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The travel time factor represents the effect of travel time on 
trip interchanges. In its use in gravity model studies, the 
travel time factor is an empirical hand-down curve that is 
considered constant over time. This paper questions constan­
cy over time by attempting to express travel time curves in 
parametric form and relating the parameters to variables 
within the study area that are known to change over time. 
Driving time curves for three trip purposes were selected 
from ten widely scattered transportation study areas of dif­
ferent sizes. By curve moment techniques, the travel time 
factors were· closely modeled by Pearson Type I and Pearson 
Type m curves. The travel time curves of home-based work 
and non-home-based trips were best modeled by Pearson I 
curves, whereas the factors for shorter length shopping trips 
were better modeled by Pearson m curves. Using factor anal­
ysis and correlation analysis for the selection of independent 
variables, regression equations of acceptable statistical sig­
nificance were derived relating the parameters of the Pearson 
models to variables calculated on a citywide basis. The study 
found significant relations between curve parameters and such 
ephemeral variables as numbers of trips made, trip-making 
rates, car ownership, and ratios of trips made for various 
purposes. 

•THE CURRENT use of the gravity model in the trip distribution phase of transporta­
tion planning has evoked interest in the form of the effect of distance or travel time on 
travel. Traditionally, research was into the effect of separation function suggested by 
calibrations of the form with respect to available data. This work sought to further th.at 
research, still in an empirical manner, by an examination of the travel time factors as 
used in various transportation studies. After observations of the form of existing travel 
time curves, conclusions concerning the genera.I form of such curves could be drawn. 
From these conclusions, suitable parametric curves were derived and fitted to the travel 
time curves. 

Having achieved suitable parametric fits, the parameters derived were themselves 
subjected to examination to determine whether relationships existed between these 
parameters and characteristics of the study area and its population. It appeared reason­
able that if relationships between curve parameters and areawide variables could be 
'found, then changes in parameters (and changes in the travel time curves themselves) 
could be predicted from changes in the areawide variables. Another area of application 
would arise in the generation of a travel time curve for a study at the start of the cali­
bration phase. An initial curve could be obtained from the parameters obtained from 
the regression analysis on areawide variables. Current methods of estimating the travel 
time factor curve for the first calibration cycle generally evolve on a guess based on 
past experience in other study areas. An improvement of this technique would result 
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from a modeling approach. Such an approach would decrease the number of cycles 
needed to calibrate the gravity model within required limits of accuracy, with an ensuing 
decrease in computer and technical time involved in the calibration process. 

GENERAL DISCUSSION OF THE GRAVITY MODEL 

The use of the theory of gravity to describe the interaction of human populations 
dates back to the early nineteenth century. 

Voorhees (1) utilized a gravity formulation in his "General Theory of Traffic Move­
ment." His work used a constant exponent for the influence of distance, but Voorhees 
also indicated that travel time rather than physical spatial separation was a realistic 
measure of impedance to travel. This is reflected in current practice which uses the 
following form of gravity model: 

where 

Tij =the trip interchange from i to j, 

Pi = the number of trips produced at zone i destined to all zones, 

~ = the number of trips attracted to zone j from all zones, and 

Fij = the friction factor derived from the travel time curve for a travel time 
equaling that time from i to j. 

For clarity of presentation the model is shown without the often necessary social­
economic adjustment factors. In early work in the Washington, D. C., area, Hansen (2) 
used travel time as a measure of spatial separation, and found that a constant exponent 
was not usable. The negative exponent appeared toincrease with increasing separation. 
This was highly apparent in the case of the work trip. The need for a variable exponent 
in the use of a gravity model has been found necessary in many city studies carried out 
since Hansen's work. The San Mateo study, for example, used travel time exponents 
that varied with time, ranging from 0 to 1.2. More common practice is the use of ordi­
nates from an empi r ica l hand-drawn "friction factor curve," equivalent to using an ex­
ponent of time that varies over the whole time range. Tanner (3) investigated the ques­
tion of a constant exponential of spatial separation from a mathematical appr oach. It 
was found that it was not mathematically possible for the distance exponent to remain 
constant with the distance. This work indicated that short trips required, under as­
sumptions of uniform population density, an exponent between 2 and 3, which was theo­
retically impossible in the case of long trips, and which led to a ridiculously high 
vehicle-mileage of travel in an area. Rather than a constant exponent where 

f(d) = dn 

Tanner suggested a more general form of curve, the gamma function, 

f(d) = e -1..ddn 

where 

f(d) = the functional form of the effect of distance as it would appear in a gravity 
model formulation, 

x = some nonnegative constant, 
d = the measure of spatial separation, 
n = some constant, and 
e =the base of natural logarithms. 
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Such a form would permit a sufficiently rapid decay of the function to prevent errors in 
long trip computations. 

