diagnose consumer preferences and tastes. No such information is available in any city in the United States for the markets and customers of the housing industry.

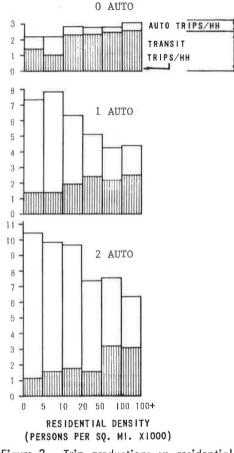
Household Income vs Mass-Transit Ridership

What happens to the total number of transit trips if household income increases? Since income (along with residential density) is a strong determinant of auto ownership, it was felt that for the purpose of this analysis auto ownership may be used as a proxy variable for income. The underlying assumption for this substitution is that (holding residential density constant) income and autos may be interchanged in their relationships with total trip generation and mass-transit trip generation.

The strategy for this analysis is as follows: From survey or present conditions, construct statistical relationships between auto ownership, total trip generation, and mass transit ridership (Figs. 2-5). A simulation technique is then employed to yield the incremental change of total trips and mass-transit trips due to incremental changes in auto ownership (presumably caused by incremental changes in household income). The technique evolves as follows: With a sampling of expansion areas² as observation points, data were collected on (a) residential density of zone (persons per square mile), (b) autos per household (ratio), (c) number of households in each auto-ownership category (0, 1, 2+ autos), (d) total trip productions, and (e) total mass-transit trip productions. Next, auto-owership rates were related to the distribution of households in each autoownership class. To illustrate, an ownership rate of 1.2 autos per household (or, more realistically, 120 autos per 100 households) is equivalent to 30 households owning 2+ autos, 55 households owning 1 auto, and 15 households owning 0 autos. The next step involves the construction of a relationship between total trips generated per household vs residential density stratified by auto ownership. To illustrate, zone A has an auto ownership rate of 1.20 autos per household and an average density of 10,000 persons. Then (Fig. 3) the 100 households composing this zone will generate 672 trips (40 trips by the fifteen 0-auto households, 352 trips by the fifty-five 1-auto households, and 280 trips by the thirty 2+ auto households). The input for step 3 involves the total trip generation for this zone and the auto-ownership distribution per zone. Transit trips are then calculated as a percentage of the total trip-end densities as related to residential density and auto ownership (Fig. 5).

Analysis of Results-Transit Trip-Making

The results of this analysis may be expressed in different ways. For the purpose of this paper it was desired to illustrate the sensitivity of auto ownership as addressed to the following questions: With a constant residential density, what happens to transit-trip productions as you go from 0 to 1-auto households, and progress from 1-auto to


¹Meyerson, M., Terrett, B., and Wheaton, W. Housing, People and Cities. McGraw-Hill, 1952.
²In expanding the Tri-State home interview survey from a 1 percent sample to its representative universe, the study area was divided into 278 expansion areas, or zones.

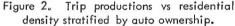

multi-auto households? What is the incremental change of total trips and mass-transit trips with incremental changes in auto ownership, progressing by 0.1 increases in auto ownership?

Figure 6 shows the sensitivity of transit trip generation with shifts in auto ownership from 0-1-2+ autos. The transit trip generation rate drops as much as 30 to 35 percent in high residential densities of 100,000 or more when an auto becomes available to a previously auto-less household. In relatively moderate residential densities (10,000-40,000) this drop in transit trip-making is on the order of 5 to 10 percent, while in middle-high densities the decrease is 10 to 20 percent with the availability of 1 auto.

The addition of a second auto is relatively insensitive to transit trip-making. In the residential density range from 2000-100,000, there is a general decrease in transit trips, with the range from +5 to -5 percent. In the very high densities (over 100,000), a sharp increase in transit trips is noted with the addition of a second auto. However, this is more of a statistical anomaly than a significant finding, as relatively few households maintain two autos at this density.

