Lane-Changing in Multilane Freeway Traffic

R. D. WORRALL, A. G. R. BULLEN, and Y. GUR, Northwestern University

ABRIDGMENT

A SERIES of analyses are presented indicating that lane-changing in multilane freeway traffic may be effectively described as a random process.

Assuming first that lane-changing may be treated as an isolated, independent event within the traffic stream, it is shown that the number of lane changes, X_{ij}^{kt}, between lanes i and j within a length of freeway k and a time span t may be estimated as the outcome of a simple Poisson process \(\{X_{ij}^{kt}; t > 0\} \), where

$$\text{Prob.} \{X_{ij}^{kt} = N\} = \frac{\exp\left(-\lambda_{ij}^{k} t\right)}{N!}\left(\lambda_{ij}^{k} t\right)^{N}$$

and λ_{ij}^{k} = Avg. No. lane changes between lanes i and j per unit time within section k.

Empirical data are presented to show that the value of λ_{ij}^{k} varies systematically with both traffic speed and traffic volume, and with proximity to entrance and exit ramps. Further, the assumption of randomness is shown to break down during medium-heavy flow periods (flows equivalent to 62 to 87 veh/min/3 lanes and at points immediately downstream from freeway entrance ramps.

It is similarly shown that the pattern of lane changes with the k'th section of length L may be modeled as a finite Markov process \(\{X(k); L > 0\} \), where

$$\text{Prob.} \{X(k) = j \mid X(0), \ldots, X(k - 1); L\} = \text{Prob.} \{X(k) - j \mid X(k - 1); L\},$$

and

$$\text{Prob.} \{X(k) = j\} \rightarrow \text{Prob.} \text{ that a given vehicle is in lane } j \text{ as it leaves section } k.$$ A simple Markovian model based on this structure is calibrated from field data collected on a 6-lane freeway in Chicago, and extended to cover the situations of lane-changing in the vicinity of freeway entrance and exit ramps and within a complex weaving section. In each case the model effectively replicates the observed maneuver pattern.

Paper sponsored by Committee on Freeway Operations.