Voorhees (4) has suggested that the general gamma density function can be utilized 
as a parametric substitute for hand-fitted travel time factors. 

CONSTANCY OF TRAVEL TIME FACTORS 

An examination of r ange of trave l time factors of various cities was made by Whit­
more (5). This work found that the t ravel time factor could be represented by general 
polynomials, and that regional friction factors are similar from region to region, but 
vary considerably from city to city. Whitmore indicated that the best fit to travel time 
factors could be found with a polynomial of the form 

where Ao, A1, and A2 are constants, and tis the travel time including terminal time . 
An examination of the form of function indicates that as t tends to infinity, the function 
itself becomes infinite. Although it gives an apparently adequate fit over certain ranges, 
it cannot be held as a completely rational form of the travel time factor. Possible forms 
should certainly have characteristics similar to that of the function suggested in Tanner's 
work, in which the value of the function decreases at an increasing rate with time. 

It is felt that a great deal of information on the behavior of the travel time factor is 
being lost by current use of hand-fitted travel time factors. This problem has been 
recognized for some time by the Bureau of Public Roads which states: 

It is important to keep the "line of best fit" smooth and as straight as possible 
for the following reasons: 

a. Smooth curves can be approximate ly defined in a mathematical expres­
sion; possibly, one that is not complex. 

b. If these curves can be approxi mated by a mathemotica I expression, 
meaningful comparisons can be made between these expressions for d if­
ferent urban areas with various populat ion a nd density characteristics. 

c. These comparisons would eventually he lp quanti fy, with a mathemati­
ca I function, the effect of spatio I separation between zones on trip 
interchange. 

If nonparametric curves continue to be used in the gravity models of transportation 
studies, little advance can be made with respect to the assumption of constancy. Such 
an assumption is not likely to be greatly in error in a slowly developing community. In 
an area of considerable development, and significant social change, the assumption 
may well be unjustified. It is precisely within areas of radical change that the trans­
portation modeling process is of greatest value. The use of parametric travel time 
curves is recommended so that information relating the form of the curve to the char­
acter of study area can be retrieved by statistical relationships. Statistical modeling 
is in widespread use throughout the remainder of the transportation planning process, 
and it is felt that it can well be extended into the modeling of the travel time factor it­
self. Any model used to describe the form of the travel time factor must be sufficiently 
flexible to fit the various shapes of the factors. 

The Pearson system of curves, a highly flexible system derivable from a basic dif­
ferential equation appears to have adequate variety of form to permit its adaptation for 
use as a travel time factor curve. Pearson curves have as many as three shape param­
eters and one shift parameter. All curves are derivable from lhe basic formula 

f(x) = 

where a, bi, b2, b3 are constants. 



PURPOSE OF RESEARCH 

It was decided that this research would serve three main purposes: 

1. To determine how satisfactorily this curve system could serve as travel time 
factors. 
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2. To establish relationships between the parameters of fitted curves and the char­
acteristics of the study area and its population; and to derive suitable regression 
equations. 

3. To indicate how well parameters derived from regression relationships would 
serve for initial estimates of the travel time factor. 

Further advantages from the use of parametric curves occur from the fact that the 
calibration cycle itself can be completely computerized, thus eliminating the present 
methods of hand-fitting empirical curves at each stage of calibration of the gravity 
model. The modeling method indicated in thiswork is directly applicable to the fitting 
of a parametric curve to points, rather than to the hand-fitting method recommended by 
the Bureau of Public Roads. 

Curve fitting was carried out by the method of moment, found to give excellent re­
sults with Pearson I and Pearson ffi distributions (6). 

The Pearson system of curves may be derived from the basic differential equation 

where 

y = F(t), the functional form, 
t = the time separation, and 
a = ho, bi, b2 = constants. 

This is a very general form of curve, which by proper choice of constants can insure 
that y = 0 as t tends to infinity, that dy/dt = 0, and that y can have a local maximum at 
low values oft. The equation therefore conforms with observed properties of the travel 
time factor. 

Depending on the values of the constants in the basic differential equation, a variety 
of curve types are obtainable. If the roots of the denominator are real and of different 
sign, then the differential equation gives the Pearson I curve of the form 

where 

m1, m2, A = shape parameters; 
c = a shift parameter; 

C1 = a constant, affecting only the magnitude of the curve; 
t = the time separation; and 

B(m1, m2) = the value of the beta function with parameters mi, m2. 