Another view of the results is made possible by studying the share of transit trips to total trips, with changes in auto ownership (Fig. 7). At high residential densities, the transit share of total trips drops 40 percent with the advent of a first auto, while at low

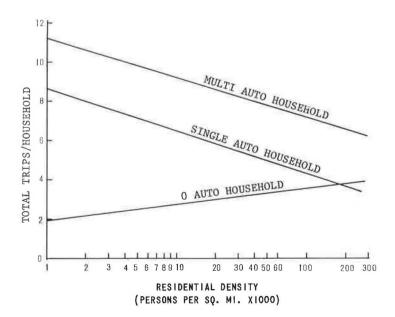


Figure 3. Trip productions per household vs residential density stratified by auto ownership.

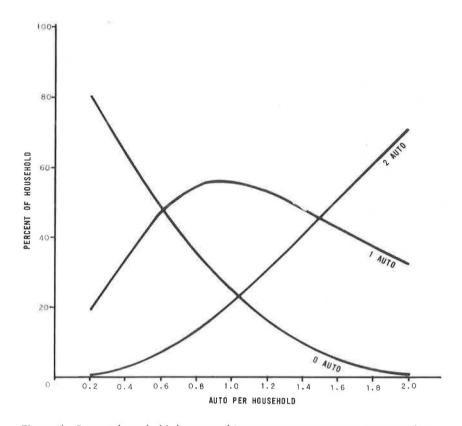


Figure 4. Percent households by ownership category vs average auto ownership.

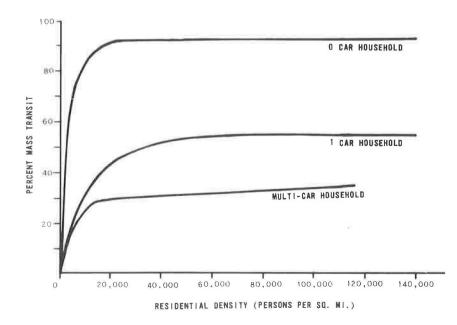


Figure 5. Percent mass transit vs residential density and auto ownership class.

58

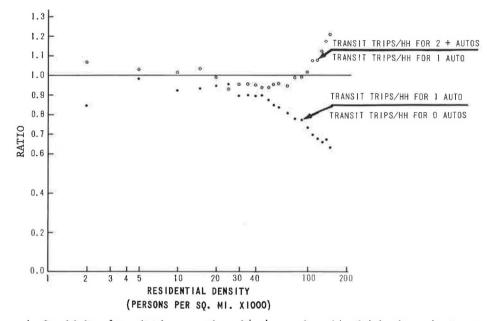


Figure 6. Sensitivity of transit trip generation with changes in residential density and auto ownership.

densities (2000) the decrease is a drastic one of 80 percent. The curve of transit share vs residential density (with change in autos available from 0-1) is curvilinear, showing an asymptotic relationship to a maximum decline of 40 percent at high densities.

Total trip generation and transit trip-making may also be studied across the entire spectrum of auto ownership (Fig. 8-9). Total trips generated is shown to vary directly with autos available and inversely with residential density. As auto availability increases, the differential rates in trip-making between different residential density measures