When b = O, the solution to the differential equation is the Pearson m curve: 

F(t) = C • £_ • (p+lf • f1 + _!_:_u). e - p/ A(t-µ) 
A eP+l T' (p+l) \ A 

where 

p, A= the shape parameters; 
µ = a shift parameter; 
C = a constant, affecting only the magnitude of the curve; 
t = the time separation; and 

F(t) = the functional form. 
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Depending on the value of the differential equation constants, eleven different types 
of curves result. These are examples of the Pearson system of curves. For the purposes 
of this work, it was found that satisfactory fit could be obtained using Pearson I for work 
trips and non-home-based trips, and Pearson m for shopping trips. It is of interest at 
this point to compare this approach from the differential equation basis with Tanner's 
earlier observation that the time factor could not be constant, but was probably of the 
form 

f(d) = e - A.ddn 

Tanner's suggested form of the travel time curve, dertyed mathematically, is a special 
case of the Pearson III distribution, which is itself a special case of the solution to the 
basic differential equation. The work undertaken here was therefore considered an ex­
amination of Tanner's generalized hypothesis. 

DISCUSSION OF DATA 

For this study, extensive use was made of data compiled in Whitmore's work, includ­
ing additional data. In order that the data should be compatible for the rational appli­
cation of regression equations to similar data, the studies selected were those using 
driving time curves with no inclusion of terminal times. Compatible data were avail­
able for ten cities for the home-based work trip, nine cities for non-home-based trips, 
and five cities for shopping trips. Because of the small sample for shopping trips, 
caution should be used in accepting results found in this limited study. Other trip 
purposes such as school trips and social-recreational trips could not be investigated 
because of the variety of ways in which these trips were treated in the available studies. 

WORK TRIP TRAVEL TIME CURVES 

It was found that the travel time factor for work trips could be modeled satisfactorily 
by the use of the Pearson I curve, which has three shape parameters and one shift 
parameter. The summary of the results is given in Table 1. The Pearson I curve was 
found to model adequately a full range of travel times that included at least 90 percent 
of all travel for that purpose. The range of times varied from a low value of 2 minutes 
to a high value of 50 minutes. In all classes the percentage of trips falling outside the 
upper limit of the model was sufficiently small that it could be ignored without affecting 
the validity of the model. No attempt was made to fit parameters at very low travel 
times. 

TABLE 1 

SUMMARY OF PEARSON I SHAPE PARAMETERS 
FOR HOME-BASED WORK TRIPS 

c Index of F-Ratio 
Location m1 m2 A Shift Multiple of 

Parameter Correlation Regression 

Cedar Rapids -0.27 1.48 55.9 0.72 0.997 13,861 

Waterbury -0.72 4.16 74.2 1.71 0 .995 2,593 

Erie -0.37 1.89 40.9 1.21 0.999 26, 733 

New Orleans -0.73 2.84 70.7 1.93 0.997 6,288 

Providence -0.66 5.40 104.6 2,25 0.992 2,434 

Sioux Falls -0.35 0.48 15.8 0 ,97 0.979 831 

Hartford -0.63 3.01 60.6 1.10 0.997 5,776 

Fort Worth -0.83 3.89 54.8 2.23 0.993 1,379 

Baltimore -0.65 2.19 57.3 1.87 0.988 1,702 

Los Angeles -0.77 6.87 128.3 11 .37 0.991 1,825 



It is apparent that a high degree of fit 
has been obtained by the use of the Pearson 
I curve. Figure 1 shows examples of the 
excellent fits obtained using the Pearson I 
curve. 

Relationships Between Curve Parameters 
and Area Characteristics 

The second stage of the research dealt 
with attempting to find statistical relation­
ships between the parameters of the model 
for travel time factors, and various city­
wide variables. Such a relationship would 
indicate possible predictability of the trav­
el time factor curve under varying condi­
tions, and would shed light on the assump­
tion that travel time factors are constant 
with time. 

Statistically significant trends were 
found to exist between the shape par am -
eters of the model and citywide variables 
determined in the 0-D studies. The se-
lection of the variables used in the regres-
sion was based on correlation analysis, 
factor analysis, and the suitability of the 
variable for predictive purposes. Where 
it was possible variables involving the 
study area size were avoided. For pre­
dictive purposes, such variables would in 
general be unreliable because the inclusion 
of large peripheral rural areas could rad-
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Figure l. Examples of adequacy of Pearson I fit 
for home-based work travel time factors. 

ically affect the value of such variables without a remarkable change on the trip char­
acteristics. Final selection of the regression equation was also selected by minimizing 
the significance level of both the regression coefficients of the independent variables 
and the regression equation itself. This procedure was followed for all trip purposes. 
Table 2 and Figures 2 through 5 summarize the findings of the regression analysis for 
home-based work trips. 