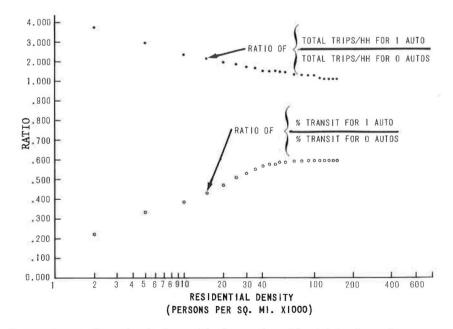
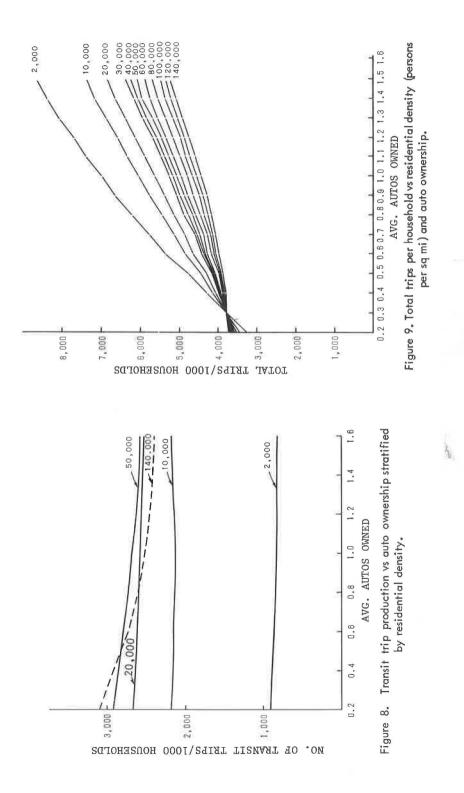



Figure 7. Sensitivity of transit trip share with changes in residential density and auto ownership.

TABLE 4

SIMULATED TOTAL TRIPS AND TRANSIT TRIPS WITH INPUT OF AUTO OWNERSHIP AND RESIDENTIAL DENSITY

AVE AUTUS UNNED	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.4	1.0	1.1	1.2	1.3	1.4	1.5	1.6		
2000 PRS/SQMI	3241 908	3749 896	4282 884	4745 574	5347	5735 854	62 04 846	5528 840	5965 837	7370 833	7691	5079 827	8397 825	8630 825		TOTAL TRANS	
5000 PR\$/SQNE	3348 1621	3759 1619	4195 1617	4572 1615	5070 1613	5389 1612	5783 1612	6142 1512	6432 1512	6783 1613	7062 1614	7403	7684 1617	7993 1619		TOTAL	
10000 PHS/ SQM1	3432 2192	3762 2178	4119 2157	4425 2156	4841 2147	5104 2140	5441 2136	5753 2135	6010 2138	6126 2142	6578 2146	5888 2153	7149 2160	7344 2167		TOTAL TRANS	
15000 PRS/SQNI	3459 2432	3748 2418	4064 2404	4334 2392	4707 2379	4942 2370	5247 2362	5534 2355	5772 2351	6367 2347	6302 2344	6594 2341	5841 2340	7027 2340		TOTAL TRANS	
20000 PRS/SUNI	3513 2666	3769 2652	4052 2639	4293 2627	4631 2612	4843 2603	5123 2591	5399 2582	5612 2574	5889 2565	6112 2553	6389 2550	5624 2544	6903 2539		TOTAL TR ENS	
25000 PRS/SQMI	3527 2748	3758 2736	4015 2722	4234 2710	45 43 26 92	4736 2682	4993 2566	5230 2551	5444 2538	5701 2621	5907 2637	6165 2590	6384 2575	6551 2564		TOTAL TRANS	
30000 PRS/5911	3520 2788	3714 2762	3937 2734	4124 2710	4401 2679	4571 2658	4009	5041 2613	5241 2596	5494 2575	5698 2559	5955 2540	517A 2524	6351 2513		TOTAL	
35000 PRS/SQM1	3561 2852	3742 2826	3952 2798	4128 2773	4391 2742	4552 2722	4781 2597	5004 2575	5198 2658	5445 2637	5644 2621	5896 2601	6113 2585	6283 2573		TOTAL	
40000 PHS/SUMI	3581 2886	3754 2858	3454 2828	4122 2802	4375 2769	4530 2747	4750 2722	4967 2598	5155 2680	5395 2658	5587 2640	5834 2619	6047 2601	6212 2589		TOTAL TRANS	
45000 PRS/SQNI	3579 2898	3746 2871	3941 2842	4104 2817	4350 2784	4500 2763	4715 2737	4926 2713	5110 2694	5345 2570	5534 2652	5774 2629	5982 2611	6144 2597		T T T A L TRANS	
50000 PR5/SQ41	3600 2930	3754 2896	3936 2851	4088 2831	4321 2791	4462 2766	4667 2735	\$370 2708	5048 2686	5275 2660	5450 2640	5694 2615	5897 2595	6056 2580		TOTAL TRANS	
5500C P45/5041	3521 2964	3762 2924	3932 2882	4072	4291 2800	4423 2770	4619 2736	4913 2705	4985 2581	5201 2652	5385 2630	5613 2603	5812 2581	595A 2546		TRANS	
60000 P45/5041	3641 2991	3770 2943	3927 2893	4056 2850	4262 2796	4385 2760	4570 2723	4757 2534	4923 2557	5137 2526	5311 2631	5533 2572	5721 2550	5880 2533		TOTAL TRANS	
70000 PHS/SQNI	3652 3021	3768 2968	3912 2913	4030	4223 2807	4337 2768	4513 2723	4592 2685	4852 2655	5061 2621	5229 2594	5446 2562	5636 2537	5787 2519		TOTAL TRANS	
BOOOD PASISUMI	3634 3014	3738 2954	3870 2893	3978 2840	4160 2775	4266 2733	4435 2685	4613	4768 2615	4974 2581	5142 2554	5358 2523	5549 2500	5700 2484		FOTAL TRANS	
90000 PHS/SQ41	3643 3029	1738 2963	3861 2897	3761 2839	413L 2769	4230 2722	4391 2571	4556 2627	4737 2595	4904 2557	5065 2530	5272 2497	5455 2472	5601 2455		TOTAL TRANS	
100000 PRS/5941	3664	3746 2982	3855 2909	3943 2844	4098 2767	4187	4335	4491 2514	4634 2581	4822 2544	4975 2515	5173 2483	5350 2459	5490 2444		TOTAL TRANS	
110000 PIS/5041	3679 3084	3746	3842 2918	3917 2845	4058 2761	4138 2703	4278 2644	4425 2596	4565 2563	4750 2527	4900 2500	5095 2469	5271 2448	5411 2436		T J T A L TR A N S	
150000 64212941	3708 3115	3765 3024	3850 2936	3917 2857	4047 2765	4120 2703	4251 2639	4 3 9 Z 2 5 8 7	4525 2551	4702 2512	4845 2482	5035 2449	5205 2425	5342 2411		TO TAL	
130000 P35/5941	3698 3116	3747 3021	3825 2929	3884 2846	4006 2752	4073 2688	4199 2623	4336 2571	4466 2536	4640 2500	4782 2472	4969 2442	5138 2422	5274 2412		TOTAL TRANS	
140000 215/5041	3688 3114	3728	3797 2918	3848 2832	3962 2735	4024 2658	4145 2603	4277 2552	4405 2519	4578 2485	4719 2460	4905 2434	5074	5210 2412		TOTAL TRANS	
15000 PRS/SUN1	3708 3145		3792 2932	3832 2839	3933 2734	3 985 2 66 3	4095 2593	4221 2538	4343 2503	4509 2467	4645 2461	4825 2414	4989 2398	5122 2390		TJTAL TRANS	