A summary of the statistical findings concerning the home-based work trip travel 
time factors would indicate that (a) travel time factors curves can be satisfactorily 
modeled with Pearson Type I distribution curves and that (b) the parameters of the 

TABLE 2 

SUMMARY OF REGRESSION EQUATIONS FOR CURVE PARAMETERS-WORK TRIPS 

Regression Equation 

mi = -0.993 + 0.000933 x home-based 
work trips per 1,000 population 

In (m2) = 3.51 - 1.74 x In (total trips 
per car) 

In A = -4.995 x 104 x (total home­
based work trips)- 1 + 4.52 

c = 2.63 - 0.0025 x home-based work 
trips per 1,000 population 

Level of 
Significance of 

Regression 
Coefficients 

(percent) 

0.1 

Level of 
Significance 
of Variables 

(percent) 

2 

2 

Correlation 
Coefficient 
of Equation 

0.75 

0.79 

0.87 

0.77 
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Pearson I models are found to be statistically related to overall citywide variables. 
These variables were found to be the number of home-based work trips per thousand 
population, the total number of home-based work trips, and the number of trips per car. 
From the statistical relationships found for home-based work travel time factors, it 
would appear that these factors may not be constant over time as is currently as­
sumed in the calibration of the gravity models for transportation studies. Constancy 
over time for a particular urban area would indicate an independence of the parameters 
of the curve from any relationship with city variables, and any change in the trip­
making patterns would be assumed to have no effect on the form of the travel time 
curve. 

NON-HOME-BASED TRIP TRAVEL TIME CURVES 

In the case of non-home-based trips, homogeneous data were available for nine 
cities for analysis of the travel time factor curves. It was found that the most satis­
factory model for the non-home-based trip curves was the Pearson Type I distribution. 
Table 3 summarizes the results. This curve was an accurate model over the range 
of travel times that included at least 90 percent of non-home-based trips. A full range 
of travel times was therefore considered. In all cases, the percentage of trips falling 

TABLE 3 

SUMMARY OF PEARSON I SHAPE PARAMETERS 
FOR NON-HOME-BASED TRIPS 

c Index of F-Ratio 
Location mi m , A Shift Multiple of 

Parameter Correlation Regression 

Cedar Rapids -0.42 1.95 38.7 1.02 0.999 17 ,097 

Waterbury -0.18 7.02 46.7 0.90 0.997 4,098 

Erie -0.58 2.89 42.6 1.42 0.994 2,135 

Providence -0.61 11.48 78.3 1.20 0.997 2,380 

Sioux Falls -0.54 0.62 16.6 1.10 0.996 3,133 

Hartford -0.91 8.05 68.2 1.07 0.990 791 

Fort Worth -0.68 3.11 48.0 1.68 0.996 a,560 

Baltimore -0.86 9.92 109.0 1.52 0,985 2,380 

Los Angeles -0 .64 1.05 57.9 11.37 0.987 2,359 
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non-home-based trip travel time curves. 

outside the range of applicability of the 
model was sufficiently small that the model 
was considered valid. 

It is immediately apparent from a com­
parison of the model values and the actual 
values that a high degree of fit has been 
achieved with the use of the Pearson I 
curve. Examples of the fits obtained are 
shown in Figure 6 . 

Relationships Between Curve Parameters 
and Area Characteristics 

The second stage of statistical modeling 
indicated that significant relationships 
could be developed between the parameters 
of the Pearson I models and various city­
wide variables. The results of the regres­
sion analysis are shown in Table 4 and in 
Figures 7 through 10. 

The findings on the travel time factors 
for the non-home-based trips can be sum­
marized as (a) travel time factor curves 
can be satisfactorily modeled by the use 
of Pearson Type I distribution curves; and 
(b) the .Parameters of Pearson I models are 
found to be statistically related to the fol­
lowing overall citywide variables: all­
purpose trips per car, non-home-based 
trips; all trips, total number of trips, non-
home-based trips per car, and non- home­
based trips; study area. 

The dependency of the curve parameters on independent variables would indicate 
that these parameters may not be constant under conditions where the independent 
variables noted above are projected to change during the planning period. 

Caution must be exercised in the use of the regression equations developed here. 
The sample size of this study was relatively small, and further research would appear 
to be necessary to determine whether the findings can be generally applied. 

TABLE 4 

SUMMARY OF REGRESSION EQUATIONS FOR CURVE PARAMETERS­
NON-HOME-BASED TRIPS 

Regression Equation 

m1 = 0.479 + 0. L69 x (toial trips per car) 
_ 

1 56 
(non-home-based trips) 

• x all trips 

m2 = 6.56 + 5.86 ~ 10' x (total trips) 
- 0.207 ~ (non -home-based trips 
+ total lrlps) 

In A = 6.55 - 0.417 In (non-home-based 
trips + study area in sq mi) 

c = 1.51 - 0.71 x (non-home -based 
trips , trips per car) 

Level of 
Significance of 

Regression 
Coefficients 

(percent) 

2 

2, 5 

7 

Level of 
Significance 
of Variables 

(percent) 

2 

2, 5 

7 

Multiple 
Correlation 
Coefficient 

0.87 

0 .89 

0.79 

0 .71 



r 
0 

.. 
u 
;; 

-.• 

-. 

-

- I 

- 1 0 

~ ... , .. .,, , / 
ML L TIPU uo 15510 IQUA TION • 01 ~ /{ 
NC N-HO I ~~· ID Tl PS ··' 

k' . . · 
·' . w·· 

I~ 
,, 

•• ,., .... 1lh 

,, .... ll e"n ,,_. f• lh . ,.. 
rf'· altl• . 

f•· I W•r•h ' 
- • • ltl [(.{-'' ·~···'·' ' 

. ... ~"·· · ·· 
/ , 

- 0. - 0 .4 -02 

OtSUYIO VAlUIS Of m1 

Figure 7. Regression equation for m1 1 non-home-based trips. 

MUI IPLE I EGIU! ON E< UATIOf JOI mp v 
NO ·- ·-10 !HIPS .. ,, '""' .... , / 

v ., .. , ... . . 
~ "'' .. ~ -· ehr1 Wirth ~·~~ 

,&.} ~- io-...... 

.... ~-.~\ "' c. jl.. 1,.;• . : ~ ,0 ~ . 
•' 
~ si ..... , ... 

• 10 

OIUIYIO VAi.UiS Of "" :I 

Figure 8. Regression equation for m2, non-home-based trips. 

c 

i 
c 

: 
0 
~ 

~ 
> 

llO 

s1 .... 1 

•n 
II '111 SIC N EQUATIO ~ •01 A 

,..., N(IH- Hiii 1 .. ASED ll!PS 

1 ... •••• .... i .... 

150 w ..... .. , '. .. _,\<llti ·~ w ..... 
l .. All ,. ... . \ \ ~ 

r •••• ~ :".:!' ,_ 1 •• 1. -_ .. , 
I 11u .• . ~ , • 

, .. 
, ... 

._) ~ ;. 
. • IJI N 

-
... . 

,. 100 soo 1000 

NON-HOMl - IAHD FllPS+ UUDY AllA 

_Ill 

__.v 

• 000 

Figure 9. Regression equation for A, non-home-based trips. 

39 

12 



40 

'·' ,.,, .et th ... 
1.5 

IUUSI ION EQU 110P fOI ' 
r-. • 1""'91 NC N-HC iME- 1 AHi n1 s ... 1--... . .. .. 

~!--.. 
r--...'· '•1 l!a- --

'·' " 14>-'~ ... !'-::_ .... . ... --~ ~I ... ., 
--r- 51•11 F\11 ..• ' ..... I ,,.. ... ! •Her ~· 

...__ 
..._,, 

1--.. ... ..... i.... , 

1.0 2.0 ,. 
NOft-HOMl-IASID TllP$ PH CAI 
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SHOPPING TRIP TRAVEL TIME CURVES 

The final set of travel time curves analyzed was for shopping trips. Because of the 
various ways in which shopping trips can be classified for study purposes, this group 
of travel time factors presented the smallest homogeneous sample of the set. Only 
five travel time curves were analyzed. 

At the time of analysis, an immediate difference became obvious between the shop­
ping trip andthe two other types of trips. The median shopping trip length was 7.5 This 
compared with 12.2 for the work trip. It was found that the best fit to the shopping trip 
curves was obtained with the Pearson III curve. This distribution curve was found to 
satisfactorily model at least 90 percent of all trips. 