TABLE 5 SIMULATED TRIP PRODUCTIONS BY COUNTY

INE ADIDE UMNES	3.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	F. 1	1.2	1.3	1.4	1.5	1.6		
BENGEN	2320	2680 731	3080 748	3420 762	3900 779	4200 790	4500 801	4980 809	5300 814	5700 819	5020 823	6420 827	6760 829	7020 830		TOTAL TRANS	TRIPS
BRONX	2320	2680	3080 1845	3420	3900 2078	4200 2163	4600	4980	5300	5700 2448	5020 2495	6420 2550	6760 2590	7020		TOTAL TRANS	
ESSEX	2320	2680 1036	3080 1036	3420 1036	3900 1034	4200 1033	4600 1030	4980 1327	5300 1024	5700 1019	6020 1015	6420 1010	6760 1005	7020		TOTAL TRANS	
HUDSON	2320 1186	258C 1212	3080 1234	3420 1255	3900 1272	\$200 1286	4600 1293	4780 1295	5300 12 <u>92</u>	5700	6020 1277	5420 1266	6760 1253	7020 1241		TOTAL TRANS	
MIDOLESEX	2320	2680	3080 622	3420 639	3900 658	4200 671	46 00 684	4980 694	5300 701	5700 706	5020 714	6423 719	6760 723	7020		TOTAL TRANS	
MONMOUTH	2320	2680 598	3080	3420 634	3900 655	4200 669	4600 685	4980 702	5300 714	5700 730	5020 742	5420 757	6760 769	7020 778		TOTAL TRANS	
MORKIS	2320	2680 386	3080 434	3420 475	3900 531	4200	4600 611	4980 653	5300 687	5700 729	5020 762	6420 803	6760 838	7020 863		TO TAL	TRIPS TRIPS
PASSAIC	2320 688	2680 680	3080 675	3420	3900 666	4200 663	4600 664	4980 666	5300	5700	6020 683	6420 691	6760 699	7020 706		TO TAL TRANS	
SOMERSET	232C 681	2680	3080	3420	3900 710	4200 717	4600 732	4980 749	5333 765	5700 788	5020 607	6420 832	6760 854	7020 873		TOTAL TRANS	
UNION	2320	2680 769	3080 774	362C 779	3900 782	4200 785	4600 786	4980 785	5300 784	5700 781	5020 779	6420 775	6760 771	7020 767		TOTAL	
KINGS	2320	268C 1781	3080 1911	3420 2026	3900 2166	4200 2259	4600 2363	4980 2453	5300 2520	5700	5020 2659	6420 2729	6760 2784	7020 2823		TOTAL TRANS	
NASSAJ	2320	2680 832	3080 872	3420 906	3900	4200 977	4600	4980	5300 1059	5700	6020 1103	6423	6760 1143	7020		TO TAL	TRIPS TRIPS
MANHATTAN	2320	2680	3080	3420 2087	3900	4200	4000	4980	5300 2531	5700 2583	5020	6420 2663	6760	7020		TOTAL TRANS	TRIPS TRIPS
JUEENS	2320 1565	2680	3080 1774	3420 1867	3900 1992	4200 2072	4600 2172	4980 2265	5300 2341	5700 2434	6020 2508	6420 2599	5760 2674	7020 2731		TOTAL	
RICHMOND	2320	2680 1651	3080 1785	3420 1900	3900 2056	4200	4600	4980 2398	5300 2495	5700 2613	6020 2708	6420 2825	6760 2923	7020 2996		TOTAL	
HUCKLAND	2320	2680 716	3080	3420 834	3900 907	4200 954	4600	4980 1359	5300	5700 1170	6020 1215	6420 1270	6760 1316	7020 1351		TOTAL TRANS	
SUFFOLK	2320	2680	3080 797	3420 853	3900 922	4200 967	4500 1018	4980 1961	5300 1093	5700 1130	6020 1159	6420 1192	6760 1218	7020 1236		TOTAL	
WESTLHSIA	2320	2680	3080 1000	3420 1036	3900 1082	4200	4600 1147	4980 1178	5300	5700 1230	6020 1253	6420 1279	6760 1301	7020 1316		TOTAL	
SWESTERN	2320 4d1	2680 482	3080	3420 488	1900 497	\$200 502	4600	4980 526	5300 539	5700	6020 572	6420 592	6760 610	1020		TOTAL	
GIN BROPT	2320	268C 583	3080 566	3420	3900	\$200 525	4600 517	4780	5300 512	5700	5023	6420 517	6760 521	7020		TOTAL	
SCENTRAL	2125	208C 584	3080 583	3420 581	3 7 0 0 5 86	4200 587	4600 595	4783 506	5300 618	5700	5020	6420 669	6760 688	7020 704		TOTAL TRANS	
ANS-DERBY	2323	2580	3280 300	3420 324	3900 360	4200 382	4600 412	4983 441	5300	5700	6020 522	6420 554	6760 581	7020 602		TOTAL TRANS	