TABLE 5 

SUMMARY OF PEARSON Ill SHAPE PARAMETERS 
FOR HOME-BASED SHOPPING TRIPS 

Shift Index of F-Ratio 
Location p A Parameter Multiple of 

µ Correlation Regression 

Waterbury -0.35 -1.12 2.85 0.997 2,913 

Erie -0.45 -1.90 3.16 0.991 824 

Providence -0.49 -2.33 3.32 0.996 2,226 

Hartford -0.79 -4.27 1.91 0.997 1,951 

Fort Worth -0.39 -0.97 2.54 0.990 760 

TABLE 6 

SUMMARY OF REGRESSION EQUATIONS FOR CURVE PARAMETERS­
HOME-BASED SHOPPING TRIPS 

Regression Equation 

Level of 
Significance of 

Regression 
Coefficients 

(percent) 

Level of 
Significance 
of Variables 

(percent) 

Correlation 
Coefficient 
of Equation 

In (A) = 1.37 + 1.28 x 10-' x total 
trips per 1000 population 

In (p) = 1.11 + 5.10 x 10-' x total trips 

= 8.06 - 15.79 x (cars per person) 

10 10 

10 

0.82 

0.87 

0.97 



Table 5 compares the Pearson ID model 
with the actual travel time factors used in 
the transportation studies. Excellent fit 
has been obtained using this form of curve. 
The F-ratios are high, and the index of 
multiple correlation is also high (Fig. 11). 

The Pearson m curve used for this type 
of trip is a curve discontinuous at its lower 
end only. The curve is continuous to infi­
nite travel times. The number of param­
eters needed to describe it is one less than 
for the Pearson I curve, which is discon­
tinuous at both ends. The second stage of 
correlation for the shopping trip curves 
therefore amounts to the relation of the two 
shape parameters p and A, and the shift 
parameter u to the citywide variables and 
the curve parameters. The results of the 
regression analysis are shown in Table 6 
and Figures 12 through 14. 

Relationship Between Curve Parameters 
and Area Characteristics 

A summary of the statistical findings 
concerning shopping trip travel time fac­
tor curves would indicate that (a) travel 
time factor curves can be satisfactorily 
modeled using Pearson III distribution 
curves, and (b) the parameters of the Pear­
son III curves that best fit the actual curves 
were found to be statistically related to 
the following citywide variables: total trips 
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Figure 11. Examples of adequacy of Pearson Ill 
fit for shopping trip travel time factors. 

per thousand population, total trips, and car ownership per person. The regression 
equations developed indicate a method whereby the change in travel time curve param­
eter for a given change in travel behavior can be predicted. 
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PREDICTIVE ABILITY OF REGRESSION EQUATION 

To determine how well the derived regression equations could be used for predicting 
travel time curves, an analysis was made comparing curves from regression-derived 
parameters with actual travel time curves. The results of the analysis for the three 
trip purposes are shown in Figure 15. For clarity the curves are standardized on con­
venient ordinates. It is apparent that the regression-derived parameters in some cases 
gave curves that would have been adequate for final gravity model calibrations, whereas 
in other cases the curves would have sufficed only for initial estimates of the curves. 
It would appear that the derived regression equations in Tables 2, 4, and 6 are likely to 
give good first estimates of travel time curves. 

CONCLUSIONS 

1. Empirical travel time factor curves for transportation studies can be closely 
approximated by parametric curves of the Pearson system. The parameters are best 
estimated by curve moment procedures. 

2. Home-based work and non-home-based travel time curves are best modeled by 
Pearson I curves. Pearson ID curves were found to provide a better model for the 
shopping trip that has a lower mean trip time than home-based work or non-home-based 
trips. It would appear that the Pearson I distribution provides a better fit to those 
travel time curves in which the change of time exponent with time is most apparent. 

3. Statistical relationships were found between the parameters of the Pearson 
models and pertinent citywide variables. Among those variables related to model 
parameters were home-based work trips per thousand population, total trips per car, 
total home-based trips, ratio of non-home-based trips to all trips, total trips in the 
study area, non-home-based trips per car, cars per person, and total trips per thousand 
population. 

4. Significant regression equations between study area variables and mqdel param­
eters can be calculated, indicating that there is statistical probability that these param­
eters are not constant, but are likely to change as the character of the area itself is 
modified. Such modification would be reflected in a change in the areawide variables. 

5. The regression equations can be used without serious error for a first approxi­
mation of the travel time factors. Modification of the initial estimate of travel time 
curves can be effected in a manner similar to the method suggested in the Bureau of 
Public Roads Manuals, except that the new curves should be computed by moments 
rather than by the hand-fitting method currently recommended. This would enable the 
formation of a data bank of mathematical expressions for travel time curves and study 
area characteristics so that "meaningful comparisons can be made between these ex­
pressions for different urban areas with various population and density characteristics." 
This curve-fitting technique is easily programmed for high-speed computers, and will 
speed the present gravity model iterative fitting techniques. 