increases significantly. Conversely, at low auto ownership levels of 20-40 autos per 100 households, the trip propensity approaches a constant of approximately 4 trips per household for all residential density measures.

For the mass-transit trip generation, at constant residential densities, the number of transit trips is relatively insensitive to incremental changes in auto ownership. For the most part, there are slight decreases in transit trip-making as the auto ownership rates increase. Residential density, rather than auto ownership, determines the transit trip productions, with a low of about 1 trip per household at a density of 2000 to a high of 3 transit trips per household at a density of 40, 000-50, 000 (Fig. 8).

With the aid of a computer, the simulated results may be tabulated showing the total trips and transit trips per range of residential densities and autos owned (Table 4). Another way of presenting the results is to assign an average residential density to a municipality or county to see how transit and total trips vary with autos (Table 5).

In summary, perhaps too much attention was paid to the description of the results and not enough to the possible uses of the technique. The methodology presented provides a trend of trip-making projected by holding constant relationships between income, autos, density, and trip-making. It is feasible to incorporate this procedure to an overall model of population and employment growth (and related characteristics) to yield a portrait of transit and total trip demand, if these present relationships continue into the future. In addition, transit service may also be readily incorporated in the outlined procedure. The end-product of the analysis presented is a trip-demand portrait of a region if no significant region-shaping planning decisions are made. This is a starting point for viewing new transportation and land-use plans for their changes on the trend or projected plan.

HOUSEHOLD INCOME VS AUTO OWNERSHIP

Household income, along with residential density, is an indicator of auto ownership. Holding density constant (with no. of housing units in the structure a proxy for residential density) auto availability increases with increasing household income for each of the four housing types. However, this rate of increase of autos vs income is not constant

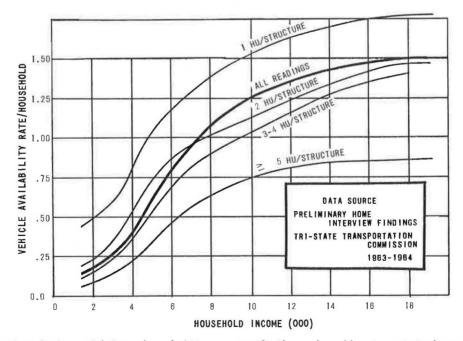


Figure 10. Vehicle availability vs household income stratified by number of housing units in the structure.

throughout the density classes. Figure 10 shows the relationship between autos and income stratified by housing type.

A rate of auto availability vs household income was determined from survey results. (The terms auto ownership and auto availability are used interchangeably.) This rate is held fixed with income forecasted to a future year. This procedure implicitly assumes that the growth in the region between the survey year and the forecast year will approximate the density configuration already intact in the region. The auto ownership rate vs household income is indicated as follows:

Income	Auto Availabilit				
\$0-2000	0.15				
2000-3000	0.23				
3000-4000	0.30				
4000-5000	0.50				
5000-6000	0.73				
6000-7500	0.93				
7500-10,000	1.15				
10,000-15,000	1.34				
15,000-25,000	1.51				
25,000 +	1,51				

Results of the analytical procedure used to compute the demand for auto ownership under different assumptions of income distribution are given in Table 3, under Results (b).

Analysis of Results-Auto Ownership

An increase of 2 percent per year for 25 years (or a 50 percent increase) produced a change in auto ownership from 85 autos per 100 households to 110 autos per 100 households. The actual increase in the ownership rate was 29 percent, or 14.5 percent per 1 percent increase in real income. The differential increase in auto ownership from (a) a 2 percent increase in real income to (b) a 3 percent increase in real income. This is due to the saturation of autos per household (sufficient number of autos per family to accommodate household needs) regardless of household income.

With perturbations in the income-distribution process, one can view the sensitivity of each of three income groups on their effect on auto ownership. To illustrate, the house-hold demand for autos was computed at a uniform average real increase in income of 2 percent (for all income groups). This may be compared to a 2 percent real income growth for all groups and a $2\frac{1}{2}$ percent income growth in either the (a) \$0-5000 income group, or (b) \$5-10,000, and (c) \$10-15,000 groups. The low income group (a) is most sensitive to changes in auto ownership with a slight change in household income. An additional $\frac{1}{2}$ of 1 percent increase of 2 autos per 100 households. The incremental growth of $\frac{1}{2}$ of 1 percent to either of the other income groups produces, in effect, no change in the total autos per 100 household rate, showing the saturation effect of autos on moderate to high incomes.

TIME-DISTANCE SEPARATION OF RESIDENCE AND WORKSITE

One of the important considerations in choosing a place of residence is its relationship with the place of employment. The separation of the home and worksite, measured in time, distance, and cost, dictates to a large degree the shape a region may take. Most basic to the consideration of income and its related land-use planning implications is the relationship between income and place of residence on the one hand, and place of employment and accessibility on the other. It is commonly held that the journey to work, from this standpoint of time, distance, cost, and mode, is directly related to the level

64

of personal income. In essence, as a worker's income increases, he has a correspondingly wider choice as to employment location. The worker at the low end of the economic scale is severely limited in choice and opportunity.

In recent years, metropolitan areas throughout the nation have experienced a steady movement of lower-paying jobs away from the central city (especially in manufacturing). At the same time, the movement of the "middle-class" to the suburbs has left many central cities with a rapidly-increasing share of low-income families. Thus there is an apparent greater separation of home and work for each income class. This denotes a greater demand on the transportation system for the journey to work and the need for new and expanded transportation links to serve this redistributed population. In addition, viewing the average time, cost, and distance from home to work for each income class should reveal the constraints on the relative connection of residence and worksite. There is also a steady increase in distance from work as household income increases. The average trip length in miles (airline distance) and the average trip time for the journey to work as stratified by income is as follows:

Income	Trip Length	Trip Time (min)
\$0-1999	2.26	23.7
2000-2999	4.60	32.7
3000-3999	6.07	34.2
4000-4999	5.62	33.4
5000-5999	7.50	32.2
6000-7499	9.16	32.8
7500-9999	11.00	33.3
10,000-14,999	12.00	32.5
15,000-24,999	14,42	32.6
25,000 and over	10.57	27.2

With the exception of the very low incomes (\$0-2000) and very high incomes (\$25,000 +) all other income classes have a surprisingly constant average trip time to work (about 33 min, with a range of from 32.5 min to 34.2 min for eight income classes). Of course, it is a combination of distance and time that produces the actual cost of the journey to work, such that this cost would increase as household income increases. The data above reflect the importance of the time consideration in the match-up of residence and worksite.

It is suggested that household income be studied in much greater detail in designing for more functional living-working arrangements, and for providing improved access permitting people to flow more freely between home and job.

SUMMARY

Household income is shown to be a determinant in transportation and land-use planning. Simplified procedures are presented to measure the sensitivity of household income with such variables as auto ownership, transit-trip ridership, auto and total trip-making, and home ownership. It is hoped that this paper may stir interest in the systematic evaluation of the variables that are used to simulate transportation demands (of which income is one of many). Innovations in data collection procedures should be suggested and should be designed to permit a more thorough evaluation of these variables over time.