6. The Pearson I and m shape parameters were not found to be highly sensitive. 
Small errors or small changes in parameters did not give radically different curves. 
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Discussion 
SALVATORE J. BELLOMO, Alan M. Voorhees and Associates, Inc. -In reviewing the 
work of Covault and Ashford, certain findings and i mplications were made regarding 
use of Pearson I and III statistical relationships for estimating travel time factors for 
urban transportation planning studies. This discussion will be related to certain of 
their major conclusions and what I see as shortcomings that would require a limited 
use of their work, and as applications of their research that will definitely improve our 
ability to do travel forecasting at a lower cost in our small- and medium-sized urban 
areas. 

It appears that the statistical measures given, such as the index of multiple correlation 
and F-ratio, are based on a comparison of actual versus estimated travel time curves 
r at)ler than on a comparison of the actual versus estimated distribution of trips . Re­
search done as part of Factors and Trends in Trip Lengths (4) indicates that any pro­
cedure to est imate travel time factors must be sensitive to the first 10 to 15 minutes 
of travel, the time period in which most trips are made. Figure 15 of the authors' 
paper shows this comparison of travel time factors and indicates that the Pearson dis­
tribution does not fit this critical part of the curve, especially in the first 10 minutes. 
Because Alan M. Voorhees and Associates, Inc., conducted half the studies mentioned, 
it well recalls the sensitivity of these travel time factor s in this critical area on the 
synthesis of the trip length distribution. 

The applicability of the Pearson distribution formulas based on the areawide charac­
teristics mentioned would be quite dubious in larger metropolitan areas where mode 
choice and mass public transportation are currently being evaluated. In these studies, 
person travel time factors are usually developed, and current research on trip lengths 
has indicated that these travel time factors may be affected by mode as well as route 
choice. Furthermore, the areawide characteristics, such as car ownership in urban 
areas with potential mass transit use, would not be applicable to synthesizing travel 
time factors for people who have no car. Does their travel time curve really depend 
on areawide characteristics? In conducting research for Factors and Trends in Trip 
Lengths, it was found that travel time factors within our metropolitan area may be in­
fluenced by the spatial arrangement of trip opportunities. This is illustrated in Figure 
16 which shows variations in t ravel time factor curves based on the mean opportunity 
length and in Figure 17 which indicates the re lationship found between the shape param­
eter of the gamma distribution used to synthesize travel time factor s in that research 
project and the mean opportunity length for several selected zones in the Washlngton 
area. 

Concerning the sensitivity of the parameters of the Pearson distribution and their 
effect on the synthesis of the travel time curve, no analysis was conducted by the 
authors. Varying the areawide characteristics, based on reasonable changes that might 
occur, should be made to see their effect on travel time factors and on the trip length 
distribution. In addition, the results of this research should be checked for their applica­
bility over time using historical rather than cross-sectional data. It should be noted 
that these tests were conducted over time for Washington and Baltimore. No appreci­
able change in travel time factors was found for these metropolitan areas. Studies are 
currently being made in Detroit to see if the travel time factors for that metropolitan 
area change over time. If they do, the effect of these changes on the actual trip length 
distribution will be determined. 

From a practical standpoint, the recommendation to use Pearson distribution param­
eters and a computer because of cost savings seems unsupported and unwarranted. A 
recycle of a gravity model costs less than a Pearson m statistical calculation does 
when one considers staff time, programminE:, and the cost of turnaround on calibrating 
gravity models. (To run a gravity model for a 180-zone system costs about $50.) 
Furthermore, a program is currently available that calculates unsmoothed travel time 
factors and plots actual and estimated trip length distribution given the 0-D trip table 
and zone to zone travel time or costs as inputs. The computer running time with this 
program is low. 
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The idea of collecting parameters for the Pearson distribution for research purposes 
is unwarranted, and it would not be applicable to be undertaken by operating transpor­
tation agencies. More research and support are required before this work is required 
by the DOT of on-going studies. 

The applicability of these research findings, as I see it, would probably be in our 
small- and medium- sized cities with small modal split where data collection of costly 
0-D data could be reduced in lieu of a travel time factor simulation based on areawide 
characteristics. What could be done is as follows: 

1. Covault and Ashford's technique might be used in estimating travel time factors 
based on areawide characteristics. 

2. A small sample 0-D survey could be used to establish trip generation rates, ·and 
the trip length distribution. 

3. A thorough land use and land activity survey could be applied to the trip rates to 
establish trip productions and attractions. 

4. A gravity model run could then be made and the mean and standard deviation of 
the resulting trip length could be checked against the small sample 0-D trip length. 

These steps could reduce the cost of data collection and could produce a model more 
quickly while the transportation and land-use issues are being faced by the community. 
However, before this is applied, it should be rigorously tested in pilot studies by a 
transportation study agency working closely with the Department of Transportation. 
These studies should be conducted for an area of about 50,000 population and for one of 
about 150,000 population; they should compare alternative ways of developing transpor­
tation models in less time and at a lesser cost. 

In conclusion, I have attempted to pinpoint what I felt to be areas which needed ad­
ditional support while at the same time reporting what I thought would be an area of 
application for their findings in our transportation planning studies. I commend the 
authors on their work and hope they find this discussion constructive to their research 
effort. 

DONALD E. CLEVELAND, University of Michigan-Ashford and Covault have appropri­
ately directed their efforts toward a problem of some concern to those who use the 
gravity trip distribution model, the problem of the time stability of the relative attrac­
tiveness of destinations at varying distances from the trip origin. Until now little direct 
evidence has been presented to support or refute the contention that this function is con­
stant over time. 

The main thrust of their paper is that (a) there is value in determining a relatively 
simple mathematical function that can be used to express the relative attractiveness of 
destinations as a function of travel time; (b) parameters for the appropriate mathe­
matical function can be easily determined; (c) the extent of correlation of these param­
eters with other study area variables for a cross-sectional sample of data from several 
cities can be determined, and the existence of a causal relationship inferred; and (d) the 
time stability of the correlated study area variables is apparent. If they are not stable 
over time, neither are the travel time factors. If they are stable, so are the travel 
time factors. 

The authors worked with 24 sets of data classified by three trip purposes and de­
veloped in several cities. They concluded that the travel time function is not constant. 
My brief discussion raises certain questions of interest to those who wish to study the 
details of this procedure and concludes with a statement concerning the validity of the 
approach adopted by the authors. 

1. In the statistical analysis it would be of interest to learn of the variables that did 
not correlate with the travel time factor parameters. 
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2. The way in which the authors resolved a number of difficult questions associated 
with fitting parameters to general Pearson types would be of particular interest to the 
student of curve fitting. Weighting procedures used would be of particular value. 

3. The method of moments is not always an efficient method of obtaining parameters. 
Some comment on this is requested. 

4. In discussing the development of an appropriate mathematical function for travel 
time factors, it is stated that the value of this function should decrease at an increasing 
rate with time. It is not clear to this reviewer why this should be the case. In fact, it 
would appear that this decline with separation would lessen at the larger separations. 

5. It is well known that long trips contribute a disproportionate share of vehicle 
mileage on high-type facilities. What fraction of vehicle miles of travel is covered by 
the area of satisfactory fit of the Pearson I distribution? 

6. It would appear to this reader that travel time factors would be particularly 
sensitive to spatial variables. If a region were to double in diameter, then it would be 
expected that there would be some travel between places separated by more than the 
original diameter of the area. Such a response would appear to require a spatial repre­
sentation in the areawide variables used in the regressions. Previous studies bear this 
out. 

Finally, it is my opinion that the approach used in this paper, one of inferring a 
causal relationship as a result of rather weak correlations of cross-sectional data, is 
weak and that those who believe in the variability of travel time factors will need 
stronger evidence than that presented here. 

NORMAN ASHFORD and DONALD O. COVAULT, Closure-In closing the discussion, 
the authors wish to comment briefly on some of the important points brought out by 
Messrs. Bellomo and Cleveland. 

The stability of travel time factors over time is an assumption that has been made 
with little supporting evidence. While the main thought of this paper was an examina­
tion of the form of the travel time factor, relationships were found to exist which should 
cause the planner to seriously question the traditionally accepted time stability. 

Sensitivity analysis was carried out with respect to all shape parameters of both 
Pearson I and Pearson m curves. This analysis indicated that all shape parameters 
were insensitive, and the curve form was, therefore, applicable. 

The method of moments is an efficient method of curve-fitting where the data points 
to be fitted closely identify with the curve form being used. The close agreement be­
tween actual curves and parametric curves lead the authors to believe that this method 
was justifiable for this work. The ability of the method to closely simulate the observed 
rapid increase in the logarithmic negative slope for smaller cities would indicate that 
the form selected was suitable. 

The authors agree that some reworking of existing programs would be required to 
develop parametric curve fits. It is not felt that this is a major drawback which should 
discourage planners from adopting parametric forms in lieu of hand-drawn curves. 




